YAMLTraits.cpp 28.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/YAMLTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Unicode.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>

using namespace llvm;
using namespace yaml;

//===----------------------------------------------------------------------===//
//  IO
//===----------------------------------------------------------------------===//

IO::IO(void *Context) : Ctxt(Context) {}

IO::~IO() = default;

void *IO::getContext() const {
  return Ctxt;
}

void IO::setContext(void *Context) {
  Ctxt = Context;
}

void IO::setAllowUnknownKeys(bool Allow) {
  llvm_unreachable("Only supported for Input");
}

//===----------------------------------------------------------------------===//
//  Input
//===----------------------------------------------------------------------===//

Input::Input(StringRef InputContent, void *Ctxt,
             SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
    : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
  if (DiagHandler)
    SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
  DocIterator = Strm->begin();
}

Input::Input(MemoryBufferRef Input, void *Ctxt,
             SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
    : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
  if (DiagHandler)
    SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
  DocIterator = Strm->begin();
}

Input::~Input() = default;

std::error_code Input::error() { return EC; }

// Pin the vtables to this file.
void Input::HNode::anchor() {}
void Input::EmptyHNode::anchor() {}
void Input::ScalarHNode::anchor() {}
void Input::MapHNode::anchor() {}
void Input::SequenceHNode::anchor() {}

bool Input::outputting() const {
  return false;
}

bool Input::setCurrentDocument() {
  if (DocIterator != Strm->end()) {
    Node *N = DocIterator->getRoot();
    if (!N) {
      EC = make_error_code(errc::invalid_argument);
      return false;
    }

    if (isa<NullNode>(N)) {
      // Empty files are allowed and ignored
      ++DocIterator;
      return setCurrentDocument();
    }
    TopNode = createHNodes(N);
    CurrentNode = TopNode.get();
    return true;
  }
  return false;
}

bool Input::nextDocument() {
  return ++DocIterator != Strm->end();
}

const Node *Input::getCurrentNode() const {
  return CurrentNode ? CurrentNode->_node : nullptr;
}

bool Input::mapTag(StringRef Tag, bool Default) {
  // CurrentNode can be null if setCurrentDocument() was unable to
  // parse the document because it was invalid or empty.
  if (!CurrentNode)
    return false;

  std::string foundTag = CurrentNode->_node->getVerbatimTag();
  if (foundTag.empty()) {
    // If no tag found and 'Tag' is the default, say it was found.
    return Default;
  }
  // Return true iff found tag matches supplied tag.
  return Tag.equals(foundTag);
}

void Input::beginMapping() {
  if (EC)
    return;
  // CurrentNode can be null if the document is empty.
  MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
  if (MN) {
    MN->ValidKeys.clear();
  }
}

std::vector<StringRef> Input::keys() {
  MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
  std::vector<StringRef> Ret;
  if (!MN) {
    setError(CurrentNode, "not a mapping");
    return Ret;
  }
  for (auto &P : MN->Mapping)
    Ret.push_back(P.first());
  return Ret;
}

bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
                         void *&SaveInfo) {
  UseDefault = false;
  if (EC)
    return false;

  // CurrentNode is null for empty documents, which is an error in case required
  // nodes are present.
  if (!CurrentNode) {
    if (Required)
      EC = make_error_code(errc::invalid_argument);
    return false;
  }

  MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
  if (!MN) {
    if (Required || !isa<EmptyHNode>(CurrentNode))
      setError(CurrentNode, "not a mapping");
    else
      UseDefault = true;
    return false;
  }
  MN->ValidKeys.push_back(Key);
  HNode *Value = MN->Mapping[Key].get();
  if (!Value) {
    if (Required)
      setError(CurrentNode, Twine("missing required key '") + Key + "'");
    else
      UseDefault = true;
    return false;
  }
  SaveInfo = CurrentNode;
  CurrentNode = Value;
  return true;
}

void Input::postflightKey(void *saveInfo) {
  CurrentNode = reinterpret_cast<HNode *>(saveInfo);
}

