Inliner.cpp
44.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
//===- Inliner.cpp - Code common to all inliners --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the mechanics required to implement inlining without
// missing any calls and updating the call graph. The decisions of which calls
// are profitable to inline are implemented elsewhere.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <sstream>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "inline"
STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
STATISTIC(NumMergedAllocas, "Number of allocas merged together");
/// Flag to disable manual alloca merging.
///
/// Merging of allocas was originally done as a stack-size saving technique
/// prior to LLVM's code generator having support for stack coloring based on
/// lifetime markers. It is now in the process of being removed. To experiment
/// with disabling it and relying fully on lifetime marker based stack
/// coloring, you can pass this flag to LLVM.
static cl::opt<bool>
DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
cl::init(false), cl::Hidden);
namespace {
enum class InlinerFunctionImportStatsOpts {
No = 0,
Basic = 1,
Verbose = 2,
};
} // end anonymous namespace
static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
"inliner-function-import-stats",
cl::init(InlinerFunctionImportStatsOpts::No),
cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
"basic statistics"),
clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
"printing of statistics for each inlined function")),
cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
: CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
/// For this class, we declare that we require and preserve the call graph.
/// If the derived class implements this method, it should
/// always explicitly call the implementation here.
void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
getAAResultsAnalysisUsage(AU);
CallGraphSCCPass::getAnalysisUsage(AU);
}
using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
/// Look at all of the allocas that we inlined through this call site. If we
/// have already inlined other allocas through other calls into this function,
/// then we know that they have disjoint lifetimes and that we can merge them.
///
/// There are many heuristics possible for merging these allocas, and the
/// different options have different tradeoffs. One thing that we *really*
/// don't want to hurt is SRoA: once inlining happens, often allocas are no
/// longer address taken and so they can be promoted.
///
/// Our "solution" for that is to only merge allocas whose outermost type is an
/// array type. These are usually not promoted because someone is using a
/// variable index into them. These are also often the most important ones to
/// merge.
///
/// A better solution would be to have real memory lifetime markers in the IR
/// and not have the inliner do any merging of allocas at all. This would
/// allow the backend to do proper stack slot coloring of all allocas that
/// *actually make it to the backend*, which is really what we want.
///
/// Because we don't have this information, we do this simple and useful hack.
static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
InlinedArrayAllocasTy &InlinedArrayAllocas,
int InlineHistory) {
SmallPtrSet<AllocaInst *, 16> UsedAllocas;
// When processing our SCC, check to see if the call site was inlined from
// some other call site. For example, if we're processing "A" in this code:
// A() { B() }
// B() { x = alloca ... C() }
// C() { y = alloca ... }
// Assume that C was not inlined into B initially, and so we're processing A
// and decide to inline B into A. Doing this makes an alloca available for
// reuse and makes a callsite (C) available for inlining. When we process
// the C call site we don't want to do any alloca merging between X and Y
// because their scopes are not disjoint. We could make this smarter by
// keeping track of the inline history for each alloca in the
// InlinedArrayAllocas but this isn't likely to be a significant win.
if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
return;
// Loop over all the allocas we have so far and see if they can be merged with
// a previously inlined alloca. If not, remember that we had it.
for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
++AllocaNo) {
AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
// Don't bother trying to merge array allocations (they will usually be
// canonicalized to be an allocation *of* an array), or allocations whose
// type is not itself an array (because we're afraid of pessimizing SRoA).
ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
if (!ATy || AI->isArrayAllocation())
continue;
// Get the list of all available allocas for this array type.
std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
// Loop over the allocas in AllocasForType to see if we can reuse one. Note
// that we have to be careful not to reuse the same "available" alloca for
// multiple different allocas that we just inlined, we use the 'UsedAllocas'
// set to keep track of which "available" allocas are being used by this
// function. Also, AllocasForType can be empty of course!
bool MergedAwayAlloca = false;
for (AllocaInst *AvailableAlloca : AllocasForType) {
Align Align1 = AI->getAlign();
Align Align2 = AvailableAlloca->getAlign();
// The available alloca has to be in the right function, not in some other
// function in this SCC.
if (AvailableAlloca->getParent() != AI->getParent())
continue;
// If the inlined function already uses this alloca then we can't reuse
// it.
if (!UsedAllocas.insert(AvailableAlloca).second)
continue;
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
// success!
LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
<< "\n\t\tINTO: " << *AvailableAlloca << '\n');
// Move affected dbg.declare calls immediately after the new alloca to
// avoid the situation when a dbg.declare precedes its alloca.
if (auto *L = LocalAsMetadata::getIfExists(AI))
if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
for (User *U : MDV->users())
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
DDI->moveBefore(AvailableAlloca->getNextNode());
AI->replaceAllUsesWith(AvailableAlloca);
if (Align1 > Align2)
AvailableAlloca->setAlignment(AI->getAlign());
AI->eraseFromParent();
MergedAwayAlloca = true;
++NumMergedAllocas;
IFI.StaticAllocas[AllocaNo] = nullptr;
break;
}
// If we already nuked the alloca, we're done with it.
if (MergedAwayAlloca)
continue;
// If we were unable to merge away the alloca either because there are no
// allocas of the right type available or because we reused them all
// already, remember that this alloca came from an inlined function and mark
// it used so we don't reuse it for other allocas from this inline
// operation.
AllocasForType.push_back(AI);
UsedAllocas.insert(AI);
}
}
/// If it is possible to inline the specified call site,
/// do so and update the CallGraph for this operation.
///
/// This function also does some basic book-keeping to update the IR. The
/// InlinedArrayAllocas map keeps track of any allocas that are already
/// available from other functions inlined into the caller. If we are able to
/// inline this call site we attempt to reuse already available allocas or add
/// any new allocas to the set if not possible.
static InlineResult inlineCallIfPossible(
CallBase &CB, InlineFunctionInfo &IFI,
InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
Function *Callee = CB.getCalledFunction();
Function *Caller = CB.getCaller();
AAResults &AAR = AARGetter(*Callee);
// Try to inline the function. Get the list of static allocas that were
// inlined.
InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
if (!IR.isSuccess())
return IR;
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
ImportedFunctionsStats.recordInline(*Caller, *Callee);
AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
if (!DisableInlinedAllocaMerging)
mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
return IR; // success
}
/// Return true if the specified inline history ID
/// indicates an inline history that includes the specified function.
static bool inlineHistoryIncludes(
Function *F, int InlineHistoryID,
const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
while (InlineHistoryID != -1) {
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
"Invalid inline history ID");
if (InlineHistory[InlineHistoryID].first == F)
return true;
InlineHistoryID = InlineHistory[InlineHistoryID].second;
}
return false;
}
bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
ImportedFunctionsStats.setModuleInfo(CG.getModule());
return false; // No changes to CallGraph.
}
bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
if (skipSCC(SCC))
return false;
return inlineCalls(SCC);
}
static bool
inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
std::function<AssumptionCache &(Function &)> GetAssumptionCache,
ProfileSummaryInfo *PSI,
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
bool InsertLifetime,
function_ref<InlineCost(CallBase &CB)> GetInlineCost,
function_ref<AAResults &(Function &)> AARGetter,
ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
SmallPtrSet<Function *, 8> SCCFunctions;
LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
for (CallGraphNode *Node : SCC) {
Function *F = Node->getFunction();
if (F)
SCCFunctions.insert(F);
LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
}
// Scan through and identify all call sites ahead of time so that we only
// inline call sites in the original functions, not call sites that result
// from inlining other functions.
SmallVector<std::pair<CallBase *, int>, 16> CallSites;
// When inlining a callee produces new call sites, we want to keep track of
// the fact that they were inlined from the callee. This allows us to avoid
// infinite inlining in some obscure cases. To represent this, we use an
// index into the InlineHistory vector.
SmallVector<std::pair<Function *, int>, 8> InlineHistory;
for (CallGraphNode *Node : SCC) {
Function *F = Node->getFunction();
if (!F || F->isDeclaration())
continue;
OptimizationRemarkEmitter ORE(F);
for (BasicBlock &BB : *F)
for (Instruction &I : BB) {
auto *CB = dyn_cast<CallBase>(&I);
// If this isn't a call, or it is a call to an intrinsic, it can
// never be inlined.
if (!CB || isa<IntrinsicInst>(I))
continue;
// If this is a direct call to an external function, we can never inline
// it. If it is an indirect call, inlining may resolve it to be a
// direct call, so we keep it.
if (Function *Callee = CB->getCalledFunction())
if (Callee->isDeclaration()) {
using namespace ore;
setInlineRemark(*CB, "unavailable definition");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CB->getCaller())
<< " because its definition is unavailable"
<< setIsVerbose();
});
continue;
}
CallSites.push_back(std::make_pair(CB, -1));
}
}
LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
// If there are no calls in this function, exit early.
