OptimizedStructLayout.cpp 16.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
//===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the performOptimizedStructLayout interface.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/OptimizedStructLayout.h"

using namespace llvm;

using Field = OptimizedStructLayoutField;

#ifndef NDEBUG
static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size,
                             Align MaxAlign) {
  uint64_t LastEnd = 0;
  Align ComputedMaxAlign;
  for (auto &Field : Fields) {
    assert(Field.hasFixedOffset() &&
           "didn't assign a fixed offset to field");
    assert(isAligned(Field.Alignment, Field.Offset) &&
           "didn't assign a correctly-aligned offset to field");
    assert(Field.Offset >= LastEnd &&
           "didn't assign offsets in ascending order");
    LastEnd = Field.getEndOffset();
    assert(Field.Alignment <= MaxAlign &&
           "didn't compute MaxAlign correctly");
    ComputedMaxAlign = std::max(Field.Alignment, MaxAlign);
  }
  assert(LastEnd == Size && "didn't compute LastEnd correctly");
  assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly");
}
#endif

std::pair<uint64_t, Align>
llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) {
#ifndef NDEBUG
  // Do some simple precondition checks.
  {
    bool InFixedPrefix = true;
    size_t LastEnd = 0;
    for (auto &Field : Fields) {
      assert(Field.Size > 0 && "field of zero size");
      if (Field.hasFixedOffset()) {
        assert(InFixedPrefix &&
               "fixed-offset fields are not a strict prefix of array");
        assert(LastEnd <= Field.Offset &&
               "fixed-offset fields overlap or are not in order");
        LastEnd = Field.getEndOffset();
        assert(LastEnd > Field.Offset &&
               "overflow in fixed-offset end offset");
      } else {
        InFixedPrefix = false;
      }
    }
  }
#endif

  // Do an initial pass over the fields.
  Align MaxAlign;

  // Find the first flexible-offset field, tracking MaxAlign.
  auto FirstFlexible = Fields.begin(), E = Fields.end();
  while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) {
    MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment);
    ++FirstFlexible;
  }

  // If there are no flexible fields, we're done.
  if (FirstFlexible == E) {
    uint64_t Size = 0;
    if (!Fields.empty())
      Size = Fields.back().getEndOffset();

#ifndef NDEBUG
    checkValidLayout(Fields, Size, MaxAlign);
#endif
    return std::make_pair(Size, MaxAlign);
  }

  // Walk over the flexible-offset fields, tracking MaxAlign and
  // assigning them a unique number in order of their appearance.
  // We'll use this unique number in the comparison below so that
  // we can use array_pod_sort, which isn't stable.  We won't use it
  // past that point.
  {
    uintptr_t UniqueNumber = 0;
    for (auto I = FirstFlexible; I != E; ++I) {
      I->Scratch = reinterpret_cast<void*>(UniqueNumber++);
      MaxAlign = std::max(MaxAlign, I->Alignment);
    }
  }

  // Sort the flexible elements in order of decreasing alignment,
  // then decreasing size, and then the original order as recorded
  // in Scratch.  The decreasing-size aspect of this is only really
  // important if we get into the gap-filling stage below, but it
  // doesn't hurt here.
  array_pod_sort(FirstFlexible, E,
                 [](const Field *lhs, const Field *rhs) -> int {
    // Decreasing alignment.
    if (lhs->Alignment != rhs->Alignment)
      return (lhs->Alignment < rhs->Alignment ? 1 : -1);

    // Decreasing size.
    if (lhs->Size != rhs->Size)
      return (lhs->Size < rhs->Size ? 1 : -1);

    // Original order.
    auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch);
    auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch);
    if (lhsNumber != rhsNumber)
      return (lhsNumber < rhsNumber ? -1 : 1);

    return 0;
  });

