ARMTargetTransformInfo.cpp 74.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ARMTargetTransformInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "armtti"

static cl::opt<bool> EnableMaskedLoadStores(
  "enable-arm-maskedldst", cl::Hidden, cl::init(true),
  cl::desc("Enable the generation of masked loads and stores"));

static cl::opt<bool> DisableLowOverheadLoops(
  "disable-arm-loloops", cl::Hidden, cl::init(false),
  cl::desc("Disable the generation of low-overhead loops"));

extern cl::opt<TailPredication::Mode> EnableTailPredication;

extern cl::opt<bool> EnableMaskedGatherScatters;

extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;

/// Convert a vector load intrinsic into a simple llvm load instruction.
/// This is beneficial when the underlying object being addressed comes
/// from a constant, since we get constant-folding for free.
static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
                               InstCombiner::BuilderTy &Builder) {
  auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));

  if (!IntrAlign)
    return nullptr;

  unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
                           ? MemAlign
                           : IntrAlign->getLimitedValue();

  if (!isPowerOf2_32(Alignment))
    return nullptr;

  auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
                                          PointerType::get(II.getType(), 0));
  return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
}

bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
                                     const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();
  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // To inline a callee, all features not in the allowed list must match exactly.
  bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
                    (CalleeBits & ~InlineFeaturesAllowed);
  // For features in the allowed list, the callee's features must be a subset of
  // the callers'.
  bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
                     (CalleeBits & InlineFeaturesAllowed);
  return MatchExact && MatchSubset;
}

bool ARMTTIImpl::shouldFavorBackedgeIndex(const Loop *L) const {
  if (L->getHeader()->getParent()->hasOptSize())
    return false;
  if (ST->hasMVEIntegerOps())
    return false;
  return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1;
}

bool ARMTTIImpl::shouldFavorPostInc() const {
  if (ST->hasMVEIntegerOps())
    return true;
  return false;
}

Optional<Instruction *>
ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
  using namespace PatternMatch;
  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  default:
    break;
  case Intrinsic::arm_neon_vld1: {
    Align MemAlign =
        getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
                          &IC.getAssumptionCache(), &IC.getDominatorTree());
    if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;
  }

  case Intrinsic::arm_neon_vld2:
  case Intrinsic::arm_neon_vld3:
  case Intrinsic::arm_neon_vld4:
  case Intrinsic::arm_neon_vld2lane:
  case Intrinsic::arm_neon_vld3lane:
  case Intrinsic::arm_neon_vld4lane:
  case Intrinsic::arm_neon_vst1:
  case Intrinsic::arm_neon_vst2:
  case Intrinsic::arm_neon_vst3:
  case Intrinsic::arm_neon_vst4:
  case Intrinsic::arm_neon_vst2lane:
  case Intrinsic::arm_neon_vst3lane:
  case Intrinsic::arm_neon_vst4lane: {
    Align MemAlign =
        getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
                          &IC.getAssumptionCache(), &IC.getDominatorTree());
    unsigned AlignArg = II.getNumArgOperands() - 1;
    Value *AlignArgOp = II.getArgOperand(AlignArg);
    MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
    if (Align && *Align < MemAlign) {
      return IC.replaceOperand(
          II, AlignArg,
          ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
                           false));
    }
    break;
  }

  case Intrinsic::arm_mve_pred_i2v: {
    Value *Arg = II.getArgOperand(0);
    Value *ArgArg;
    if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
                       PatternMatch::m_Value(ArgArg))) &&
        II.getType() == ArgArg->getType()) {
      return IC.replaceInstUsesWith(II, ArgArg);
    }
    Constant *XorMask;
    if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
                             PatternMatch::m_Value(ArgArg)),
                         PatternMatch::m_Constant(XorMask))) &&
        II.getType() == ArgArg->getType()) {
      if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
        if (CI->getValue().trunc(16).isAllOnesValue()) {
          auto TrueVector = IC.Builder.CreateVectorSplat(
              cast<FixedVectorType>(II.getType())->getNumElements(),
              IC.Builder.getTrue());
          return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
        }
      }
    }
    KnownBits ScalarKnown(32);
    if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
                                ScalarKnown, 0)) {
      return &II;
    }
    break;
  }
  case Intrinsic::arm_mve_pred_v2i: {
    Value *Arg = II.getArgOperand(0);
    Value *ArgArg;
    if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
                       PatternMatch::m_Value(ArgArg)))) {
      return IC.replaceInstUsesWith(II, ArgArg);
    }
    if (!II.getMetadata(LLVMContext::MD_range)) {
      Type *IntTy32 = Type::getInt32Ty(II.getContext());
      Metadata *M[] = {
          ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
          ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0xFFFF))};
      II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
      return &II;
    }
    break;
  }
  case Intrinsic::arm_mve_vadc:
  case Intrinsic::arm_mve_vadc_predicated: {
    unsigned CarryOp =
        (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
    assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
           "Bad type for intrinsic!");

    KnownBits CarryKnown(32);
    if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
                                CarryKnown)) {
      return &II;
    }
    break;
  }
  case Intrinsic::arm_mve_vmldava: {
    Instruction *I = cast<Instruction>(&II);
    if (I->hasOneUse()) {
      auto *User = cast<Instruction>(*I->user_begin());
      Value *OpZ;
      if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
          match(I->getOperand(3), m_Zero())) {
        Value *OpX = I->getOperand(4);
        Value *OpY = I->getOperand(5);
        Type *OpTy = OpX->getType();

