X86LoadValueInjectionLoadHardening.cpp 32 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
//==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Description: This pass finds Load Value Injection (LVI) gadgets consisting
/// of a load from memory (i.e., SOURCE), and any operation that may transmit
/// the value loaded from memory over a covert channel, or use the value loaded
/// from memory to determine a branch/call target (i.e., SINK). After finding
/// all such gadgets in a given function, the pass minimally inserts LFENCE
/// instructions in such a manner that the following property is satisfied: for
/// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
/// least one LFENCE instruction. The algorithm that implements this minimal
/// insertion is influenced by an academic paper that minimally inserts memory
/// fences for high-performance concurrent programs:
///         http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
/// The algorithm implemented in this pass is as follows:
/// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
/// following components:
///    - SOURCE instructions (also includes function arguments)
///    - SINK instructions
///    - Basic block entry points
///    - Basic block terminators
///    - LFENCE instructions
/// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
/// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
/// mitigated, go to step 6.
/// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
/// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
/// 5. Go to step 2.
/// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
/// to tell LLVM that the function was modified.
///
//===----------------------------------------------------------------------===//

#include "ImmutableGraph.h"
#include "X86.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RDFGraph.h"
#include "llvm/CodeGen/RDFLiveness.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define PASS_KEY "x86-lvi-load"
#define DEBUG_TYPE PASS_KEY

STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
                                 "were deployed");
STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");

static cl::opt<std::string> OptimizePluginPath(
    PASS_KEY "-opt-plugin",
    cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);

static cl::opt<bool> NoConditionalBranches(
    PASS_KEY "-no-cbranch",
    cl::desc("Don't treat conditional branches as disclosure gadgets. This "
             "may improve performance, at the cost of security."),
    cl::init(false), cl::Hidden);

static cl::opt<bool> EmitDot(
    PASS_KEY "-dot",
    cl::desc(
        "For each function, emit a dot graph depicting potential LVI gadgets"),
    cl::init(false), cl::Hidden);

static cl::opt<bool> EmitDotOnly(
    PASS_KEY "-dot-only",
    cl::desc("For each function, emit a dot graph depicting potential LVI "
             "gadgets, and do not insert any fences"),
    cl::init(false), cl::Hidden);

static cl::opt<bool> EmitDotVerify(
    PASS_KEY "-dot-verify",
    cl::desc("For each function, emit a dot graph to stdout depicting "
             "potential LVI gadgets, used for testing purposes only"),
    cl::init(false), cl::Hidden);

static llvm::sys::DynamicLibrary OptimizeDL;
typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
                            unsigned int *Edges, int *EdgeValues,
                            int *CutEdges /* out */, unsigned int EdgesSize);
static OptimizeCutT OptimizeCut = nullptr;

namespace {

struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
  static constexpr int GadgetEdgeSentinel = -1;
  static constexpr MachineInstr *const ArgNodeSentinel = nullptr;

  using GraphT = ImmutableGraph<MachineInstr *, int>;
  using Node = typename GraphT::Node;
  using Edge = typename GraphT::Edge;
  using size_type = typename GraphT::size_type;
  MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
                     std::unique_ptr<Edge[]> Edges, size_type NodesSize,
                     size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
      : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
        NumFences(NumFences), NumGadgets(NumGadgets) {}
  static inline bool isCFGEdge(const Edge &E) {
    return E.getValue() != GadgetEdgeSentinel;
  }
  static inline bool isGadgetEdge(const Edge &E) {
    return E.getValue() == GadgetEdgeSentinel;
  }
  int NumFences;
  int NumGadgets;
};

class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
public:
  X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override {
    return "X86 Load Value Injection (LVI) Load Hardening";
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;

  static char ID;

private:
  using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
  using Edge = MachineGadgetGraph::Edge;
  using Node = MachineGadgetGraph::Node;
  using EdgeSet = MachineGadgetGraph::EdgeSet;
  using NodeSet = MachineGadgetGraph::NodeSet;

  const X86Subtarget *STI;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;