void Input::endMapping() {
  if (EC)
    return;
  // CurrentNode can be null if the document is empty.
  MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
  if (!MN)
    return;
  for (const auto &NN : MN->Mapping) {
    if (!is_contained(MN->ValidKeys, NN.first())) {
      HNode *ReportNode = NN.second.get();
      if (!AllowUnknownKeys) {
        setError(ReportNode, Twine("unknown key '") + NN.first() + "'");
        break;
      } else
        reportWarning(ReportNode, Twine("unknown key '") + NN.first() + "'");
    }
  }
}

void Input::beginFlowMapping() { beginMapping(); }

void Input::endFlowMapping() { endMapping(); }

unsigned Input::beginSequence() {
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
    return SQ->Entries.size();
  if (isa<EmptyHNode>(CurrentNode))
    return 0;
  // Treat case where there's a scalar "null" value as an empty sequence.
  if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
    if (isNull(SN->value()))
      return 0;
  }
  // Any other type of HNode is an error.
  setError(CurrentNode, "not a sequence");
  return 0;
}

void Input::endSequence() {
}

bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
  if (EC)
    return false;
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
    SaveInfo = CurrentNode;
    CurrentNode = SQ->Entries[Index].get();
    return true;
  }
  return false;
}

void Input::postflightElement(void *SaveInfo) {
  CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
}

unsigned Input::beginFlowSequence() { return beginSequence(); }

bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
  if (EC)
    return false;
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
    SaveInfo = CurrentNode;
    CurrentNode = SQ->Entries[index].get();
    return true;
  }
  return false;
}

void Input::postflightFlowElement(void *SaveInfo) {
  CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
}

void Input::endFlowSequence() {
}

void Input::beginEnumScalar() {
  ScalarMatchFound = false;
}

bool Input::matchEnumScalar(const char *Str, bool) {
  if (ScalarMatchFound)
    return false;
  if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
    if (SN->value().equals(Str)) {
      ScalarMatchFound = true;
      return true;
    }
  }
  return false;
}

bool Input::matchEnumFallback() {
  if (ScalarMatchFound)
    return false;
  ScalarMatchFound = true;
  return true;
}

void Input::endEnumScalar() {
  if (!ScalarMatchFound) {
    setError(CurrentNode, "unknown enumerated scalar");
  }
}

bool Input::beginBitSetScalar(bool &DoClear) {
  BitValuesUsed.clear();
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
    BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
  } else {
    setError(CurrentNode, "expected sequence of bit values");
  }
  DoClear = true;
  return true;
}

bool Input::bitSetMatch(const char *Str, bool) {
  if (EC)
    return false;
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
    unsigned Index = 0;
    for (auto &N : SQ->Entries) {
      if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
        if (SN->value().equals(Str)) {
          BitValuesUsed[Index] = true;
          return true;
        }
      } else {
        setError(CurrentNode, "unexpected scalar in sequence of bit values");
      }
      ++Index;
    }
  } else {
    setError(CurrentNode, "expected sequence of bit values");
  }
  return false;
}

void Input::endBitSetScalar() {
  if (EC)
    return;
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
    assert(BitValuesUsed.size() == SQ->Entries.size());
    for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
      if (!BitValuesUsed[i]) {
        setError(SQ->Entries[i].get(), "unknown bit value");
        return;
      }
    }
  }
}

void Input::scalarString(StringRef &S, QuotingType) {
  if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
    S = SN->value();
  } else {
    setError(CurrentNode, "unexpected scalar");
  }
}

void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }

void Input::scalarTag(std::string &Tag) {
  Tag = CurrentNode->_node->getVerbatimTag();
}

void Input::setError(HNode *hnode, const Twine &message) {
  assert(hnode && "HNode must not be NULL");
  setError(hnode->_node, message);
}

NodeKind Input::getNodeKind() {
  if (isa<ScalarHNode>(CurrentNode))
    return NodeKind::Scalar;
  else if (isa<MapHNode>(CurrentNode))
    return NodeKind::Map;
  else if (isa<SequenceHNode>(CurrentNode))
    return NodeKind::Sequence;
  llvm_unreachable("Unsupported node kind");
}

void Input::setError(Node *node, const Twine &message) {
  Strm->printError(node, message);
  EC = make_error_code(errc::invalid_argument);
}

void Input::reportWarning(HNode *hnode, const Twine &message) {
  assert(hnode && "HNode must not be NULL");
  Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
}