if (CallSites.empty())
return false;
// Now that we have all of the call sites, move the ones to functions in the
// current SCC to the end of the list.
unsigned FirstCallInSCC = CallSites.size();
for (unsigned I = 0; I < FirstCallInSCC; ++I)
if (Function *F = CallSites[I].first->getCalledFunction())
if (SCCFunctions.count(F))
std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
InlinedArrayAllocasTy InlinedArrayAllocas;
InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
// Now that we have all of the call sites, loop over them and inline them if
// it looks profitable to do so.
bool Changed = false;
bool LocalChange;
do {
LocalChange = false;
// Iterate over the outer loop because inlining functions can cause indirect
// calls to become direct calls.
// CallSites may be modified inside so ranged for loop can not be used.
for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
auto &P = CallSites[CSi];
CallBase &CB = *P.first;
const int InlineHistoryID = P.second;
Function *Caller = CB.getCaller();
Function *Callee = CB.getCalledFunction();
// We can only inline direct calls to non-declarations.
if (!Callee || Callee->isDeclaration())
continue;
bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
if (!IsTriviallyDead) {
// If this call site was obtained by inlining another function, verify
// that the include path for the function did not include the callee
// itself. If so, we'd be recursively inlining the same function,
// which would provide the same callsites, which would cause us to
// infinitely inline.
if (InlineHistoryID != -1 &&
inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
setInlineRemark(CB, "recursive");
continue;
}
}
// FIXME for new PM: because of the old PM we currently generate ORE and
// in turn BFI on demand. With the new PM, the ORE dependency should
// just become a regular analysis dependency.
OptimizationRemarkEmitter ORE(Caller);
auto OIC = shouldInline(CB, GetInlineCost, ORE);
// If the policy determines that we should inline this function,
// delete the call instead.
if (!OIC)
continue;
// If this call site is dead and it is to a readonly function, we should
// just delete the call instead of trying to inline it, regardless of
// size. This happens because IPSCCP propagates the result out of the
// call and then we're left with the dead call.
if (IsTriviallyDead) {
LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n");
// Update the call graph by deleting the edge from Callee to Caller.
setInlineRemark(CB, "trivially dead");
CG[Caller]->removeCallEdgeFor(CB);
CB.eraseFromParent();
++NumCallsDeleted;
} else {
// Get DebugLoc to report. CB will be invalid after Inliner.
DebugLoc DLoc = CB.getDebugLoc();
BasicBlock *Block = CB.getParent();
// Attempt to inline the function.
using namespace ore;
InlineResult IR = inlineCallIfPossible(
CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
InsertLifetime, AARGetter, ImportedFunctionsStats);
if (!IR.isSuccess()) {
setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
inlineCostStr(*OIC));
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
Block)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", Caller) << ": "
<< NV("Reason", IR.getFailureReason());
});
continue;
}
++NumInlined;
emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
// If inlining this function gave us any new call sites, throw them
// onto our worklist to process. They are useful inline candidates.
if (!InlineInfo.InlinedCalls.empty()) {
// Create a new inline history entry for this, so that we remember
// that these new callsites came about due to inlining Callee.
int NewHistoryID = InlineHistory.size();
InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
#ifndef NDEBUG
// Make sure no dupplicates in the inline candidates. This could
// happen when a callsite is simpilfied to reusing the return value
// of another callsite during function cloning, thus the other
// callsite will be reconsidered here.
DenseSet<CallBase *> DbgCallSites;
for (auto &II : CallSites)
DbgCallSites.insert(II.first);
#endif
for (Value *Ptr : InlineInfo.InlinedCalls) {
#ifndef NDEBUG
assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
#endif
CallSites.push_back(
std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
}
}
}
// If we inlined or deleted the last possible call site to the function,
// delete the function body now.
if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
// TODO: Can remove if in SCC now.
!SCCFunctions.count(Callee) &&
// The function may be apparently dead, but if there are indirect
// callgraph references to the node, we cannot delete it yet, this
// could invalidate the CGSCC iterator.
CG[Callee]->getNumReferences() == 0) {
LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
<< Callee->getName() << "\n");
CallGraphNode *CalleeNode = CG[Callee];
// Remove any call graph edges from the callee to its callees.
