X86FrameLowering.cpp 139 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//

#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetOptions.h"
#include <cstdlib>

#define DEBUG_TYPE "x86-fl"

STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
STATISTIC(NumFrameExtraProbe,
          "Number of extra stack probes generated in prologue");

using namespace llvm;

X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
                                   MaybeAlign StackAlignOverride)
    : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
                          STI.is64Bit() ? -8 : -4),
      STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
  // Cache a bunch of frame-related predicates for this subtarget.
  SlotSize = TRI->getSlotSize();
  Is64Bit = STI.is64Bit();
  IsLP64 = STI.isTarget64BitLP64();
  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
  Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
  StackPtr = TRI->getStackRegister();
}

bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
  return !MF.getFrameInfo().hasVarSizedObjects() &&
         !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
         !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
}

/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
/// call frame pseudos can be simplified.  Having a FP, as in the default
/// implementation, is not sufficient here since we can't always use it.
/// Use a more nuanced condition.
bool
X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
  return hasReservedCallFrame(MF) ||
         MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
         (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
         TRI->hasBasePointer(MF);
}

// needsFrameIndexResolution - Do we need to perform FI resolution for
// this function. Normally, this is required only when the function
// has any stack objects. However, FI resolution actually has another job,
// not apparent from the title - it resolves callframesetup/destroy
// that were not simplified earlier.
// So, this is required for x86 functions that have push sequences even
// when there are no stack objects.
bool
X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
  return MF.getFrameInfo().hasStackObjects() ||
         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
}

/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register.  This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
          TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() ||
          MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
          MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
          MFI.hasStackMap() || MFI.hasPatchPoint() ||
          MFI.hasCopyImplyingStackAdjustment());
}

static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
  if (IsLP64) {
    if (isInt<8>(Imm))
      return X86::SUB64ri8;
    return X86::SUB64ri32;
  } else {
    if (isInt<8>(Imm))
      return X86::SUB32ri8;
    return X86::SUB32ri;
  }
}

static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
  if (IsLP64) {
    if (isInt<8>(Imm))
      return X86::ADD64ri8;
    return X86::ADD64ri32;
  } else {
    if (isInt<8>(Imm))
      return X86::ADD32ri8;
    return X86::ADD32ri;
  }
}

static unsigned getSUBrrOpcode(bool IsLP64) {
  return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
}

static unsigned getADDrrOpcode(bool IsLP64) {
  return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
}

static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
  if (IsLP64) {
    if (isInt<8>(Imm))
      return X86::AND64ri8;
    return X86::AND64ri32;
  }
  if (isInt<8>(Imm))
    return X86::AND32ri8;
  return X86::AND32ri;
}

static unsigned getLEArOpcode(bool IsLP64) {
  return IsLP64 ? X86::LEA64r : X86::LEA32r;
}

/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
/// when it reaches the "return" instruction. We can then pop a stack object
/// to this register without worry about clobbering it.
static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator &MBBI,
                                       const X86RegisterInfo *TRI,
                                       bool Is64Bit) {
  const MachineFunction *MF = MBB.getParent();
  if (MF->callsEHReturn())
    return 0;

  const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);

  if (MBBI == MBB.end())
    return 0;

  switch (MBBI->getOpcode()) {
  default: return 0;
  case TargetOpcode::PATCHABLE_RET:
  case X86::RET:
  case X86::RETL:
  case X86::RETQ:
  case X86::RETIL:
  case X86::RETIQ:
  case X86::TCRETURNdi:
  case X86::TCRETURNri:
  case X86::TCRETURNmi:
  case X86::TCRETURNdi64:
  case X86::TCRETURNri64:
  case X86::TCRETURNmi64:
  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    SmallSet<uint16_t, 8> Uses;
    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MBBI->getOperand(i);
      if (!MO.isReg() || MO.isDef())
        continue;
      Register Reg = MO.getReg();
      if (!Reg)
        continue;
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        Uses.insert(*AI);
    }

    for (auto CS : AvailableRegs)
      if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
          CS != X86::ESP)
        return CS;
  }
  }

  return 0;
}

static bool isEAXLiveIn(MachineBasicBlock &MBB) {
  for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
    unsigned Reg = RegMask.PhysReg;

    if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
        Reg == X86::AH || Reg == X86::AL)
      return true;
  }

  return false;
}

/// Check if the flags need to be preserved before the terminators.
/// This would be the case, if the eflags is live-in of the region
/// composed by the terminators or live-out of that region, without
/// being defined by a terminator.
static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
  for (const MachineInstr &MI : MBB.terminators()) {
    bool BreakNext = false;
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (Reg != X86::EFLAGS)
        continue;

      // This terminator needs an eflags that is not defined
      // by a previous another terminator:
      // EFLAGS is live-in of the region composed by the terminators.
      if (!MO.isDef())
        return true;
      // This terminator defines the eflags, i.e., we don't need to preserve it.
      // However, we still need to check this specific terminator does not
      // read a live-in value.
      BreakNext = true;
    }
    // We found a definition of the eflags, no need to preserve them.
    if (BreakNext)
      return false;
  }

  // None of the terminators use or define the eflags.
  // Check if they are live-out, that would imply we need to preserve them.
  for (const MachineBasicBlock *Succ : MBB.successors())
    if (Succ->isLiveIn(X86::EFLAGS))
      return true;

  return false;
}

/// emitSPUpdate - Emit a series of instructions to increment / decrement the
/// stack pointer by a constant value.
void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator &MBBI,
                                    const DebugLoc &DL,
                                    int64_t NumBytes, bool InEpilogue) const {
  bool isSub = NumBytes < 0;
  uint64_t Offset = isSub ? -NumBytes : NumBytes;
  MachineInstr::MIFlag Flag =
      isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;

  uint64_t Chunk = (1LL << 31) - 1;

  MachineFunction &MF = *MBB.getParent();
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  const X86TargetLowering &TLI = *STI.getTargetLowering();
  const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);

  // It's ok to not take into account large chunks when probing, as the
  // allocation is split in smaller chunks anyway.
  if (EmitInlineStackProbe && !InEpilogue) {

    // This pseudo-instruction is going to be expanded, potentially using a
    // loop, by inlineStackProbe().
    BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
    return;
  } else if (Offset > Chunk) {
    // Rather than emit a long series of instructions for large offsets,
    // load the offset into a register and do one sub/add
    unsigned Reg = 0;
    unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);

    if (isSub && !isEAXLiveIn(MBB))
      Reg = Rax;
    else
      Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);

    unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
    unsigned AddSubRROpc =
        isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
    if (Reg) {
      BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
          .addImm(Offset)
          .setMIFlag(Flag);
      MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
                             .addReg(StackPtr)
                             .addReg(Reg);
      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
      return;
    } else if (Offset > 8 * Chunk) {
      // If we would need more than 8 add or sub instructions (a >16GB stack
      // frame), it's worth spilling RAX to materialize this immediate.
      //   pushq %rax
      //   movabsq +-$Offset+-SlotSize, %rax
      //   addq %rsp, %rax
      //   xchg %rax, (%rsp)
      //   movq (%rsp), %rsp
      assert(Is64Bit && "can't have 32-bit 16GB stack frame");
      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
          .addReg(Rax, RegState::Kill)
          .setMIFlag(Flag);
      // Subtract is not commutative, so negate the offset and always use add.
      // Subtract 8 less and add 8 more to account for the PUSH we just did.
      if (isSub)
        Offset = -(Offset - SlotSize);
      else
        Offset = Offset + SlotSize;
      BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
          .addImm(Offset)
          .setMIFlag(Flag);
      MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
                             .addReg(Rax)
                             .addReg(StackPtr);
      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
      // Exchange the new SP in RAX with the top of the stack.
      addRegOffset(
          BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
          StackPtr, false, 0);
      // Load new SP from the top of the stack into RSP.
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
                   StackPtr, false, 0);
      return;
    }
  }

  while (Offset) {
    uint64_t ThisVal = std::min(Offset, Chunk);
    if (ThisVal == SlotSize) {
      // Use push / pop for slot sized adjustments as a size optimization. We
      // need to find a dead register when using pop.
      unsigned Reg = isSub
        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
      if (Reg) {
        unsigned Opc = isSub
          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
          : (Is64Bit ? X86::POP64r  : X86::POP32r);
        BuildMI(MBB, MBBI, DL, TII.get(Opc))
            .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
            .setMIFlag(Flag);
        Offset -= ThisVal;
        continue;
      }
    }

    BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
        .setMIFlag(Flag);

    Offset -= ThisVal;
  }
}

MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
  assert(Offset != 0 && "zero offset stack adjustment requested");

  // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
  // is tricky.
  bool UseLEA;
  if (!InEpilogue) {
    // Check if inserting the prologue at the beginning
    // of MBB would require to use LEA operations.
    // We need to use LEA operations if EFLAGS is live in, because
    // it means an instruction will read it before it gets defined.
    UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
  } else {
    // If we can use LEA for SP but we shouldn't, check that none
    // of the terminators uses the eflags. Otherwise we will insert
    // a ADD that will redefine the eflags and break the condition.
    // Alternatively, we could move the ADD, but this may not be possible
    // and is an optimization anyway.
    UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
    if (UseLEA && !STI.useLeaForSP())
      UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
    // If that assert breaks, that means we do not do the right thing
    // in canUseAsEpilogue.
    assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
           "We shouldn't have allowed this insertion point");
  }

  MachineInstrBuilder MI;
  if (UseLEA) {
    MI = addRegOffset(BuildMI(MBB, MBBI, DL,
                              TII.get(getLEArOpcode(Uses64BitFramePtr)),
                              StackPtr),
                      StackPtr, false, Offset);
  } else {
    bool IsSub = Offset < 0;
    uint64_t AbsOffset = IsSub ? -Offset : Offset;
    const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
                               : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
    MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
             .addReg(StackPtr)
             .addImm(AbsOffset);
    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
  }
  return MI;
}

int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator &MBBI,
                                     bool doMergeWithPrevious) const {
  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
      (!doMergeWithPrevious && MBBI == MBB.end()))
    return 0;

  MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;

  PI = skipDebugInstructionsBackward(PI, MBB.begin());
  // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
  // instruction, and that there are no DBG_VALUE or other instructions between
  // ADD/SUB/LEA and its corresponding CFI instruction.
  /* TODO: Add support for the case where there are multiple CFI instructions
    below the ADD/SUB/LEA, e.g.:
    ...
    add
    cfi_def_cfa_offset
    cfi_offset
    ...
  */
  if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
    PI = std::prev(PI);

  unsigned Opc = PI->getOpcode();
  int Offset = 0;

  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
      PI->getOperand(0).getReg() == StackPtr){
    assert(PI->getOperand(1).getReg() == StackPtr);
    Offset = PI->getOperand(2).getImm();
  } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
             PI->getOperand(0).getReg() == StackPtr &&
             PI->getOperand(1).getReg() == StackPtr &&
             PI->getOperand(2).getImm() == 1 &&
             PI->getOperand(3).getReg() == X86::NoRegister &&
             PI->getOperand(5).getReg() == X86::NoRegister) {
    // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
    Offset = PI->getOperand(4).getImm();
  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
             PI->getOperand(0).getReg() == StackPtr) {
    assert(PI->getOperand(1).getReg() == StackPtr);
    Offset = -PI->getOperand(2).getImm();
  } else
    return 0;

  PI = MBB.erase(PI);
  if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
  if (!doMergeWithPrevious)
    MBBI = skipDebugInstructionsForward(PI, MBB.end());

  return Offset;
}

void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MBBI,
                                const DebugLoc &DL,
                                const MCCFIInstruction &CFIInst) const {
  MachineFunction &MF = *MBB.getParent();
  unsigned CFIIndex = MF.addFrameInst(CFIInst);
  BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
      .addCFIIndex(CFIIndex);
}

/// Emits Dwarf Info specifying offsets of callee saved registers and
/// frame pointer. This is called only when basic block sections are enabled.
void X86FrameLowering::emitCalleeSavedFrameMoves(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
  MachineFunction &MF = *MBB.getParent();
  if (!hasFP(MF)) {
    emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
    return;
  }
  const MachineModuleInfo &MMI = MF.getMMI();
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
  const Register FramePtr = TRI->getFrameRegister(MF);
  const Register MachineFramePtr =
      STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
                               : FramePtr;
  unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
  // Offset = space for return address + size of the frame pointer itself.
  unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
  BuildCFI(MBB, MBBI, DebugLoc{},
           MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
  emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
}

void X86FrameLowering::emitCalleeSavedFrameMoves(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    const DebugLoc &DL, bool IsPrologue) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineModuleInfo &MMI = MF.getMMI();
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();

  // Add callee saved registers to move list.
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
  if (CSI.empty()) return;