std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
  SmallString<128> StringStorage;
  if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
    StringRef KeyStr = SN->getValue(StringStorage);
    if (!StringStorage.empty()) {
      // Copy string to permanent storage
      KeyStr = StringStorage.str().copy(StringAllocator);
    }
    return std::make_unique<ScalarHNode>(N, KeyStr);
  } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
    StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
    return std::make_unique<ScalarHNode>(N, ValueCopy);
  } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
    auto SQHNode = std::make_unique<SequenceHNode>(N);
    for (Node &SN : *SQ) {
      auto Entry = createHNodes(&SN);
      if (EC)
        break;
      SQHNode->Entries.push_back(std::move(Entry));
    }
    return std::move(SQHNode);
  } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
    auto mapHNode = std::make_unique<MapHNode>(N);
    for (KeyValueNode &KVN : *Map) {
      Node *KeyNode = KVN.getKey();
      ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
      Node *Value = KVN.getValue();
      if (!Key || !Value) {
        if (!Key)
          setError(KeyNode, "Map key must be a scalar");
        if (!Value)
          setError(KeyNode, "Map value must not be empty");
        break;
      }
      StringStorage.clear();
      StringRef KeyStr = Key->getValue(StringStorage);
      if (!StringStorage.empty()) {
        // Copy string to permanent storage
        KeyStr = StringStorage.str().copy(StringAllocator);
      }
      auto ValueHNode = createHNodes(Value);
      if (EC)
        break;
      mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
    }
    return std::move(mapHNode);
  } else if (isa<NullNode>(N)) {
    return std::make_unique<EmptyHNode>(N);
  } else {
    setError(N, "unknown node kind");
    return nullptr;
  }
}

void Input::setError(const Twine &Message) {
  setError(CurrentNode, Message);
}

void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }

bool Input::canElideEmptySequence() {
  return false;
}

//===----------------------------------------------------------------------===//
//  Output
//===----------------------------------------------------------------------===//

Output::Output(raw_ostream &yout, void *context, int WrapColumn)
    : IO(context), Out(yout), WrapColumn(WrapColumn) {}

Output::~Output() = default;

bool Output::outputting() const {
  return true;
}

void Output::beginMapping() {
  StateStack.push_back(inMapFirstKey);
  PaddingBeforeContainer = Padding;
  Padding = "\n";
}

bool Output::mapTag(StringRef Tag, bool Use) {
  if (Use) {
    // If this tag is being written inside a sequence we should write the start
    // of the sequence before writing the tag, otherwise the tag won't be
    // attached to the element in the sequence, but rather the sequence itself.
    bool SequenceElement = false;
    if (StateStack.size() > 1) {
      auto &E = StateStack[StateStack.size() - 2];
      SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
    }
    if (SequenceElement && StateStack.back() == inMapFirstKey) {
      newLineCheck();
    } else {
      output(" ");
    }
    output(Tag);
    if (SequenceElement) {
      // If we're writing the tag during the first element of a map, the tag
      // takes the place of the first element in the sequence.
      if (StateStack.back() == inMapFirstKey) {
        StateStack.pop_back();
        StateStack.push_back(inMapOtherKey);
      }
      // Tags inside maps in sequences should act as keys in the map from a
      // formatting perspective, so we always want a newline in a sequence.
      Padding = "\n";
    }
  }
  return Use;
}

void Output::endMapping() {
  // If we did not map anything, we should explicitly emit an empty map
  if (StateStack.back() == inMapFirstKey) {
    Padding = PaddingBeforeContainer;
    newLineCheck();
    output("{}");
    Padding = "\n";
  }
  StateStack.pop_back();
}

std::vector<StringRef> Output::keys() {
  report_fatal_error("invalid call");
}

bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
                          bool &UseDefault, void *&) {
  UseDefault = false;
  if (Required || !SameAsDefault || WriteDefaultValues) {
    auto State = StateStack.back();
    if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
      flowKey(Key);
    } else {
      newLineCheck();
      paddedKey(Key);
    }
    return true;
  }
  return false;
}

void Output::postflightKey(void *) {
  if (StateStack.back() == inMapFirstKey) {
    StateStack.pop_back();
    StateStack.push_back(inMapOtherKey);
  } else if (StateStack.back() == inFlowMapFirstKey) {
    StateStack.pop_back();
    StateStack.push_back(inFlowMapOtherKey);
  }
}