  std::unique_ptr<MachineGadgetGraph>
  getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
                 const MachineDominatorTree &MDT,
                 const MachineDominanceFrontier &MDF) const;
  int hardenLoadsWithPlugin(MachineFunction &MF,
                            std::unique_ptr<MachineGadgetGraph> Graph) const;
  int hardenLoadsWithHeuristic(MachineFunction &MF,
                               std::unique_ptr<MachineGadgetGraph> Graph) const;
  int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
                                 EdgeSet &ElimEdges /* in, out */,
                                 NodeSet &ElimNodes /* in, out */) const;
  std::unique_ptr<MachineGadgetGraph>
  trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
  void findAndCutEdges(MachineGadgetGraph &G,
                       EdgeSet &CutEdges /* out */) const;
  int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
                   EdgeSet &CutEdges /* in, out */) const;
  bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
  bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
  inline bool isFence(const MachineInstr *MI) const {
    return MI && (MI->getOpcode() == X86::LFENCE ||
                  (STI->useLVIControlFlowIntegrity() && MI->isCall()));
  }
};

} // end anonymous namespace

namespace llvm {

template <>
struct GraphTraits<MachineGadgetGraph *>
    : GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};

template <>
struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
  using GraphType = MachineGadgetGraph;
  using Traits = llvm::GraphTraits<GraphType *>;
  using NodeRef = typename Traits::NodeRef;
  using EdgeRef = typename Traits::EdgeRef;
  using ChildIteratorType = typename Traits::ChildIteratorType;
  using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;

  DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}

  std::string getNodeLabel(NodeRef Node, GraphType *) {
    if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
      return "ARGS";

    std::string Str;
    raw_string_ostream OS(Str);
    OS << *Node->getValue();
    return OS.str();
  }

  static std::string getNodeAttributes(NodeRef Node, GraphType *) {
    MachineInstr *MI = Node->getValue();
    if (MI == MachineGadgetGraph::ArgNodeSentinel)
      return "color = blue";
    if (MI->getOpcode() == X86::LFENCE)
      return "color = green";
    return "";
  }

  static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
                                       GraphType *) {
    int EdgeVal = (*E.getCurrent()).getValue();
    return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
                        : "color = red, style = \"dashed\"";
  }
};

} // end namespace llvm

constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
constexpr int MachineGadgetGraph::GadgetEdgeSentinel;

char X86LoadValueInjectionLoadHardeningPass::ID = 0;

void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  MachineFunctionPass::getAnalysisUsage(AU);
  AU.addRequired<MachineLoopInfo>();
  AU.addRequired<MachineDominatorTree>();
  AU.addRequired<MachineDominanceFrontier>();
  AU.setPreservesCFG();
}

static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF,
                             MachineGadgetGraph *G) {
  WriteGraph(OS, G, /*ShortNames*/ false,
             "Speculative gadgets for \"" + MF.getName() + "\" function");
}

bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
                    << " *****\n");
  STI = &MF.getSubtarget<X86Subtarget>();
  if (!STI->useLVILoadHardening())
    return false;

  // FIXME: support 32-bit
  if (!STI->is64Bit())
    report_fatal_error("LVI load hardening is only supported on 64-bit", false);

  // Don't skip functions with the "optnone" attr but participate in opt-bisect.
  const Function &F = MF.getFunction();
  if (!F.hasOptNone() && skipFunction(F))
    return false;

  ++NumFunctionsConsidered;
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
  const auto &MLI = getAnalysis<MachineLoopInfo>();
  const auto &MDT = getAnalysis<MachineDominatorTree>();
  const auto &MDF = getAnalysis<MachineDominanceFrontier>();
  std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
  LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
  if (Graph == nullptr)
    return false; // didn't find any gadgets

  if (EmitDotVerify) {
    writeGadgetGraph(outs(), MF, Graph.get());
    return false;
  }

  if (EmitDot || EmitDotOnly) {
    LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
    std::error_code FileError;
    std::string FileName = "lvi.";
    FileName += MF.getName();
    FileName += ".dot";
    raw_fd_ostream FileOut(FileName, FileError);
    if (FileError)
      errs() << FileError.message();
    writeGadgetGraph(FileOut, MF, Graph.get());
    FileOut.close();
    LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
    if (EmitDotOnly)
      return false;
  }