        IC.Builder.SetInsertPoint(User);
        Value *V =
            IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
                                       {I->getOperand(0), I->getOperand(1),
                                        I->getOperand(2), OpZ, OpX, OpY});

        IC.replaceInstUsesWith(*User, V);
        return IC.eraseInstFromFunction(*User);
      }
    }
    return None;
  }
  }
  return None;
}

int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                              TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

 unsigned Bits = Ty->getPrimitiveSizeInBits();
 if (Bits == 0 || Imm.getActiveBits() >= 64)
   return 4;

  int64_t SImmVal = Imm.getSExtValue();
  uint64_t ZImmVal = Imm.getZExtValue();
  if (!ST->isThumb()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  }
  if (ST->isThumb2()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  }
  // Thumb1, any i8 imm cost 1.
  if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
    return 1;
  if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
    return 2;
  // Load from constantpool.
  return 3;
}

// Constants smaller than 256 fit in the immediate field of
// Thumb1 instructions so we return a zero cost and 1 otherwise.
int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
                                      const APInt &Imm, Type *Ty) {
  if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
    return 0;

  return 1;
}

// Checks whether Inst is part of a min(max()) or max(min()) pattern
// that will match to an SSAT instruction
static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
  Value *LHS, *RHS;
  ConstantInt *C;
  SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;

  if (InstSPF == SPF_SMAX &&
      PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
      C->getValue() == Imm && Imm.isNegative() && (-Imm).isPowerOf2()) {

    auto isSSatMin = [&](Value *MinInst) {
      if (isa<SelectInst>(MinInst)) {
        Value *MinLHS, *MinRHS;
        ConstantInt *MinC;
        SelectPatternFlavor MinSPF =
            matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
        if (MinSPF == SPF_SMIN &&
            PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
            MinC->getValue() == ((-Imm) - 1))
          return true;
      }
      return false;
    };

    if (isSSatMin(Inst->getOperand(1)) ||
        (Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) ||
                               isSSatMin(*(++Inst->user_begin())))))
      return true;
  }
  return false;
}

int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                  const APInt &Imm, Type *Ty,
                                  TTI::TargetCostKind CostKind,
                                  Instruction *Inst) {
  // Division by a constant can be turned into multiplication, but only if we
  // know it's constant. So it's not so much that the immediate is cheap (it's
  // not), but that the alternative is worse.
  // FIXME: this is probably unneeded with GlobalISel.
  if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
       Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
      Idx == 1)
    return 0;

  if (Opcode == Instruction::And) {
    // UXTB/UXTH
    if (Imm == 255 || Imm == 65535)
      return 0;
    // Conversion to BIC is free, and means we can use ~Imm instead.
    return std::min(getIntImmCost(Imm, Ty, CostKind),
                    getIntImmCost(~Imm, Ty, CostKind));
  }

  if (Opcode == Instruction::Add)
    // Conversion to SUB is free, and means we can use -Imm instead.
    return std::min(getIntImmCost(Imm, Ty, CostKind),
                    getIntImmCost(-Imm, Ty, CostKind));

  if (Opcode == Instruction::ICmp && Imm.isNegative() &&
      Ty->getIntegerBitWidth() == 32) {
    int64_t NegImm = -Imm.getSExtValue();
    if (ST->isThumb2() && NegImm < 1<<12)
      // icmp X, #-C -> cmn X, #C
      return 0;
    if (ST->isThumb() && NegImm < 1<<8)
      // icmp X, #-C -> adds X, #C
      return 0;
  }

  // xor a, -1 can always be folded to MVN
  if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
    return 0;

  // Ensures negative constant of min(max()) or max(min()) patterns that
  // match to SSAT instructions don't get hoisted
  if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
      Ty->getIntegerBitWidth() <= 32) {
    if (isSSATMinMaxPattern(Inst, Imm) ||
        (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
         isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
      return 0;
  }

  return getIntImmCost(Imm, Ty, CostKind);
}

int ARMTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
  if (CostKind == TTI::TCK_RecipThroughput &&
      (ST->hasNEON() || ST->hasMVEIntegerOps())) {
    // FIXME: The vectorizer is highly sensistive to the cost of these
    // instructions, which suggests that it may be using the costs incorrectly.
    // But, for now, just make them free to avoid performance regressions for
    // vector targets.
    return 0;
  }
  return BaseT::getCFInstrCost(Opcode, CostKind);
}

int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                 TTI::CastContextHint CCH,
                                 TTI::TargetCostKind CostKind,
                                 const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // TODO: Allow non-throughput costs that aren't binary.
  auto AdjustCost = [&CostKind](int Cost) {
    if (CostKind != TTI::TCK_RecipThroughput)
      return Cost == 0 ? 0 : 1;
    return Cost;
  };
  auto IsLegalFPType = [this](EVT VT) {
    EVT EltVT = VT.getScalarType();
    return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
            (EltVT == MVT::f64 && ST->hasFP64()) ||
            (EltVT == MVT::f16 && ST->hasFullFP16());
  };

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return AdjustCost(
        BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));

