OpenMPOpt.cpp 71 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// OpenMP specific optimizations:
//
// - Deduplication of runtime calls, e.g., omp_get_thread_num.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/OpenMPOpt.h"

#include "llvm/ADT/EnumeratedArray.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
#include "llvm/Analysis/ValueTracking.h"

using namespace llvm;
using namespace omp;

#define DEBUG_TYPE "openmp-opt"

static cl::opt<bool> DisableOpenMPOptimizations(
    "openmp-opt-disable", cl::ZeroOrMore,
    cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
    cl::init(false));

static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
                                    cl::Hidden);
static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
                                        cl::init(false), cl::Hidden);

static cl::opt<bool> HideMemoryTransferLatency(
    "openmp-hide-memory-transfer-latency",
    cl::desc("[WIP] Tries to hide the latency of host to device memory"
             " transfers"),
    cl::Hidden, cl::init(false));


STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
          "Number of OpenMP runtime calls deduplicated");
STATISTIC(NumOpenMPParallelRegionsDeleted,
          "Number of OpenMP parallel regions deleted");
STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
          "Number of OpenMP runtime functions identified");
STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
          "Number of OpenMP runtime function uses identified");
STATISTIC(NumOpenMPTargetRegionKernels,
          "Number of OpenMP target region entry points (=kernels) identified");
STATISTIC(
    NumOpenMPParallelRegionsReplacedInGPUStateMachine,
    "Number of OpenMP parallel regions replaced with ID in GPU state machines");

#if !defined(NDEBUG)
static constexpr auto TAG = "[" DEBUG_TYPE "]";
#endif

namespace {

struct AAICVTracker;

/// OpenMP specific information. For now, stores RFIs and ICVs also needed for
/// Attributor runs.
struct OMPInformationCache : public InformationCache {
  OMPInformationCache(Module &M, AnalysisGetter &AG,
                      BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
                      SmallPtrSetImpl<Kernel> &Kernels)
      : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
        Kernels(Kernels) {

    OMPBuilder.initialize();
    initializeRuntimeFunctions();
    initializeInternalControlVars();
  }

  /// Generic information that describes an internal control variable.
  struct InternalControlVarInfo {
    /// The kind, as described by InternalControlVar enum.
    InternalControlVar Kind;

    /// The name of the ICV.
    StringRef Name;

    /// Environment variable associated with this ICV.
    StringRef EnvVarName;

    /// Initial value kind.
    ICVInitValue InitKind;

    /// Initial value.
    ConstantInt *InitValue;

    /// Setter RTL function associated with this ICV.
    RuntimeFunction Setter;

    /// Getter RTL function associated with this ICV.
    RuntimeFunction Getter;

    /// RTL Function corresponding to the override clause of this ICV
    RuntimeFunction Clause;
  };

  /// Generic information that describes a runtime function
  struct RuntimeFunctionInfo {

    /// The kind, as described by the RuntimeFunction enum.
    RuntimeFunction Kind;

    /// The name of the function.
    StringRef Name;

    /// Flag to indicate a variadic function.
    bool IsVarArg;

    /// The return type of the function.
    Type *ReturnType;

    /// The argument types of the function.
    SmallVector<Type *, 8> ArgumentTypes;

    /// The declaration if available.
    Function *Declaration = nullptr;

    /// Uses of this runtime function per function containing the use.
    using UseVector = SmallVector<Use *, 16>;

    /// Clear UsesMap for runtime function.
    void clearUsesMap() { UsesMap.clear(); }

    /// Boolean conversion that is true if the runtime function was found.
    operator bool() const { return Declaration; }

    /// Return the vector of uses in function \p F.
    UseVector &getOrCreateUseVector(Function *F) {
      std::shared_ptr<UseVector> &UV = UsesMap[F];
      if (!UV)
        UV = std::make_shared<UseVector>();
      return *UV;
    }

    /// Return the vector of uses in function \p F or `nullptr` if there are
    /// none.
    const UseVector *getUseVector(Function &F) const {
      auto I = UsesMap.find(&F);
      if (I != UsesMap.end())
        return I->second.get();
      return nullptr;
    }

    /// Return how many functions contain uses of this runtime function.
    size_t getNumFunctionsWithUses() const { return UsesMap.size(); }