CalleeNode->removeAllCalledFunctions();
// Removing the node for callee from the call graph and delete it.
delete CG.removeFunctionFromModule(CalleeNode);
++NumDeleted;
}
// Remove this call site from the list. If possible, use
// swap/pop_back for efficiency, but do not use it if doing so would
// move a call site to a function in this SCC before the
// 'FirstCallInSCC' barrier.
if (SCC.isSingular()) {
CallSites[CSi] = CallSites.back();
CallSites.pop_back();
} else {
CallSites.erase(CallSites.begin() + CSi);
}
--CSi;
Changed = true;
LocalChange = true;
}
} while (LocalChange);
return Changed;
}
bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
ACT = &getAnalysis<AssumptionCacheTracker>();
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
};
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return ACT->getAssumptionCache(F);
};
return inlineCallsImpl(
SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
[&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
ImportedFunctionsStats);
}
/// Remove now-dead linkonce functions at the end of
/// processing to avoid breaking the SCC traversal.
bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
InlinerFunctionImportStatsOpts::Verbose);
return removeDeadFunctions(CG);
}
/// Remove dead functions that are not included in DNR (Do Not Remove) list.
bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
bool AlwaysInlineOnly) {
SmallVector<CallGraphNode *, 16> FunctionsToRemove;
SmallVector<Function *, 16> DeadFunctionsInComdats;
auto RemoveCGN = [&](CallGraphNode *CGN) {
// Remove any call graph edges from the function to its callees.
CGN->removeAllCalledFunctions();
// Remove any edges from the external node to the function's call graph
// node. These edges might have been made irrelegant due to
// optimization of the program.
CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
// Removing the node for callee from the call graph and delete it.
FunctionsToRemove.push_back(CGN);
};
// Scan for all of the functions, looking for ones that should now be removed
// from the program. Insert the dead ones in the FunctionsToRemove set.
for (const auto &I : CG) {
CallGraphNode *CGN = I.second.get();
Function *F = CGN->getFunction();
if (!F || F->isDeclaration())
continue;
// Handle the case when this function is called and we only want to care
// about always-inline functions. This is a bit of a hack to share code
// between here and the InlineAlways pass.
if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
continue;
// If the only remaining users of the function are dead constants, remove
// them.
F->removeDeadConstantUsers();
if (!F->isDefTriviallyDead())
continue;
// It is unsafe to drop a function with discardable linkage from a COMDAT
// without also dropping the other members of the COMDAT.
// The inliner doesn't visit non-function entities which are in COMDAT
// groups so it is unsafe to do so *unless* the linkage is local.
if (!F->hasLocalLinkage()) {
if (F->hasComdat()) {
DeadFunctionsInComdats.push_back(F);
continue;
}
}
RemoveCGN(CGN);
}
if (!DeadFunctionsInComdats.empty()) {
// Filter out the functions whose comdats remain alive.
filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
// Remove the rest.
for (Function *F : DeadFunctionsInComdats)
RemoveCGN(CG[F]);
}
if (FunctionsToRemove.empty())
return false;
// Now that we know which functions to delete, do so. We didn't want to do
// this inline, because that would invalidate our CallGraph::iterator
// objects. :(
//
// Note that it doesn't matter that we are iterating over a non-stable order
// here to do this, it doesn't matter which order the functions are deleted
// in.
array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
FunctionsToRemove.erase(
std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
FunctionsToRemove.end());
for (CallGraphNode *CGN : FunctionsToRemove) {
delete CG.removeFunctionFromModule(CGN);
++NumDeleted;
}
return true;
}
InlinerPass::~InlinerPass() {
if (ImportedFunctionsStats) {
assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
InlinerFunctionImportStatsOpts::Verbose);
}
}
InlineAdvisor &
InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
FunctionAnalysisManager &FAM, Module &M) {
auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
if (!IAA) {
// It should still be possible to run the inliner as a stand-alone SCC pass,
// for test scenarios. In that case, we default to the
// DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
// runs. It also uses just the default InlineParams.
// In this case, we need to use the provided FAM, which is valid for the
// duration of the inliner pass, and thus the lifetime of the owned advisor.
// The one we would get from the MAM can be invalidated as a result of the
// inliner's activity.