  // Calculate offsets.
  for (std::vector<CalleeSavedInfo>::const_iterator
         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
    unsigned Reg = I->getReg();
    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);

    if (IsPrologue) {
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
    } else {
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::createRestore(nullptr, DwarfReg));
    }
  }
}

void X86FrameLowering::emitStackProbe(MachineFunction &MF,
                                      MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator MBBI,
                                      const DebugLoc &DL, bool InProlog) const {
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  if (STI.isTargetWindowsCoreCLR()) {
    if (InProlog) {
      BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
          .addImm(0 /* no explicit stack size */);
    } else {
      emitStackProbeInline(MF, MBB, MBBI, DL, false);
    }
  } else {
    emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
  }
}

void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
                                        MachineBasicBlock &PrologMBB) const {
  auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
    return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
  });
  if (Where != PrologMBB.end()) {
    DebugLoc DL = PrologMBB.findDebugLoc(Where);
    emitStackProbeInline(MF, PrologMBB, Where, DL, true);
    Where->eraseFromParent();
  }
}

void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
                                            MachineBasicBlock &MBB,
                                            MachineBasicBlock::iterator MBBI,
                                            const DebugLoc &DL,
                                            bool InProlog) const {
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
    emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
  else
    emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
}

void X86FrameLowering::emitStackProbeInlineGeneric(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
  MachineInstr &AllocWithProbe = *MBBI;
  uint64_t Offset = AllocWithProbe.getOperand(0).getImm();

  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  const X86TargetLowering &TLI = *STI.getTargetLowering();
  assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
         "different expansion expected for CoreCLR 64 bit");

  const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
  uint64_t ProbeChunk = StackProbeSize * 8;

  uint64_t MaxAlign =
      TRI->needsStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;

  // Synthesize a loop or unroll it, depending on the number of iterations.
  // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
  // between the unaligned rsp and current rsp.
  if (Offset > ProbeChunk) {
    emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
                                    MaxAlign % StackProbeSize);
  } else {
    emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
                                     MaxAlign % StackProbeSize);
  }
}

void X86FrameLowering::emitStackProbeInlineGenericBlock(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
    uint64_t AlignOffset) const {

  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  const X86TargetLowering &TLI = *STI.getTargetLowering();
  const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
  const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
  const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);

  uint64_t CurrentOffset = 0;

  assert(AlignOffset < StackProbeSize);

  // If the offset is so small it fits within a page, there's nothing to do.
  if (StackProbeSize < Offset + AlignOffset) {

    MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
                           .addReg(StackPtr)
                           .addImm(StackProbeSize - AlignOffset)
                           .setMIFlag(MachineInstr::FrameSetup);
    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.

    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
                     .setMIFlag(MachineInstr::FrameSetup),
                 StackPtr, false, 0)
        .addImm(0)
        .setMIFlag(MachineInstr::FrameSetup);
    NumFrameExtraProbe++;
    CurrentOffset = StackProbeSize - AlignOffset;
  }

  // For the next N - 1 pages, just probe. I tried to take advantage of
  // natural probes but it implies much more logic and there was very few
  // interesting natural probes to interleave.
  while (CurrentOffset + StackProbeSize < Offset) {
    MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
                           .addReg(StackPtr)
                           .addImm(StackProbeSize)
                           .setMIFlag(MachineInstr::FrameSetup);
    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.


    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
                     .setMIFlag(MachineInstr::FrameSetup),
                 StackPtr, false, 0)
        .addImm(0)
        .setMIFlag(MachineInstr::FrameSetup);
    NumFrameExtraProbe++;
    CurrentOffset += StackProbeSize;
  }

  // No need to probe the tail, it is smaller than a Page.
  uint64_t ChunkSize = Offset - CurrentOffset;
  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
                         .addReg(StackPtr)
                         .addImm(ChunkSize)
                         .setMIFlag(MachineInstr::FrameSetup);
  MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
}

void X86FrameLowering::emitStackProbeInlineGenericLoop(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
    uint64_t AlignOffset) const {
  assert(Offset && "null offset");

  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  const X86TargetLowering &TLI = *STI.getTargetLowering();
  const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
  const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);

  if (AlignOffset) {
    if (AlignOffset < StackProbeSize) {
      // Perform a first smaller allocation followed by a probe.
      const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
      MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
                             .addReg(StackPtr)
                             .addImm(AlignOffset)
                             .setMIFlag(MachineInstr::FrameSetup);
      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.

      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
                       .setMIFlag(MachineInstr::FrameSetup),
                   StackPtr, false, 0)
          .addImm(0)
          .setMIFlag(MachineInstr::FrameSetup);
      NumFrameExtraProbe++;
      Offset -= AlignOffset;
    }
  }

  // Synthesize a loop
  NumFrameLoopProbe++;
  const BasicBlock *LLVM_BB = MBB.getBasicBlock();

  MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);

  MachineFunction::iterator MBBIter = ++MBB.getIterator();
  MF.insert(MBBIter, testMBB);
  MF.insert(MBBIter, tailMBB);

  Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
  BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
      .addReg(StackPtr)
      .setMIFlag(MachineInstr::FrameSetup);

  // save loop bound
  {
    const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset);
    BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
        .addReg(FinalStackProbed)
        .addImm(Offset / StackProbeSize * StackProbeSize)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // allocate a page
  {
    const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
    BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
        .addReg(StackPtr)
        .addImm(StackProbeSize)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // touch the page
  addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
                   .setMIFlag(MachineInstr::FrameSetup),
               StackPtr, false, 0)
      .addImm(0)
      .setMIFlag(MachineInstr::FrameSetup);

  // cmp with stack pointer bound
  BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
      .addReg(StackPtr)
      .addReg(FinalStackProbed)
      .setMIFlag(MachineInstr::FrameSetup);

  // jump
  BuildMI(testMBB, DL, TII.get(X86::JCC_1))
      .addMBB(testMBB)
      .addImm(X86::COND_NE)
      .setMIFlag(MachineInstr::FrameSetup);
  testMBB->addSuccessor(testMBB);
  testMBB->addSuccessor(tailMBB);

  // BB management
  tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
  tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
  MBB.addSuccessor(testMBB);

  // handle tail
  unsigned TailOffset = Offset % StackProbeSize;
  if (TailOffset) {
    const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
    BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
        .addReg(StackPtr)
        .addImm(TailOffset)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // Update Live In information
  recomputeLiveIns(*testMBB);
  recomputeLiveIns(*tailMBB);
}

void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  assert(STI.is64Bit() && "different expansion needed for 32 bit");
  assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
  const TargetInstrInfo &TII = *STI.getInstrInfo();
  const BasicBlock *LLVM_BB = MBB.getBasicBlock();

  // RAX contains the number of bytes of desired stack adjustment.
  // The handling here assumes this value has already been updated so as to
  // maintain stack alignment.
  //
  // We need to exit with RSP modified by this amount and execute suitable
  // page touches to notify the OS that we're growing the stack responsibly.
  // All stack probing must be done without modifying RSP.
  //
  // MBB:
  //    SizeReg = RAX;
  //    ZeroReg = 0
  //    CopyReg = RSP
  //    Flags, TestReg = CopyReg - SizeReg
  //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
  //    LimitReg = gs magic thread env access
  //    if FinalReg >= LimitReg goto ContinueMBB
  // RoundBB:
  //    RoundReg = page address of FinalReg
  // LoopMBB:
  //    LoopReg = PHI(LimitReg,ProbeReg)
  //    ProbeReg = LoopReg - PageSize
  //    [ProbeReg] = 0
  //    if (ProbeReg > RoundReg) goto LoopMBB
  // ContinueMBB:
  //    RSP = RSP - RAX
  //    [rest of original MBB]

  // Set up the new basic blocks
  MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);

  MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
  MF.insert(MBBIter, RoundMBB);
  MF.insert(MBBIter, LoopMBB);
  MF.insert(MBBIter, ContinueMBB);

  // Split MBB and move the tail portion down to ContinueMBB.
  MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
  ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
  ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);

  // Some useful constants
  const int64_t ThreadEnvironmentStackLimit = 0x10;
  const int64_t PageSize = 0x1000;
  const int64_t PageMask = ~(PageSize - 1);

  // Registers we need. For the normal case we use virtual
  // registers. For the prolog expansion we use RAX, RCX and RDX.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetRegisterClass *RegClass = &X86::GR64RegClass;
  const Register SizeReg = InProlog ? X86::RAX
                                    : MRI.createVirtualRegister(RegClass),
                 ZeroReg = InProlog ? X86::RCX
                                    : MRI.createVirtualRegister(RegClass),
                 CopyReg = InProlog ? X86::RDX
                                    : MRI.createVirtualRegister(RegClass),
                 TestReg = InProlog ? X86::RDX
                                    : MRI.createVirtualRegister(RegClass),
                 FinalReg = InProlog ? X86::RDX
                                     : MRI.createVirtualRegister(RegClass),
                 RoundedReg = InProlog ? X86::RDX
                                       : MRI.createVirtualRegister(RegClass),
                 LimitReg = InProlog ? X86::RCX
                                     : MRI.createVirtualRegister(RegClass),
                 JoinReg = InProlog ? X86::RCX
                                    : MRI.createVirtualRegister(RegClass),
                 ProbeReg = InProlog ? X86::RCX
                                     : MRI.createVirtualRegister(RegClass);

  // SP-relative offsets where we can save RCX and RDX.
  int64_t RCXShadowSlot = 0;
  int64_t RDXShadowSlot = 0;

  // If inlining in the prolog, save RCX and RDX.
  if (InProlog) {
    // Compute the offsets. We need to account for things already
    // pushed onto the stack at this point: return address, frame
    // pointer (if used), and callee saves.
    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
    const bool HasFP = hasFP(MF);

    // Check if we need to spill RCX and/or RDX.
    // Here we assume that no earlier prologue instruction changes RCX and/or
    // RDX, so checking the block live-ins is enough.
    const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
    const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
    int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
    // Assign the initial slot to both registers, then change RDX's slot if both
    // need to be spilled.
    if (IsRCXLiveIn)
      RCXShadowSlot = InitSlot;
    if (IsRDXLiveIn)
      RDXShadowSlot = InitSlot;
    if (IsRDXLiveIn && IsRCXLiveIn)
      RDXShadowSlot += 8;
    // Emit the saves if needed.
    if (IsRCXLiveIn)
      addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
                   RCXShadowSlot)
          .addReg(X86::RCX);
    if (IsRDXLiveIn)
      addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
                   RDXShadowSlot)
          .addReg(X86::RDX);
  } else {
    // Not in the prolog. Copy RAX to a virtual reg.
    BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
  }

  // Add code to MBB to check for overflow and set the new target stack pointer
  // to zero if so.
  BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
      .addReg(ZeroReg, RegState::Undef)
      .addReg(ZeroReg, RegState::Undef);
  BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
  BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
      .addReg(CopyReg)
      .addReg(SizeReg);
  BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
      .addReg(TestReg)
      .addReg(ZeroReg)
      .addImm(X86::COND_B);

  // FinalReg now holds final stack pointer value, or zero if
  // allocation would overflow. Compare against the current stack
  // limit from the thread environment block. Note this limit is the
  // lowest touched page on the stack, not the point at which the OS
  // will cause an overflow exception, so this is just an optimization
  // to avoid unnecessarily touching pages that are below the current
  // SP but already committed to the stack by the OS.
  BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
      .addReg(0)
      .addImm(1)
      .addReg(0)
      .addImm(ThreadEnvironmentStackLimit)
      .addReg(X86::GS);
  BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
  // Jump if the desired stack pointer is at or above the stack limit.
  BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);

  // Add code to roundMBB to round the final stack pointer to a page boundary.
  RoundMBB->addLiveIn(FinalReg);
  BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
      .addReg(FinalReg)
      .addImm(PageMask);
  BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);

  // LimitReg now holds the current stack limit, RoundedReg page-rounded
  // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
  // and probe until we reach RoundedReg.
  if (!InProlog) {
    BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
        .addReg(LimitReg)
        .addMBB(RoundMBB)
        .addReg(ProbeReg)
        .addMBB(LoopMBB);
  }

  LoopMBB->addLiveIn(JoinReg);
  addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
               false, -PageSize);

  // Probe by storing a byte onto the stack.
  BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
      .addReg(ProbeReg)
      .addImm(1)
      .addReg(0)
      .addImm(0)
      .addReg(0)
      .addImm(0);

  LoopMBB->addLiveIn(RoundedReg);
  BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
      .addReg(RoundedReg)
      .addReg(ProbeReg);
  BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);

  MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();

  // If in prolog, restore RDX and RCX.
  if (InProlog) {
    if (RCXShadowSlot) // It means we spilled RCX in the prologue.
      addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
                           TII.get(X86::MOV64rm), X86::RCX),
                   X86::RSP, false, RCXShadowSlot);
    if (RDXShadowSlot) // It means we spilled RDX in the prologue.
      addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
                           TII.get(X86::MOV64rm), X86::RDX),
                   X86::RSP, false, RDXShadowSlot);
  }