    /// Return the number of arguments (or the minimal number for variadic
    /// functions).
    size_t getNumArgs() const { return ArgumentTypes.size(); }

    /// Run the callback \p CB on each use and forget the use if the result is
    /// true. The callback will be fed the function in which the use was
    /// encountered as second argument.
    void foreachUse(SmallVectorImpl<Function *> &SCC,
                    function_ref<bool(Use &, Function &)> CB) {
      for (Function *F : SCC)
        foreachUse(CB, F);
    }

    /// Run the callback \p CB on each use within the function \p F and forget
    /// the use if the result is true.
    void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
      SmallVector<unsigned, 8> ToBeDeleted;
      ToBeDeleted.clear();

      unsigned Idx = 0;
      UseVector &UV = getOrCreateUseVector(F);

      for (Use *U : UV) {
        if (CB(*U, *F))
          ToBeDeleted.push_back(Idx);
        ++Idx;
      }

      // Remove the to-be-deleted indices in reverse order as prior
      // modifications will not modify the smaller indices.
      while (!ToBeDeleted.empty()) {
        unsigned Idx = ToBeDeleted.pop_back_val();
        UV[Idx] = UV.back();
        UV.pop_back();
      }
    }

  private:
    /// Map from functions to all uses of this runtime function contained in
    /// them.
    DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
  };

  /// An OpenMP-IR-Builder instance
  OpenMPIRBuilder OMPBuilder;

  /// Map from runtime function kind to the runtime function description.
  EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
                  RuntimeFunction::OMPRTL___last>
      RFIs;

  /// Map from ICV kind to the ICV description.
  EnumeratedArray<InternalControlVarInfo, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVs;

  /// Helper to initialize all internal control variable information for those
  /// defined in OMPKinds.def.
  void initializeInternalControlVars() {
#define ICV_RT_SET(_Name, RTL)                                                 \
  {                                                                            \
    auto &ICV = ICVs[_Name];                                                   \
    ICV.Setter = RTL;                                                          \
  }
#define ICV_RT_GET(Name, RTL)                                                  \
  {                                                                            \
    auto &ICV = ICVs[Name];                                                    \
    ICV.Getter = RTL;                                                          \
  }
#define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
  {                                                                            \
    auto &ICV = ICVs[Enum];                                                    \
    ICV.Name = _Name;                                                          \
    ICV.Kind = Enum;                                                           \
    ICV.InitKind = Init;                                                       \
    ICV.EnvVarName = _EnvVarName;                                              \
    switch (ICV.InitKind) {                                                    \
    case ICV_IMPLEMENTATION_DEFINED:                                           \
      ICV.InitValue = nullptr;                                                 \
      break;                                                                   \
    case ICV_ZERO:                                                             \
      ICV.InitValue = ConstantInt::get(                                        \
          Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
      break;                                                                   \
    case ICV_FALSE:                                                            \
      ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
      break;                                                                   \
    case ICV_LAST:                                                             \
      break;                                                                   \
    }                                                                          \
  }
#include "llvm/Frontend/OpenMP/OMPKinds.def"
  }

  /// Returns true if the function declaration \p F matches the runtime
  /// function types, that is, return type \p RTFRetType, and argument types
  /// \p RTFArgTypes.
  static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
                                  SmallVector<Type *, 8> &RTFArgTypes) {
    // TODO: We should output information to the user (under debug output
    //       and via remarks).

    if (!F)
      return false;
    if (F->getReturnType() != RTFRetType)
      return false;
    if (F->arg_size() != RTFArgTypes.size())
      return false;

    auto RTFTyIt = RTFArgTypes.begin();
    for (Argument &Arg : F->args()) {
      if (Arg.getType() != *RTFTyIt)
        return false;

      ++RTFTyIt;
    }

    return true;
  }

  // Helper to collect all uses of the declaration in the UsesMap.
  unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
    unsigned NumUses = 0;
    if (!RFI.Declaration)
      return NumUses;
    OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);

    if (CollectStats) {
      NumOpenMPRuntimeFunctionsIdentified += 1;
      NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
    }