OwnedDefaultAdvisor.emplace(FAM, getInlineParams());
return *OwnedDefaultAdvisor;
}
assert(IAA->getAdvisor() &&
"Expected a present InlineAdvisorAnalysis also have an "
"InlineAdvisor initialized");
return *IAA->getAdvisor();
}
PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
const auto &MAMProxy =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
bool Changed = false;
assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
Module &M = *InitialC.begin()->getFunction().getParent();
ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
.getManager();
InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
Advisor.onPassEntry();
auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
if (!ImportedFunctionsStats &&
InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
ImportedFunctionsStats =
std::make_unique<ImportedFunctionsInliningStatistics>();
ImportedFunctionsStats->setModuleInfo(M);
}
// We use a single common worklist for calls across the entire SCC. We
// process these in-order and append new calls introduced during inlining to
// the end.
//
// Note that this particular order of processing is actually critical to
// avoid very bad behaviors. Consider *highly connected* call graphs where
// each function contains a small amonut of code and a couple of calls to
// other functions. Because the LLVM inliner is fundamentally a bottom-up
// inliner, it can handle gracefully the fact that these all appear to be
// reasonable inlining candidates as it will flatten things until they become
// too big to inline, and then move on and flatten another batch.
//
// However, when processing call edges *within* an SCC we cannot rely on this
// bottom-up behavior. As a consequence, with heavily connected *SCCs* of
// functions we can end up incrementally inlining N calls into each of
// N functions because each incremental inlining decision looks good and we
// don't have a topological ordering to prevent explosions.
//
// To compensate for this, we don't process transitive edges made immediate
// by inlining until we've done one pass of inlining across the entire SCC.
// Large, highly connected SCCs still lead to some amount of code bloat in
// this model, but it is uniformly spread across all the functions in the SCC
// and eventually they all become too large to inline, rather than
// incrementally maknig a single function grow in a super linear fashion.
SmallVector<std::pair<CallBase *, int>, 16> Calls;
// Populate the initial list of calls in this SCC.
for (auto &N : InitialC) {
auto &ORE =
FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
// We want to generally process call sites top-down in order for
// simplifications stemming from replacing the call with the returned value
// after inlining to be visible to subsequent inlining decisions.
// FIXME: Using instructions sequence is a really bad way to do this.
// Instead we should do an actual RPO walk of the function body.
for (Instruction &I : instructions(N.getFunction()))
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *Callee = CB->getCalledFunction()) {
if (!Callee->isDeclaration())
Calls.push_back({CB, -1});
else if (!isa<IntrinsicInst>(I)) {
using namespace ore;
setInlineRemark(*CB, "unavailable definition");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CB->getCaller())
<< " because its definition is unavailable"
<< setIsVerbose();
});
}
}
}
if (Calls.empty())
return PreservedAnalyses::all();
// Capture updatable variables for the current SCC and RefSCC.
auto *C = &InitialC;
auto *RC = &C->getOuterRefSCC();
// When inlining a callee produces new call sites, we want to keep track of
// the fact that they were inlined from the callee. This allows us to avoid
// infinite inlining in some obscure cases. To represent this, we use an
// index into the InlineHistory vector.
SmallVector<std::pair<Function *, int>, 16> InlineHistory;
// Track a set vector of inlined callees so that we can augment the caller
// with all of their edges in the call graph before pruning out the ones that
// got simplified away.
SmallSetVector<Function *, 4> InlinedCallees;
// Track the dead functions to delete once finished with inlining calls. We
// defer deleting these to make it easier to handle the call graph updates.
SmallVector<Function *, 4> DeadFunctions;
// Loop forward over all of the calls. Note that we cannot cache the size as
// inlining can introduce new calls that need to be processed.
for (int I = 0; I < (int)Calls.size(); ++I) {
// We expect the calls to typically be batched with sequences of calls that
// have the same caller, so we first set up some shared infrastructure for
// this caller. We also do any pruning we can at this layer on the caller
// alone.
Function &F = *Calls[I].first->getCaller();
LazyCallGraph::Node &N = *CG.lookup(F);
if (CG.lookupSCC(N) != C)
continue;
if (!Calls[I].first->getCalledFunction()->hasFnAttribute(
Attribute::AlwaysInline) &&
F.hasOptNone()) {
setInlineRemark(*Calls[I].first, "optnone attribute");
continue;
}
LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
// Now process as many calls as we have within this caller in the sequence.