void Output::beginFlowMapping() {
  StateStack.push_back(inFlowMapFirstKey);
  newLineCheck();
  ColumnAtMapFlowStart = Column;
  output("{ ");
}

void Output::endFlowMapping() {
  StateStack.pop_back();
  outputUpToEndOfLine(" }");
}

void Output::beginDocuments() {
  outputUpToEndOfLine("---");
}

bool Output::preflightDocument(unsigned index) {
  if (index > 0)
    outputUpToEndOfLine("\n---");
  return true;
}

void Output::postflightDocument() {
}

void Output::endDocuments() {
  output("\n...\n");
}

unsigned Output::beginSequence() {
  StateStack.push_back(inSeqFirstElement);
  PaddingBeforeContainer = Padding;
  Padding = "\n";
  return 0;
}

void Output::endSequence() {
  // If we did not emit anything, we should explicitly emit an empty sequence
  if (StateStack.back() == inSeqFirstElement) {
    Padding = PaddingBeforeContainer;
    newLineCheck();
    output("[]");
    Padding = "\n";
  }
  StateStack.pop_back();
}

bool Output::preflightElement(unsigned, void *&) {
  return true;
}

void Output::postflightElement(void *) {
  if (StateStack.back() == inSeqFirstElement) {
    StateStack.pop_back();
    StateStack.push_back(inSeqOtherElement);
  } else if (StateStack.back() == inFlowSeqFirstElement) {
    StateStack.pop_back();
    StateStack.push_back(inFlowSeqOtherElement);
  }
}

unsigned Output::beginFlowSequence() {
  StateStack.push_back(inFlowSeqFirstElement);
  newLineCheck();
  ColumnAtFlowStart = Column;
  output("[ ");
  NeedFlowSequenceComma = false;
  return 0;
}

void Output::endFlowSequence() {
  StateStack.pop_back();
  outputUpToEndOfLine(" ]");
}

bool Output::preflightFlowElement(unsigned, void *&) {
  if (NeedFlowSequenceComma)
    output(", ");
  if (WrapColumn && Column > WrapColumn) {
    output("\n");
    for (int i = 0; i < ColumnAtFlowStart; ++i)
      output(" ");
    Column = ColumnAtFlowStart;
    output("  ");
  }
  return true;
}

void Output::postflightFlowElement(void *) {
  NeedFlowSequenceComma = true;
}

void Output::beginEnumScalar() {
  EnumerationMatchFound = false;
}

bool Output::matchEnumScalar(const char *Str, bool Match) {
  if (Match && !EnumerationMatchFound) {
    newLineCheck();
    outputUpToEndOfLine(Str);
    EnumerationMatchFound = true;
  }
  return false;
}

bool Output::matchEnumFallback() {
  if (EnumerationMatchFound)
    return false;
  EnumerationMatchFound = true;
  return true;
}

void Output::endEnumScalar() {
  if (!EnumerationMatchFound)
    llvm_unreachable("bad runtime enum value");
}

bool Output::beginBitSetScalar(bool &DoClear) {
  newLineCheck();
  output("[ ");
  NeedBitValueComma = false;
  DoClear = false;
  return true;
}

bool Output::bitSetMatch(const char *Str, bool Matches) {
  if (Matches) {
    if (NeedBitValueComma)
      output(", ");
    output(Str);
    NeedBitValueComma = true;
  }
  return false;
}

void Output::endBitSetScalar() {
  outputUpToEndOfLine(" ]");
}

void Output::scalarString(StringRef &S, QuotingType MustQuote) {
  newLineCheck();
  if (S.empty()) {
    // Print '' for the empty string because leaving the field empty is not
    // allowed.
    outputUpToEndOfLine("''");
    return;
  }
  if (MustQuote == QuotingType::None) {
    // Only quote if we must.
    outputUpToEndOfLine(S);
    return;
  }

  const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
  output(Quote); // Starting quote.