    // TODO: We directly convert uses into proper calls and unknown uses.
    for (Use &U : RFI.Declaration->uses()) {
      if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
        if (ModuleSlice.count(UserI->getFunction())) {
          RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
          ++NumUses;
        }
      } else {
        RFI.getOrCreateUseVector(nullptr).push_back(&U);
        ++NumUses;
      }
    }
    return NumUses;
  }

  // Helper function to recollect uses of all runtime functions.
  void recollectUses() {
    for (int Idx = 0; Idx < RFIs.size(); ++Idx) {
      auto &RFI = RFIs[static_cast<RuntimeFunction>(Idx)];
      RFI.clearUsesMap();
      collectUses(RFI, /*CollectStats*/ false);
    }
  }

  /// Helper to initialize all runtime function information for those defined
  /// in OpenMPKinds.def.
  void initializeRuntimeFunctions() {
    Module &M = *((*ModuleSlice.begin())->getParent());

    // Helper macros for handling __VA_ARGS__ in OMP_RTL
#define OMP_TYPE(VarName, ...)                                                 \
  Type *VarName = OMPBuilder.VarName;                                          \
  (void)VarName;

#define OMP_ARRAY_TYPE(VarName, ...)                                           \
  ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
  (void)VarName##Ty;                                                           \
  PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
  (void)VarName##PtrTy;

#define OMP_FUNCTION_TYPE(VarName, ...)                                        \
  FunctionType *VarName = OMPBuilder.VarName;                                  \
  (void)VarName;                                                               \
  PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
  (void)VarName##Ptr;

#define OMP_STRUCT_TYPE(VarName, ...)                                          \
  StructType *VarName = OMPBuilder.VarName;                                    \
  (void)VarName;                                                               \
  PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
  (void)VarName##Ptr;

#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
  {                                                                            \
    SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
    Function *F = M.getFunction(_Name);                                        \
    if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
      auto &RFI = RFIs[_Enum];                                                 \
      RFI.Kind = _Enum;                                                        \
      RFI.Name = _Name;                                                        \
      RFI.IsVarArg = _IsVarArg;                                                \
      RFI.ReturnType = OMPBuilder._ReturnType;                                 \
      RFI.ArgumentTypes = std::move(ArgsTypes);                                \
      RFI.Declaration = F;                                                     \
      unsigned NumUses = collectUses(RFI);                                     \
      (void)NumUses;                                                           \
      LLVM_DEBUG({                                                             \
        dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
               << " found\n";                                                  \
        if (RFI.Declaration)                                                   \
          dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
                 << RFI.getNumFunctionsWithUses()                              \
                 << " different functions.\n";                                 \
      });                                                                      \
    }                                                                          \
  }
#include "llvm/Frontend/OpenMP/OMPKinds.def"

    // TODO: We should attach the attributes defined in OMPKinds.def.
  }

  /// Collection of known kernels (\see Kernel) in the module.
  SmallPtrSetImpl<Kernel> &Kernels;
};

/// Used to map the values physically (in the IR) stored in an offload
/// array, to a vector in memory.
struct OffloadArray {
  /// Physical array (in the IR).
  AllocaInst *Array = nullptr;
  /// Mapped values.
  SmallVector<Value *, 8> StoredValues;
  /// Last stores made in the offload array.
  SmallVector<StoreInst *, 8> LastAccesses;

  OffloadArray() = default;

  /// Initializes the OffloadArray with the values stored in \p Array before
  /// instruction \p Before is reached. Returns false if the initialization
  /// fails.
  /// This MUST be used immediately after the construction of the object.
  bool initialize(AllocaInst &Array, Instruction &Before) {
    if (!Array.getAllocatedType()->isArrayTy())
      return false;

    if (!getValues(Array, Before))
      return false;

    this->Array = &Array;
    return true;
  }

  static const unsigned BasePtrsArgNum = 2;
  static const unsigned PtrsArgNum = 3;
  static const unsigned SizesArgNum = 4;

private:
  /// Traverses the BasicBlock where \p Array is, collecting the stores made to
  /// \p Array, leaving StoredValues with the values stored before the
  /// instruction \p Before is reached.
  bool getValues(AllocaInst &Array, Instruction &Before) {
    // Initialize container.
    const uint64_t NumValues =
        Array.getAllocatedType()->getArrayNumElements();
    StoredValues.assign(NumValues, nullptr);
    LastAccesses.assign(NumValues, nullptr);