  // Now that the probing is done, add code to continueMBB to update
  // the stack pointer for real.
  ContinueMBB->addLiveIn(SizeReg);
  BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
      .addReg(X86::RSP)
      .addReg(SizeReg);

  // Add the control flow edges we need.
  MBB.addSuccessor(ContinueMBB);
  MBB.addSuccessor(RoundMBB);
  RoundMBB->addSuccessor(LoopMBB);
  LoopMBB->addSuccessor(ContinueMBB);
  LoopMBB->addSuccessor(LoopMBB);

  // Mark all the instructions added to the prolog as frame setup.
  if (InProlog) {
    for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
      BeforeMBBI->setFlag(MachineInstr::FrameSetup);
    }
    for (MachineInstr &MI : *RoundMBB) {
      MI.setFlag(MachineInstr::FrameSetup);
    }
    for (MachineInstr &MI : *LoopMBB) {
      MI.setFlag(MachineInstr::FrameSetup);
    }
    for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
         CMBBI != ContinueMBBI; ++CMBBI) {
      CMBBI->setFlag(MachineInstr::FrameSetup);
    }
  }
}

void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
                                          MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator MBBI,
                                          const DebugLoc &DL,
                                          bool InProlog) const {
  bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;

  // FIXME: Add indirect thunk support and remove this.
  if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
    report_fatal_error("Emitting stack probe calls on 64-bit with the large "
                       "code model and indirect thunks not yet implemented.");

  unsigned CallOp;
  if (Is64Bit)
    CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
  else
    CallOp = X86::CALLpcrel32;

  StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);

  MachineInstrBuilder CI;
  MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);

  // All current stack probes take AX and SP as input, clobber flags, and
  // preserve all registers. x86_64 probes leave RSP unmodified.
  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    // For the large code model, we have to call through a register. Use R11,
    // as it is scratch in all supported calling conventions.
    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
        .addExternalSymbol(MF.createExternalSymbolName(Symbol));
    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
  } else {
    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
        .addExternalSymbol(MF.createExternalSymbolName(Symbol));
  }

  unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
  unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
  CI.addReg(AX, RegState::Implicit)
      .addReg(SP, RegState::Implicit)
      .addReg(AX, RegState::Define | RegState::Implicit)
      .addReg(SP, RegState::Define | RegState::Implicit)
      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);

  if (STI.isTargetWin64() || !STI.isOSWindows()) {
    // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
    // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
    // themselves. They also does not clobber %rax so we can reuse it when
    // adjusting %rsp.
    // All other platforms do not specify a particular ABI for the stack probe
    // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
    BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
        .addReg(SP)
        .addReg(AX);
  }

  if (InProlog) {
    // Apply the frame setup flag to all inserted instrs.
    for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
      ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
  }
}

static unsigned calculateSetFPREG(uint64_t SPAdjust) {
  // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
  // and might require smaller successive adjustments.
  const uint64_t Win64MaxSEHOffset = 128;
  uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
  // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
  return SEHFrameOffset & -16;
}

// If we're forcing a stack realignment we can't rely on just the frame
// info, we need to know the ABI stack alignment as well in case we
// have a call out.  Otherwise just make sure we have some alignment - we'll
// go with the minimum SlotSize.
uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
  Align StackAlign = getStackAlign();
  if (MF.getFunction().hasFnAttribute("stackrealign")) {
    if (MFI.hasCalls())
      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    else if (MaxAlign < SlotSize)
      MaxAlign = Align(SlotSize);
  }
  return MaxAlign.value();
}

void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator MBBI,
                                          const DebugLoc &DL, unsigned Reg,
                                          uint64_t MaxAlign) const {
  uint64_t Val = -MaxAlign;
  unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);

  MachineFunction &MF = *MBB.getParent();
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  const X86TargetLowering &TLI = *STI.getTargetLowering();
  const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
  const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);

  // We want to make sure that (in worst case) less than StackProbeSize bytes
  // are not probed after the AND. This assumption is used in
  // emitStackProbeInlineGeneric.
  if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
    {
      NumFrameLoopProbe++;
      MachineBasicBlock *entryMBB =
          MF.CreateMachineBasicBlock(MBB.getBasicBlock());
      MachineBasicBlock *headMBB =
          MF.CreateMachineBasicBlock(MBB.getBasicBlock());
      MachineBasicBlock *bodyMBB =
          MF.CreateMachineBasicBlock(MBB.getBasicBlock());
      MachineBasicBlock *footMBB =
          MF.CreateMachineBasicBlock(MBB.getBasicBlock());

      MachineFunction::iterator MBBIter = MBB.getIterator();
      MF.insert(MBBIter, entryMBB);
      MF.insert(MBBIter, headMBB);
      MF.insert(MBBIter, bodyMBB);
      MF.insert(MBBIter, footMBB);
      const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
      Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;

      // Setup entry block
      {

        entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
        BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
            .addReg(StackPtr)
            .setMIFlag(MachineInstr::FrameSetup);
        MachineInstr *MI =
            BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
                .addReg(FinalStackProbed)
                .addImm(Val)
                .setMIFlag(MachineInstr::FrameSetup);

        // The EFLAGS implicit def is dead.
        MI->getOperand(3).setIsDead();

        BuildMI(entryMBB, DL,
                TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
            .addReg(FinalStackProbed)
            .addReg(StackPtr)
            .setMIFlag(MachineInstr::FrameSetup);
        BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
            .addMBB(&MBB)
            .addImm(X86::COND_E)
            .setMIFlag(MachineInstr::FrameSetup);
        entryMBB->addSuccessor(headMBB);
        entryMBB->addSuccessor(&MBB);
      }

      // Loop entry block

      {
        const unsigned SUBOpc =
            getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
        BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
            .addReg(StackPtr)
            .addImm(StackProbeSize)
            .setMIFlag(MachineInstr::FrameSetup);

        BuildMI(headMBB, DL,
                TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
            .addReg(FinalStackProbed)
            .addReg(StackPtr)
            .setMIFlag(MachineInstr::FrameSetup);

        // jump
        BuildMI(headMBB, DL, TII.get(X86::JCC_1))
            .addMBB(footMBB)
            .addImm(X86::COND_B)
            .setMIFlag(MachineInstr::FrameSetup);

        headMBB->addSuccessor(bodyMBB);
        headMBB->addSuccessor(footMBB);
      }

      // setup loop body
      {
        addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
                         .setMIFlag(MachineInstr::FrameSetup),
                     StackPtr, false, 0)
            .addImm(0)
            .setMIFlag(MachineInstr::FrameSetup);

        const unsigned SUBOpc =
            getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
        BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
            .addReg(StackPtr)
            .addImm(StackProbeSize)
            .setMIFlag(MachineInstr::FrameSetup);

        // cmp with stack pointer bound
        BuildMI(bodyMBB, DL,
                TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
            .addReg(FinalStackProbed)
            .addReg(StackPtr)
            .setMIFlag(MachineInstr::FrameSetup);

        // jump
        BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
            .addMBB(bodyMBB)
            .addImm(X86::COND_B)
            .setMIFlag(MachineInstr::FrameSetup);
        bodyMBB->addSuccessor(bodyMBB);
        bodyMBB->addSuccessor(footMBB);
      }

      // setup loop footer
      {
        BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
            .addReg(FinalStackProbed)
            .setMIFlag(MachineInstr::FrameSetup);
        addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
                         .setMIFlag(MachineInstr::FrameSetup),
                     StackPtr, false, 0)
            .addImm(0)
            .setMIFlag(MachineInstr::FrameSetup);
        footMBB->addSuccessor(&MBB);
      }

      recomputeLiveIns(*headMBB);
      recomputeLiveIns(*bodyMBB);
      recomputeLiveIns(*footMBB);
      recomputeLiveIns(MBB);
    }
  } else {
    MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
                           .addReg(Reg)
                           .addImm(Val)
                           .setMIFlag(MachineInstr::FrameSetup);

    // The EFLAGS implicit def is dead.
    MI->getOperand(3).setIsDead();
  }
}

bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
  // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
  // clobbered by any interrupt handler.
  assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
         "MF used frame lowering for wrong subtarget");
  const Function &Fn = MF.getFunction();
  const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
  return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
}


/// emitPrologue - Push callee-saved registers onto the stack, which
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
/// space for local variables. Also emit labels used by the exception handler to
/// generate the exception handling frames.

/*
  Here's a gist of what gets emitted:

  ; Establish frame pointer, if needed
  [if needs FP]
      push  %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset %rbp, -16
      .seh_pushreg %rpb
      mov  %rsp, %rbp
      .cfi_def_cfa_register %rbp

  ; Spill general-purpose registers
  [for all callee-saved GPRs]
      pushq %<reg>
      [if not needs FP]
         .cfi_def_cfa_offset (offset from RETADDR)
      .seh_pushreg %<reg>

  ; If the required stack alignment > default stack alignment
  ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
  ; of unknown size in the stack frame.
  [if stack needs re-alignment]
      and  $MASK, %rsp

  ; Allocate space for locals
  [if target is Windows and allocated space > 4096 bytes]
      ; Windows needs special care for allocations larger
      ; than one page.
      mov $NNN, %rax
      call ___chkstk_ms/___chkstk
      sub  %rax, %rsp
  [else]
      sub  $NNN, %rsp

  [if needs FP]
      .seh_stackalloc (size of XMM spill slots)
      .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
  [else]
      .seh_stackalloc NNN

  ; Spill XMMs
  ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
  ; they may get spilled on any platform, if the current function
  ; calls @llvm.eh.unwind.init
  [if needs FP]
      [for all callee-saved XMM registers]
          movaps  %<xmm reg>, -MMM(%rbp)
      [for all callee-saved XMM registers]
          .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
              ; i.e. the offset relative to (%rbp - SEHFrameOffset)
  [else]
      [for all callee-saved XMM registers]
          movaps  %<xmm reg>, KKK(%rsp)
      [for all callee-saved XMM registers]
          .seh_savexmm %<xmm reg>, KKK

  .seh_endprologue

  [if needs base pointer]
      mov  %rsp, %rbx
      [if needs to restore base pointer]
          mov %rsp, -MMM(%rbp)

  ; Emit CFI info
  [if needs FP]
      [for all callee-saved registers]
          .cfi_offset %<reg>, (offset from %rbp)
  [else]
       .cfi_def_cfa_offset (offset from RETADDR)
      [for all callee-saved registers]
          .cfi_offset %<reg>, (offset from %rsp)

  Notes:
  - .seh directives are emitted only for Windows 64 ABI
  - .cv_fpo directives are emitted on win32 when emitting CodeView
  - .cfi directives are emitted for all other ABIs
  - for 32-bit code, substitute %e?? registers for %r??
*/

void X86FrameLowering::emitPrologue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
         "MF used frame lowering for wrong subtarget");
  MachineBasicBlock::iterator MBBI = MBB.begin();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const Function &Fn = MF.getFunction();
  MachineModuleInfo &MMI = MF.getMMI();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
  uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
  bool IsFunclet = MBB.isEHFuncletEntry();
  EHPersonality Personality = EHPersonality::Unknown;
  if (Fn.hasPersonalityFn())
    Personality = classifyEHPersonality(Fn.getPersonalityFn());
  bool FnHasClrFunclet =
      MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
  bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
  bool HasFP = hasFP(MF);
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
  // FIXME: Emit FPO data for EH funclets.
  bool NeedsWinFPO =
      !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
  bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
  bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
  Register FramePtr = TRI->getFrameRegister(MF);
  const Register MachineFramePtr =
      STI.isTarget64BitILP32()
          ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
  Register BasePtr = TRI->getBaseRegister();
  bool HasWinCFI = false;

  // Debug location must be unknown since the first debug location is used
  // to determine the end of the prologue.
  DebugLoc DL;

  // Add RETADDR move area to callee saved frame size.
  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
  if (TailCallReturnAddrDelta && IsWin64Prologue)
    report_fatal_error("Can't handle guaranteed tail call under win64 yet");

  if (TailCallReturnAddrDelta < 0)
    X86FI->setCalleeSavedFrameSize(
      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);

  const bool EmitStackProbeCall =
      STI.getTargetLowering()->hasStackProbeSymbol(MF);
  unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);

  // Re-align the stack on 64-bit if the x86-interrupt calling convention is
  // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
  // stack alignment.
  if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
      Fn.arg_size() == 2) {
    StackSize += 8;
    MFI.setStackSize(StackSize);
    emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
  }

  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
  // function, and use up to 128 bytes of stack space, don't have a frame
  // pointer, calls, or dynamic alloca then we do not need to adjust the
  // stack pointer (we fit in the Red Zone). We also check that we don't
  // push and pop from the stack.
  if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) &&
      !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
      !MFI.adjustsStack() &&                   // No calls.
      !EmitStackProbeCall &&                   // No stack probes.
      !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
      !MF.shouldSplitStack()) {                // Regular stack
    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    if (HasFP) MinSize += SlotSize;
    X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    MFI.setStackSize(StackSize);
  }

