MVEVPTOptimisationsPass.cpp 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
//===-- MVEVPTOptimisationsPass.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass does a few optimisations related to MVE VPT blocks before
/// register allocation is performed. The goal is to maximize the sizes of the
/// blocks that will be created by the MVE VPT Block Insertion pass (which runs
/// after register allocation). The first optimisation done by this pass is the
/// replacement of "opposite" VCMPs with VPNOTs, so the Block Insertion pass
/// can delete them later to create larger VPT blocks.
/// The second optimisation replaces re-uses of old VCCR values with VPNOTs when
/// inside a block of predicated instructions. This is done to avoid
/// spill/reloads of VPR in the middle of a block, which prevents the Block
/// Insertion pass from creating large blocks.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/Debug.h"
#include <cassert>

using namespace llvm;

#define DEBUG_TYPE "arm-mve-vpt-opts"

namespace {
class MVEVPTOptimisations : public MachineFunctionPass {
public:
  static char ID;
  const Thumb2InstrInfo *TII;
  MachineRegisterInfo *MRI;

  MVEVPTOptimisations() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &Fn) override;

  StringRef getPassName() const override {
    return "ARM MVE VPT Optimisation Pass";
  }

private:
  MachineInstr &ReplaceRegisterUseWithVPNOT(MachineBasicBlock &MBB,
                                            MachineInstr &Instr,
                                            MachineOperand &User,
                                            Register Target);
  bool ReduceOldVCCRValueUses(MachineBasicBlock &MBB);
  bool ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB);
  bool ConvertVPSEL(MachineBasicBlock &MBB);
};

char MVEVPTOptimisations::ID = 0;

} // end anonymous namespace

INITIALIZE_PASS(MVEVPTOptimisations, DEBUG_TYPE,
                "ARM MVE VPT Optimisations pass", false, false)

// Returns true if Opcode is any VCMP Opcode.
static bool IsVCMP(unsigned Opcode) { return VCMPOpcodeToVPT(Opcode) != 0; }

// Returns true if a VCMP with this Opcode can have its operands swapped.
// There is 2 kind of VCMP that can't have their operands swapped: Float VCMPs,
// and VCMPr instructions (since the r is always on the right).
static bool CanHaveSwappedOperands(unsigned Opcode) {
  switch (Opcode) {
  default:
    return true;
  case ARM::MVE_VCMPf32:
  case ARM::MVE_VCMPf16:
  case ARM::MVE_VCMPf32r:
  case ARM::MVE_VCMPf16r:
  case ARM::MVE_VCMPi8r:
  case ARM::MVE_VCMPi16r:
  case ARM::MVE_VCMPi32r:
  case ARM::MVE_VCMPu8r:
  case ARM::MVE_VCMPu16r:
  case ARM::MVE_VCMPu32r:
  case ARM::MVE_VCMPs8r:
  case ARM::MVE_VCMPs16r:
  case ARM::MVE_VCMPs32r:
    return false;
  }
}

// Returns the CondCode of a VCMP Instruction.
static ARMCC::CondCodes GetCondCode(MachineInstr &Instr) {
  assert(IsVCMP(Instr.getOpcode()) && "Inst must be a VCMP");
  return ARMCC::CondCodes(Instr.getOperand(3).getImm());
}

// Returns true if Cond is equivalent to a VPNOT instruction on the result of
// Prev. Cond and Prev must be VCMPs.
static bool IsVPNOTEquivalent(MachineInstr &Cond, MachineInstr &Prev) {
  assert(IsVCMP(Cond.getOpcode()) && IsVCMP(Prev.getOpcode()));

  // Opcodes must match.
  if (Cond.getOpcode() != Prev.getOpcode())
    return false;

  MachineOperand &CondOP1 = Cond.getOperand(1), &CondOP2 = Cond.getOperand(2);
  MachineOperand &PrevOP1 = Prev.getOperand(1), &PrevOP2 = Prev.getOperand(2);