  // Extending masked load/Truncating masked stores is expensive because we
  // currently don't split them. This means that we'll likely end up
  // loading/storing each element individually (hence the high cost).
  if ((ST->hasMVEIntegerOps() &&
       (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
        Opcode == Instruction::SExt)) ||
      (ST->hasMVEFloatOps() &&
       (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
       IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
    if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
      return 2 * DstTy.getVectorNumElements() * ST->getMVEVectorCostFactor();

  // The extend of other kinds of load is free
  if (CCH == TTI::CastContextHint::Normal ||
      CCH == TTI::CastContextHint::Masked) {
    static const TypeConversionCostTblEntry LoadConversionTbl[] = {
        {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
        {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
        {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
        {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
        {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
        {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
        {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
        {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
        {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
        {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
        {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
        {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
    };
    if (const auto *Entry = ConvertCostTableLookup(
            LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);

    static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
        {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
        {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
        {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
        {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
        {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
        {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
        // The following extend from a legal type to an illegal type, so need to
        // split the load. This introduced an extra load operation, but the
        // extend is still "free".
        {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
        {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
        {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
        {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
        {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
        {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
    };
    if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVELoadConversionTbl, ISD,
                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }

    static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
        // FPExtends are similar but also require the VCVT instructions.
        {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
        {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
    };
    if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }

    // The truncate of a store is free. This is the mirror of extends above.
    static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
        {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
        {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
        {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
        {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
        {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
        {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
    };
    if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
                                     SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }

    static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
        {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
        {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
    };
    if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
                                     SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }
  }

  // NEON vector operations that can extend their inputs.
  if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
      I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
    static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
      // vaddl
      { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
      // vsubl
      { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
      // vmull
      { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
      // vshll
      { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
    };

    auto *User = cast<Instruction>(*I->user_begin());
    int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
    if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
                                             DstTy.getSimpleVT(),
                                             SrcTy.getSimpleVT())) {
      return AdjustCost(Entry->Cost);
    }
  }

  // Single to/from double precision conversions.
  if (Src->isVectorTy() && ST->hasNEON() &&
      ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
        DstTy.getScalarType() == MVT::f32) ||
       (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
        DstTy.getScalarType() == MVT::f64))) {
    static const CostTblEntry NEONFltDblTbl[] = {
        // Vector fptrunc/fpext conversions.
        {ISD::FP_ROUND, MVT::v2f64, 2},
        {ISD::FP_EXTEND, MVT::v2f32, 2},
        {ISD::FP_EXTEND, MVT::v4f32, 4}};

    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
      return AdjustCost(LT.first * Entry->Cost);
  }

  // Some arithmetic, load and store operations have specific instructions
  // to cast up/down their types automatically at no extra cost.
  // TODO: Get these tables to know at least what the related operations are.
  static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },

    // The number of vmovl instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
    { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // Operations that we legalize using splitting.
    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
    { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },

    // Vector float <-> i32 conversions.
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },

    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },

    { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
    { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
    { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },

    // Vector double <-> i32 conversions.
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },

    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },

    { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
    { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
    { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
    { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
  };

  if (SrcTy.isVector() && ST->hasNEON()) {
    if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
                                                   DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  // Scalar float to integer conversions.
  static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
    { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
    { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
    { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
    { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
  };
  if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
    if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
                                                   DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  // Scalar integer to float conversions.
  static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
  };

  if (SrcTy.isInteger() && ST->hasNEON()) {
    if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
                                                   ISD, DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
  // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
  // are linearised so take more.
  static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
    { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
    { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
  };

  if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
    if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
                                                   ISD, DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
  }

  if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
    // As general rule, fp converts that were not matched above are scalarized
    // and cost 1 vcvt for each lane, so long as the instruction is available.
    // If not it will become a series of function calls.
    const int CallCost = getCallInstrCost(nullptr, Dst, {Src}, CostKind);
    int Lanes = 1;
    if (SrcTy.isFixedLengthVector())
      Lanes = SrcTy.getVectorNumElements();

    if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
      return Lanes;
    else
      return Lanes * CallCost;
  }

  // Scalar integer conversion costs.
  static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
    // i16 -> i64 requires two dependent operations.
    { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },

    // Truncates on i64 are assumed to be free.
    { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
    { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
    { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
    { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
  };

  if (SrcTy.isInteger()) {
    if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
                                                   DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return AdjustCost(
      BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
}

int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
                                   unsigned Index) {
  // Penalize inserting into an D-subregister. We end up with a three times
  // lower estimated throughput on swift.
  if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
      ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
    return 3;

  if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
                        Opcode == Instruction::ExtractElement)) {
    // Cross-class copies are expensive on many microarchitectures,
    // so assume they are expensive by default.
    if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
      return 3;

    // Even if it's not a cross class copy, this likely leads to mixing
    // of NEON and VFP code and should be therefore penalized.
    if (ValTy->isVectorTy() &&
        ValTy->getScalarSizeInBits() <= 32)
      return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
  }

  if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
                                 Opcode == Instruction::ExtractElement)) {
    // We say MVE moves costs at least the MVEVectorCostFactor, even though
    // they are scalar instructions. This helps prevent mixing scalar and
    // vector, to prevent vectorising where we end up just scalarising the
    // result anyway.
    return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
                    ST->getMVEVectorCostFactor()) *
           cast<FixedVectorType>(ValTy)->getNumElements() / 2;
  }

  return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}

int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                   TTI::TargetCostKind CostKind,
                                   const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  // Thumb scalar code size cost for select.
  if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
      ST->isThumb() && !ValTy->isVectorTy()) {
    // Assume expensive structs.
    if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
      return TTI::TCC_Expensive;

