OptimizedStructLayout.cpp
16.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
//===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the performOptimizedStructLayout interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/OptimizedStructLayout.h"
using namespace llvm;
using Field = OptimizedStructLayoutField;
#ifndef NDEBUG
static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size,
Align MaxAlign) {
uint64_t LastEnd = 0;
Align ComputedMaxAlign;
for (auto &Field : Fields) {
assert(Field.hasFixedOffset() &&
"didn't assign a fixed offset to field");
assert(isAligned(Field.Alignment, Field.Offset) &&
"didn't assign a correctly-aligned offset to field");
assert(Field.Offset >= LastEnd &&
"didn't assign offsets in ascending order");
LastEnd = Field.getEndOffset();
assert(Field.Alignment <= MaxAlign &&
"didn't compute MaxAlign correctly");
ComputedMaxAlign = std::max(Field.Alignment, MaxAlign);
}
assert(LastEnd == Size && "didn't compute LastEnd correctly");
assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly");
}
#endif
std::pair<uint64_t, Align>
llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) {
#ifndef NDEBUG
// Do some simple precondition checks.
{
bool InFixedPrefix = true;
size_t LastEnd = 0;
for (auto &Field : Fields) {
assert(Field.Size > 0 && "field of zero size");
if (Field.hasFixedOffset()) {
assert(InFixedPrefix &&
"fixed-offset fields are not a strict prefix of array");
assert(LastEnd <= Field.Offset &&
"fixed-offset fields overlap or are not in order");
LastEnd = Field.getEndOffset();
assert(LastEnd > Field.Offset &&
"overflow in fixed-offset end offset");
} else {
InFixedPrefix = false;
}
}
}
#endif
// Do an initial pass over the fields.
Align MaxAlign;
// Find the first flexible-offset field, tracking MaxAlign.
auto FirstFlexible = Fields.begin(), E = Fields.end();
while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) {
MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment);
++FirstFlexible;
}
// If there are no flexible fields, we're done.
if (FirstFlexible == E) {
uint64_t Size = 0;
if (!Fields.empty())
Size = Fields.back().getEndOffset();
#ifndef NDEBUG
checkValidLayout(Fields, Size, MaxAlign);
#endif
return std::make_pair(Size, MaxAlign);
}
// Walk over the flexible-offset fields, tracking MaxAlign and
// assigning them a unique number in order of their appearance.
// We'll use this unique number in the comparison below so that
// we can use array_pod_sort, which isn't stable. We won't use it
// past that point.
{
uintptr_t UniqueNumber = 0;
for (auto I = FirstFlexible; I != E; ++I) {
I->Scratch = reinterpret_cast<void*>(UniqueNumber++);
MaxAlign = std::max(MaxAlign, I->Alignment);
}
}
// Sort the flexible elements in order of decreasing alignment,
// then decreasing size, and then the original order as recorded
// in Scratch. The decreasing-size aspect of this is only really
// important if we get into the gap-filling stage below, but it
// doesn't hurt here.
array_pod_sort(FirstFlexible, E,
[](const Field *lhs, const Field *rhs) -> int {
// Decreasing alignment.
if (lhs->Alignment != rhs->Alignment)
return (lhs->Alignment < rhs->Alignment ? 1 : -1);
// Decreasing size.
if (lhs->Size != rhs->Size)
return (lhs->Size < rhs->Size ? 1 : -1);
// Original order.
auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch);
auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch);
if (lhsNumber != rhsNumber)
return (lhsNumber < rhsNumber ? -1 : 1);
return 0;
});
// Do a quick check for whether that sort alone has given us a perfect
// layout with no interior padding. This is very common: if the
// fixed-layout fields have no interior padding, and they end at a
// sufficiently-aligned offset for all the flexible-layout fields,
// and the flexible-layout fields all have sizes that are multiples
// of their alignment, then this will reliably trigger.
{
bool HasPadding = false;
uint64_t LastEnd = 0;
// Walk the fixed-offset fields.
for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
assert(I->hasFixedOffset());
if (LastEnd != I->Offset) {
HasPadding = true;
break;
}
LastEnd = I->getEndOffset();
}
// Walk the flexible-offset fields, optimistically assigning fixed
// offsets. Note that we maintain a strict division between the
// fixed-offset and flexible-offset fields, so if we end up
// discovering padding later in this loop, we can just abandon this
// work and we'll ignore the offsets we already assigned.
if (!HasPadding) {
for (auto I = FirstFlexible; I != E; ++I) {
auto Offset = alignTo(LastEnd, I->Alignment);
if (LastEnd != Offset) {
HasPadding = true;
break;
}
I->Offset = Offset;
LastEnd = I->getEndOffset();
}
}
// If we already have a perfect layout, we're done.
if (!HasPadding) {
#ifndef NDEBUG
checkValidLayout(Fields, LastEnd, MaxAlign);
#endif
return std::make_pair(LastEnd, MaxAlign);
}
}
// The algorithm sketch at this point is as follows.