  int FencesInserted;
  if (!OptimizePluginPath.empty()) {
    if (!OptimizeDL.isValid()) {
      std::string ErrorMsg;
      OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
          OptimizePluginPath.c_str(), &ErrorMsg);
      if (!ErrorMsg.empty())
        report_fatal_error("Failed to load opt plugin: \"" + ErrorMsg + '\"');
      OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
      if (!OptimizeCut)
        report_fatal_error("Invalid optimization plugin");
    }
    FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
  } else { // Use the default greedy heuristic
    FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
  }

  if (FencesInserted > 0)
    ++NumFunctionsMitigated;
  NumFences += FencesInserted;
  return (FencesInserted > 0);
}

std::unique_ptr<MachineGadgetGraph>
X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
    MachineFunction &MF, const MachineLoopInfo &MLI,
    const MachineDominatorTree &MDT,
    const MachineDominanceFrontier &MDF) const {
  using namespace rdf;

  // Build the Register Dataflow Graph using the RDF framework
  TargetOperandInfo TOI{*TII};
  DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF, TOI};
  DFG.build();
  Liveness L{MF.getRegInfo(), DFG};
  L.computePhiInfo();

  GraphBuilder Builder;
  using GraphIter = typename GraphBuilder::BuilderNodeRef;
  DenseMap<MachineInstr *, GraphIter> NodeMap;
  int FenceCount = 0, GadgetCount = 0;
  auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
    auto Ref = NodeMap.find(MI);
    if (Ref == NodeMap.end()) {
      auto I = Builder.addVertex(MI);
      NodeMap[MI] = I;
      return std::pair<GraphIter, bool>{I, true};
    }
    return std::pair<GraphIter, bool>{Ref->getSecond(), false};
  };

  // The `Transmitters` map memoizes transmitters found for each def. If a def
  // has not yet been analyzed, then it will not appear in the map. If a def
  // has been analyzed and was determined not to have any transmitters, then
  // its list of transmitters will be empty.
  DenseMap<NodeId, std::vector<NodeId>> Transmitters;

  // Analyze all machine instructions to find gadgets and LFENCEs, adding
  // each interesting value to `Nodes`
  auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
    SmallSet<NodeId, 8> UsesVisited, DefsVisited;
    std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
        [&](NodeAddr<DefNode *> Def) {
          if (Transmitters.find(Def.Id) != Transmitters.end())
            return; // Already analyzed `Def`

          // Use RDF to find all the uses of `Def`
          rdf::NodeSet Uses;
          RegisterRef DefReg = Def.Addr->getRegRef(DFG);
          for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
            auto Use = DFG.addr<UseNode *>(UseID);
            if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
              NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
              for (auto I : L.getRealUses(Phi.Id)) {
                if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
                  for (auto UA : I.second)
                    Uses.emplace(UA.first);
                }
              }
            } else { // not a phi node
              Uses.emplace(UseID);
            }
          }

          // For each use of `Def`, we want to know whether:
          // (1) The use can leak the Def'ed value,
          // (2) The use can further propagate the Def'ed value to more defs
          for (auto UseID : Uses) {
            if (!UsesVisited.insert(UseID).second)
              continue; // Already visited this use of `Def`

            auto Use = DFG.addr<UseNode *>(UseID);
            assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
            MachineOperand &UseMO = Use.Addr->getOp();
            MachineInstr &UseMI = *UseMO.getParent();
            assert(UseMO.isReg());

            // We naively assume that an instruction propagates any loaded
            // uses to all defs unless the instruction is a call, in which
            // case all arguments will be treated as gadget sources during
            // analysis of the callee function.
            if (UseMI.isCall())
              continue;

            // Check whether this use can transmit (leak) its value.
            if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
                (!NoConditionalBranches &&
                 instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
              Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
              if (UseMI.mayLoad())
                continue; // Found a transmitting load -- no need to continue
                          // traversing its defs (i.e., this load will become
                          // a new gadget source anyways).
            }