  // Do a quick check for whether that sort alone has given us a perfect
  // layout with no interior padding.  This is very common: if the
  // fixed-layout fields have no interior padding, and they end at a
  // sufficiently-aligned offset for all the flexible-layout fields,
  // and the flexible-layout fields all have sizes that are multiples
  // of their alignment, then this will reliably trigger.
  {
    bool HasPadding = false;
    uint64_t LastEnd = 0;

    // Walk the fixed-offset fields.
    for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
      assert(I->hasFixedOffset());
      if (LastEnd != I->Offset) {
        HasPadding = true;
        break;
      }
      LastEnd = I->getEndOffset();
    }

    // Walk the flexible-offset fields, optimistically assigning fixed
    // offsets.  Note that we maintain a strict division between the
    // fixed-offset and flexible-offset fields, so if we end up
    // discovering padding later in this loop, we can just abandon this
    // work and we'll ignore the offsets we already assigned.
    if (!HasPadding) {
      for (auto I = FirstFlexible; I != E; ++I) {
        auto Offset = alignTo(LastEnd, I->Alignment);
        if (LastEnd != Offset) {
          HasPadding = true;
          break;
        }
        I->Offset = Offset;
        LastEnd = I->getEndOffset();
      }
    }

    // If we already have a perfect layout, we're done.
    if (!HasPadding) {
#ifndef NDEBUG
      checkValidLayout(Fields, LastEnd, MaxAlign);
#endif
      return std::make_pair(LastEnd, MaxAlign);
    }
  }

  // The algorithm sketch at this point is as follows.
  //
  // Consider the padding gaps between fixed-offset fields in ascending
  // order.  Let LastEnd be the offset of the first byte following the
  // field before the gap, or 0 if the gap is at the beginning of the
  // structure.  Find the "best" flexible-offset field according to the
  // criteria below.  If no such field exists, proceed to the next gap.
  // Otherwise, add the field at the first properly-aligned offset for
  // that field that is >= LastEnd, then update LastEnd and repeat in
  // order to fill any remaining gap following that field.
  //
  // Next, let LastEnd to be the offset of the first byte following the
  // last fixed-offset field, or 0 if there are no fixed-offset fields.
  // While there are flexible-offset fields remaining, find the "best"
  // flexible-offset field according to the criteria below, add it at
  // the first properly-aligned offset for that field that is >= LastEnd,
  // and update LastEnd to the first byte following the field.
  //
  // The "best" field is chosen by the following criteria, considered
  // strictly in order:
  //
  // - When filling a gap betweeen fields, the field must fit.
  // - A field is preferred if it requires less padding following LastEnd.
  // - A field is preferred if it is more aligned.
  // - A field is preferred if it is larger.
  // - A field is preferred if it appeared earlier in the initial order.
  //
  // Minimizing leading padding is a greedy attempt to avoid padding
  // entirely.  Preferring more-aligned fields is an attempt to eliminate
  // stricter constraints earlier, with the idea that weaker alignment
  // constraints may be resolvable with less padding elsewhere.  These
  // These two rules are sufficient to ensure that we get the optimal
  // layout in the "C-style" case.  Preferring larger fields tends to take
  // better advantage of large gaps and may be more likely to have a size
  // that's a multiple of a useful alignment.  Preferring the initial
  // order may help somewhat with locality but is mostly just a way of
  // ensuring deterministic output.
  //
  // Note that this algorithm does not guarantee a minimal layout.  Picking
  // a larger object greedily may leave a gap that cannot be filled as
  // efficiently.  Unfortunately, solving this perfectly is an NP-complete
  // problem (by reduction from bin-packing: let B_i be the bin sizes and
  // O_j be the object sizes; add fixed-offset fields such that the gaps
  // between them have size B_i, and add flexible-offset fields with
  // alignment 1 and size O_j; if the layout size is equal to the end of
  // the last fixed-layout field, the objects fit in the bins; note that
  // this doesn't even require the complexity of alignment).