    // TODO: This assumes the instruction \p Before is in the same
    //  BasicBlock as Array. Make it general, for any control flow graph.
    BasicBlock *BB = Array.getParent();
    if (BB != Before.getParent())
      return false;

    const DataLayout &DL = Array.getModule()->getDataLayout();
    const unsigned int PointerSize = DL.getPointerSize();

    for (Instruction &I : *BB) {
      if (&I == &Before)
        break;

      if (!isa<StoreInst>(&I))
        continue;

      auto *S = cast<StoreInst>(&I);
      int64_t Offset = -1;
      auto *Dst = GetPointerBaseWithConstantOffset(S->getPointerOperand(),
                                                   Offset, DL);
      if (Dst == &Array) {
        int64_t Idx = Offset / PointerSize;
        StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
        LastAccesses[Idx] = S;
      }
    }

    return isFilled();
  }

  /// Returns true if all values in StoredValues and
  /// LastAccesses are not nullptrs.
  bool isFilled() {
    const unsigned NumValues = StoredValues.size();
    for (unsigned I = 0; I < NumValues; ++I) {
      if (!StoredValues[I] || !LastAccesses[I])
        return false;
    }

    return true;
  }
};

struct OpenMPOpt {

  using OptimizationRemarkGetter =
      function_ref<OptimizationRemarkEmitter &(Function *)>;

  OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
            OptimizationRemarkGetter OREGetter,
            OMPInformationCache &OMPInfoCache, Attributor &A)
      : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
        OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}

  /// Check if any remarks are enabled for openmp-opt
  bool remarksEnabled() {
    auto &Ctx = M.getContext();
    return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
  }

  /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
  bool run() {
    if (SCC.empty())
      return false;

    bool Changed = false;

    LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
                      << " functions in a slice with "
                      << OMPInfoCache.ModuleSlice.size() << " functions\n");

    if (PrintICVValues)
      printICVs();
    if (PrintOpenMPKernels)
      printKernels();

    Changed |= rewriteDeviceCodeStateMachine();

    Changed |= runAttributor();

    // Recollect uses, in case Attributor deleted any.
    OMPInfoCache.recollectUses();

    Changed |= deduplicateRuntimeCalls();
    Changed |= deleteParallelRegions();
    if (HideMemoryTransferLatency)
      Changed |= hideMemTransfersLatency();
    if (remarksEnabled())
      analysisGlobalization();

    return Changed;
  }

  /// Print initial ICV values for testing.
  /// FIXME: This should be done from the Attributor once it is added.
  void printICVs() const {
    InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
                                 ICV_proc_bind};

    for (Function *F : OMPInfoCache.ModuleSlice) {
      for (auto ICV : ICVs) {
        auto ICVInfo = OMPInfoCache.ICVs[ICV];
        auto Remark = [&](OptimizationRemark OR) {
          return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
                    << " Value: "
                    << (ICVInfo.InitValue
                            ? ICVInfo.InitValue->getValue().toString(10, true)
                            : "IMPLEMENTATION_DEFINED");
        };

        emitRemarkOnFunction(F, "OpenMPICVTracker", Remark);
      }
    }
  }

  /// Print OpenMP GPU kernels for testing.
  void printKernels() const {
    for (Function *F : SCC) {
      if (!OMPInfoCache.Kernels.count(F))
        continue;

      auto Remark = [&](OptimizationRemark OR) {
        return OR << "OpenMP GPU kernel "
                  << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
      };

      emitRemarkOnFunction(F, "OpenMPGPU", Remark);
    }
  }

  /// Return the call if \p U is a callee use in a regular call. If \p RFI is
  /// given it has to be the callee or a nullptr is returned.
  static CallInst *getCallIfRegularCall(
      Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
    CallInst *CI = dyn_cast<CallInst>(U.getUser());
    if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
        (!RFI || CI->getCalledFunction() == RFI->Declaration))
      return CI;
    return nullptr;
  }