// We bail out as soon as the caller has to change so we can update the
// call graph and prepare the context of that new caller.
bool DidInline = false;
for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
auto &P = Calls[I];
CallBase *CB = P.first;
const int InlineHistoryID = P.second;
Function &Callee = *CB->getCalledFunction();
if (InlineHistoryID != -1 &&
inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
setInlineRemark(*CB, "recursive");
continue;
}
// Check if this inlining may repeat breaking an SCC apart that has
// already been split once before. In that case, inlining here may
// trigger infinite inlining, much like is prevented within the inliner
// itself by the InlineHistory above, but spread across CGSCC iterations
// and thus hidden from the full inline history.
if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
UR.InlinedInternalEdges.count({&N, C})) {
LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
"previously split out of this SCC by inlining: "
<< F.getName() << " -> " << Callee.getName() << "\n");
setInlineRemark(*CB, "recursive SCC split");
continue;
}
auto Advice = Advisor.getAdvice(*CB);
// Check whether we want to inline this callsite.
if (!Advice->isInliningRecommended()) {
Advice->recordUnattemptedInlining();
continue;
}
// Setup the data structure used to plumb customization into the
// `InlineFunction` routine.
InlineFunctionInfo IFI(
/*cg=*/nullptr, GetAssumptionCache, PSI,
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
&FAM.getResult<BlockFrequencyAnalysis>(Callee));
InlineResult IR = InlineFunction(*CB, IFI);
if (!IR.isSuccess()) {
Advice->recordUnsuccessfulInlining(IR);
continue;
}
DidInline = true;
InlinedCallees.insert(&Callee);
++NumInlined;
// Add any new callsites to defined functions to the worklist.
if (!IFI.InlinedCallSites.empty()) {
int NewHistoryID = InlineHistory.size();
InlineHistory.push_back({&Callee, InlineHistoryID});
for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
Function *NewCallee = ICB->getCalledFunction();
if (!NewCallee) {
// Try to promote an indirect (virtual) call without waiting for
// the post-inline cleanup and the next DevirtSCCRepeatedPass
// iteration because the next iteration may not happen and we may
// miss inlining it.
if (tryPromoteCall(*ICB))
NewCallee = ICB->getCalledFunction();
}
if (NewCallee)
if (!NewCallee->isDeclaration())
Calls.push_back({ICB, NewHistoryID});
}
}
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
ImportedFunctionsStats->recordInline(F, Callee);
// Merge the attributes based on the inlining.
AttributeFuncs::mergeAttributesForInlining(F, Callee);
// For local functions, check whether this makes the callee trivially
// dead. In that case, we can drop the body of the function eagerly
// which may reduce the number of callers of other functions to one,
// changing inline cost thresholds.
bool CalleeWasDeleted = false;
if (Callee.hasLocalLinkage()) {
// To check this we also need to nuke any dead constant uses (perhaps
// made dead by this operation on other functions).
Callee.removeDeadConstantUsers();
if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
Calls.erase(
std::remove_if(Calls.begin() + I + 1, Calls.end(),
[&](const std::pair<CallBase *, int> &Call) {
return Call.first->getCaller() == &Callee;
}),
Calls.end());
// Clear the body and queue the function itself for deletion when we
// finish inlining and call graph updates.
// Note that after this point, it is an error to do anything other
// than use the callee's address or delete it.
Callee.dropAllReferences();
assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
"Cannot put cause a function to become dead twice!");
DeadFunctions.push_back(&Callee);
CalleeWasDeleted = true;
}
}
if (CalleeWasDeleted)
Advice->recordInliningWithCalleeDeleted();
else
Advice->recordInlining();
}
// Back the call index up by one to put us in a good position to go around
// the outer loop.
--I;
if (!DidInline)
continue;
Changed = true;
// Add all the inlined callees' edges as ref edges to the caller. These are
// by definition trivial edges as we always have *some* transitive ref edge
// chain. While in some cases these edges are direct calls inside the
// callee, they have to be modeled in the inliner as reference edges as
// there may be a reference edge anywhere along the chain from the current
// caller to the callee that causes the whole thing to appear like
// a (transitive) reference edge that will require promotion to a call edge
// below.
for (Function *InlinedCallee : InlinedCallees) {
LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
for (LazyCallGraph::Edge &E : *CalleeN)
RC->insertTrivialRefEdge(N, E.getNode());
}
// At this point, since we have made changes we have at least removed
// a call instruction. However, in the process we do some incremental
// simplification of the surrounding code. This simplification can
// essentially do all of the same things as a function pass and we can
// re-use the exact same logic for updating the call graph to reflect the
// change.