            // Check whether the use propagates to more defs.
            NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
            rdf::NodeList AnalyzedChildDefs;
            for (auto &ChildDef :
                 Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
              if (!DefsVisited.insert(ChildDef.Id).second)
                continue; // Already visited this def
              if (Def.Addr->getAttrs() & NodeAttrs::Dead)
                continue;
              if (Def.Id == ChildDef.Id)
                continue; // `Def` uses itself (e.g., increment loop counter)

              AnalyzeDefUseChain(ChildDef);

              // `Def` inherits all of its child defs' transmitters.
              for (auto TransmitterId : Transmitters[ChildDef.Id])
                Transmitters[Def.Id].push_back(TransmitterId);
            }
          }

          // Note that this statement adds `Def.Id` to the map if no
          // transmitters were found for `Def`.
          auto &DefTransmitters = Transmitters[Def.Id];

          // Remove duplicate transmitters
          llvm::sort(DefTransmitters);
          DefTransmitters.erase(
              std::unique(DefTransmitters.begin(), DefTransmitters.end()),
              DefTransmitters.end());
        };

    // Find all of the transmitters
    AnalyzeDefUseChain(SourceDef);
    auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
    if (SourceDefTransmitters.empty())
      return; // No transmitters for `SourceDef`

    MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
                               ? MachineGadgetGraph::ArgNodeSentinel
                               : SourceDef.Addr->getOp().getParent();
    auto GadgetSource = MaybeAddNode(Source);
    // Each transmitter is a sink for `SourceDef`.
    for (auto TransmitterId : SourceDefTransmitters) {
      MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
      auto GadgetSink = MaybeAddNode(Sink);
      // Add the gadget edge to the graph.
      Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
                      GadgetSource.first, GadgetSink.first);
      ++GadgetCount;
    }
  };

  LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
  // Analyze function arguments
  NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
  for (NodeAddr<PhiNode *> ArgPhi :
       EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
    NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
    llvm::for_each(Defs, AnalyzeDef);
  }
  // Analyze every instruction in MF
  for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
    for (NodeAddr<StmtNode *> SA :
         BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
      MachineInstr *MI = SA.Addr->getCode();
      if (isFence(MI)) {
        MaybeAddNode(MI);
        ++FenceCount;
      } else if (MI->mayLoad()) {
        NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
        llvm::for_each(Defs, AnalyzeDef);
      }
    }
  }
  LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
  LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
  if (GadgetCount == 0)
    return nullptr;
  NumGadgets += GadgetCount;

  // Traverse CFG to build the rest of the graph
  SmallSet<MachineBasicBlock *, 8> BlocksVisited;
  std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
      [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
        unsigned LoopDepth = MLI.getLoopDepth(MBB);
        if (!MBB->empty()) {
          // Always add the first instruction in each block
          auto NI = MBB->begin();
          auto BeginBB = MaybeAddNode(&*NI);
          Builder.addEdge(ParentDepth, GI, BeginBB.first);
          if (!BlocksVisited.insert(MBB).second)
            return;

          // Add any instructions within the block that are gadget components
          GI = BeginBB.first;
          while (++NI != MBB->end()) {
            auto Ref = NodeMap.find(&*NI);
            if (Ref != NodeMap.end()) {
              Builder.addEdge(LoopDepth, GI, Ref->getSecond());
              GI = Ref->getSecond();
            }
          }

          // Always add the terminator instruction, if one exists
          auto T = MBB->getFirstTerminator();
          if (T != MBB->end()) {
            auto EndBB = MaybeAddNode(&*T);
            if (EndBB.second)
              Builder.addEdge(LoopDepth, GI, EndBB.first);
            GI = EndBB.first;
          }
        }
        for (MachineBasicBlock *Succ : MBB->successors())
          TraverseCFG(Succ, GI, LoopDepth);
      };
  // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
  // GadgetGraph
  GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
  TraverseCFG(&MF.front(), ArgNode, 0);
  std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
  LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
  return G;
}

