X86FixupBWInsts.cpp 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines the pass that looks through the machine instructions
/// late in the compilation, and finds byte or word instructions that
/// can be profitably replaced with 32 bit instructions that give equivalent
/// results for the bits of the results that are used. There are two possible
/// reasons to do this.
///
/// One reason is to avoid false-dependences on the upper portions
/// of the registers.  Only instructions that have a destination register
/// which is not in any of the source registers can be affected by this.
/// Any instruction where one of the source registers is also the destination
/// register is unaffected, because it has a true dependence on the source
/// register already.  So, this consideration primarily affects load
/// instructions and register-to-register moves.  It would
/// seem like cmov(s) would also be affected, but because of the way cmov is
/// really implemented by most machines as reading both the destination and
/// and source registers, and then "merging" the two based on a condition,
/// it really already should be considered as having a true dependence on the
/// destination register as well.
///
/// The other reason to do this is for potential code size savings.  Word
/// operations need an extra override byte compared to their 32 bit
/// versions. So this can convert many word operations to their larger
/// size, saving a byte in encoding. This could introduce partial register
/// dependences where none existed however.  As an example take:
///   orw  ax, $0x1000
///   addw ax, $3
/// now if this were to get transformed into
///   orw  ax, $1000
///   addl eax, $3
/// because the addl encodes shorter than the addw, this would introduce
/// a use of a register that was only partially written earlier.  On older
/// Intel processors this can be quite a performance penalty, so this should
/// probably only be done when it can be proven that a new partial dependence
/// wouldn't be created, or when your know a newer processor is being
/// targeted, or when optimizing for minimum code size.
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
#define FIXUPBW_NAME "x86-fixup-bw-insts"

#define DEBUG_TYPE FIXUPBW_NAME

// Option to allow this optimization pass to have fine-grained control.
static cl::opt<bool>
    FixupBWInsts("fixup-byte-word-insts",
                 cl::desc("Change byte and word instructions to larger sizes"),
                 cl::init(true), cl::Hidden);

namespace {
class FixupBWInstPass : public MachineFunctionPass {
  /// Loop over all of the instructions in the basic block replacing applicable
  /// byte or word instructions with better alternatives.
  void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);

  /// This sets the \p SuperDestReg to the 32 bit super reg of the original
  /// destination register of the MachineInstr passed in. It returns true if
  /// that super register is dead just prior to \p OrigMI, and false if not.
  bool getSuperRegDestIfDead(MachineInstr *OrigMI,
                             Register &SuperDestReg) const;

  /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
  /// register if it is safe to do so.  Return the replacement instruction if
  /// OK, otherwise return nullptr.
  MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;

  /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
  /// safe to do so.  Return the replacement instruction if OK, otherwise return
  /// nullptr.
  MachineInstr *tryReplaceCopy(MachineInstr *MI) const;

  /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
  /// register if it is safe to do so.  Return the replacement instruction if
  /// OK, otherwise return nullptr.
  MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
                                 MachineInstr *MI) const;

  // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
  // possible.  Return the replacement instruction if OK, return nullptr
  // otherwise.
  MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;

public:
  static char ID;

  StringRef getPassName() const override { return FIXUPBW_DESC; }

  FixupBWInstPass() : MachineFunctionPass(ID) { }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
                                       // guide some heuristics.
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  /// Loop over all of the basic blocks, replacing byte and word instructions by
  /// equivalent 32 bit instructions where performance or code size can be
  /// improved.
  bool runOnMachineFunction(MachineFunction &MF) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  MachineFunction *MF = nullptr;

  /// Machine instruction info used throughout the class.
  const X86InstrInfo *TII = nullptr;

  /// Local member for function's OptForSize attribute.
  bool OptForSize = false;

  /// Machine loop info used for guiding some heruistics.
  MachineLoopInfo *MLI = nullptr;

  /// Register Liveness information after the current instruction.
  LivePhysRegs LiveRegs;

  ProfileSummaryInfo *PSI;
  MachineBlockFrequencyInfo *MBFI;
};
char FixupBWInstPass::ID = 0;
}

INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)

FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }

bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
  if (!FixupBWInsts || skipFunction(MF.getFunction()))
    return false;

  this->MF = &MF;
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  MLI = &getAnalysis<MachineLoopInfo>();
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  MBFI = (PSI && PSI->hasProfileSummary()) ?
         &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
         nullptr;
  LiveRegs.init(TII->getRegisterInfo());

  LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);

  // Process all basic blocks.
  for (auto &MBB : MF)
    processBasicBlock(MF, MBB);

  LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);

  return true;
}

/// Check if after \p OrigMI the only portion of super register
/// of the destination register of \p OrigMI that is alive is that
/// destination register.
///
/// If so, return that super register in \p SuperDestReg.
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
                                            Register &SuperDestReg) const {
  const X86RegisterInfo *TRI = &TII->getRegisterInfo();
  Register OrigDestReg = OrigMI->getOperand(0).getReg();
  SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);

  const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);

  // Make sure that the sub-register that this instruction has as its
  // destination is the lowest order sub-register of the super-register.
  // If it isn't, then the register isn't really dead even if the
  // super-register is considered dead.
  if (SubRegIdx == X86::sub_8bit_hi)
    return false;

  // If neither the destination-super register nor any applicable subregisters
  // are live after this instruction, then the super register is safe to use.
  if (!LiveRegs.contains(SuperDestReg)) {
    // If the original destination register was not the low 8-bit subregister
    // then the super register check is sufficient.
    if (SubRegIdx != X86::sub_8bit)
      return true;
    // If the original destination register was the low 8-bit subregister and
    // we also need to check the 16-bit subregister and the high 8-bit
    // subregister.
    if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
        !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
                                                  /*High=*/true)))
      return true;
    // Otherwise, we have a little more checking to do.
  }

  // If we get here, the super-register destination (or some part of it) is
  // marked as live after the original instruction.
  //
  // The X86 backend does not have subregister liveness tracking enabled,
  // so liveness information might be overly conservative. Specifically, the
  // super register might be marked as live because it is implicitly defined
  // by the instruction we are examining.
  //
  // However, for some specific instructions (this pass only cares about MOVs)
  // we can produce more precise results by analysing that MOV's operands.
  //
  // Indeed, if super-register is not live before the mov it means that it
  // was originally <read-undef> and so we are free to modify these
  // undef upper bits. That may happen in case where the use is in another MBB
  // and the vreg/physreg corresponding to the move has higher width than
  // necessary (e.g. due to register coalescing with a "truncate" copy).
  // So, we would like to handle patterns like this:
  //
  //   %bb.2: derived from LLVM BB %if.then
  //   Live Ins: %rdi
  //   Predecessors according to CFG: %bb.0
  //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
  //                                 ; No implicit %eax
  //   Successors according to CFG: %bb.3(?%)
  //
  //   %bb.3: derived from LLVM BB %if.end
  //   Live Ins: %eax                            Only %ax is actually live
  //   Predecessors according to CFG: %bb.2 %bb.1
  //   %ax = KILL %ax, implicit killed %eax
  //   RET 0, %ax
  unsigned Opc = OrigMI->getOpcode(); (void)Opc;
  // These are the opcodes currently known to work with the code below, if
  // something // else will be added we need to ensure that new opcode has the
  // same properties.
  if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
      Opc != X86::MOV16rr)
    return false;

  bool IsDefined = false;
  for (auto &MO: OrigMI->implicit_operands()) {
    if (!MO.isReg())
      continue;

    assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");

    if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
      IsDefined = true;

    // If MO is a use of any part of the destination register but is not equal
    // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
    // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
    // %eax, or %rax will prevent us from using the %eax register.
    if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
        TRI->regsOverlap(SuperDestReg, MO.getReg()))
      return false;
  }
  // Reg is not Imp-def'ed -> it's live both before/after the instruction.
  if (!IsDefined)
    return false;

  // Otherwise, the Reg is not live before the MI and the MOV can't
  // make it really live, so it's in fact dead even after the MI.
  return true;
}

MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
                                              MachineInstr *MI) const {
  Register NewDestReg;

  // We are going to try to rewrite this load to a larger zero-extending
  // load.  This is safe if all portions of the 32 bit super-register
  // of the original destination register, except for the original destination
  // register are dead. getSuperRegDestIfDead checks that.
  if (!getSuperRegDestIfDead(MI, NewDestReg))
    return nullptr;

  // Safe to change the instruction.
  MachineInstrBuilder MIB =
      BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);

  unsigned NumArgs = MI->getNumOperands();
  for (unsigned i = 1; i < NumArgs; ++i)
    MIB.add(MI->getOperand(i));

  MIB.setMemRefs(MI->memoperands());

  return MIB;
}

MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
  assert(MI->getNumExplicitOperands() == 2);
  auto &OldDest = MI->getOperand(0);
  auto &OldSrc = MI->getOperand(1);

  Register NewDestReg;
  if (!getSuperRegDestIfDead(MI, NewDestReg))
    return nullptr;

  Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);

  // This is only correct if we access the same subregister index: otherwise,
  // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
  const X86RegisterInfo *TRI = &TII->getRegisterInfo();
  if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
      TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
    return nullptr;