  // Insert stack pointer adjustment for later moving of return addr.  Only
  // applies to tail call optimized functions where the callee argument stack
  // size is bigger than the callers.
  if (TailCallReturnAddrDelta < 0) {
    BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
                         /*InEpilogue=*/false)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // Mapping for machine moves:
  //
  //   DST: VirtualFP AND
  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
  //        ELSE                        => DW_CFA_def_cfa
  //
  //   SRC: VirtualFP AND
  //        DST: Register               => DW_CFA_def_cfa_register
  //
  //   ELSE
  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
  //        REG < 64                    => DW_CFA_offset + Reg
  //        ELSE                        => DW_CFA_offset_extended

  uint64_t NumBytes = 0;
  int stackGrowth = -SlotSize;

  // Find the funclet establisher parameter
  Register Establisher = X86::NoRegister;
  if (IsClrFunclet)
    Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
  else if (IsFunclet)
    Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;

  if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
    // Immediately spill establisher into the home slot.
    // The runtime cares about this.
    // MOV64mr %rdx, 16(%rsp)
    unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
        .addReg(Establisher)
        .setMIFlag(MachineInstr::FrameSetup);
    MBB.addLiveIn(Establisher);
  }

  if (HasFP) {
    assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");

    // Calculate required stack adjustment.
    uint64_t FrameSize = StackSize - SlotSize;
    // If required, include space for extra hidden slot for stashing base pointer.
    if (X86FI->getRestoreBasePointer())
      FrameSize += SlotSize;

    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();

    // Callee-saved registers are pushed on stack before the stack is realigned.
    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
      NumBytes = alignTo(NumBytes, MaxAlign);

    // Save EBP/RBP into the appropriate stack slot.
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
      .addReg(MachineFramePtr, RegState::Kill)
      .setMIFlag(MachineInstr::FrameSetup);

    if (NeedsDwarfCFI) {
      // Mark the place where EBP/RBP was saved.
      // Define the current CFA rule to use the provided offset.
      assert(StackSize);
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));

      // Change the rule for the FramePtr to be an "offset" rule.
      unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
                                  nullptr, DwarfFramePtr, 2 * stackGrowth));
    }

    if (NeedsWinCFI) {
      HasWinCFI = true;
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
          .addImm(FramePtr)
          .setMIFlag(MachineInstr::FrameSetup);
    }

    if (!IsWin64Prologue && !IsFunclet) {
      // Update EBP with the new base value.
      BuildMI(MBB, MBBI, DL,
              TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
              FramePtr)
          .addReg(StackPtr)
          .setMIFlag(MachineInstr::FrameSetup);

      if (NeedsDwarfCFI) {
        // Mark effective beginning of when frame pointer becomes valid.
        // Define the current CFA to use the EBP/RBP register.
        unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
        BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
                                    nullptr, DwarfFramePtr));
      }

      if (NeedsWinFPO) {
        // .cv_fpo_setframe $FramePtr
        HasWinCFI = true;
        BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
            .addImm(FramePtr)
            .addImm(0)
            .setMIFlag(MachineInstr::FrameSetup);
      }
    }
  } else {
    assert(!IsFunclet && "funclets without FPs not yet implemented");
    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
  }

  // Update the offset adjustment, which is mainly used by codeview to translate
  // from ESP to VFRAME relative local variable offsets.
  if (!IsFunclet) {
    if (HasFP && TRI->needsStackRealignment(MF))
      MFI.setOffsetAdjustment(-NumBytes);
    else
      MFI.setOffsetAdjustment(-StackSize);
  }

  // For EH funclets, only allocate enough space for outgoing calls. Save the
  // NumBytes value that we would've used for the parent frame.
  unsigned ParentFrameNumBytes = NumBytes;
  if (IsFunclet)
    NumBytes = getWinEHFuncletFrameSize(MF);

  // Skip the callee-saved push instructions.
  bool PushedRegs = false;
  int StackOffset = 2 * stackGrowth;

  while (MBBI != MBB.end() &&
         MBBI->getFlag(MachineInstr::FrameSetup) &&
         (MBBI->getOpcode() == X86::PUSH32r ||
          MBBI->getOpcode() == X86::PUSH64r)) {
    PushedRegs = true;
    Register Reg = MBBI->getOperand(0).getReg();
    ++MBBI;

    if (!HasFP && NeedsDwarfCFI) {
      // Mark callee-saved push instruction.
      // Define the current CFA rule to use the provided offset.
      assert(StackSize);
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
      StackOffset += stackGrowth;
    }

    if (NeedsWinCFI) {
      HasWinCFI = true;
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
          .addImm(Reg)
          .setMIFlag(MachineInstr::FrameSetup);
    }
  }

  // Realign stack after we pushed callee-saved registers (so that we'll be
  // able to calculate their offsets from the frame pointer).
  // Don't do this for Win64, it needs to realign the stack after the prologue.
  if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
    assert(HasFP && "There should be a frame pointer if stack is realigned.");
    BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);

    if (NeedsWinCFI) {
      HasWinCFI = true;
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
          .addImm(MaxAlign)
          .setMIFlag(MachineInstr::FrameSetup);
    }
  }

  // If there is an SUB32ri of ESP immediately before this instruction, merge
  // the two. This can be the case when tail call elimination is enabled and
  // the callee has more arguments then the caller.
  NumBytes -= mergeSPUpdates(MBB, MBBI, true);

  // Adjust stack pointer: ESP -= numbytes.

  // Windows and cygwin/mingw require a prologue helper routine when allocating
  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
  // stack and adjust the stack pointer in one go.  The 64-bit version of
  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
  // responsible for adjusting the stack pointer.  Touching the stack at 4K
  // increments is necessary to ensure that the guard pages used by the OS
  // virtual memory manager are allocated in correct sequence.
  uint64_t AlignedNumBytes = NumBytes;
  if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
    AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
  if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
    assert(!X86FI->getUsesRedZone() &&
           "The Red Zone is not accounted for in stack probes");

    // Check whether EAX is livein for this block.
    bool isEAXAlive = isEAXLiveIn(MBB);

    if (isEAXAlive) {
      if (Is64Bit) {
        // Save RAX
        BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
          .addReg(X86::RAX, RegState::Kill)
          .setMIFlag(MachineInstr::FrameSetup);
      } else {
        // Save EAX
        BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
          .addReg(X86::EAX, RegState::Kill)
          .setMIFlag(MachineInstr::FrameSetup);
      }
    }

    if (Is64Bit) {
      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
      // Function prologue is responsible for adjusting the stack pointer.
      int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
      if (isUInt<32>(Alloc)) {
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
            .addImm(Alloc)
            .setMIFlag(MachineInstr::FrameSetup);
      } else if (isInt<32>(Alloc)) {
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
            .addImm(Alloc)
            .setMIFlag(MachineInstr::FrameSetup);
      } else {
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
            .addImm(Alloc)
            .setMIFlag(MachineInstr::FrameSetup);
      }
    } else {
      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
      // We'll also use 4 already allocated bytes for EAX.
      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
          .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
          .setMIFlag(MachineInstr::FrameSetup);
    }

    // Call __chkstk, __chkstk_ms, or __alloca.
    emitStackProbe(MF, MBB, MBBI, DL, true);

    if (isEAXAlive) {
      // Restore RAX/EAX
      MachineInstr *MI;
      if (Is64Bit)
        MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
                          StackPtr, false, NumBytes - 8);
      else
        MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
                          StackPtr, false, NumBytes - 4);
      MI->setFlag(MachineInstr::FrameSetup);
      MBB.insert(MBBI, MI);
    }
  } else if (NumBytes) {
    emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
  }

  if (NeedsWinCFI && NumBytes) {
    HasWinCFI = true;
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
        .addImm(NumBytes)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  int SEHFrameOffset = 0;
  unsigned SPOrEstablisher;
  if (IsFunclet) {
    if (IsClrFunclet) {
      // The establisher parameter passed to a CLR funclet is actually a pointer
      // to the (mostly empty) frame of its nearest enclosing funclet; we have
      // to find the root function establisher frame by loading the PSPSym from
      // the intermediate frame.
      unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
      MachinePointerInfo NoInfo;
      MBB.addLiveIn(Establisher);
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
                   Establisher, false, PSPSlotOffset)
          .addMemOperand(MF.getMachineMemOperand(
              NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
      ;
      // Save the root establisher back into the current funclet's (mostly
      // empty) frame, in case a sub-funclet or the GC needs it.
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
                   false, PSPSlotOffset)
          .addReg(Establisher)
          .addMemOperand(MF.getMachineMemOperand(
              NoInfo,
              MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
              SlotSize, Align(SlotSize)));
    }
    SPOrEstablisher = Establisher;
  } else {
    SPOrEstablisher = StackPtr;
  }

  if (IsWin64Prologue && HasFP) {
    // Set RBP to a small fixed offset from RSP. In the funclet case, we base
    // this calculation on the incoming establisher, which holds the value of
    // RSP from the parent frame at the end of the prologue.
    SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
    if (SEHFrameOffset)
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
                   SPOrEstablisher, false, SEHFrameOffset);
    else
      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
          .addReg(SPOrEstablisher);

    // If this is not a funclet, emit the CFI describing our frame pointer.
    if (NeedsWinCFI && !IsFunclet) {
      assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
      HasWinCFI = true;
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
          .addImm(FramePtr)
          .addImm(SEHFrameOffset)
          .setMIFlag(MachineInstr::FrameSetup);
      if (isAsynchronousEHPersonality(Personality))
        MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
    }
  } else if (IsFunclet && STI.is32Bit()) {
    // Reset EBP / ESI to something good for funclets.
    MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
    // If we're a catch funclet, we can be returned to via catchret. Save ESP
    // into the registration node so that the runtime will restore it for us.
    if (!MBB.isCleanupFuncletEntry()) {
      assert(Personality == EHPersonality::MSVC_CXX);
      Register FrameReg;
      int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
      int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
      // ESP is the first field, so no extra displacement is needed.
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
                   false, EHRegOffset)
          .addReg(X86::ESP);
    }
  }

  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
    const MachineInstr &FrameInstr = *MBBI;
    ++MBBI;

    if (NeedsWinCFI) {
      int FI;
      if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
        if (X86::FR64RegClass.contains(Reg)) {
          int Offset;
          Register IgnoredFrameReg;
          if (IsWin64Prologue && IsFunclet)
            Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
          else
            Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
                     SEHFrameOffset;

          HasWinCFI = true;
          assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
          BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
              .addImm(Reg)
              .addImm(Offset)
              .setMIFlag(MachineInstr::FrameSetup);
        }
      }
    }
  }

  if (NeedsWinCFI && HasWinCFI)
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
        .setMIFlag(MachineInstr::FrameSetup);

  if (FnHasClrFunclet && !IsFunclet) {
    // Save the so-called Initial-SP (i.e. the value of the stack pointer
    // immediately after the prolog)  into the PSPSlot so that funclets
    // and the GC can recover it.
    unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
    auto PSPInfo = MachinePointerInfo::getFixedStack(
        MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
                 PSPSlotOffset)
        .addReg(StackPtr)
        .addMemOperand(MF.getMachineMemOperand(
            PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
            SlotSize, Align(SlotSize)));
  }

  // Realign stack after we spilled callee-saved registers (so that we'll be
  // able to calculate their offsets from the frame pointer).
  // Win64 requires aligning the stack after the prologue.
  if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
    assert(HasFP && "There should be a frame pointer if stack is realigned.");
    BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
  }

  // We already dealt with stack realignment and funclets above.
  if (IsFunclet && STI.is32Bit())
    return;

  // If we need a base pointer, set it up here. It's whatever the value
  // of the stack pointer is at this point. Any variable size objects
  // will be allocated after this, so we can still use the base pointer
  // to reference locals.
  if (TRI->hasBasePointer(MF)) {
    // Update the base pointer with the current stack pointer.
    unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
      .addReg(SPOrEstablisher)
      .setMIFlag(MachineInstr::FrameSetup);
    if (X86FI->getRestoreBasePointer()) {
      // Stash value of base pointer.  Saving RSP instead of EBP shortens
      // dependence chain. Used by SjLj EH.
      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
                   FramePtr, true, X86FI->getRestoreBasePointerOffset())
        .addReg(SPOrEstablisher)
        .setMIFlag(MachineInstr::FrameSetup);
    }

    if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
      // Stash the value of the frame pointer relative to the base pointer for
      // Win32 EH. This supports Win32 EH, which does the inverse of the above:
      // it recovers the frame pointer from the base pointer rather than the
      // other way around.
      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
      Register UsedReg;
      int Offset =
          getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
      assert(UsedReg == BasePtr);
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
          .addReg(FramePtr)
          .setMIFlag(MachineInstr::FrameSetup);
    }
  }

  if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
    // Mark end of stack pointer adjustment.
    if (!HasFP && NumBytes) {
      // Define the current CFA rule to use the provided offset.
      assert(StackSize);
      BuildCFI(
          MBB, MBBI, DL,
          MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
    }