    // Select costs can vary because they:
    // - may require one or more conditional mov (including an IT),
    // - can't operate directly on immediates,
    // - require live flags, which we can't copy around easily.
    int Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;

    // Possible IT instruction for Thumb2, or more for Thumb1.
    ++Cost;

    // i1 values may need rematerialising by using mov immediates and/or
    // flag setting instructions.
    if (ValTy->isIntegerTy(1))
      ++Cost;

    return Cost;
  }

  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);

  // On NEON a vector select gets lowered to vbsl.
  if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
    // Lowering of some vector selects is currently far from perfect.
    static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }

    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    return LT.first;
  }

  int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind,
                                              I);
}

int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                          const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (ST->hasNEON()) {
    if (Ty->isVectorTy() && SE &&
        !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
      return NumVectorInstToHideOverhead;

    // In many cases the address computation is not merged into the instruction
    // addressing mode.
    return 1;
  }
  return BaseT::getAddressComputationCost(Ty, SE, Ptr);
}

bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    // If a VCTP is part of a chain, it's already profitable and shouldn't be
    // optimized, else LSR may block tail-predication.
    switch (II->getIntrinsicID()) {
    case Intrinsic::arm_mve_vctp8:
    case Intrinsic::arm_mve_vctp16:
    case Intrinsic::arm_mve_vctp32:
    case Intrinsic::arm_mve_vctp64:
      return true;
    default:
      break;
    }
  }
  return false;
}

bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
  if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
    return false;

  if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
    // Don't support v2i1 yet.
    if (VecTy->getNumElements() == 2)
      return false;

    // We don't support extending fp types.
     unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
    if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
      return false;
  }

  unsigned EltWidth = DataTy->getScalarSizeInBits();
  return (EltWidth == 32 && Alignment >= 4) ||
         (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
}

bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
  if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
    return false;

  // This method is called in 2 places:
  //  - from the vectorizer with a scalar type, in which case we need to get
  //  this as good as we can with the limited info we have (and rely on the cost
  //  model for the rest).
  //  - from the masked intrinsic lowering pass with the actual vector type.
  // For MVE, we have a custom lowering pass that will already have custom
  // legalised any gathers that we can to MVE intrinsics, and want to expand all
  // the rest. The pass runs before the masked intrinsic lowering pass, so if we
  // are here, we know we want to expand.
  if (isa<VectorType>(Ty))
    return false;

  unsigned EltWidth = Ty->getScalarSizeInBits();
  return ((EltWidth == 32 && Alignment >= 4) ||
          (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
}

int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
  const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
  assert(MI && "MemcpyInst expected");
  ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());

  // To model the cost of a library call, we assume 1 for the call, and
  // 3 for the argument setup.
  const unsigned LibCallCost = 4;

  // If 'size' is not a constant, a library call will be generated.
  if (!C)
    return LibCallCost;

  const unsigned Size = C->getValue().getZExtValue();
  const Align DstAlign = *MI->getDestAlign();
  const Align SrcAlign = *MI->getSourceAlign();
  const Function *F = I->getParent()->getParent();
  const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
  std::vector<EVT> MemOps;

  // MemOps will be poplulated with a list of data types that needs to be
  // loaded and stored. That's why we multiply the number of elements by 2 to
  // get the cost for this memcpy.
  if (getTLI()->findOptimalMemOpLowering(
          MemOps, Limit,
          MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
                      /*IsVolatile*/ true),
          MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
          F->getAttributes()))
    return MemOps.size() * 2;

  // If we can't find an optimal memop lowering, return the default cost
  return LibCallCost;
}

int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
                               int Index, VectorType *SubTp) {
  if (ST->hasNEON()) {
    if (Kind == TTI::SK_Broadcast) {
      static const CostTblEntry NEONDupTbl[] = {
          // VDUP handles these cases.
          {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},

          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

      if (const auto *Entry =
              CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
        return LT.first * Entry->Cost;
    }
    if (Kind == TTI::SK_Reverse) {
      static const CostTblEntry NEONShuffleTbl[] = {
          // Reverse shuffle cost one instruction if we are shuffling within a
          // double word (vrev) or two if we shuffle a quad word (vrev, vext).
          {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},

          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

      if (const auto *Entry =
              CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
        return LT.first * Entry->Cost;
    }
    if (Kind == TTI::SK_Select) {
      static const CostTblEntry NEONSelShuffleTbl[] = {
          // Select shuffle cost table for ARM. Cost is the number of
          // instructions
          // required to create the shuffled vector.