  // If the VCMP has the opposite condition with the same operands, we can
  // replace it with a VPNOT
  ARMCC::CondCodes ExpectedCode = GetCondCode(Cond);
  ExpectedCode = ARMCC::getOppositeCondition(ExpectedCode);
  if (ExpectedCode == GetCondCode(Prev))
    if (CondOP1.isIdenticalTo(PrevOP1) && CondOP2.isIdenticalTo(PrevOP2))
      return true;
  // Check again with operands swapped if possible
  if (!CanHaveSwappedOperands(Cond.getOpcode()))
    return false;
  ExpectedCode = ARMCC::getSwappedCondition(ExpectedCode);
  return ExpectedCode == GetCondCode(Prev) && CondOP1.isIdenticalTo(PrevOP2) &&
         CondOP2.isIdenticalTo(PrevOP1);
}

// Returns true if Instr writes to VCCR.
static bool IsWritingToVCCR(MachineInstr &Instr) {
  if (Instr.getNumOperands() == 0)
    return false;
  MachineOperand &Dst = Instr.getOperand(0);
  if (!Dst.isReg())
    return false;
  Register DstReg = Dst.getReg();
  if (!DstReg.isVirtual())
    return false;
  MachineRegisterInfo &RegInfo = Instr.getMF()->getRegInfo();
  const TargetRegisterClass *RegClass = RegInfo.getRegClassOrNull(DstReg);
  return RegClass && (RegClass->getID() == ARM::VCCRRegClassID);
}

// Transforms
//    <Instr that uses %A ('User' Operand)>
// Into
//    %K = VPNOT %Target
//    <Instr that uses %K ('User' Operand)>
// And returns the newly inserted VPNOT.
// This optimization is done in the hopes of preventing spills/reloads of VPR by
// reducing the number of VCCR values with overlapping lifetimes.
MachineInstr &MVEVPTOptimisations::ReplaceRegisterUseWithVPNOT(
    MachineBasicBlock &MBB, MachineInstr &Instr, MachineOperand &User,
    Register Target) {
  Register NewResult = MRI->createVirtualRegister(MRI->getRegClass(Target));

  MachineInstrBuilder MIBuilder =
      BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
          .addDef(NewResult)
          .addReg(Target);
  addUnpredicatedMveVpredNOp(MIBuilder);

  // Make the user use NewResult instead, and clear its kill flag.
  User.setReg(NewResult);
  User.setIsKill(false);

  LLVM_DEBUG(dbgs() << "  Inserting VPNOT (for spill prevention): ";
             MIBuilder.getInstr()->dump());

  return *MIBuilder.getInstr();
}

// Moves a VPNOT before its first user if an instruction that uses Reg is found
// in-between the VPNOT and its user.
// Returns true if there is at least one user of the VPNOT in the block.
static bool MoveVPNOTBeforeFirstUser(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator Iter,
                                     Register Reg) {
  assert(Iter->getOpcode() == ARM::MVE_VPNOT && "Not a VPNOT!");
  assert(getVPTInstrPredicate(*Iter) == ARMVCC::None &&
         "The VPNOT cannot be predicated");

  MachineInstr &VPNOT = *Iter;
  Register VPNOTResult = VPNOT.getOperand(0).getReg();
  Register VPNOTOperand = VPNOT.getOperand(1).getReg();

  // Whether the VPNOT will need to be moved, and whether we found a user of the
  // VPNOT.
  bool MustMove = false, HasUser = false;
  MachineOperand *VPNOTOperandKiller = nullptr;
  for (; Iter != MBB.end(); ++Iter) {
    if (MachineOperand *MO =
            Iter->findRegisterUseOperand(VPNOTOperand, /*isKill*/ true)) {
      // If we find the operand that kills the VPNOTOperand's result, save it.
      VPNOTOperandKiller = MO;
    }

    if (Iter->findRegisterUseOperandIdx(Reg) != -1) {
      MustMove = true;
      continue;
    }

    if (Iter->findRegisterUseOperandIdx(VPNOTResult) == -1)
      continue;