    // Emit DWARF info specifying the offsets of the callee-saved registers.
    emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
  }

  // X86 Interrupt handling function cannot assume anything about the direction
  // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
  // in each prologue of interrupt handler function.
  //
  // FIXME: Create "cld" instruction only in these cases:
  // 1. The interrupt handling function uses any of the "rep" instructions.
  // 2. Interrupt handling function calls another function.
  //
  if (Fn.getCallingConv() == CallingConv::X86_INTR)
    BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
        .setMIFlag(MachineInstr::FrameSetup);

  // At this point we know if the function has WinCFI or not.
  MF.setHasWinCFI(HasWinCFI);
}

bool X86FrameLowering::canUseLEAForSPInEpilogue(
    const MachineFunction &MF) const {
  // We can't use LEA instructions for adjusting the stack pointer if we don't
  // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
  // to deallocate the stack.
  // This means that we can use LEA for SP in two situations:
  // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
  // 2. We *have* a frame pointer which means we are permitted to use LEA.
  return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
}

static bool isFuncletReturnInstr(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case X86::CATCHRET:
  case X86::CLEANUPRET:
    return true;
  default:
    return false;
  }
  llvm_unreachable("impossible");
}

// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
// stack. It holds a pointer to the bottom of the root function frame.  The
// establisher frame pointer passed to a nested funclet may point to the
// (mostly empty) frame of its parent funclet, but it will need to find
// the frame of the root function to access locals.  To facilitate this,
// every funclet copies the pointer to the bottom of the root function
// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
// same offset for the PSPSym in the root function frame that's used in the
// funclets' frames allows each funclet to dynamically accept any ancestor
// frame as its establisher argument (the runtime doesn't guarantee the
// immediate parent for some reason lost to history), and also allows the GC,
// which uses the PSPSym for some bookkeeping, to find it in any funclet's
// frame with only a single offset reported for the entire method.
unsigned
X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
  const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
  Register SPReg;
  int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
                                              /*IgnoreSPUpdates*/ true);
  assert(Offset >= 0 && SPReg == TRI->getStackRegister());
  return static_cast<unsigned>(Offset);
}

unsigned
X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  // This is the size of the pushed CSRs.
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
  // This is the size of callee saved XMMs.
  const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
  unsigned XMMSize = WinEHXMMSlotInfo.size() *
                     TRI->getSpillSize(X86::VR128RegClass);
  // This is the amount of stack a funclet needs to allocate.
  unsigned UsedSize;
  EHPersonality Personality =
      classifyEHPersonality(MF.getFunction().getPersonalityFn());
  if (Personality == EHPersonality::CoreCLR) {
    // CLR funclets need to hold enough space to include the PSPSym, at the
    // same offset from the stack pointer (immediately after the prolog) as it
    // resides at in the main function.
    UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
  } else {
    // Other funclets just need enough stack for outgoing call arguments.
    UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
  }
  // RBP is not included in the callee saved register block. After pushing RBP,
  // everything is 16 byte aligned. Everything we allocate before an outgoing
  // call must also be 16 byte aligned.
  unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
  // Subtract out the size of the callee saved registers. This is how much stack
  // each funclet will allocate.
  return FrameSizeMinusRBP + XMMSize - CSSize;
}

static bool isTailCallOpcode(unsigned Opc) {
    return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
        Opc == X86::TCRETURNmi ||
        Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
        Opc == X86::TCRETURNmi64;
}

void X86FrameLowering::emitEpilogue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
  MachineBasicBlock::iterator MBBI = Terminator;
  DebugLoc DL;
  if (MBBI != MBB.end())
    DL = MBBI->getDebugLoc();
  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
  const bool Is64BitILP32 = STI.isTarget64BitILP32();
  Register FramePtr = TRI->getFrameRegister(MF);
  Register MachineFramePtr =
      Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;

  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  bool NeedsWin64CFI =
      IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
  bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);

  // Get the number of bytes to allocate from the FrameInfo.
  uint64_t StackSize = MFI.getStackSize();
  uint64_t MaxAlign = calculateMaxStackAlign(MF);
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
  bool HasFP = hasFP(MF);
  uint64_t NumBytes = 0;

  bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
                        !MF.getTarget().getTargetTriple().isOSWindows()) &&
                       MF.needsFrameMoves();

  if (IsFunclet) {
    assert(HasFP && "EH funclets without FP not yet implemented");
    NumBytes = getWinEHFuncletFrameSize(MF);
  } else if (HasFP) {
    // Calculate required stack adjustment.
    uint64_t FrameSize = StackSize - SlotSize;
    NumBytes = FrameSize - CSSize;

    // Callee-saved registers were pushed on stack before the stack was
    // realigned.
    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
      NumBytes = alignTo(FrameSize, MaxAlign);
  } else {
    NumBytes = StackSize - CSSize;
  }
  uint64_t SEHStackAllocAmt = NumBytes;

  // AfterPop is the position to insert .cfi_restore.
  MachineBasicBlock::iterator AfterPop = MBBI;
  if (HasFP) {
    // Pop EBP.
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
            MachineFramePtr)
        .setMIFlag(MachineInstr::FrameDestroy);
    if (NeedsDwarfCFI) {
      unsigned DwarfStackPtr =
          TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
      if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
        unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
        BuildCFI(MBB, AfterPop, DL,
                 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
        --MBBI;
        --AfterPop;
      }
      --MBBI;
    }
  }

  MachineBasicBlock::iterator FirstCSPop = MBBI;
  // Skip the callee-saved pop instructions.
  while (MBBI != MBB.begin()) {
    MachineBasicBlock::iterator PI = std::prev(MBBI);
    unsigned Opc = PI->getOpcode();

    if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
      if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
          (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
        break;
      FirstCSPop = PI;
    }

    --MBBI;
  }
  MBBI = FirstCSPop;

  if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
    emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);

  if (MBBI != MBB.end())
    DL = MBBI->getDebugLoc();

  // If there is an ADD32ri or SUB32ri of ESP immediately before this
  // instruction, merge the two instructions.
  if (NumBytes || MFI.hasVarSizedObjects())
    NumBytes += mergeSPUpdates(MBB, MBBI, true);

  // If dynamic alloca is used, then reset esp to point to the last callee-saved
  // slot before popping them off! Same applies for the case, when stack was
  // realigned. Don't do this if this was a funclet epilogue, since the funclets
  // will not do realignment or dynamic stack allocation.
  if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
      !IsFunclet) {
    if (TRI->needsStackRealignment(MF))
      MBBI = FirstCSPop;
    unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
    uint64_t LEAAmount =
        IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;

    // There are only two legal forms of epilogue:
    // - add SEHAllocationSize, %rsp
    // - lea SEHAllocationSize(%FramePtr), %rsp
    //
    // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
    // However, we may use this sequence if we have a frame pointer because the
    // effects of the prologue can safely be undone.
    if (LEAAmount != 0) {
      unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
                   FramePtr, false, LEAAmount);
      --MBBI;
    } else {
      unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
        .addReg(FramePtr);
      --MBBI;
    }
  } else if (NumBytes) {
    // Adjust stack pointer back: ESP += numbytes.
    emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
    if (!hasFP(MF) && NeedsDwarfCFI) {
      // Define the current CFA rule to use the provided offset.
      BuildCFI(MBB, MBBI, DL,
               MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
    }
    --MBBI;
  }

  // Windows unwinder will not invoke function's exception handler if IP is
  // either in prologue or in epilogue.  This behavior causes a problem when a
  // call immediately precedes an epilogue, because the return address points
  // into the epilogue.  To cope with that, we insert an epilogue marker here,
  // then replace it with a 'nop' if it ends up immediately after a CALL in the
  // final emitted code.
  if (NeedsWin64CFI && MF.hasWinCFI())
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));

  if (!hasFP(MF) && NeedsDwarfCFI) {
    MBBI = FirstCSPop;
    int64_t Offset = -CSSize - SlotSize;
    // Mark callee-saved pop instruction.
    // Define the current CFA rule to use the provided offset.
    while (MBBI != MBB.end()) {
      MachineBasicBlock::iterator PI = MBBI;
      unsigned Opc = PI->getOpcode();
      ++MBBI;
      if (Opc == X86::POP32r || Opc == X86::POP64r) {
        Offset += SlotSize;
        BuildCFI(MBB, MBBI, DL,
                 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
      }
    }
  }

  // Emit DWARF info specifying the restores of the callee-saved registers.
  // For epilogue with return inside or being other block without successor,
  // no need to generate .cfi_restore for callee-saved registers.
  if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
    emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
  }

  if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
    // Add the return addr area delta back since we are not tail calling.
    int Offset = -1 * X86FI->getTCReturnAddrDelta();
    assert(Offset >= 0 && "TCDelta should never be positive");
    if (Offset) {
      // Check for possible merge with preceding ADD instruction.
      Offset += mergeSPUpdates(MBB, Terminator, true);
      emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
    }
  }
}

int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
                                             Register &FrameReg) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  bool IsFixed = MFI.isFixedObjectIndex(FI);
  // We can't calculate offset from frame pointer if the stack is realigned,
  // so enforce usage of stack/base pointer.  The base pointer is used when we
  // have dynamic allocas in addition to dynamic realignment.
  if (TRI->hasBasePointer(MF))
    FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
  else if (TRI->needsStackRealignment(MF))
    FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
  else
    FrameReg = TRI->getFrameRegister(MF);

  // Offset will hold the offset from the stack pointer at function entry to the
  // object.
  // We need to factor in additional offsets applied during the prologue to the
  // frame, base, and stack pointer depending on which is used.
  int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
  uint64_t StackSize = MFI.getStackSize();
  bool HasFP = hasFP(MF);
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  int64_t FPDelta = 0;

  // In an x86 interrupt, remove the offset we added to account for the return
  // address from any stack object allocated in the caller's frame. Interrupts
  // do not have a standard return address. Fixed objects in the current frame,
  // such as SSE register spills, should not get this treatment.
  if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
      Offset >= 0) {
    Offset += getOffsetOfLocalArea();
  }

  if (IsWin64Prologue) {
    assert(!MFI.hasCalls() || (StackSize % 16) == 8);

    // Calculate required stack adjustment.
    uint64_t FrameSize = StackSize - SlotSize;
    // If required, include space for extra hidden slot for stashing base pointer.
    if (X86FI->getRestoreBasePointer())
      FrameSize += SlotSize;
    uint64_t NumBytes = FrameSize - CSSize;

    uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
    if (FI && FI == X86FI->getFAIndex())
      return -SEHFrameOffset;

    // FPDelta is the offset from the "traditional" FP location of the old base
    // pointer followed by return address and the location required by the
    // restricted Win64 prologue.
    // Add FPDelta to all offsets below that go through the frame pointer.
    FPDelta = FrameSize - SEHFrameOffset;
    assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
           "FPDelta isn't aligned per the Win64 ABI!");
  }


  if (TRI->hasBasePointer(MF)) {
    assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
    if (FI < 0) {
      // Skip the saved EBP.
      return Offset + SlotSize + FPDelta;
    } else {
      assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
      return Offset + StackSize;
    }
  } else if (TRI->needsStackRealignment(MF)) {
    if (FI < 0) {
      // Skip the saved EBP.
      return Offset + SlotSize + FPDelta;
    } else {
      assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
      return Offset + StackSize;
    }
    // FIXME: Support tail calls
  } else {
    if (!HasFP)
      return Offset + StackSize;

    // Skip the saved EBP.
    Offset += SlotSize;

    // Skip the RETADDR move area
    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    if (TailCallReturnAddrDelta < 0)
      Offset -= TailCallReturnAddrDelta;
  }

  return Offset + FPDelta;
}

int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
                                              Register &FrameReg) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
  const auto it = WinEHXMMSlotInfo.find(FI);

  if (it == WinEHXMMSlotInfo.end())
    return getFrameIndexReference(MF, FI, FrameReg);

  FrameReg = TRI->getStackRegister();
  return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
         it->second;
}

int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
                                               int FI, Register &FrameReg,
                                               int Adjustment) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  FrameReg = TRI->getStackRegister();
  return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
}

int X86FrameLowering::getFrameIndexReferencePreferSP(
    const MachineFunction &MF, int FI, Register &FrameReg,
    bool IgnoreSPUpdates) const {