          {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},

          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},

          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},

          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
      if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
                                              ISD::VECTOR_SHUFFLE, LT.second))
        return LT.first * Entry->Cost;
    }
  }
  if (ST->hasMVEIntegerOps()) {
    if (Kind == TTI::SK_Broadcast) {
      static const CostTblEntry MVEDupTbl[] = {
          // VDUP handles these cases.
          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

      if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
                                              LT.second))
        return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
    }
  }
  int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}

int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                       TTI::TargetCostKind CostKind,
                                       TTI::OperandValueKind Op1Info,
                                       TTI::OperandValueKind Op2Info,
                                       TTI::OperandValueProperties Opd1PropInfo,
                                       TTI::OperandValueProperties Opd2PropInfo,
                                       ArrayRef<const Value *> Args,
                                       const Instruction *CxtI) {
  int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
  if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
    // Make operations on i1 relatively expensive as this often involves
    // combining predicates. AND and XOR should be easier to handle with IT
    // blocks.
    switch (ISDOpcode) {
    default:
      break;
    case ISD::AND:
    case ISD::XOR:
      return 2;
    case ISD::OR:
      return 3;
    }
  }

  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info, Opd1PropInfo,
                                         Opd2PropInfo, Args, CxtI);

  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

  if (ST->hasNEON()) {
    const unsigned FunctionCallDivCost = 20;
    const unsigned ReciprocalDivCost = 10;
    static const CostTblEntry CostTbl[] = {
      // Division.
      // These costs are somewhat random. Choose a cost of 20 to indicate that
      // vectorizing devision (added function call) is going to be very expensive.
      // Double registers types.
      { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
      { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
      { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
      { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
      { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
      { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
      { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
      // Quad register types.
      { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
      { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
      { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
      // Multiplication.
    };

    if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
      return LT.first * Entry->Cost;

    int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                             Op2Info,
                                             Opd1PropInfo, Opd2PropInfo);

    // This is somewhat of a hack. The problem that we are facing is that SROA
    // creates a sequence of shift, and, or instructions to construct values.
    // These sequences are recognized by the ISel and have zero-cost. Not so for
    // the vectorized code. Because we have support for v2i64 but not i64 those
    // sequences look particularly beneficial to vectorize.
    // To work around this we increase the cost of v2i64 operations to make them
    // seem less beneficial.
    if (LT.second == MVT::v2i64 &&
        Op2Info == TargetTransformInfo::OK_UniformConstantValue)
      Cost += 4;

    return Cost;
  }

  // If this operation is a shift on arm/thumb2, it might well be folded into
  // the following instruction, hence having a cost of 0.
  auto LooksLikeAFreeShift = [&]() {
    if (ST->isThumb1Only() || Ty->isVectorTy())
      return false;

    if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
      return false;
    if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
      return false;

    // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
    switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::And:
    case Instruction::Xor:
    case Instruction::Or:
    case Instruction::ICmp:
      return true;
    default:
      return false;
    }
  };
  if (LooksLikeAFreeShift())
    return 0;

  int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;

  // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
  // without treating floats as more expensive that scalars or increasing the
  // costs for custom operations. The results is also multiplied by the
  // MVEVectorCostFactor where appropriate.
  if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
    return LT.first * BaseCost;

  // Else this is expand, assume that we need to scalarize this op.
  if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
    unsigned Num = VTy->getNumElements();
    unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType(),
                                           CostKind);
    // Return the cost of multiple scalar invocation plus the cost of
    // inserting and extracting the values.
    return BaseT::getScalarizationOverhead(VTy, Args) + Num * Cost;
  }

  return BaseCost;
}

int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                MaybeAlign Alignment, unsigned AddressSpace,
                                TTI::TargetCostKind CostKind,
                                const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return 1;

  // Type legalization can't handle structs
  if (TLI->getValueType(DL, Src, true) == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                  CostKind);

  if (ST->hasNEON() && Src->isVectorTy() &&
      (Alignment && *Alignment != Align(16)) &&
      cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
    // Unaligned loads/stores are extremely inefficient.
    // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    return LT.first * 4;
  }

  // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
  // Same for stores.
  if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
      ((Opcode == Instruction::Load && I->hasOneUse() &&
        isa<FPExtInst>(*I->user_begin())) ||
       (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
    FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
    Type *DstTy =
        Opcode == Instruction::Load
            ? (*I->user_begin())->getType()
            : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
    if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
        DstTy->getScalarType()->isFloatTy())
      return ST->getMVEVectorCostFactor();
  }

  int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                           CostKind, I);
}

int ARMTTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  assert(isa<VectorType>(VecTy) && "Expect a vector type");

  // vldN/vstN doesn't support vector types of i64/f64 element.
  bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;

  if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
      !UseMaskForCond && !UseMaskForGaps) {
    unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
    auto *SubVecTy =
        FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // vldN/vstN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one vldN/vstN instruction.
    int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1;
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL))
      return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);

    // Some smaller than legal interleaved patterns are cheap as we can make
    // use of the vmovn or vrev patterns to interleave a standard load. This is
    // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
    // promoted differently). The cost of 2 here is then a load and vrev or
    // vmovn.
    if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
        VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64)
      return 2 * BaseCost;
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace, CostKind,
                                           UseMaskForCond, UseMaskForGaps);
}

unsigned ARMTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                            const Value *Ptr, bool VariableMask,
                                            Align Alignment,
                                            TTI::TargetCostKind CostKind,
                                            const Instruction *I) {
  using namespace PatternMatch;
  if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
    return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                         Alignment, CostKind, I);

  assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
  auto *VTy = cast<FixedVectorType>(DataTy);

  // TODO: Splitting, once we do that.

  unsigned NumElems = VTy->getNumElements();
  unsigned EltSize = VTy->getScalarSizeInBits();
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);