// Returns the number of remaining gadget edges that could not be eliminated
int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
    MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
    NodeSet &ElimNodes /* in, out */) const {
  if (G.NumFences > 0) {
    // Eliminate fences and CFG edges that ingress and egress the fence, as
    // they are trivially mitigated.
    for (const Edge &E : G.edges()) {
      const Node *Dest = E.getDest();
      if (isFence(Dest->getValue())) {
        ElimNodes.insert(*Dest);
        ElimEdges.insert(E);
        for (const Edge &DE : Dest->edges())
          ElimEdges.insert(DE);
      }
    }
  }

  // Find and eliminate gadget edges that have been mitigated.
  int MitigatedGadgets = 0, RemainingGadgets = 0;
  NodeSet ReachableNodes{G};
  for (const Node &RootN : G.nodes()) {
    if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
      continue; // skip this node if it isn't a gadget source

    // Find all of the nodes that are CFG-reachable from RootN using DFS
    ReachableNodes.clear();
    std::function<void(const Node *, bool)> FindReachableNodes =
        [&](const Node *N, bool FirstNode) {
          if (!FirstNode)
            ReachableNodes.insert(*N);
          for (const Edge &E : N->edges()) {
            const Node *Dest = E.getDest();
            if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
                !ReachableNodes.contains(*Dest))
              FindReachableNodes(Dest, false);
          }
        };
    FindReachableNodes(&RootN, true);

    // Any gadget whose sink is unreachable has been mitigated
    for (const Edge &E : RootN.edges()) {
      if (MachineGadgetGraph::isGadgetEdge(E)) {
        if (ReachableNodes.contains(*E.getDest())) {
          // This gadget's sink is reachable
          ++RemainingGadgets;
        } else { // This gadget's sink is unreachable, and therefore mitigated
          ++MitigatedGadgets;
          ElimEdges.insert(E);
        }
      }
    }
  }
  return RemainingGadgets;
}

std::unique_ptr<MachineGadgetGraph>
X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
    std::unique_ptr<MachineGadgetGraph> Graph) const {
  NodeSet ElimNodes{*Graph};
  EdgeSet ElimEdges{*Graph};
  int RemainingGadgets =
      elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
  if (ElimEdges.empty() && ElimNodes.empty()) {
    Graph->NumFences = 0;
    Graph->NumGadgets = RemainingGadgets;
  } else {
    Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
                               RemainingGadgets);
  }
  return Graph;
}

int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
    MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
  int FencesInserted = 0;

  do {
    LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
    Graph = trimMitigatedEdges(std::move(Graph));
    LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
    if (Graph->NumGadgets == 0)
      break;

    LLVM_DEBUG(dbgs() << "Cutting edges...\n");
    EdgeSet CutEdges{*Graph};
    auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
                                                  1 /* terminator node */);
    auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
    auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
    auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
    for (const Node &N : Graph->nodes()) {
      Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
    }
    Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
    for (const Edge &E : Graph->edges()) {
      Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
      EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
    }
    OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
                EdgeCuts.get(), Graph->edges_size());
    for (int I = 0; I < Graph->edges_size(); ++I)
      if (EdgeCuts[I])
        CutEdges.set(I);
    LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
    LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");

    LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
    FencesInserted += insertFences(MF, *Graph, CutEdges);
    LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
    LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");

    Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
  } while (true);

  return FencesInserted;
}

int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
    MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
  // If `MF` does not have any fences, then no gadgets would have been
  // mitigated at this point.
  if (Graph->NumFences > 0) {
    LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
    Graph = trimMitigatedEdges(std::move(Graph));
    LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
  }

  if (Graph->NumGadgets == 0)
    return 0;

  LLVM_DEBUG(dbgs() << "Cutting edges...\n");
  EdgeSet CutEdges{*Graph};

  // Begin by collecting all ingress CFG edges for each node
  DenseMap<const Node *, SmallVector<const Edge *, 2>> IngressEdgeMap;
  for (const Edge &E : Graph->edges())
    if (MachineGadgetGraph::isCFGEdge(E))
      IngressEdgeMap[E.getDest()].push_back(&E);