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  // Does not include any dynamic realign.
  const uint64_t StackSize = MFI.getStackSize();
  // LLVM arranges the stack as follows:
  //   ...
  //   ARG2
  //   ARG1
  //   RETADDR
  //   PUSH RBP   <-- RBP points here
  //   PUSH CSRs
  //   ~~~~~~~    <-- possible stack realignment (non-win64)
  //   ...
  //   STACK OBJECTS
  //   ...        <-- RSP after prologue points here
  //   ~~~~~~~    <-- possible stack realignment (win64)
  //
  // if (hasVarSizedObjects()):
  //   ...        <-- "base pointer" (ESI/RBX) points here
  //   DYNAMIC ALLOCAS
  //   ...        <-- RSP points here
  //
  // Case 1: In the simple case of no stack realignment and no dynamic
  // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
  // with fixed offsets from RSP.
  //
  // Case 2: In the case of stack realignment with no dynamic allocas, fixed
  // stack objects are addressed with RBP and regular stack objects with RSP.
  //
  // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
  // to address stack arguments for outgoing calls and nothing else. The "base
  // pointer" points to local variables, and RBP points to fixed objects.
  //
  // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
  // answer we give is relative to the SP after the prologue, and not the
  // SP in the middle of the function.

  if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
      !STI.isTargetWin64())
    return getFrameIndexReference(MF, FI, FrameReg);

  // If !hasReservedCallFrame the function might have SP adjustement in the
  // body.  So, even though the offset is statically known, it depends on where
  // we are in the function.
  if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
    return getFrameIndexReference(MF, FI, FrameReg);

  // We don't handle tail calls, and shouldn't be seeing them either.
  assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
         "we don't handle this case!");

  // This is how the math works out:
  //
  //  %rsp grows (i.e. gets lower) left to right. Each box below is
  //  one word (eight bytes).  Obj0 is the stack slot we're trying to
  //  get to.
  //
  //    ----------------------------------
  //    | BP | Obj0 | Obj1 | ... | ObjN |
  //    ----------------------------------
  //    ^    ^      ^                   ^
  //    A    B      C                   E
  //
  // A is the incoming stack pointer.
  // (B - A) is the local area offset (-8 for x86-64) [1]
  // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
  //
  // |(E - B)| is the StackSize (absolute value, positive).  For a
  // stack that grown down, this works out to be (B - E). [3]
  //
  // E is also the value of %rsp after stack has been set up, and we
  // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
  // (C - E) == (C - A) - (B - A) + (B - E)
  //            { Using [1], [2] and [3] above }
  //         == getObjectOffset - LocalAreaOffset + StackSize

  return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
}

bool X86FrameLowering::assignCalleeSavedSpillSlots(
    MachineFunction &MF, const TargetRegisterInfo *TRI,
    std::vector<CalleeSavedInfo> &CSI) const {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();

  unsigned CalleeSavedFrameSize = 0;
  unsigned XMMCalleeSavedFrameSize = 0;
  auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
  int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();

  int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();

  if (TailCallReturnAddrDelta < 0) {
    // create RETURNADDR area
    //   arg
    //   arg
    //   RETADDR
    //   { ...
    //     RETADDR area
    //     ...
    //   }
    //   [EBP]
    MFI.CreateFixedObject(-TailCallReturnAddrDelta,
                           TailCallReturnAddrDelta - SlotSize, true);
  }

  // Spill the BasePtr if it's used.
  if (this->TRI->hasBasePointer(MF)) {
    // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
    if (MF.hasEHFunclets()) {
      int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
      X86FI->setHasSEHFramePtrSave(true);
      X86FI->setSEHFramePtrSaveIndex(FI);
    }
  }

  if (hasFP(MF)) {
    // emitPrologue always spills frame register the first thing.
    SpillSlotOffset -= SlotSize;
    MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);

    // Since emitPrologue and emitEpilogue will handle spilling and restoring of
    // the frame register, we can delete it from CSI list and not have to worry
    // about avoiding it later.
    Register FPReg = TRI->getFrameRegister(MF);
    for (unsigned i = 0; i < CSI.size(); ++i) {
      if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
        CSI.erase(CSI.begin() + i);
        break;
      }
    }
  }

  // Assign slots for GPRs. It increases frame size.
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();

    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
      continue;

    SpillSlotOffset -= SlotSize;
    CalleeSavedFrameSize += SlotSize;

    int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
    CSI[i - 1].setFrameIdx(SlotIndex);
  }

  X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
  MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);

  // Assign slots for XMMs.
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();
    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
      continue;

    // If this is k-register make sure we lookup via the largest legal type.
    MVT VT = MVT::Other;
    if (X86::VK16RegClass.contains(Reg))
      VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;

    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
    unsigned Size = TRI->getSpillSize(*RC);
    Align Alignment = TRI->getSpillAlign(*RC);
    // ensure alignment
    assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
    SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);

    // spill into slot
    SpillSlotOffset -= Size;
    int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
    CSI[i - 1].setFrameIdx(SlotIndex);
    MFI.ensureMaxAlignment(Alignment);

    // Save the start offset and size of XMM in stack frame for funclets.
    if (X86::VR128RegClass.contains(Reg)) {
      WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
      XMMCalleeSavedFrameSize += Size;
    }
  }

  return true;
}

bool X86FrameLowering::spillCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
  DebugLoc DL = MBB.findDebugLoc(MI);

  // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
  // for us, and there are no XMM CSRs on Win32.
  if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
    return true;

  // Push GPRs. It increases frame size.
  const MachineFunction &MF = *MBB.getParent();
  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();

    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
      continue;

    const MachineRegisterInfo &MRI = MF.getRegInfo();
    bool isLiveIn = MRI.isLiveIn(Reg);
    if (!isLiveIn)
      MBB.addLiveIn(Reg);

    // Decide whether we can add a kill flag to the use.
    bool CanKill = !isLiveIn;
    // Check if any subregister is live-in
    if (CanKill) {
      for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
        if (MRI.isLiveIn(*AReg)) {
          CanKill = false;
          break;
        }
      }
    }

    // Do not set a kill flag on values that are also marked as live-in. This
    // happens with the @llvm-returnaddress intrinsic and with arguments
    // passed in callee saved registers.
    // Omitting the kill flags is conservatively correct even if the live-in
    // is not used after all.
    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
      .setMIFlag(MachineInstr::FrameSetup);
  }

  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
  // It can be done by spilling XMMs to stack frame.
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i-1].getReg();
    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
      continue;

    // If this is k-register make sure we lookup via the largest legal type.
    MVT VT = MVT::Other;
    if (X86::VK16RegClass.contains(Reg))
      VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;

    // Add the callee-saved register as live-in. It's killed at the spill.
    MBB.addLiveIn(Reg);
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);

    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
                            TRI);
    --MI;
    MI->setFlag(MachineInstr::FrameSetup);
    ++MI;
  }

  return true;
}

void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator MBBI,
                                               MachineInstr *CatchRet) const {
  // SEH shouldn't use catchret.
  assert(!isAsynchronousEHPersonality(classifyEHPersonality(
             MBB.getParent()->getFunction().getPersonalityFn())) &&
         "SEH should not use CATCHRET");
  DebugLoc DL = CatchRet->getDebugLoc();
  MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();

  // Fill EAX/RAX with the address of the target block.
  if (STI.is64Bit()) {
    // LEA64r CatchRetTarget(%rip), %rax
    BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
        .addReg(X86::RIP)
        .addImm(0)
        .addReg(0)
        .addMBB(CatchRetTarget)
        .addReg(0);
  } else {
    // MOV32ri $CatchRetTarget, %eax
    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
        .addMBB(CatchRetTarget);
  }

  // Record that we've taken the address of CatchRetTarget and no longer just
  // reference it in a terminator.
  CatchRetTarget->setHasAddressTaken();
}

bool X86FrameLowering::restoreCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
  if (CSI.empty())
    return false;

  if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
    // Don't restore CSRs in 32-bit EH funclets. Matches
    // spillCalleeSavedRegisters.
    if (STI.is32Bit())
      return true;
    // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
    // funclets. emitEpilogue transforms these to normal jumps.
    if (MI->getOpcode() == X86::CATCHRET) {
      const Function &F = MBB.getParent()->getFunction();
      bool IsSEH = isAsynchronousEHPersonality(
          classifyEHPersonality(F.getPersonalityFn()));
      if (IsSEH)
        return true;
    }
  }

  DebugLoc DL = MBB.findDebugLoc(MI);

  // Reload XMMs from stack frame.
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    if (X86::GR64RegClass.contains(Reg) ||
        X86::GR32RegClass.contains(Reg))
      continue;

    // If this is k-register make sure we lookup via the largest legal type.
    MVT VT = MVT::Other;
    if (X86::VK16RegClass.contains(Reg))
      VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;

    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
  }

  // POP GPRs.
  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    if (!X86::GR64RegClass.contains(Reg) &&
        !X86::GR32RegClass.contains(Reg))
      continue;

    BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
        .setMIFlag(MachineInstr::FrameDestroy);
  }
  return true;
}

void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
                                            BitVector &SavedRegs,
                                            RegScavenger *RS) const {
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);

  // Spill the BasePtr if it's used.
  if (TRI->hasBasePointer(MF)){
    Register BasePtr = TRI->getBaseRegister();
    if (STI.isTarget64BitILP32())
      BasePtr = getX86SubSuperRegister(BasePtr, 64);
    SavedRegs.set(BasePtr);
  }
}

static bool
HasNestArgument(const MachineFunction *MF) {
  const Function &F = MF->getFunction();
  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
       I != E; I++) {
    if (I->hasNestAttr() && !I->use_empty())
      return true;
  }
  return false;
}

/// GetScratchRegister - Get a temp register for performing work in the
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
/// and the properties of the function either one or two registers will be
/// needed. Set primary to true for the first register, false for the second.
static unsigned
GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
  CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();

  // Erlang stuff.
  if (CallingConvention == CallingConv::HiPE) {
    if (Is64Bit)
      return Primary ? X86::R14 : X86::R13;
    else
      return Primary ? X86::EBX : X86::EDI;
  }

  if (Is64Bit) {
    if (IsLP64)
      return Primary ? X86::R11 : X86::R12;
    else
      return Primary ? X86::R11D : X86::R12D;
  }

  bool IsNested = HasNestArgument(&MF);

  if (CallingConvention == CallingConv::X86_FastCall ||
      CallingConvention == CallingConv::Fast ||
      CallingConvention == CallingConv::Tail) {
    if (IsNested)
      report_fatal_error("Segmented stacks does not support fastcall with "
                         "nested function.");
    return Primary ? X86::EAX : X86::ECX;
  }
  if (IsNested)
    return Primary ? X86::EDX : X86::EAX;
  return Primary ? X86::ECX : X86::EAX;
}

// The stack limit in the TCB is set to this many bytes above the actual stack
// limit.
static const uint64_t kSplitStackAvailable = 256;

void X86FrameLowering::adjustForSegmentedStacks(
    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  uint64_t StackSize;
  unsigned TlsReg, TlsOffset;
  DebugLoc DL;

  // To support shrink-wrapping we would need to insert the new blocks
  // at the right place and update the branches to PrologueMBB.
  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");

  unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
         "Scratch register is live-in");

  if (MF.getFunction().isVarArg())
    report_fatal_error("Segmented stacks do not support vararg functions.");
  if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
      !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
      !STI.isTargetDragonFly())
    report_fatal_error("Segmented stacks not supported on this platform.");

  // Eventually StackSize will be calculated by a link-time pass; which will
  // also decide whether checking code needs to be injected into this particular
  // prologue.
  StackSize = MFI.getStackSize();

  // Do not generate a prologue for leaf functions with a stack of size zero.
  // For non-leaf functions we have to allow for the possibility that the
  // callis to a non-split function, as in PR37807. This function could also
  // take the address of a non-split function. When the linker tries to adjust
  // its non-existent prologue, it would fail with an error. Mark the object
  // file so that such failures are not errors. See this Go language bug-report
  // https://go-review.googlesource.com/c/go/+/148819/
  if (StackSize == 0 && !MFI.hasTailCall()) {
    MF.getMMI().setHasNosplitStack(true);
    return;
  }

  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  bool IsNested = false;

  // We need to know if the function has a nest argument only in 64 bit mode.
  if (Is64Bit)
    IsNested = HasNestArgument(&MF);

  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
  // allocMBB needs to be last (terminating) instruction.

  for (const auto &LI : PrologueMBB.liveins()) {
    allocMBB->addLiveIn(LI);
    checkMBB->addLiveIn(LI);
  }

  if (IsNested)
    allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);

  MF.push_front(allocMBB);
  MF.push_front(checkMBB);

  // When the frame size is less than 256 we just compare the stack
  // boundary directly to the value of the stack pointer, per gcc.
  bool CompareStackPointer = StackSize < kSplitStackAvailable;