// Inside the update, we also update the FunctionAnalysisManager in the
// proxy for this particular SCC. We do this as the SCC may have changed and
// as we're going to mutate this particular function we want to make sure
// the proxy is in place to forward any invalidation events.
LazyCallGraph::SCC *OldC = C;
C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR, FAM);
LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
RC = &C->getOuterRefSCC();
// If this causes an SCC to split apart into multiple smaller SCCs, there
// is a subtle risk we need to prepare for. Other transformations may
// expose an "infinite inlining" opportunity later, and because of the SCC
// mutation, we will revisit this function and potentially re-inline. If we
// do, and that re-inlining also has the potentially to mutate the SCC
// structure, the infinite inlining problem can manifest through infinite
// SCC splits and merges. To avoid this, we capture the originating caller
// node and the SCC containing the call edge. This is a slight over
// approximation of the possible inlining decisions that must be avoided,
// but is relatively efficient to store. We use C != OldC to know when
// a new SCC is generated and the original SCC may be generated via merge
// in later iterations.
//
// It is also possible that even if no new SCC is generated
// (i.e., C == OldC), the original SCC could be split and then merged
// into the same one as itself. and the original SCC will be added into
// UR.CWorklist again, we want to catch such cases too.
//
// FIXME: This seems like a very heavyweight way of retaining the inline
// history, we should look for a more efficient way of tracking it.
if ((C != OldC || UR.CWorklist.count(OldC)) &&
llvm::any_of(InlinedCallees, [&](Function *Callee) {
return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
})) {
LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
"retaining this to avoid infinite inlining.\n");
UR.InlinedInternalEdges.insert({&N, OldC});
}
InlinedCallees.clear();
}
// Now that we've finished inlining all of the calls across this SCC, delete
// all of the trivially dead functions, updating the call graph and the CGSCC
// pass manager in the process.
//
// Note that this walks a pointer set which has non-deterministic order but
// that is OK as all we do is delete things and add pointers to unordered
// sets.
for (Function *DeadF : DeadFunctions) {
// Get the necessary information out of the call graph and nuke the
// function there. Also, clear out any cached analyses.
auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
FAM.clear(*DeadF, DeadF->getName());
AM.clear(DeadC, DeadC.getName());
auto &DeadRC = DeadC.getOuterRefSCC();
CG.removeDeadFunction(*DeadF);
// Mark the relevant parts of the call graph as invalid so we don't visit
// them.
UR.InvalidatedSCCs.insert(&DeadC);
UR.InvalidatedRefSCCs.insert(&DeadRC);
// And delete the actual function from the module.
// The Advisor may use Function pointers to efficiently index various
// internal maps, e.g. for memoization. Function cleanup passes like
// argument promotion create new functions. It is possible for a new
// function to be allocated at the address of a deleted function. We could
// index using names, but that's inefficient. Alternatively, we let the
// Advisor free the functions when it sees fit.
DeadF->getBasicBlockList().clear();
M.getFunctionList().remove(DeadF);
++NumDeleted;
}
if (!Changed)
return PreservedAnalyses::all();
// Even if we change the IR, we update the core CGSCC data structures and so
// can preserve the proxy to the function analysis manager.
PreservedAnalyses PA;
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
return PA;
}
ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
bool Debugging,
InliningAdvisorMode Mode,
unsigned MaxDevirtIterations)
: Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
PM(Debugging), MPM(Debugging) {
// Run the inliner first. The theory is that we are walking bottom-up and so
// the callees have already been fully optimized, and we want to inline them
// into the callers so that our optimizations can reflect that.
// For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
// because it makes profile annotation in the backend inaccurate.
PM.addPass(InlinerPass());
}
PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
ModuleAnalysisManager &MAM) {
auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
if (!IAA.tryCreate(Params, Mode)) {
M.getContext().emitError(
"Could not setup Inlining Advisor for the requested "
"mode and/or options");
return PreservedAnalyses::all();
}
// We wrap the CGSCC pipeline in a devirtualization repeater. This will try
// to detect when we devirtualize indirect calls and iterate the SCC passes
// in that case to try and catch knock-on inlining or function attrs
// opportunities. Then we add it to the module pipeline by walking the SCCs
// in postorder (or bottom-up).
// If MaxDevirtIterations is 0, we just don't use the devirtualization
// wrapper.
if (MaxDevirtIterations == 0)
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
else
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
auto Ret = MPM.run(M, MAM);
IAA.clear();
return Ret;
}