  /// Return the call if \p V is a regular call. If \p RFI is given it has to be
  /// the callee or a nullptr is returned.
  static CallInst *getCallIfRegularCall(
      Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
    CallInst *CI = dyn_cast<CallInst>(&V);
    if (CI && !CI->hasOperandBundles() &&
        (!RFI || CI->getCalledFunction() == RFI->Declaration))
      return CI;
    return nullptr;
  }

private:
  /// Try to delete parallel regions if possible.
  bool deleteParallelRegions() {
    const unsigned CallbackCalleeOperand = 2;

    OMPInformationCache::RuntimeFunctionInfo &RFI =
        OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];

    if (!RFI.Declaration)
      return false;

    bool Changed = false;
    auto DeleteCallCB = [&](Use &U, Function &) {
      CallInst *CI = getCallIfRegularCall(U);
      if (!CI)
        return false;
      auto *Fn = dyn_cast<Function>(
          CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
      if (!Fn)
        return false;
      if (!Fn->onlyReadsMemory())
        return false;
      if (!Fn->hasFnAttribute(Attribute::WillReturn))
        return false;

      LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
                        << CI->getCaller()->getName() << "\n");

      auto Remark = [&](OptimizationRemark OR) {
        return OR << "Parallel region in "
                  << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName())
                  << " deleted";
      };
      emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion",
                                     Remark);

      CGUpdater.removeCallSite(*CI);
      CI->eraseFromParent();
      Changed = true;
      ++NumOpenMPParallelRegionsDeleted;
      return true;
    };

    RFI.foreachUse(SCC, DeleteCallCB);

    return Changed;
  }

  /// Try to eliminate runtime calls by reusing existing ones.
  bool deduplicateRuntimeCalls() {
    bool Changed = false;

    RuntimeFunction DeduplicableRuntimeCallIDs[] = {
        OMPRTL_omp_get_num_threads,
        OMPRTL_omp_in_parallel,
        OMPRTL_omp_get_cancellation,
        OMPRTL_omp_get_thread_limit,
        OMPRTL_omp_get_supported_active_levels,
        OMPRTL_omp_get_level,
        OMPRTL_omp_get_ancestor_thread_num,
        OMPRTL_omp_get_team_size,
        OMPRTL_omp_get_active_level,
        OMPRTL_omp_in_final,
        OMPRTL_omp_get_proc_bind,
        OMPRTL_omp_get_num_places,
        OMPRTL_omp_get_num_procs,
        OMPRTL_omp_get_place_num,
        OMPRTL_omp_get_partition_num_places,
        OMPRTL_omp_get_partition_place_nums};

    // Global-tid is handled separately.
    SmallSetVector<Value *, 16> GTIdArgs;
    collectGlobalThreadIdArguments(GTIdArgs);
    LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
                      << " global thread ID arguments\n");

    for (Function *F : SCC) {
      for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
        Changed |= deduplicateRuntimeCalls(
            *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);

      // __kmpc_global_thread_num is special as we can replace it with an
      // argument in enough cases to make it worth trying.
      Value *GTIdArg = nullptr;
      for (Argument &Arg : F->args())
        if (GTIdArgs.count(&Arg)) {
          GTIdArg = &Arg;
          break;
        }
      Changed |= deduplicateRuntimeCalls(
          *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
    }

    return Changed;
  }

  /// Tries to hide the latency of runtime calls that involve host to
  /// device memory transfers by splitting them into their "issue" and "wait"
  /// versions. The "issue" is moved upwards as much as possible. The "wait" is
  /// moved downards as much as possible. The "issue" issues the memory transfer
  /// asynchronously, returning a handle. The "wait" waits in the returned
  /// handle for the memory transfer to finish.
  bool hideMemTransfersLatency() {
    auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
    bool Changed = false;
    auto SplitMemTransfers = [&](Use &U, Function &Decl) {
      auto *RTCall = getCallIfRegularCall(U, &RFI);
      if (!RTCall)
        return false;

      OffloadArray OffloadArrays[3];
      if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
        return false;

      LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));

      // TODO: Check if can be moved upwards.
      bool WasSplit = false;
      Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
      if (WaitMovementPoint)
        WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);