  // Read the limit off the current stacklet off the stack_guard location.
  if (Is64Bit) {
    if (STI.isTargetLinux()) {
      TlsReg = X86::FS;
      TlsOffset = IsLP64 ? 0x70 : 0x40;
    } else if (STI.isTargetDarwin()) {
      TlsReg = X86::GS;
      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
    } else if (STI.isTargetWin64()) {
      TlsReg = X86::GS;
      TlsOffset = 0x28; // pvArbitrary, reserved for application use
    } else if (STI.isTargetFreeBSD()) {
      TlsReg = X86::FS;
      TlsOffset = 0x18;
    } else if (STI.isTargetDragonFly()) {
      TlsReg = X86::FS;
      TlsOffset = 0x20; // use tls_tcb.tcb_segstack
    } else {
      report_fatal_error("Segmented stacks not supported on this platform.");
    }

    if (CompareStackPointer)
      ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
    else
      BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);

    BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
  } else {
    if (STI.isTargetLinux()) {
      TlsReg = X86::GS;
      TlsOffset = 0x30;
    } else if (STI.isTargetDarwin()) {
      TlsReg = X86::GS;
      TlsOffset = 0x48 + 90*4;
    } else if (STI.isTargetWin32()) {
      TlsReg = X86::FS;
      TlsOffset = 0x14; // pvArbitrary, reserved for application use
    } else if (STI.isTargetDragonFly()) {
      TlsReg = X86::FS;
      TlsOffset = 0x10; // use tls_tcb.tcb_segstack
    } else if (STI.isTargetFreeBSD()) {
      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
    } else {
      report_fatal_error("Segmented stacks not supported on this platform.");
    }

    if (CompareStackPointer)
      ScratchReg = X86::ESP;
    else
      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);

    if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
        STI.isTargetDragonFly()) {
      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
    } else if (STI.isTargetDarwin()) {

      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
      unsigned ScratchReg2;
      bool SaveScratch2;
      if (CompareStackPointer) {
        // The primary scratch register is available for holding the TLS offset.
        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
        SaveScratch2 = false;
      } else {
        // Need to use a second register to hold the TLS offset
        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);

        // Unfortunately, with fastcc the second scratch register may hold an
        // argument.
        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
      }

      // If Scratch2 is live-in then it needs to be saved.
      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
             "Scratch register is live-in and not saved");

      if (SaveScratch2)
        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
          .addReg(ScratchReg2, RegState::Kill);

      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
        .addImm(TlsOffset);
      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
        .addReg(ScratchReg)
        .addReg(ScratchReg2).addImm(1).addReg(0)
        .addImm(0)
        .addReg(TlsReg);

      if (SaveScratch2)
        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
    }
  }

  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
  // It jumps to normal execution of the function body.
  BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);

  // On 32 bit we first push the arguments size and then the frame size. On 64
  // bit, we pass the stack frame size in r10 and the argument size in r11.
  if (Is64Bit) {
    // Functions with nested arguments use R10, so it needs to be saved across
    // the call to _morestack

    const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
    const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
    const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
    const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
    const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;

    if (IsNested)
      BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);

    BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
      .addImm(StackSize);
    BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
      .addImm(X86FI->getArgumentStackSize());
  } else {
    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
      .addImm(X86FI->getArgumentStackSize());
    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
      .addImm(StackSize);
  }

  // __morestack is in libgcc
  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    // Under the large code model, we cannot assume that __morestack lives
    // within 2^31 bytes of the call site, so we cannot use pc-relative
    // addressing. We cannot perform the call via a temporary register,
    // as the rax register may be used to store the static chain, and all
    // other suitable registers may be either callee-save or used for
    // parameter passing. We cannot use the stack at this point either
    // because __morestack manipulates the stack directly.
    //
    // To avoid these issues, perform an indirect call via a read-only memory
    // location containing the address.
    //
    // This solution is not perfect, as it assumes that the .rodata section
    // is laid out within 2^31 bytes of each function body, but this seems
    // to be sufficient for JIT.
    // FIXME: Add retpoline support and remove the error here..
    if (STI.useIndirectThunkCalls())
      report_fatal_error("Emitting morestack calls on 64-bit with the large "
                         "code model and thunks not yet implemented.");
    BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
        .addReg(X86::RIP)
        .addImm(0)
        .addReg(0)
        .addExternalSymbol("__morestack_addr")
        .addReg(0);
    MF.getMMI().setUsesMorestackAddr(true);
  } else {
    if (Is64Bit)
      BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
        .addExternalSymbol("__morestack");
    else
      BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
        .addExternalSymbol("__morestack");
  }

  if (IsNested)
    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
  else
    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));

  allocMBB->addSuccessor(&PrologueMBB);

  checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
  checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());

#ifdef EXPENSIVE_CHECKS
  MF.verify();
#endif
}

/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
/// to fields it needs, through a named metadata node "hipe.literals" containing
/// name-value pairs.
static unsigned getHiPELiteral(
    NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
  for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
    MDNode *Node = HiPELiteralsMD->getOperand(i);
    if (Node->getNumOperands() != 2) continue;
    MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
    ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
    if (!NodeName || !NodeVal) continue;
    ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
    if (ValConst && NodeName->getString() == LiteralName) {
      return ValConst->getZExtValue();
    }
  }

  report_fatal_error("HiPE literal " + LiteralName
                     + " required but not provided");
}

// Return true if there are no non-ehpad successors to MBB and there are no
// non-meta instructions between MBBI and MBB.end().
static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
                                  MachineBasicBlock::const_iterator MBBI) {
  return std::all_of(
             MBB.succ_begin(), MBB.succ_end(),
             [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
         std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
           return MI.isMetaInstruction();
         });
}

/// Erlang programs may need a special prologue to handle the stack size they
/// might need at runtime. That is because Erlang/OTP does not implement a C
/// stack but uses a custom implementation of hybrid stack/heap architecture.
/// (for more information see Eric Stenman's Ph.D. thesis:
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
///
/// CheckStack:
///       temp0 = sp - MaxStack
///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
/// OldStart:
///       ...
/// IncStack:
///       call inc_stack   # doubles the stack space
///       temp0 = sp - MaxStack
///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
void X86FrameLowering::adjustForHiPEPrologue(
    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  DebugLoc DL;

  // To support shrink-wrapping we would need to insert the new blocks
  // at the right place and update the branches to PrologueMBB.
  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");

  // HiPE-specific values
  NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
    ->getNamedMetadata("hipe.literals");
  if (!HiPELiteralsMD)
    report_fatal_error(
        "Can't generate HiPE prologue without runtime parameters");
  const unsigned HipeLeafWords
    = getHiPELiteral(HiPELiteralsMD,
                     Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
  const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
  const unsigned Guaranteed = HipeLeafWords * SlotSize;
  unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
                            MF.getFunction().arg_size() - CCRegisteredArgs : 0;
  unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;

  assert(STI.isTargetLinux() &&
         "HiPE prologue is only supported on Linux operating systems.");

  // Compute the largest caller's frame that is needed to fit the callees'
  // frames. This 'MaxStack' is computed from:
  //
  // a) the fixed frame size, which is the space needed for all spilled temps,
  // b) outgoing on-stack parameter areas, and
  // c) the minimum stack space this function needs to make available for the
  //    functions it calls (a tunable ABI property).
  if (MFI.hasCalls()) {
    unsigned MoreStackForCalls = 0;

    for (auto &MBB : MF) {
      for (auto &MI : MBB) {
        if (!MI.isCall())
          continue;

        // Get callee operand.
        const MachineOperand &MO = MI.getOperand(0);

        // Only take account of global function calls (no closures etc.).
        if (!MO.isGlobal())
          continue;

        const Function *F = dyn_cast<Function>(MO.getGlobal());
        if (!F)
          continue;

        // Do not update 'MaxStack' for primitive and built-in functions
        // (encoded with names either starting with "erlang."/"bif_" or not
        // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
        // "_", such as the BIF "suspend_0") as they are executed on another
        // stack.
        if (F->getName().find("erlang.") != StringRef::npos ||
            F->getName().find("bif_") != StringRef::npos ||
            F->getName().find_first_of("._") == StringRef::npos)
          continue;

        unsigned CalleeStkArity =
          F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
        if (HipeLeafWords - 1 > CalleeStkArity)
          MoreStackForCalls = std::max(MoreStackForCalls,
                               (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
      }
    }
    MaxStack += MoreStackForCalls;
  }

  // If the stack frame needed is larger than the guaranteed then runtime checks
  // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
  if (MaxStack > Guaranteed) {
    MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
    MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();

    for (const auto &LI : PrologueMBB.liveins()) {
      stackCheckMBB->addLiveIn(LI);
      incStackMBB->addLiveIn(LI);
    }

    MF.push_front(incStackMBB);
    MF.push_front(stackCheckMBB);

    unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
    unsigned LEAop, CMPop, CALLop;
    SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
    if (Is64Bit) {
      SPReg = X86::RSP;
      PReg  = X86::RBP;
      LEAop = X86::LEA64r;
      CMPop = X86::CMP64rm;
      CALLop = X86::CALL64pcrel32;
    } else {
      SPReg = X86::ESP;
      PReg  = X86::EBP;
      LEAop = X86::LEA32r;
      CMPop = X86::CMP32rm;
      CALLop = X86::CALLpcrel32;
    }

    ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
    assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
           "HiPE prologue scratch register is live-in");

    // Create new MBB for StackCheck:
    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
                 SPReg, false, -MaxStack);
    // SPLimitOffset is in a fixed heap location (pointed by BP).
    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
    BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);

    // Create new MBB for IncStack:
    BuildMI(incStackMBB, DL, TII.get(CALLop)).
      addExternalSymbol("inc_stack_0");
    addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
                 SPReg, false, -MaxStack);
    addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
    BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);

    stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
    stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
    incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
    incStackMBB->addSuccessor(incStackMBB, {1, 100});
  }
#ifdef EXPENSIVE_CHECKS
  MF.verify();
#endif
}

bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
                                           MachineBasicBlock::iterator MBBI,
                                           const DebugLoc &DL,
                                           int Offset) const {
  if (Offset <= 0)
    return false;

  if (Offset % SlotSize)
    return false;

  int NumPops = Offset / SlotSize;
  // This is only worth it if we have at most 2 pops.
  if (NumPops != 1 && NumPops != 2)
    return false;

  // Handle only the trivial case where the adjustment directly follows
  // a call. This is the most common one, anyway.
  if (MBBI == MBB.begin())
    return false;
  MachineBasicBlock::iterator Prev = std::prev(MBBI);
  if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
    return false;

  unsigned Regs[2];
  unsigned FoundRegs = 0;

  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  const MachineOperand &RegMask = Prev->getOperand(1);

  auto &RegClass =
      Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
  // Try to find up to NumPops free registers.
  for (auto Candidate : RegClass) {
    // Poor man's liveness:
    // Since we're immediately after a call, any register that is clobbered
    // by the call and not defined by it can be considered dead.
    if (!RegMask.clobbersPhysReg(Candidate))
      continue;

    // Don't clobber reserved registers
    if (MRI.isReserved(Candidate))
      continue;

    bool IsDef = false;
    for (const MachineOperand &MO : Prev->implicit_operands()) {
      if (MO.isReg() && MO.isDef() &&
          TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
        IsDef = true;
        break;
      }
    }

    if (IsDef)
      continue;

    Regs[FoundRegs++] = Candidate;
    if (FoundRegs == (unsigned)NumPops)
      break;
  }

  if (FoundRegs == 0)
    return false;

  // If we found only one free register, but need two, reuse the same one twice.
  while (FoundRegs < (unsigned)NumPops)
    Regs[FoundRegs++] = Regs[0];

  for (int i = 0; i < NumPops; ++i)
    BuildMI(MBB, MBBI, DL,
            TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);

  return true;
}

MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator I) const {
  bool reserveCallFrame = hasReservedCallFrame(MF);
  unsigned Opcode = I->getOpcode();
  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
  DebugLoc DL = I->getDebugLoc();
  uint64_t Amount = TII.getFrameSize(*I);
  uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
  I = MBB.erase(I);
  auto InsertPos = skipDebugInstructionsForward(I, MBB.end());

  // Try to avoid emitting dead SP adjustments if the block end is unreachable,
  // typically because the function is marked noreturn (abort, throw,
  // assert_fail, etc).
  if (isDestroy && blockEndIsUnreachable(MBB, I))
    return I;

  if (!reserveCallFrame) {
    // If the stack pointer can be changed after prologue, turn the
    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
    // adjcallstackdown instruction into 'add ESP, <amt>'

    // We need to keep the stack aligned properly.  To do this, we round the
    // amount of space needed for the outgoing arguments up to the next
    // alignment boundary.
    Amount = alignTo(Amount, getStackAlign());

    const Function &F = MF.getFunction();
    bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
    bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();

    // If we have any exception handlers in this function, and we adjust
    // the SP before calls, we may need to indicate this to the unwinder
    // using GNU_ARGS_SIZE. Note that this may be necessary even when
    // Amount == 0, because the preceding function may have set a non-0
    // GNU_ARGS_SIZE.
    // TODO: We don't need to reset this between subsequent functions,
    // if it didn't change.
    bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();

    if (HasDwarfEHHandlers && !isDestroy &&
        MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
      BuildCFI(MBB, InsertPos, DL,
               MCCFIInstruction::createGnuArgsSize(nullptr, Amount));

    if (Amount == 0)
      return I;