  // For now, it is assumed that for the MVE gather instructions the loads are
  // all effectively serialised. This means the cost is the scalar cost
  // multiplied by the number of elements being loaded. This is possibly very
  // conservative, but even so we still end up vectorising loops because the
  // cost per iteration for many loops is lower than for scalar loops.
  unsigned VectorCost = NumElems * LT.first * ST->getMVEVectorCostFactor();
  // The scalarization cost should be a lot higher. We use the number of vector
  // elements plus the scalarization overhead.
  unsigned ScalarCost =
      NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, {});

  if (Alignment < EltSize / 8)
    return ScalarCost;

  unsigned ExtSize = EltSize;
  // Check whether there's a single user that asks for an extended type
  if (I != nullptr) {
    // Dependent of the caller of this function, a gather instruction will
    // either have opcode Instruction::Load or be a call to the masked_gather
    // intrinsic
    if ((I->getOpcode() == Instruction::Load ||
         match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
        I->hasOneUse()) {
      const User *Us = *I->users().begin();
      if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
        // only allow valid type combinations
        unsigned TypeSize =
            cast<Instruction>(Us)->getType()->getScalarSizeInBits();
        if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
             (TypeSize == 16 && EltSize == 8)) &&
            TypeSize * NumElems == 128) {
          ExtSize = TypeSize;
        }
      }
    }
    // Check whether the input data needs to be truncated
    TruncInst *T;
    if ((I->getOpcode() == Instruction::Store ||
         match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
        (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
      // Only allow valid type combinations
      unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
      if (((EltSize == 16 && TypeSize == 32) ||
           (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
          TypeSize * NumElems == 128)
        ExtSize = TypeSize;
    }
  }

  if (ExtSize * NumElems != 128 || NumElems < 4)
    return ScalarCost;

  // Any (aligned) i32 gather will not need to be scalarised.
  if (ExtSize == 32)
    return VectorCost;
  // For smaller types, we need to ensure that the gep's inputs are correctly
  // extended from a small enough value. Other sizes (including i64) are
  // scalarized for now.
  if (ExtSize != 8 && ExtSize != 16)
    return ScalarCost;

  if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
    Ptr = BC->getOperand(0);
  if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
    if (GEP->getNumOperands() != 2)
      return ScalarCost;
    unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
    // Scale needs to be correct (which is only relevant for i16s).
    if (Scale != 1 && Scale * 8 != ExtSize)
      return ScalarCost;
    // And we need to zext (not sext) the indexes from a small enough type.
    if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
      if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
        return VectorCost;
    }
    return ScalarCost;
  }
  return ScalarCost;
}

bool ARMTTIImpl::isLoweredToCall(const Function *F) {
  if (!F->isIntrinsic())
    BaseT::isLoweredToCall(F);

  // Assume all Arm-specific intrinsics map to an instruction.
  if (F->getName().startswith("llvm.arm"))
    return false;

  switch (F->getIntrinsicID()) {
  default: break;
  case Intrinsic::powi:
  case Intrinsic::sin:
  case Intrinsic::cos:
  case Intrinsic::pow:
  case Intrinsic::log:
  case Intrinsic::log10:
  case Intrinsic::log2:
  case Intrinsic::exp:
  case Intrinsic::exp2:
    return true;
  case Intrinsic::sqrt:
  case Intrinsic::fabs:
  case Intrinsic::copysign:
  case Intrinsic::floor:
  case Intrinsic::ceil:
  case Intrinsic::trunc:
  case Intrinsic::rint:
  case Intrinsic::nearbyint:
  case Intrinsic::round:
  case Intrinsic::canonicalize:
  case Intrinsic::lround:
  case Intrinsic::llround:
  case Intrinsic::lrint:
  case Intrinsic::llrint:
    if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
      return true;
    if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
      return true;
    // Some operations can be handled by vector instructions and assume
    // unsupported vectors will be expanded into supported scalar ones.
    // TODO Handle scalar operations properly.
    return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
  case Intrinsic::masked_store:
  case Intrinsic::masked_load:
  case Intrinsic::masked_gather:
  case Intrinsic::masked_scatter:
    return !ST->hasMVEIntegerOps();
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::sadd_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::usub_sat:
    return false;
  }

  return BaseT::isLoweredToCall(F);
}

bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
  unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
  EVT VT = TLI->getValueType(DL, I.getType(), true);
  if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
    return true;

  // Check if an intrinsic will be lowered to a call and assume that any
  // other CallInst will generate a bl.
  if (auto *Call = dyn_cast<CallInst>(&I)) {
    if (isa<IntrinsicInst>(Call)) {
      if (const Function *F = Call->getCalledFunction())
        return isLoweredToCall(F);
    }
    return true;
  }

  // FPv5 provides conversions between integer, double-precision,
  // single-precision, and half-precision formats.
  switch (I.getOpcode()) {
  default:
    break;
  case Instruction::FPToSI:
  case Instruction::FPToUI:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
    return !ST->hasFPARMv8Base();
  }

  // FIXME: Unfortunately the approach of checking the Operation Action does
  // not catch all cases of Legalization that use library calls. Our
  // Legalization step categorizes some transformations into library calls as
  // Custom, Expand or even Legal when doing type legalization. So for now
  // we have to special case for instance the SDIV of 64bit integers and the
  // use of floating point emulation.
  if (VT.isInteger() && VT.getSizeInBits() >= 64) {
    switch (ISD) {
    default:
      break;
    case ISD::SDIV:
    case ISD::UDIV:
    case ISD::SREM:
    case ISD::UREM:
    case ISD::SDIVREM:
    case ISD::UDIVREM:
      return true;
    }
  }