  // For each gadget edge, make cuts that guarantee the gadget will be
  // mitigated. A computationally efficient way to achieve this is to either:
  // (a) cut all egress CFG edges from the gadget source, or
  // (b) cut all ingress CFG edges to the gadget sink.
  //
  // Moreover, the algorithm tries not to make a cut into a loop by preferring
  // to make a (b)-type cut if the gadget source resides at a greater loop depth
  // than the gadget sink, or an (a)-type cut otherwise.
  for (const Node &N : Graph->nodes()) {
    for (const Edge &E : N.edges()) {
      if (!MachineGadgetGraph::isGadgetEdge(E))
        continue;

      SmallVector<const Edge *, 2> EgressEdges;
      SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
      for (const Edge &EgressEdge : N.edges())
        if (MachineGadgetGraph::isCFGEdge(EgressEdge))
          EgressEdges.push_back(&EgressEdge);

      int EgressCutCost = 0, IngressCutCost = 0;
      for (const Edge *EgressEdge : EgressEdges)
        if (!CutEdges.contains(*EgressEdge))
          EgressCutCost += EgressEdge->getValue();
      for (const Edge *IngressEdge : IngressEdges)
        if (!CutEdges.contains(*IngressEdge))
          IngressCutCost += IngressEdge->getValue();

      auto &EdgesToCut =
          IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
      for (const Edge *E : EdgesToCut)
        CutEdges.insert(*E);
    }
  }
  LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
  LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");

  LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
  int FencesInserted = insertFences(MF, *Graph, CutEdges);
  LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
  LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");

  return FencesInserted;
}

int X86LoadValueInjectionLoadHardeningPass::insertFences(
    MachineFunction &MF, MachineGadgetGraph &G,
    EdgeSet &CutEdges /* in, out */) const {
  int FencesInserted = 0;
  for (const Node &N : G.nodes()) {
    for (const Edge &E : N.edges()) {
      if (CutEdges.contains(E)) {
        MachineInstr *MI = N.getValue(), *Prev;
        MachineBasicBlock *MBB;                  // Insert an LFENCE in this MBB
        MachineBasicBlock::iterator InsertionPt; // ...at this point
        if (MI == MachineGadgetGraph::ArgNodeSentinel) {
          // insert LFENCE at beginning of entry block
          MBB = &MF.front();
          InsertionPt = MBB->begin();
          Prev = nullptr;
        } else if (MI->isBranch()) { // insert the LFENCE before the branch
          MBB = MI->getParent();
          InsertionPt = MI;
          Prev = MI->getPrevNode();
          // Remove all egress CFG edges from this branch because the inserted
          // LFENCE prevents gadgets from crossing the branch.
          for (const Edge &E : N.edges()) {
            if (MachineGadgetGraph::isCFGEdge(E))
              CutEdges.insert(E);
          }
        } else { // insert the LFENCE after the instruction
          MBB = MI->getParent();
          InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
          Prev = InsertionPt == MBB->end()
                     ? (MBB->empty() ? nullptr : &MBB->back())
                     : InsertionPt->getPrevNode();
        }
        // Ensure this insertion is not redundant (two LFENCEs in sequence).
        if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
            (!Prev || !isFence(Prev))) {
          BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
          ++FencesInserted;
        }
      }
    }
  }
  return FencesInserted;
}

bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
    const MachineInstr &MI, unsigned Reg) const {
  if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
      MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
    return false;

  // FIXME: This does not handle pseudo loading instruction like TCRETURN*
  const MCInstrDesc &Desc = MI.getDesc();
  int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
  if (MemRefBeginIdx < 0) {
    LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
                         "instruction:\n";
               MI.print(dbgs()); dbgs() << '\n';);
    return false;
  }
  MemRefBeginIdx += X86II::getOperandBias(Desc);

  const MachineOperand &BaseMO =
      MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
  const MachineOperand &IndexMO =
      MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
  return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
          TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
         (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
          TRI->regsOverlap(IndexMO.getReg(), Reg));
}

bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
    const MachineInstr &MI, unsigned Reg) const {
  if (!MI.isConditionalBranch())
    return false;
  for (const MachineOperand &Use : MI.uses())
    if (Use.isReg() && Use.getReg() == Reg)
      return true;
  return false;
}

INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
                      "X86 LVI load hardening", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
                    "X86 LVI load hardening", false, false)

FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
  return new X86LoadValueInjectionLoadHardeningPass();
}