    HasUser = true;
    if (!MustMove)
      break;

    // Move the VPNOT right before Iter
    LLVM_DEBUG(dbgs() << "Moving: "; VPNOT.dump(); dbgs() << "  Before: ";
               Iter->dump());
    MBB.splice(Iter, &MBB, VPNOT.getIterator());
    // If we move the instr, and its operand was killed earlier, remove the kill
    // flag.
    if (VPNOTOperandKiller)
      VPNOTOperandKiller->setIsKill(false);

    break;
  }
  return HasUser;
}

// This optimisation attempts to reduce the number of overlapping lifetimes of
// VCCR values by replacing uses of old VCCR values with VPNOTs. For example,
// this replaces
//    %A:vccr = (something)
//    %B:vccr = VPNOT %A
//    %Foo = (some op that uses %B)
//    %Bar = (some op that uses %A)
// With
//    %A:vccr = (something)
//    %B:vccr = VPNOT %A
//    %Foo = (some op that uses %B)
//    %TMP2:vccr = VPNOT %B
//    %Bar = (some op that uses %A)
bool MVEVPTOptimisations::ReduceOldVCCRValueUses(MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator Iter = MBB.begin(), End = MBB.end();
  SmallVector<MachineInstr *, 4> DeadInstructions;
  bool Modified = false;

  while (Iter != End) {
    Register VCCRValue, OppositeVCCRValue;
    // The first loop looks for 2 unpredicated instructions:
    //    %A:vccr = (instr)     ; A is stored in VCCRValue
    //    %B:vccr = VPNOT %A    ; B is stored in OppositeVCCRValue
    for (; Iter != End; ++Iter) {
      // We're only interested in unpredicated instructions that write to VCCR.
      if (!IsWritingToVCCR(*Iter) ||
          getVPTInstrPredicate(*Iter) != ARMVCC::None)
        continue;
      Register Dst = Iter->getOperand(0).getReg();

      // If we already have a VCCRValue, and this is a VPNOT on VCCRValue, we've
      // found what we were looking for.
      if (VCCRValue && Iter->getOpcode() == ARM::MVE_VPNOT &&
          Iter->findRegisterUseOperandIdx(VCCRValue) != -1) {
        // Move the VPNOT closer to its first user if needed, and ignore if it
        // has no users.
        if (!MoveVPNOTBeforeFirstUser(MBB, Iter, VCCRValue))
          continue;

        OppositeVCCRValue = Dst;
        ++Iter;
        break;
      }

      // Else, just set VCCRValue.
      VCCRValue = Dst;
    }

    // If the first inner loop didn't find anything, stop here.
    if (Iter == End)
      break;

    assert(VCCRValue && OppositeVCCRValue &&
           "VCCRValue and OppositeVCCRValue shouldn't be empty if the loop "
           "stopped before the end of the block!");
    assert(VCCRValue != OppositeVCCRValue &&
           "VCCRValue should not be equal to OppositeVCCRValue!");

    // LastVPNOTResult always contains the same value as OppositeVCCRValue.
    Register LastVPNOTResult = OppositeVCCRValue;

    // This second loop tries to optimize the remaining instructions.
    for (; Iter != End; ++Iter) {
      bool IsInteresting = false;

      if (MachineOperand *MO = Iter->findRegisterUseOperand(VCCRValue)) {
        IsInteresting = true;

        // - If the instruction is a VPNOT, it can be removed, and we can just
        //   replace its uses with LastVPNOTResult.
        // - Else, insert a new VPNOT on LastVPNOTResult to recompute VCCRValue.
        if (Iter->getOpcode() == ARM::MVE_VPNOT) {
          Register Result = Iter->getOperand(0).getReg();

          MRI->replaceRegWith(Result, LastVPNOTResult);
          DeadInstructions.push_back(&*Iter);
          Modified = true;