//
// Consider the padding gaps between fixed-offset fields in ascending
// order. Let LastEnd be the offset of the first byte following the
// field before the gap, or 0 if the gap is at the beginning of the
// structure. Find the "best" flexible-offset field according to the
// criteria below. If no such field exists, proceed to the next gap.
// Otherwise, add the field at the first properly-aligned offset for
// that field that is >= LastEnd, then update LastEnd and repeat in
// order to fill any remaining gap following that field.
//
// Next, let LastEnd to be the offset of the first byte following the
// last fixed-offset field, or 0 if there are no fixed-offset fields.
// While there are flexible-offset fields remaining, find the "best"
// flexible-offset field according to the criteria below, add it at
// the first properly-aligned offset for that field that is >= LastEnd,
// and update LastEnd to the first byte following the field.
//
// The "best" field is chosen by the following criteria, considered
// strictly in order:
//
// - When filling a gap betweeen fields, the field must fit.
// - A field is preferred if it requires less padding following LastEnd.
// - A field is preferred if it is more aligned.
// - A field is preferred if it is larger.
// - A field is preferred if it appeared earlier in the initial order.
//
// Minimizing leading padding is a greedy attempt to avoid padding
// entirely. Preferring more-aligned fields is an attempt to eliminate
// stricter constraints earlier, with the idea that weaker alignment
// constraints may be resolvable with less padding elsewhere. These
// These two rules are sufficient to ensure that we get the optimal
// layout in the "C-style" case. Preferring larger fields tends to take
// better advantage of large gaps and may be more likely to have a size
// that's a multiple of a useful alignment. Preferring the initial
// order may help somewhat with locality but is mostly just a way of
// ensuring deterministic output.
//
// Note that this algorithm does not guarantee a minimal layout. Picking
// a larger object greedily may leave a gap that cannot be filled as
// efficiently. Unfortunately, solving this perfectly is an NP-complete
// problem (by reduction from bin-packing: let B_i be the bin sizes and
// O_j be the object sizes; add fixed-offset fields such that the gaps
// between them have size B_i, and add flexible-offset fields with
// alignment 1 and size O_j; if the layout size is equal to the end of
// the last fixed-layout field, the objects fit in the bins; note that
// this doesn't even require the complexity of alignment).
// The implementation below is essentially just an optimized version of
// scanning the list of remaining fields looking for the best, which
// would be O(n^2). In the worst case, it doesn't improve on that.
// However, in practice it'll just scan the array of alignment bins
// and consider the first few elements from one or two bins. The
// number of bins is bounded by a small constant: alignments are powers
// of two that are vanishingly unlikely to be over 64 and fairly unlikely
// to be over 8. And multiple elements only need to be considered when
// filling a gap between fixed-offset fields, which doesn't happen very
// often. We could use a data structure within bins that optimizes for
// finding the best-sized match, but it would require allocating memory
// and copying data, so it's unlikely to be worthwhile.
// Start by organizing the flexible-offset fields into bins according to
// their alignment. We expect a small enough number of bins that we
// don't care about the asymptotic costs of walking this.
struct AlignmentQueue {
/// The minimum size of anything currently in this queue.
uint64_t MinSize;
/// The head of the queue. A singly-linked list. The order here should
/// be consistent with the earlier sort, i.e. the elements should be
/// monotonically descending in size and otherwise in the original order.
///
/// We remove the queue from the array as soon as this is empty.
OptimizedStructLayoutField *Head;
/// The alignment requirement of the queue.
Align Alignment;
static Field *getNext(Field *Cur) {
return static_cast<Field *>(Cur->Scratch);
}
};
SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment;
for (auto I = FirstFlexible; I != E; ) {
auto Head = I;
auto Alignment = I->Alignment;
uint64_t MinSize = I->Size;
auto LastInQueue = I;
for (++I; I != E && I->Alignment == Alignment; ++I) {
LastInQueue->Scratch = I;
LastInQueue = I;
MinSize = std::min(MinSize, I->Size);
}
LastInQueue->Scratch = nullptr;
FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment});
}
#ifndef NDEBUG
// Verify that we set the queues up correctly.
auto checkQueues = [&]{
bool FirstQueue = true;
Align LastQueueAlignment;
for (auto &Queue : FlexibleFieldsByAlignment) {
assert((FirstQueue || Queue.Alignment < LastQueueAlignment) &&
"bins not in order of descending alignment");
LastQueueAlignment = Queue.Alignment;
FirstQueue = false;
assert(Queue.Head && "queue was empty");
uint64_t LastSize = ~(uint64_t)0;
for (auto I = Queue.Head; I; I = Queue.getNext(I)) {
assert(I->Alignment == Queue.Alignment && "bad field in queue");
assert(I->Size <= LastSize && "queue not in descending size order");
LastSize = I->Size;
}
}
};
checkQueues();
#endif
/// Helper function to remove a field from a queue.
auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) {
assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur);
// If we're removing Cur from a non-initial position, splice it out
// of the linked list.
if (Last) {
Last->Scratch = Cur->Scratch;
// If Cur was the last field in the list, we need to update MinSize.