  // Assume all other non-float operations are supported.
  if (!VT.isFloatingPoint())
    return false;

  // We'll need a library call to handle most floats when using soft.
  if (TLI->useSoftFloat()) {
    switch (I.getOpcode()) {
    default:
      return true;
    case Instruction::Alloca:
    case Instruction::Load:
    case Instruction::Store:
    case Instruction::Select:
    case Instruction::PHI:
      return false;
    }
  }

  // We'll need a libcall to perform double precision operations on a single
  // precision only FPU.
  if (I.getType()->isDoubleTy() && !ST->hasFP64())
    return true;

  // Likewise for half precision arithmetic.
  if (I.getType()->isHalfTy() && !ST->hasFullFP16())
    return true;

  return false;
}

bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                          AssumptionCache &AC,
                                          TargetLibraryInfo *LibInfo,
                                          HardwareLoopInfo &HWLoopInfo) {
  // Low-overhead branches are only supported in the 'low-overhead branch'
  // extension of v8.1-m.
  if (!ST->hasLOB() || DisableLowOverheadLoops) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
    return false;
  }

  if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
    return false;
  }

  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
    return false;
  }

  const SCEV *TripCountSCEV =
    SE.getAddExpr(BackedgeTakenCount,
                  SE.getOne(BackedgeTakenCount->getType()));

  // We need to store the trip count in LR, a 32-bit register.
  if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
    return false;
  }

  // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
  // point in generating a hardware loop if that's going to happen.

  auto IsHardwareLoopIntrinsic = [](Instruction &I) {
    if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
      switch (Call->getIntrinsicID()) {
      default:
        break;
      case Intrinsic::set_loop_iterations:
      case Intrinsic::test_set_loop_iterations:
      case Intrinsic::loop_decrement:
      case Intrinsic::loop_decrement_reg:
        return true;
      }
    }
    return false;
  };

  // Scan the instructions to see if there's any that we know will turn into a
  // call or if this loop is already a low-overhead loop.
  auto ScanLoop = [&](Loop *L) {
    for (auto *BB : L->getBlocks()) {
      for (auto &I : *BB) {
        if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I)) {
          LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
          return false;
        }
      }
    }
    return true;
  };

  // Visit inner loops.
  for (auto Inner : *L)
    if (!ScanLoop(Inner))
      return false;

  if (!ScanLoop(L))
    return false;

  // TODO: Check whether the trip count calculation is expensive. If L is the
  // inner loop but we know it has a low trip count, calculating that trip
  // count (in the parent loop) may be detrimental.

  LLVMContext &C = L->getHeader()->getContext();
  HWLoopInfo.CounterInReg = true;
  HWLoopInfo.IsNestingLegal = false;
  HWLoopInfo.PerformEntryTest = true;
  HWLoopInfo.CountType = Type::getInt32Ty(C);
  HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
  return true;
}

static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
  // We don't allow icmp's, and because we only look at single block loops,
  // we simply count the icmps, i.e. there should only be 1 for the backedge.
  if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
    return false;

  if (isa<FCmpInst>(&I))
    return false;

  // We could allow extending/narrowing FP loads/stores, but codegen is
  // too inefficient so reject this for now.
  if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
    return false;

  // Extends have to be extending-loads
  if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
    if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
      return false;

  // Truncs have to be narrowing-stores
  if (isa<TruncInst>(&I) )
    if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
      return false;

  return true;
}

// To set up a tail-predicated loop, we need to know the total number of
// elements processed by that loop. Thus, we need to determine the element
// size and:
// 1) it should be uniform for all operations in the vector loop, so we
//    e.g. don't want any widening/narrowing operations.
// 2) it should be smaller than i64s because we don't have vector operations
//    that work on i64s.
// 3) we don't want elements to be reversed or shuffled, to make sure the
//    tail-predication masks/predicates the right lanes.
//
static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
                                 const DataLayout &DL,
                                 const LoopAccessInfo *LAI) {
  LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");

  // If there are live-out values, it is probably a reduction. We can predicate
  // most reduction operations freely under MVE using a combination of
  // prefer-predicated-reduction-select and inloop reductions. We limit this to
  // floating point and integer reductions, but don't check for operators
  // specifically here. If the value ends up not being a reduction (and so the
  // vectorizer cannot tailfold the loop), we should fall back to standard
  // vectorization automatically.
  SmallVector< Instruction *, 8 > LiveOuts;
  LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
  bool ReductionsDisabled =
      EnableTailPredication == TailPredication::EnabledNoReductions ||
      EnableTailPredication == TailPredication::ForceEnabledNoReductions;

  for (auto *I : LiveOuts) {
    if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
        !I->getType()->isHalfTy()) {
      LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
                           "live-out value\n");
      return false;
    }
    if (ReductionsDisabled) {
      LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
      return false;
    }
  }

  // Next, check that all instructions can be tail-predicated.
  PredicatedScalarEvolution PSE = LAI->getPSE();
  SmallVector<Instruction *, 16> LoadStores;
  int ICmpCount = 0;

  for (BasicBlock *BB : L->blocks()) {
    for (Instruction &I : BB->instructionsWithoutDebug()) {
      if (isa<PHINode>(&I))
        continue;
      if (!canTailPredicateInstruction(I, ICmpCount)) {
        LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
        return false;
      }