  // The implementation below is essentially just an optimized version of
  // scanning the list of remaining fields looking for the best, which
  // would be O(n^2).  In the worst case, it doesn't improve on that.
  // However, in practice it'll just scan the array of alignment bins
  // and consider the first few elements from one or two bins.  The
  // number of bins is bounded by a small constant: alignments are powers
  // of two that are vanishingly unlikely to be over 64 and fairly unlikely
  // to be over 8.  And multiple elements only need to be considered when
  // filling a gap between fixed-offset fields, which doesn't happen very
  // often.  We could use a data structure within bins that optimizes for
  // finding the best-sized match, but it would require allocating memory
  // and copying data, so it's unlikely to be worthwhile.


  // Start by organizing the flexible-offset fields into bins according to
  // their alignment.  We expect a small enough number of bins that we
  // don't care about the asymptotic costs of walking this.
  struct AlignmentQueue {
    /// The minimum size of anything currently in this queue.
    uint64_t MinSize;

    /// The head of the queue.  A singly-linked list.  The order here should
    /// be consistent with the earlier sort, i.e. the elements should be
    /// monotonically descending in size and otherwise in the original order.
    ///
    /// We remove the queue from the array as soon as this is empty.
    OptimizedStructLayoutField *Head;

    /// The alignment requirement of the queue.
    Align Alignment;

    static Field *getNext(Field *Cur) {
      return static_cast<Field *>(Cur->Scratch);
    }
  };
  SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment;
  for (auto I = FirstFlexible; I != E; ) {
    auto Head = I;
    auto Alignment = I->Alignment;

    uint64_t MinSize = I->Size;
    auto LastInQueue = I;
    for (++I; I != E && I->Alignment == Alignment; ++I) {
      LastInQueue->Scratch = I;
      LastInQueue = I;
      MinSize = std::min(MinSize, I->Size);
    }
    LastInQueue->Scratch = nullptr;

    FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment});
  }

#ifndef NDEBUG
  // Verify that we set the queues up correctly.
  auto checkQueues = [&]{
    bool FirstQueue = true;
    Align LastQueueAlignment;
    for (auto &Queue : FlexibleFieldsByAlignment) {
      assert((FirstQueue || Queue.Alignment < LastQueueAlignment) &&
             "bins not in order of descending alignment");
      LastQueueAlignment = Queue.Alignment;
      FirstQueue = false;

      assert(Queue.Head && "queue was empty");
      uint64_t LastSize = ~(uint64_t)0;
      for (auto I = Queue.Head; I; I = Queue.getNext(I)) {
        assert(I->Alignment == Queue.Alignment && "bad field in queue");
        assert(I->Size <= LastSize && "queue not in descending size order");
        LastSize = I->Size;
      }
    }
  };
  checkQueues();
#endif

  /// Helper function to remove a field from a queue.
  auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) {
    assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur);

    // If we're removing Cur from a non-initial position, splice it out
    // of the linked list.
    if (Last) {
      Last->Scratch = Cur->Scratch;

      // If Cur was the last field in the list, we need to update MinSize.
      // We can just use the last field's size because the list is in
      // descending order of size.
      if (!Cur->Scratch)
        Queue->MinSize = Last->Size;

    // Otherwise, replace the head.
    } else {
      if (auto NewHead = Queue->getNext(Cur))
        Queue->Head = NewHead;

      // If we just emptied the queue, destroy its bin.
      else
        FlexibleFieldsByAlignment.erase(Queue);
    }
  };

  // Do layout into a local array.  Doing this in-place on Fields is
  // not really feasible.
  SmallVector<Field, 16> Layout;
  Layout.reserve(Fields.size());

  // The offset that we're currently looking to insert at (or after).
  uint64_t LastEnd = 0;

  // Helper function to splice Cur out of the given queue and add it
  // to the layout at the given offset.
  auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur,
                         uint64_t Offset) -> bool {
    assert(Offset == alignTo(LastEnd, Cur->Alignment));