// We can just use the last field's size because the list is in
// descending order of size.
if (!Cur->Scratch)
Queue->MinSize = Last->Size;
// Otherwise, replace the head.
} else {
if (auto NewHead = Queue->getNext(Cur))
Queue->Head = NewHead;
// If we just emptied the queue, destroy its bin.
else
FlexibleFieldsByAlignment.erase(Queue);
}
};
// Do layout into a local array. Doing this in-place on Fields is
// not really feasible.
SmallVector<Field, 16> Layout;
Layout.reserve(Fields.size());
// The offset that we're currently looking to insert at (or after).
uint64_t LastEnd = 0;
// Helper function to splice Cur out of the given queue and add it
// to the layout at the given offset.
auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur,
uint64_t Offset) -> bool {
assert(Offset == alignTo(LastEnd, Cur->Alignment));
// Splice out. This potentially invalidates Queue.
spliceFromQueue(Queue, Last, Cur);
// Add Cur to the layout.
Layout.push_back(*Cur);
Layout.back().Offset = Offset;
LastEnd = Layout.back().getEndOffset();
// Always return true so that we can be tail-called.
return true;
};
// Helper function to try to find a field in the given queue that'll
// fit starting at StartOffset but before EndOffset (if present).
// Note that this never fails if EndOffset is not provided.
auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue,
uint64_t StartOffset,
Optional<uint64_t> EndOffset) -> bool {
assert(Queue->Head);
assert(StartOffset == alignTo(LastEnd, Queue->Alignment));
// Figure out the maximum size that a field can be, and ignore this
// queue if there's nothing in it that small.
auto MaxViableSize =
(EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0);
if (Queue->MinSize > MaxViableSize) return false;
// Find the matching field. Note that this should always find
// something because of the MinSize check above.
for (Field *Cur = Queue->Head, *Last = nullptr; true;
Last = Cur, Cur = Queue->getNext(Cur)) {
assert(Cur && "didn't find a match in queue despite its MinSize");
if (Cur->Size <= MaxViableSize)
return addToLayout(Queue, Last, Cur, StartOffset);
}
llvm_unreachable("didn't find a match in queue despite its MinSize");
};
// Helper function to find the "best" flexible-offset field according
// to the criteria described above.
auto tryAddBestField = [&](Optional<uint64_t> BeforeOffset) -> bool {
auto QueueB = FlexibleFieldsByAlignment.begin();
auto QueueE = FlexibleFieldsByAlignment.end();
// Start by looking for the most-aligned queue that doesn't need any
// leading padding after LastEnd.
auto FirstQueueToSearch = QueueB;
for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) {
if (isAligned(FirstQueueToSearch->Alignment, LastEnd))
break;
}
uint64_t Offset = LastEnd;
while (true) {
// Invariant: all of the queues in [FirstQueueToSearch, QueueE)
// require the same initial padding offset.
// Search those queues in descending order of alignment for a
// satisfactory field.
for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) {
if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset))
return true;
}
// Okay, we don't need to scan those again.
QueueE = FirstQueueToSearch;
// If we started from the first queue, we're done.
if (FirstQueueToSearch == QueueB)
return false;
// Otherwise, scan backwards to find the most-aligned queue that
// still has minimal leading padding after LastEnd.
--FirstQueueToSearch;
Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment);
while (FirstQueueToSearch != QueueB &&
Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment))
--FirstQueueToSearch;
}
};
// Phase 1: fill the gaps between fixed-offset fields with the best
// flexible-offset field that fits.
for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
while (LastEnd != I->Offset) {
if (!tryAddBestField(I->Offset))
break;
}
Layout.push_back(*I);
LastEnd = I->getEndOffset();
}
#ifndef NDEBUG
checkQueues();
#endif
// Phase 2: repeatedly add the best flexible-offset field until
// they're all gone.
while (!FlexibleFieldsByAlignment.empty()) {
bool Success = tryAddBestField(None);
assert(Success && "didn't find a field with no fixed limit?");
(void) Success;
}
// Copy the layout back into place.
assert(Layout.size() == Fields.size());
memcpy(Fields.data(), Layout.data(),
Fields.size() * sizeof(OptimizedStructLayoutField));
#ifndef NDEBUG
// Make a final check that the layout is valid.
checkValidLayout(Fields, LastEnd, MaxAlign);
#endif
return std::make_pair(LastEnd, MaxAlign);
}