    // Factor out the amount that gets handled inside the sequence
    // (Pushes of argument for frame setup, callee pops for frame destroy)
    Amount -= InternalAmt;

    // TODO: This is needed only if we require precise CFA.
    // If this is a callee-pop calling convention, emit a CFA adjust for
    // the amount the callee popped.
    if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
      BuildCFI(MBB, InsertPos, DL,
               MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));

    // Add Amount to SP to destroy a frame, or subtract to setup.
    int64_t StackAdjustment = isDestroy ? Amount : -Amount;

    if (StackAdjustment) {
      // Merge with any previous or following adjustment instruction. Note: the
      // instructions merged with here do not have CFI, so their stack
      // adjustments do not feed into CfaAdjustment.
      StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
      StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);

      if (StackAdjustment) {
        if (!(F.hasMinSize() &&
              adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
          BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
                               /*InEpilogue=*/false);
      }
    }

    if (DwarfCFI && !hasFP(MF)) {
      // If we don't have FP, but need to generate unwind information,
      // we need to set the correct CFA offset after the stack adjustment.
      // How much we adjust the CFA offset depends on whether we're emitting
      // CFI only for EH purposes or for debugging. EH only requires the CFA
      // offset to be correct at each call site, while for debugging we want
      // it to be more precise.

      int64_t CfaAdjustment = -StackAdjustment;
      // TODO: When not using precise CFA, we also need to adjust for the
      // InternalAmt here.
      if (CfaAdjustment) {
        BuildCFI(MBB, InsertPos, DL,
                 MCCFIInstruction::createAdjustCfaOffset(nullptr,
                                                         CfaAdjustment));
      }
    }

    return I;
  }

  if (InternalAmt) {
    MachineBasicBlock::iterator CI = I;
    MachineBasicBlock::iterator B = MBB.begin();
    while (CI != B && !std::prev(CI)->isCall())
      --CI;
    BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
  }

  return I;
}

bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
  assert(MBB.getParent() && "Block is not attached to a function!");
  const MachineFunction &MF = *MBB.getParent();
  return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
}

bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
  assert(MBB.getParent() && "Block is not attached to a function!");

  // Win64 has strict requirements in terms of epilogue and we are
  // not taking a chance at messing with them.
  // I.e., unless this block is already an exit block, we can't use
  // it as an epilogue.
  if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
    return false;

  if (canUseLEAForSPInEpilogue(*MBB.getParent()))
    return true;

  // If we cannot use LEA to adjust SP, we may need to use ADD, which
  // clobbers the EFLAGS. Check that we do not need to preserve it,
  // otherwise, conservatively assume this is not
  // safe to insert the epilogue here.
  return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
}

bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
  // If we may need to emit frameless compact unwind information, give
  // up as this is currently broken: PR25614.
  return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
         // The lowering of segmented stack and HiPE only support entry blocks
         // as prologue blocks: PR26107.
         // This limitation may be lifted if we fix:
         // - adjustForSegmentedStacks
         // - adjustForHiPEPrologue
         MF.getFunction().getCallingConv() != CallingConv::HiPE &&
         !MF.shouldSplitStack();
}

MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    const DebugLoc &DL, bool RestoreSP) const {
  assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
  assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
  assert(STI.is32Bit() && !Uses64BitFramePtr &&
         "restoring EBP/ESI on non-32-bit target");

  MachineFunction &MF = *MBB.getParent();
  Register FramePtr = TRI->getFrameRegister(MF);
  Register BasePtr = TRI->getBaseRegister();
  WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // FIXME: Don't set FrameSetup flag in catchret case.

  int FI = FuncInfo.EHRegNodeFrameIndex;
  int EHRegSize = MFI.getObjectSize(FI);

  if (RestoreSP) {
    // MOV32rm -EHRegSize(%ebp), %esp
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
                 X86::EBP, true, -EHRegSize)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  Register UsedReg;
  int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
  int EndOffset = -EHRegOffset - EHRegSize;
  FuncInfo.EHRegNodeEndOffset = EndOffset;

  if (UsedReg == FramePtr) {
    // ADD $offset, %ebp
    unsigned ADDri = getADDriOpcode(false, EndOffset);
    BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
        .addReg(FramePtr)
        .addImm(EndOffset)
        .setMIFlag(MachineInstr::FrameSetup)
        ->getOperand(3)
        .setIsDead();
    assert(EndOffset >= 0 &&
           "end of registration object above normal EBP position!");
  } else if (UsedReg == BasePtr) {
    // LEA offset(%ebp), %esi
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
                 FramePtr, false, EndOffset)
        .setMIFlag(MachineInstr::FrameSetup);
    // MOV32rm SavedEBPOffset(%esi), %ebp
    assert(X86FI->getHasSEHFramePtrSave());
    int Offset =
        getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
    assert(UsedReg == BasePtr);
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
                 UsedReg, true, Offset)
        .setMIFlag(MachineInstr::FrameSetup);
  } else {
    llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
  }
  return MBBI;
}

int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
  return TRI->getSlotSize();
}

Register
X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
  return TRI->getDwarfRegNum(StackPtr, true);
}

namespace {
// Struct used by orderFrameObjects to help sort the stack objects.
struct X86FrameSortingObject {
  bool IsValid = false;         // true if we care about this Object.
  unsigned ObjectIndex = 0;     // Index of Object into MFI list.
  unsigned ObjectSize = 0;      // Size of Object in bytes.
  Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
  unsigned ObjectNumUses = 0;   // Object static number of uses.
};

// The comparison function we use for std::sort to order our local
// stack symbols. The current algorithm is to use an estimated
// "density". This takes into consideration the size and number of
// uses each object has in order to roughly minimize code size.
// So, for example, an object of size 16B that is referenced 5 times
// will get higher priority than 4 4B objects referenced 1 time each.
// It's not perfect and we may be able to squeeze a few more bytes out of
// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
// fringe end can have special consideration, given their size is less
// important, etc.), but the algorithmic complexity grows too much to be
// worth the extra gains we get. This gets us pretty close.
// The final order leaves us with objects with highest priority going
// at the end of our list.
struct X86FrameSortingComparator {
  inline bool operator()(const X86FrameSortingObject &A,
                         const X86FrameSortingObject &B) {
    uint64_t DensityAScaled, DensityBScaled;

    // For consistency in our comparison, all invalid objects are placed
    // at the end. This also allows us to stop walking when we hit the
    // first invalid item after it's all sorted.
    if (!A.IsValid)
      return false;
    if (!B.IsValid)
      return true;

    // The density is calculated by doing :
    //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
    //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
    // Since this approach may cause inconsistencies in
    // the floating point <, >, == comparisons, depending on the floating
    // point model with which the compiler was built, we're going
    // to scale both sides by multiplying with
    // A.ObjectSize * B.ObjectSize. This ends up factoring away
    // the division and, with it, the need for any floating point
    // arithmetic.
    DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
      static_cast<uint64_t>(B.ObjectSize);
    DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
      static_cast<uint64_t>(A.ObjectSize);

    // If the two densities are equal, prioritize highest alignment
    // objects. This allows for similar alignment objects
    // to be packed together (given the same density).
    // There's room for improvement here, also, since we can pack
    // similar alignment (different density) objects next to each
    // other to save padding. This will also require further
    // complexity/iterations, and the overall gain isn't worth it,
    // in general. Something to keep in mind, though.
    if (DensityAScaled == DensityBScaled)
      return A.ObjectAlignment < B.ObjectAlignment;

    return DensityAScaled < DensityBScaled;
  }
};
} // namespace

// Order the symbols in the local stack.
// We want to place the local stack objects in some sort of sensible order.
// The heuristic we use is to try and pack them according to static number
// of uses and size of object in order to minimize code size.
void X86FrameLowering::orderFrameObjects(
    const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // Don't waste time if there's nothing to do.
  if (ObjectsToAllocate.empty())
    return;

  // Create an array of all MFI objects. We won't need all of these
  // objects, but we're going to create a full array of them to make
  // it easier to index into when we're counting "uses" down below.
  // We want to be able to easily/cheaply access an object by simply
  // indexing into it, instead of having to search for it every time.
  std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());

  // Walk the objects we care about and mark them as such in our working
  // struct.
  for (auto &Obj : ObjectsToAllocate) {
    SortingObjects[Obj].IsValid = true;
    SortingObjects[Obj].ObjectIndex = Obj;
    SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
    // Set the size.
    int ObjectSize = MFI.getObjectSize(Obj);
    if (ObjectSize == 0)
      // Variable size. Just use 4.
      SortingObjects[Obj].ObjectSize = 4;
    else
      SortingObjects[Obj].ObjectSize = ObjectSize;
  }

  // Count the number of uses for each object.
  for (auto &MBB : MF) {
    for (auto &MI : MBB) {
      if (MI.isDebugInstr())
        continue;
      for (const MachineOperand &MO : MI.operands()) {
        // Check to see if it's a local stack symbol.
        if (!MO.isFI())
          continue;
        int Index = MO.getIndex();
        // Check to see if it falls within our range, and is tagged
        // to require ordering.
        if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
            SortingObjects[Index].IsValid)
          SortingObjects[Index].ObjectNumUses++;
      }
    }
  }

  // Sort the objects using X86FrameSortingAlgorithm (see its comment for
  // info).
  llvm::stable_sort(SortingObjects, X86FrameSortingComparator());

  // Now modify the original list to represent the final order that
  // we want. The order will depend on whether we're going to access them
  // from the stack pointer or the frame pointer. For SP, the list should
  // end up with the END containing objects that we want with smaller offsets.
  // For FP, it should be flipped.
  int i = 0;
  for (auto &Obj : SortingObjects) {
    // All invalid items are sorted at the end, so it's safe to stop.
    if (!Obj.IsValid)
      break;
    ObjectsToAllocate[i++] = Obj.ObjectIndex;
  }

  // Flip it if we're accessing off of the FP.
  if (!TRI->needsStackRealignment(MF) && hasFP(MF))
    std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
}


unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
  // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
  unsigned Offset = 16;
  // RBP is immediately pushed.
  Offset += SlotSize;
  // All callee-saved registers are then pushed.
  Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
  // Every funclet allocates enough stack space for the largest outgoing call.
  Offset += getWinEHFuncletFrameSize(MF);
  return Offset;
}

void X86FrameLowering::processFunctionBeforeFrameFinalized(
    MachineFunction &MF, RegScavenger *RS) const {
  // Mark the function as not having WinCFI. We will set it back to true in
  // emitPrologue if it gets called and emits CFI.
  MF.setHasWinCFI(false);

  // If this function isn't doing Win64-style C++ EH, we don't need to do
  // anything.
  const Function &F = MF.getFunction();
  if (!STI.is64Bit() || !MF.hasEHFunclets() ||
      classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
    return;

  // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
  // relative to RSP after the prologue.  Find the offset of the last fixed
  // object, so that we can allocate a slot immediately following it. If there
  // were no fixed objects, use offset -SlotSize, which is immediately after the
  // return address. Fixed objects have negative frame indices.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
  int64_t MinFixedObjOffset = -SlotSize;
  for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
    MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));

  for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
    for (WinEHHandlerType &H : TBME.HandlerArray) {
      int FrameIndex = H.CatchObj.FrameIndex;
      if (FrameIndex != INT_MAX) {
        // Ensure alignment.
        unsigned Align = MFI.getObjectAlign(FrameIndex).value();
        MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
        MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
        MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
      }
    }
  }

  // Ensure alignment.
  MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
  int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
  int UnwindHelpFI =
      MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
  EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;

  // Store -2 into UnwindHelp on function entry. We have to scan forwards past
  // other frame setup instructions.
  MachineBasicBlock &MBB = MF.front();
  auto MBBI = MBB.begin();
  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
    ++MBBI;

  DebugLoc DL = MBB.findDebugLoc(MBBI);
  addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
                    UnwindHelpFI)
      .addImm(-2);
}

void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
    MachineFunction &MF, RegScavenger *RS) const {
  if (STI.is32Bit() && MF.hasEHFunclets())
    restoreWinEHStackPointersInParent(MF);
}

void X86FrameLowering::restoreWinEHStackPointersInParent(
    MachineFunction &MF) const {
  // 32-bit functions have to restore stack pointers when control is transferred
  // back to the parent function. These blocks are identified as eh pads that
  // are not funclet entries.
  bool IsSEH = isAsynchronousEHPersonality(
      classifyEHPersonality(MF.getFunction().getPersonalityFn()));
  for (MachineBasicBlock &MBB : MF) {
    bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
    if (NeedsRestore)
      restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
                                  /*RestoreSP=*/IsSEH);
  }
}