    // Splice out.  This potentially invalidates Queue.
    spliceFromQueue(Queue, Last, Cur);

    // Add Cur to the layout.
    Layout.push_back(*Cur);
    Layout.back().Offset = Offset;
    LastEnd = Layout.back().getEndOffset();

    // Always return true so that we can be tail-called.
    return true;
  };

  // Helper function to try to find a field in the given queue that'll
  // fit starting at StartOffset but before EndOffset (if present).
  // Note that this never fails if EndOffset is not provided.
  auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue,
                                   uint64_t StartOffset,
                                   Optional<uint64_t> EndOffset) -> bool {
    assert(Queue->Head);
    assert(StartOffset == alignTo(LastEnd, Queue->Alignment));

    // Figure out the maximum size that a field can be, and ignore this
    // queue if there's nothing in it that small.
    auto MaxViableSize =
      (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0);
    if (Queue->MinSize > MaxViableSize) return false;

    // Find the matching field.  Note that this should always find
    // something because of the MinSize check above.
    for (Field *Cur = Queue->Head, *Last = nullptr; true;
           Last = Cur, Cur = Queue->getNext(Cur)) {
      assert(Cur && "didn't find a match in queue despite its MinSize");
      if (Cur->Size <= MaxViableSize)
        return addToLayout(Queue, Last, Cur, StartOffset);
    }

    llvm_unreachable("didn't find a match in queue despite its MinSize");
  };

  // Helper function to find the "best" flexible-offset field according
  // to the criteria described above.
  auto tryAddBestField = [&](Optional<uint64_t> BeforeOffset) -> bool {
    auto QueueB = FlexibleFieldsByAlignment.begin();
    auto QueueE = FlexibleFieldsByAlignment.end();

    // Start by looking for the most-aligned queue that doesn't need any
    // leading padding after LastEnd.
    auto FirstQueueToSearch = QueueB;
    for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) {
      if (isAligned(FirstQueueToSearch->Alignment, LastEnd))
        break;
    }

    uint64_t Offset = LastEnd;
    while (true) {
      // Invariant: all of the queues in [FirstQueueToSearch, QueueE)
      // require the same initial padding offset.

      // Search those queues in descending order of alignment for a
      // satisfactory field.
      for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) {
        if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset))
          return true;
      }

      // Okay, we don't need to scan those again.
      QueueE = FirstQueueToSearch;

      // If we started from the first queue, we're done.
      if (FirstQueueToSearch == QueueB)
        return false;

      // Otherwise, scan backwards to find the most-aligned queue that
      // still has minimal leading padding after LastEnd.
      --FirstQueueToSearch;
      Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment);
      while (FirstQueueToSearch != QueueB &&
             Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment))
        --FirstQueueToSearch;
    }
  };

  // Phase 1: fill the gaps between fixed-offset fields with the best
  // flexible-offset field that fits.
  for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
    while (LastEnd != I->Offset) {
      if (!tryAddBestField(I->Offset))
        break;
    }
    Layout.push_back(*I);
    LastEnd = I->getEndOffset();
  }

#ifndef NDEBUG
  checkQueues();
#endif

  // Phase 2: repeatedly add the best flexible-offset field until
  // they're all gone.
  while (!FlexibleFieldsByAlignment.empty()) {
    bool Success = tryAddBestField(None);
    assert(Success && "didn't find a field with no fixed limit?");
    (void) Success;
  }

  // Copy the layout back into place.
  assert(Layout.size() == Fields.size());
  memcpy(Fields.data(), Layout.data(),
         Fields.size() * sizeof(OptimizedStructLayoutField));

#ifndef NDEBUG
  // Make a final check that the layout is valid.
  checkValidLayout(Fields, LastEnd, MaxAlign);
#endif

  return std::make_pair(LastEnd, MaxAlign);
}