          LLVM_DEBUG(dbgs()
                     << "Replacing all uses of '" << printReg(Result)
                     << "' with '" << printReg(LastVPNOTResult) << "'\n");
        } else {
          MachineInstr &VPNOT =
              ReplaceRegisterUseWithVPNOT(MBB, *Iter, *MO, LastVPNOTResult);
          Modified = true;

          LastVPNOTResult = VPNOT.getOperand(0).getReg();
          std::swap(VCCRValue, OppositeVCCRValue);

          LLVM_DEBUG(dbgs() << "Replacing use of '" << printReg(VCCRValue)
                            << "' with '" << printReg(LastVPNOTResult)
                            << "' in instr: " << *Iter);
        }
      } else {
        // If the instr uses OppositeVCCRValue, make it use LastVPNOTResult
        // instead as they contain the same value.
        if (MachineOperand *MO =
                Iter->findRegisterUseOperand(OppositeVCCRValue)) {
          IsInteresting = true;

          // This is pointless if LastVPNOTResult == OppositeVCCRValue.
          if (LastVPNOTResult != OppositeVCCRValue) {
            LLVM_DEBUG(dbgs() << "Replacing usage of '"
                              << printReg(OppositeVCCRValue) << "' with '"
                              << printReg(LastVPNOTResult) << " for instr: ";
                       Iter->dump());
            MO->setReg(LastVPNOTResult);
            Modified = true;
          }

          MO->setIsKill(false);
        }

        // If this is an unpredicated VPNOT on
        // LastVPNOTResult/OppositeVCCRValue, we can act like we inserted it.
        if (Iter->getOpcode() == ARM::MVE_VPNOT &&
            getVPTInstrPredicate(*Iter) == ARMVCC::None) {
          Register VPNOTOperand = Iter->getOperand(1).getReg();
          if (VPNOTOperand == LastVPNOTResult ||
              VPNOTOperand == OppositeVCCRValue) {
            IsInteresting = true;

            std::swap(VCCRValue, OppositeVCCRValue);
            LastVPNOTResult = Iter->getOperand(0).getReg();
          }
        }
      }

      // If this instruction was not interesting, and it writes to VCCR, stop.
      if (!IsInteresting && IsWritingToVCCR(*Iter))
        break;
    }
  }

  for (MachineInstr *DeadInstruction : DeadInstructions)
    DeadInstruction->eraseFromParent();

  return Modified;
}

// This optimisation replaces VCMPs with VPNOTs when they are equivalent.
bool MVEVPTOptimisations::ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB) {
  SmallVector<MachineInstr *, 4> DeadInstructions;

  // The last VCMP that we have seen and that couldn't be replaced.
  // This is reset when an instruction that writes to VCCR/VPR is found, or when
  // a VCMP is replaced with a VPNOT.
  // We'll only replace VCMPs with VPNOTs when this is not null, and when the
  // current VCMP is the opposite of PrevVCMP.
  MachineInstr *PrevVCMP = nullptr;
  // If we find an instruction that kills the result of PrevVCMP, we save the
  // operand here to remove the kill flag in case we need to use PrevVCMP's
  // result.
  MachineOperand *PrevVCMPResultKiller = nullptr;

  for (MachineInstr &Instr : MBB.instrs()) {
    if (PrevVCMP) {
      if (MachineOperand *MO = Instr.findRegisterUseOperand(
              PrevVCMP->getOperand(0).getReg(), /*isKill*/ true)) {
        // If we come accross the instr that kills PrevVCMP's result, record it
        // so we can remove the kill flag later if we need to.
        PrevVCMPResultKiller = MO;
      }
    }

    // Ignore predicated instructions.
    if (getVPTInstrPredicate(Instr) != ARMVCC::None)
      continue;

    // Only look at VCMPs
    if (!IsVCMP(Instr.getOpcode())) {
      // If the instruction writes to VCCR, forget the previous VCMP.
      if (IsWritingToVCCR(Instr))
        PrevVCMP = nullptr;
      continue;
    }

    if (!PrevVCMP || !IsVPNOTEquivalent(Instr, *PrevVCMP)) {
      PrevVCMP = &Instr;
      continue;
    }