      Changed |= WasSplit;
      return WasSplit;
    };
    RFI.foreachUse(SCC, SplitMemTransfers);

    return Changed;
  }

  void analysisGlobalization() {
    RuntimeFunction GlobalizationRuntimeIDs[] = {
        OMPRTL___kmpc_data_sharing_coalesced_push_stack,
        OMPRTL___kmpc_data_sharing_push_stack};

    for (const auto GlobalizationCallID : GlobalizationRuntimeIDs) {
      auto &RFI = OMPInfoCache.RFIs[GlobalizationCallID];

      auto CheckGlobalization = [&](Use &U, Function &Decl) {
        if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
          auto Remark = [&](OptimizationRemarkAnalysis ORA) {
            return ORA
                   << "Found thread data sharing on the GPU. "
                   << "Expect degraded performance due to data globalization.";
          };
          emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization",
                                                 Remark);
        }

        return false;
      };

      RFI.foreachUse(SCC, CheckGlobalization);
    }
    return;
  }

  /// Maps the values stored in the offload arrays passed as arguments to
  /// \p RuntimeCall into the offload arrays in \p OAs.
  bool getValuesInOffloadArrays(CallInst &RuntimeCall,
                                MutableArrayRef<OffloadArray> OAs) {
    assert(OAs.size() == 3 && "Need space for three offload arrays!");

    // A runtime call that involves memory offloading looks something like:
    // call void @__tgt_target_data_begin_mapper(arg0, arg1,
    //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
    // ...)
    // So, the idea is to access the allocas that allocate space for these
    // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
    // Therefore:
    // i8** %offload_baseptrs.
    Value *BasePtrsArg =
        RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
    // i8** %offload_ptrs.
    Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
    // i8** %offload_sizes.
    Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);

    // Get values stored in **offload_baseptrs.
    auto *V = getUnderlyingObject(BasePtrsArg);
    if (!isa<AllocaInst>(V))
      return false;
    auto *BasePtrsArray = cast<AllocaInst>(V);
    if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
      return false;

    // Get values stored in **offload_baseptrs.
    V = getUnderlyingObject(PtrsArg);
    if (!isa<AllocaInst>(V))
      return false;
    auto *PtrsArray = cast<AllocaInst>(V);
    if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
      return false;

    // Get values stored in **offload_sizes.
    V = getUnderlyingObject(SizesArg);
    // If it's a [constant] global array don't analyze it.
    if (isa<GlobalValue>(V))
      return isa<Constant>(V);
    if (!isa<AllocaInst>(V))
      return false;

    auto *SizesArray = cast<AllocaInst>(V);
    if (!OAs[2].initialize(*SizesArray, RuntimeCall))
      return false;

    return true;
  }

  /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
  /// For now this is a way to test that the function getValuesInOffloadArrays
  /// is working properly.
  /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
  void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
    assert(OAs.size() == 3 && "There are three offload arrays to debug!");

    LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
    std::string ValuesStr;
    raw_string_ostream Printer(ValuesStr);
    std::string Separator = " --- ";

    for (auto *BP : OAs[0].StoredValues) {
      BP->print(Printer);
      Printer << Separator;
    }
    LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
    ValuesStr.clear();

    for (auto *P : OAs[1].StoredValues) {
      P->print(Printer);
      Printer << Separator;
    }
    LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
    ValuesStr.clear();

    for (auto *S : OAs[2].StoredValues) {
      S->print(Printer);
      Printer << Separator;
    }
    LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
  }

  /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
  /// moved. Returns nullptr if the movement is not possible, or not worth it.
  Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
    // FIXME: This traverses only the BasicBlock where RuntimeCall is.
    //  Make it traverse the CFG.

    Instruction *CurrentI = &RuntimeCall;
    bool IsWorthIt = false;
    while ((CurrentI = CurrentI->getNextNode())) {

      // TODO: Once we detect the regions to be offloaded we should use the
      //  alias analysis manager to check if CurrentI may modify one of
      //  the offloaded regions.
      if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
        if (IsWorthIt)
          return CurrentI;

        return nullptr;
      }

      // FIXME: For now if we move it over anything without side effect
      //  is worth it.
      IsWorthIt = true;
    }

    // Return end of BasicBlock.
    return RuntimeCall.getParent()->getTerminator();
  }