  // Safe to change the instruction.
  // Don't set src flags, as we don't know if we're also killing the superreg.
  // However, the superregister might not be defined; make it explicit that
  // we don't care about the higher bits by reading it as Undef, and adding
  // an imp-use on the original subregister.
  MachineInstrBuilder MIB =
      BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
          .addReg(NewSrcReg, RegState::Undef)
          .addReg(OldSrc.getReg(), RegState::Implicit);

  // Drop imp-defs/uses that would be redundant with the new def/use.
  for (auto &Op : MI->implicit_operands())
    if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
      MIB.add(Op);

  return MIB;
}

MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
                                                MachineInstr *MI) const {
  Register NewDestReg;
  if (!getSuperRegDestIfDead(MI, NewDestReg))
    return nullptr;

  // Don't interfere with formation of CBW instructions which should be a
  // shorter encoding than even the MOVSX32rr8. It's also immune to partial
  // merge issues on Intel CPUs.
  if (MI->getOpcode() == X86::MOVSX16rr8 &&
      MI->getOperand(0).getReg() == X86::AX &&
      MI->getOperand(1).getReg() == X86::AL)
    return nullptr;

  // Safe to change the instruction.
  MachineInstrBuilder MIB =
      BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);

  unsigned NumArgs = MI->getNumOperands();
  for (unsigned i = 1; i < NumArgs; ++i)
    MIB.add(MI->getOperand(i));

  MIB.setMemRefs(MI->memoperands());

  return MIB;
}

MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
                                               MachineBasicBlock &MBB) const {
  // See if this is an instruction of the type we are currently looking for.
  switch (MI->getOpcode()) {

  case X86::MOV8rm:
    // Only replace 8 bit loads with the zero extending versions if
    // in an inner most loop and not optimizing for size. This takes
    // an extra byte to encode, and provides limited performance upside.
    if (MachineLoop *ML = MLI->getLoopFor(&MBB))
      if (ML->begin() == ML->end() && !OptForSize)
        return tryReplaceLoad(X86::MOVZX32rm8, MI);
    break;

  case X86::MOV16rm:
    // Always try to replace 16 bit load with 32 bit zero extending.
    // Code size is the same, and there is sometimes a perf advantage
    // from eliminating a false dependence on the upper portion of
    // the register.
    return tryReplaceLoad(X86::MOVZX32rm16, MI);

  case X86::MOV8rr:
  case X86::MOV16rr:
    // Always try to replace 8/16 bit copies with a 32 bit copy.
    // Code size is either less (16) or equal (8), and there is sometimes a
    // perf advantage from eliminating a false dependence on the upper portion
    // of the register.
    return tryReplaceCopy(MI);

  case X86::MOVSX16rr8:
    return tryReplaceExtend(X86::MOVSX32rr8, MI);
  case X86::MOVSX16rm8:
    return tryReplaceExtend(X86::MOVSX32rm8, MI);
  case X86::MOVZX16rr8:
    return tryReplaceExtend(X86::MOVZX32rr8, MI);
  case X86::MOVZX16rm8:
    return tryReplaceExtend(X86::MOVZX32rm8, MI);

  default:
    // nothing to do here.
    break;
  }

  return nullptr;
}

void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
                                        MachineBasicBlock &MBB) {

  // This algorithm doesn't delete the instructions it is replacing
  // right away.  By leaving the existing instructions in place, the
  // register liveness information doesn't change, and this makes the
  // analysis that goes on be better than if the replaced instructions
  // were immediately removed.
  //
  // This algorithm always creates a replacement instruction
  // and notes that and the original in a data structure, until the
  // whole BB has been analyzed.  This keeps the replacement instructions
  // from making it seem as if the larger register might be live.
  SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;

  // Start computing liveness for this block. We iterate from the end to be able
  // to update this for each instruction.
  LiveRegs.clear();
  // We run after PEI, so we need to AddPristinesAndCSRs.
  LiveRegs.addLiveOuts(MBB);

  OptForSize = MF.getFunction().hasOptSize() ||
               llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);

  for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
    MachineInstr *MI = &*I;

    if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
      MIReplacements.push_back(std::make_pair(MI, NewMI));

    // We're done with this instruction, update liveness for the next one.
    LiveRegs.stepBackward(*MI);
  }

  while (!MIReplacements.empty()) {
    MachineInstr *MI = MIReplacements.back().first;
    MachineInstr *NewMI = MIReplacements.back().second;
    MIReplacements.pop_back();
    MBB.insert(MI, NewMI);
    MBB.erase(MI);
  }
}