    // The register containing the result of the VCMP that we're going to
    // replace.
    Register PrevVCMPResultReg = PrevVCMP->getOperand(0).getReg();

    // Build a VPNOT to replace the VCMP, reusing its operands.
    MachineInstrBuilder MIBuilder =
        BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
            .add(Instr.getOperand(0))
            .addReg(PrevVCMPResultReg);
    addUnpredicatedMveVpredNOp(MIBuilder);
    LLVM_DEBUG(dbgs() << "Inserting VPNOT (to replace VCMP): ";
               MIBuilder.getInstr()->dump(); dbgs() << "  Removed VCMP: ";
               Instr.dump());

    // If we found an instruction that uses, and kills PrevVCMP's result,
    // remove the kill flag.
    if (PrevVCMPResultKiller)
      PrevVCMPResultKiller->setIsKill(false);

    // Finally, mark the old VCMP for removal and reset
    // PrevVCMP/PrevVCMPResultKiller.
    DeadInstructions.push_back(&Instr);
    PrevVCMP = nullptr;
    PrevVCMPResultKiller = nullptr;
  }

  for (MachineInstr *DeadInstruction : DeadInstructions)
    DeadInstruction->eraseFromParent();

  return !DeadInstructions.empty();
}

// Replace VPSEL with a predicated VMOV in blocks with a VCTP. This is a
// somewhat blunt approximation to allow tail predicated with vpsel
// instructions. We turn a vselect into a VPSEL in ISEL, but they have slightly
// different semantics under tail predication. Until that is modelled we just
// convert to a VMOVT (via a predicated VORR) instead.
bool MVEVPTOptimisations::ConvertVPSEL(MachineBasicBlock &MBB) {
  bool HasVCTP = false;
  SmallVector<MachineInstr *, 4> DeadInstructions;

  for (MachineInstr &MI : MBB.instrs()) {
    if (isVCTP(&MI)) {
      HasVCTP = true;
      continue;
    }

    if (!HasVCTP || MI.getOpcode() != ARM::MVE_VPSEL)
      continue;

    MachineInstrBuilder MIBuilder =
        BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(ARM::MVE_VORR))
            .add(MI.getOperand(0))
            .add(MI.getOperand(1))
            .add(MI.getOperand(1))
            .addImm(ARMVCC::Then)
            .add(MI.getOperand(4))
            .add(MI.getOperand(2));
    // Silence unused variable warning in release builds.
    (void)MIBuilder;
    LLVM_DEBUG(dbgs() << "Replacing VPSEL: "; MI.dump();
               dbgs() << "     with VMOVT: "; MIBuilder.getInstr()->dump());
    DeadInstructions.push_back(&MI);
  }

  for (MachineInstr *DeadInstruction : DeadInstructions)
    DeadInstruction->eraseFromParent();

  return !DeadInstructions.empty();
}

bool MVEVPTOptimisations::runOnMachineFunction(MachineFunction &Fn) {
  const ARMSubtarget &STI =
      static_cast<const ARMSubtarget &>(Fn.getSubtarget());

  if (!STI.isThumb2() || !STI.hasMVEIntegerOps())
    return false;

  TII = static_cast<const Thumb2InstrInfo *>(STI.getInstrInfo());
  MRI = &Fn.getRegInfo();

  LLVM_DEBUG(dbgs() << "********** ARM MVE VPT Optimisations **********\n"
                    << "********** Function: " << Fn.getName() << '\n');

  bool Modified = false;
  for (MachineBasicBlock &MBB : Fn) {
    Modified |= ReplaceVCMPsByVPNOTs(MBB);
    Modified |= ReduceOldVCCRValueUses(MBB);
    Modified |= ConvertVPSEL(MBB);
  }

  LLVM_DEBUG(dbgs() << "**************************************\n");
  return Modified;
}

/// createMVEVPTOptimisationsPass
FunctionPass *llvm::createMVEVPTOptimisationsPass() {
  return new MVEVPTOptimisations();
}