  // When using double-quoted strings (and only in that case), non-printable characters may be
  // present, and will be escaped using a variety of unicode-scalar and special short-form
  // escapes. This is handled in yaml::escape.
  if (MustQuote == QuotingType::Double) {
    output(yaml::escape(S, /* EscapePrintable= */ false));
    outputUpToEndOfLine(Quote);
    return;
  }

  unsigned i = 0;
  unsigned j = 0;
  unsigned End = S.size();
  const char *Base = S.data();

  // When using single-quoted strings, any single quote ' must be doubled to be escaped.
  while (j < End) {
    if (S[j] == '\'') {                    // Escape quotes.
      output(StringRef(&Base[i], j - i));  // "flush".
      output(StringLiteral("''"));         // Print it as ''
      i = j + 1;
    }
    ++j;
  }
  output(StringRef(&Base[i], j - i));
  outputUpToEndOfLine(Quote); // Ending quote.
}

void Output::blockScalarString(StringRef &S) {
  if (!StateStack.empty())
    newLineCheck();
  output(" |");
  outputNewLine();

  unsigned Indent = StateStack.empty() ? 1 : StateStack.size();

  auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
  for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
    for (unsigned I = 0; I < Indent; ++I) {
      output("  ");
    }
    output(*Lines);
    outputNewLine();
  }
}

void Output::scalarTag(std::string &Tag) {
  if (Tag.empty())
    return;
  newLineCheck();
  output(Tag);
  output(" ");
}

void Output::setError(const Twine &message) {
}

bool Output::canElideEmptySequence() {
  // Normally, with an optional key/value where the value is an empty sequence,
  // the whole key/value can be not written.  But, that produces wrong yaml
  // if the key/value is the only thing in the map and the map is used in
  // a sequence.  This detects if the this sequence is the first key/value
  // in map that itself is embedded in a sequence.
  if (StateStack.size() < 2)
    return true;
  if (StateStack.back() != inMapFirstKey)
    return true;
  return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
}

void Output::output(StringRef s) {
  Column += s.size();
  Out << s;
}

void Output::outputUpToEndOfLine(StringRef s) {
  output(s);
  if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
                             !inFlowMapAnyKey(StateStack.back())))
    Padding = "\n";
}

void Output::outputNewLine() {
  Out << "\n";
  Column = 0;
}

// if seq at top, indent as if map, then add "- "
// if seq in middle, use "- " if firstKey, else use "  "
//

void Output::newLineCheck() {
  if (Padding != "\n") {
    output(Padding);
    Padding = {};
    return;
  }
  outputNewLine();
  Padding = {};

  if (StateStack.size() == 0)
    return;

  unsigned Indent = StateStack.size() - 1;
  bool OutputDash = false;

  if (StateStack.back() == inSeqFirstElement ||
      StateStack.back() == inSeqOtherElement) {
    OutputDash = true;
  } else if ((StateStack.size() > 1) &&
             ((StateStack.back() == inMapFirstKey) ||
              inFlowSeqAnyElement(StateStack.back()) ||
              (StateStack.back() == inFlowMapFirstKey)) &&
             inSeqAnyElement(StateStack[StateStack.size() - 2])) {
    --Indent;
    OutputDash = true;
  }

  for (unsigned i = 0; i < Indent; ++i) {
    output("  ");
  }
  if (OutputDash) {
    output("- ");
  }

}

void Output::paddedKey(StringRef key) {
  output(key);
  output(":");
  const char *spaces = "                ";
  if (key.size() < strlen(spaces))
    Padding = &spaces[key.size()];
  else
    Padding = " ";
}

void Output::flowKey(StringRef Key) {
  if (StateStack.back() == inFlowMapOtherKey)
    output(", ");
  if (WrapColumn && Column > WrapColumn) {
    output("\n");
    for (int I = 0; I < ColumnAtMapFlowStart; ++I)
      output(" ");
    Column = ColumnAtMapFlowStart;
    output("  ");
  }
  output(Key);
  output(": ");
}

NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }

bool Output::inSeqAnyElement(InState State) {
  return State == inSeqFirstElement || State == inSeqOtherElement;
}

bool Output::inFlowSeqAnyElement(InState State) {
  return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
}

bool Output::inMapAnyKey(InState State) {
  return State == inMapFirstKey || State == inMapOtherKey;
}

bool Output::inFlowMapAnyKey(InState State) {
  return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
}

//===----------------------------------------------------------------------===//
//  traits for built-in types
//===----------------------------------------------------------------------===//

void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
  Out << (Val ? "true" : "false");
}

StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
  if (Scalar.equals("true")) {
    Val = true;
    return StringRef();
  } else if (Scalar.equals("false")) {
    Val = false;
    return StringRef();
  }
  return "invalid boolean";
}

void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
                                     raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
                                         StringRef &Val) {
  Val = Scalar;
  return StringRef();
}

void ScalarTraits<std::string>::output(const std::string &Val, void *,
                                       raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
                                           std::string &Val) {
  Val = Scalar.str();
  return StringRef();
}

void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
                                   raw_ostream &Out) {
  // use temp uin32_t because ostream thinks uint8_t is a character
  uint32_t Num = Val;
  Out << Num;
}

StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
  unsigned long long n;
  if (getAsUnsignedInteger(Scalar, 0, n))
    return "invalid number";
  if (n > 0xFF)
    return "out of range number";
  Val = n;
  return StringRef();
}

void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
                                    raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
                                        uint16_t &Val) {
  unsigned long long n;
  if (getAsUnsignedInteger(Scalar, 0, n))
    return "invalid number";
  if (n > 0xFFFF)
    return "out of range number";
  Val = n;
  return StringRef();
}

void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
                                    raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
                                        uint32_t &Val) {
  unsigned long long n;
  if (getAsUnsignedInteger(Scalar, 0, n))
    return "invalid number";
  if (n > 0xFFFFFFFFUL)
    return "out of range number";
  Val = n;
  return StringRef();
}

void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
                                    raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
                                        uint64_t &Val) {
  unsigned long long N;
  if (getAsUnsignedInteger(Scalar, 0, N))
    return "invalid number";
  Val = N;
  return StringRef();
}

void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
  // use temp in32_t because ostream thinks int8_t is a character
  int32_t Num = Val;
  Out << Num;
}

StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
  long long N;
  if (getAsSignedInteger(Scalar, 0, N))
    return "invalid number";
  if ((N > 127) || (N < -128))
    return "out of range number";
  Val = N;
  return StringRef();
}

void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
                                   raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
  long long N;
  if (getAsSignedInteger(Scalar, 0, N))
    return "invalid number";
  if ((N > INT16_MAX) || (N < INT16_MIN))
    return "out of range number";
  Val = N;
  return StringRef();
}

void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
                                   raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
  long long N;
  if (getAsSignedInteger(Scalar, 0, N))
    return "invalid number";
  if ((N > INT32_MAX) || (N < INT32_MIN))
    return "out of range number";
  Val = N;
  return StringRef();
}

void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
                                   raw_ostream &Out) {
  Out << Val;
}

StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
  long long N;
  if (getAsSignedInteger(Scalar, 0, N))
    return "invalid number";
  Val = N;
  return StringRef();
}

void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
  Out << format("%g", Val);
}

StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
  if (to_float(Scalar, Val))
    return StringRef();
  return "invalid floating point number";
}

void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
  Out << format("%g", Val);
}

StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
  if (to_float(Scalar, Val))
    return StringRef();
  return "invalid floating point number";
}

void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
  uint8_t Num = Val;
  Out << format("0x%02X", Num);
}

StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
  unsigned long long n;
  if (getAsUnsignedInteger(Scalar, 0, n))
    return "invalid hex8 number";
  if (n > 0xFF)
    return "out of range hex8 number";
  Val = n;
  return StringRef();
}

void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
  uint16_t Num = Val;
  Out << format("0x%04X", Num);
}

StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
  unsigned long long n;
  if (getAsUnsignedInteger(Scalar, 0, n))
    return "invalid hex16 number";
  if (n > 0xFFFF)
    return "out of range hex16 number";
  Val = n;
  return StringRef();
}

void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
  uint32_t Num = Val;
  Out << format("0x%08X", Num);
}

StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
  unsigned long long n;
  if (getAsUnsignedInteger(Scalar, 0, n))
    return "invalid hex32 number";
  if (n > 0xFFFFFFFFUL)
    return "out of range hex32 number";
  Val = n;
  return StringRef();
}

void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
  uint64_t Num = Val;
  Out << format("0x%016llX", Num);
}

StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
  unsigned long long Num;
  if (getAsUnsignedInteger(Scalar, 0, Num))
    return "invalid hex64 number";
  Val = Num;
  return StringRef();
}