      Type *T  = I.getType();
      if (T->isPointerTy())
        T = T->getPointerElementType();

      if (T->getScalarSizeInBits() > 32) {
        LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
        return false;
      }
      if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
        Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1);
        int64_t NextStride = getPtrStride(PSE, Ptr, L);
        if (NextStride == 1) {
          // TODO: for now only allow consecutive strides of 1. We could support
          // other strides as long as it is uniform, but let's keep it simple
          // for now.
          continue;
        } else if (NextStride == -1 ||
                   (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
                   (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
          LLVM_DEBUG(dbgs()
                     << "Consecutive strides of 2 found, vld2/vstr2 can't "
                        "be tail-predicated\n.");
          return false;
          // TODO: don't tail predicate if there is a reversed load?
        } else if (EnableMaskedGatherScatters) {
          // Gather/scatters do allow loading from arbitrary strides, at
          // least if they are loop invariant.
          // TODO: Loop variant strides should in theory work, too, but
          // this requires further testing.
          const SCEV *PtrScev =
              replaceSymbolicStrideSCEV(PSE, llvm::ValueToValueMap(), Ptr);
          if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
            const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
            if (PSE.getSE()->isLoopInvariant(Step, L))
              continue;
          }
        }
        LLVM_DEBUG(dbgs() << "Bad stride found, can't "
                             "tail-predicate\n.");
        return false;
      }
    }
  }

  LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
  return true;
}

bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
                                             ScalarEvolution &SE,
                                             AssumptionCache &AC,
                                             TargetLibraryInfo *TLI,
                                             DominatorTree *DT,
                                             const LoopAccessInfo *LAI) {
  if (!EnableTailPredication) {
    LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
    return false;
  }

  // Creating a predicated vector loop is the first step for generating a
  // tail-predicated hardware loop, for which we need the MVE masked
  // load/stores instructions:
  if (!ST->hasMVEIntegerOps())
    return false;

  // For now, restrict this to single block loops.
  if (L->getNumBlocks() > 1) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
                         "loop.\n");
    return false;
  }

  assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");

  HardwareLoopInfo HWLoopInfo(L);
  if (!HWLoopInfo.canAnalyze(*LI)) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
                         "analyzable.\n");
    return false;
  }

  // This checks if we have the low-overhead branch architecture
  // extension, and if we will create a hardware-loop:
  if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
                         "profitable.\n");
    return false;
  }

  if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
                         "a candidate.\n");
    return false;
  }

  return canTailPredicateLoop(L, LI, SE, DL, LAI);
}

bool ARMTTIImpl::emitGetActiveLaneMask() const {
  if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
    return false;

  // Intrinsic @llvm.get.active.lane.mask is supported.
  // It is used in the MVETailPredication pass, which requires the number of
  // elements processed by this vector loop to setup the tail-predicated
  // loop.
  return true;
}
void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                         TTI::UnrollingPreferences &UP) {
  // Only currently enable these preferences for M-Class cores.
  if (!ST->isMClass())
    return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);

  // Disable loop unrolling for Oz and Os.
  UP.OptSizeThreshold = 0;
  UP.PartialOptSizeThreshold = 0;
  if (L->getHeader()->getParent()->hasOptSize())
    return;

  // Only enable on Thumb-2 targets.
  if (!ST->isThumb2())
    return;

  SmallVector<BasicBlock*, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  LLVM_DEBUG(dbgs() << "Loop has:\n"
                    << "Blocks: " << L->getNumBlocks() << "\n"
                    << "Exit blocks: " << ExitingBlocks.size() << "\n");

  // Only allow another exit other than the latch. This acts as an early exit
  // as it mirrors the profitability calculation of the runtime unroller.
  if (ExitingBlocks.size() > 2)
    return;

  // Limit the CFG of the loop body for targets with a branch predictor.
  // Allowing 4 blocks permits if-then-else diamonds in the body.
  if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
    return;

  // Scan the loop: don't unroll loops with calls as this could prevent
  // inlining.
  unsigned Cost = 0;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      // Don't unroll vectorised loop. MVE does not benefit from it as much as
      // scalar code.
      if (I.getType()->isVectorTy())
        return;

      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (!isLoweredToCall(F))
            continue;
        }
        return;
      }

      SmallVector<const Value*, 4> Operands(I.value_op_begin(),
                                            I.value_op_end());
      Cost +=
        getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
    }
  }

  LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");

  UP.Partial = true;
  UP.Runtime = true;
  UP.UpperBound = true;
  UP.UnrollRemainder = true;
  UP.DefaultUnrollRuntimeCount = 4;
  UP.UnrollAndJam = true;
  UP.UnrollAndJamInnerLoopThreshold = 60;

  // Force unrolling small loops can be very useful because of the branch
  // taken cost of the backedge.
  if (Cost < 12)
    UP.Force = true;
}

void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                       TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                       TTI::ReductionFlags Flags) const {
  return ST->hasMVEIntegerOps();
}

bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
                                       TTI::ReductionFlags Flags) const {
  if (!ST->hasMVEIntegerOps())
    return false;

  unsigned ScalarBits = Ty->getScalarSizeInBits();
  switch (Opcode) {
  case Instruction::Add:
    return ScalarBits <= 32;
  default:
    return false;
  }
}

bool ARMTTIImpl::preferPredicatedReductionSelect(
    unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
  if (!ST->hasMVEIntegerOps())
    return false;
  return true;
}