  /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
  bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
                               Instruction &WaitMovementPoint) {
    // Create stack allocated handle (__tgt_async_info) at the beginning of the
    // function. Used for storing information of the async transfer, allowing to
    // wait on it later.
    auto &IRBuilder = OMPInfoCache.OMPBuilder;
    auto *F = RuntimeCall.getCaller();
    Instruction *FirstInst = &(F->getEntryBlock().front());
    AllocaInst *Handle = new AllocaInst(
        IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);

    // Add "issue" runtime call declaration:
    // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
    //   i8**, i8**, i64*, i64*)
    FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
        M, OMPRTL___tgt_target_data_begin_mapper_issue);

    // Change RuntimeCall call site for its asynchronous version.
    SmallVector<Value *, 8> Args;
    for (auto &Arg : RuntimeCall.args())
      Args.push_back(Arg.get());
    Args.push_back(Handle);

    CallInst *IssueCallsite =
        CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
    RuntimeCall.eraseFromParent();

    // Add "wait" runtime call declaration:
    // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
    FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
        M, OMPRTL___tgt_target_data_begin_mapper_wait);

    // Add call site to WaitDecl.
    const unsigned DeviceIDArgNum = 0;
    Value *WaitParams[2] = {
        IssueCallsite->getArgOperand(DeviceIDArgNum), // device_id.
        Handle                                        // handle to wait on.
    };
    CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);

    return true;
  }

  static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
                                    bool GlobalOnly, bool &SingleChoice) {
    if (CurrentIdent == NextIdent)
      return CurrentIdent;

    // TODO: Figure out how to actually combine multiple debug locations. For
    //       now we just keep an existing one if there is a single choice.
    if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
      SingleChoice = !CurrentIdent;
      return NextIdent;
    }
    return nullptr;
  }

  /// Return an `struct ident_t*` value that represents the ones used in the
  /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
  /// return a local `struct ident_t*`. For now, if we cannot find a suitable
  /// return value we create one from scratch. We also do not yet combine
  /// information, e.g., the source locations, see combinedIdentStruct.
  Value *
  getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
                                 Function &F, bool GlobalOnly) {
    bool SingleChoice = true;
    Value *Ident = nullptr;
    auto CombineIdentStruct = [&](Use &U, Function &Caller) {
      CallInst *CI = getCallIfRegularCall(U, &RFI);
      if (!CI || &F != &Caller)
        return false;
      Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
                                  /* GlobalOnly */ true, SingleChoice);
      return false;
    };
    RFI.foreachUse(SCC, CombineIdentStruct);

    if (!Ident || !SingleChoice) {
      // The IRBuilder uses the insertion block to get to the module, this is
      // unfortunate but we work around it for now.
      if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
        OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
            &F.getEntryBlock(), F.getEntryBlock().begin()));
      // Create a fallback location if non was found.
      // TODO: Use the debug locations of the calls instead.
      Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr();
      Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc);
    }
    return Ident;
  }

  /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
  /// \p ReplVal if given.
  bool deduplicateRuntimeCalls(Function &F,
                               OMPInformationCache::RuntimeFunctionInfo &RFI,
                               Value *ReplVal = nullptr) {
    auto *UV = RFI.getUseVector(F);
    if (!UV || UV->size() + (ReplVal != nullptr) < 2)
      return false;

    LLVM_DEBUG(
        dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
               << (ReplVal ? " with an existing value\n" : "\n") << "\n");

    assert((!ReplVal || (isa<Argument>(ReplVal) &&
                         cast<Argument>(ReplVal)->getParent() == &F)) &&
           "Unexpected replacement value!");

    // TODO: Use dominance to find a good position instead.
    auto CanBeMoved = [this](CallBase &CB) {
      unsigned NumArgs = CB.getNumArgOperands();
      if (NumArgs == 0)
        return true;
      if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
        return false;
      for (unsigned u = 1; u < NumArgs; ++u)
        if (isa<Instruction>(CB.getArgOperand(u)))
          return false;
      return true;
    };

    if (!ReplVal) {
      for (Use *U : *UV)
        if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
          if (!CanBeMoved(*CI))
            continue;

          auto Remark = [&](OptimizationRemark OR) {
            auto newLoc = &*F.getEntryBlock().getFirstInsertionPt();
            return OR << "OpenMP runtime call "
                      << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to "
                      << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc());
          };
          emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark);

          CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
          ReplVal = CI;
          break;
        }
      if (!ReplVal)
        return false;
    }

    // If we use a call as a replacement value we need to make sure the ident is
    // valid at the new location. For now we just pick a global one, either
    // existing and used by one of the calls, or created from scratch.
    if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
      if (CI->getNumArgOperands() > 0 &&
          CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
        Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
                                                      /* GlobalOnly */ true);
        CI->setArgOperand(0, Ident);
      }
    }

    bool Changed = false;
    auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
      CallInst *CI = getCallIfRegularCall(U, &RFI);
      if (!CI || CI == ReplVal || &F != &Caller)
        return false;
      assert(CI->getCaller() == &F && "Unexpected call!");

      auto Remark = [&](OptimizationRemark OR) {
        return OR << "OpenMP runtime call "
                  << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated";
      };
      emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark);

      CGUpdater.removeCallSite(*CI);
      CI->replaceAllUsesWith(ReplVal);
      CI->eraseFromParent();
      ++NumOpenMPRuntimeCallsDeduplicated;
      Changed = true;
      return true;
    };
    RFI.foreachUse(SCC, ReplaceAndDeleteCB);

    return Changed;
  }

  /// Collect arguments that represent the global thread id in \p GTIdArgs.
  void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
    // TODO: Below we basically perform a fixpoint iteration with a pessimistic
    //       initialization. We could define an AbstractAttribute instead and
    //       run the Attributor here once it can be run as an SCC pass.

    // Helper to check the argument \p ArgNo at all call sites of \p F for
    // a GTId.
    auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
      if (!F.hasLocalLinkage())
        return false;
      for (Use &U : F.uses()) {
        if (CallInst *CI = getCallIfRegularCall(U)) {
          Value *ArgOp = CI->getArgOperand(ArgNo);
          if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
              getCallIfRegularCall(
                  *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
            continue;
        }
        return false;
      }
      return true;
    };

    // Helper to identify uses of a GTId as GTId arguments.
    auto AddUserArgs = [&](Value &GTId) {
      for (Use &U : GTId.uses())
        if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
          if (CI->isArgOperand(&U))
            if (Function *Callee = CI->getCalledFunction())
              if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
                GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
    };

    // The argument users of __kmpc_global_thread_num calls are GTIds.
    OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
        OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];

    GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
      if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
        AddUserArgs(*CI);
      return false;
    });

    // Transitively search for more arguments by looking at the users of the
    // ones we know already. During the search the GTIdArgs vector is extended
    // so we cannot cache the size nor can we use a range based for.
    for (unsigned u = 0; u < GTIdArgs.size(); ++u)
      AddUserArgs(*GTIdArgs[u]);
  }

  /// Kernel (=GPU) optimizations and utility functions
  ///
  ///{{

  /// Check if \p F is a kernel, hence entry point for target offloading.
  bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }

  /// Cache to remember the unique kernel for a function.
  DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;

  /// Find the unique kernel that will execute \p F, if any.
  Kernel getUniqueKernelFor(Function &F);

  /// Find the unique kernel that will execute \p I, if any.
  Kernel getUniqueKernelFor(Instruction &I) {
    return getUniqueKernelFor(*I.getFunction());
  }

  /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
  /// the cases we can avoid taking the address of a function.
  bool rewriteDeviceCodeStateMachine();

  ///
  ///}}

  /// Emit a remark generically
  ///
  /// This template function can be used to generically emit a remark. The
  /// RemarkKind should be one of the following:
  ///   - OptimizationRemark to indicate a successful optimization attempt
  ///   - OptimizationRemarkMissed to report a failed optimization attempt
  ///   - OptimizationRemarkAnalysis to provide additional information about an
  ///     optimization attempt
  ///
  /// The remark is built using a callback function provided by the caller that
  /// takes a RemarkKind as input and returns a RemarkKind.
  template <typename RemarkKind,
            typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>>
  void emitRemark(Instruction *Inst, StringRef RemarkName,
                  RemarkCallBack &&RemarkCB) const {
    Function *F = Inst->getParent()->getParent();
    auto &ORE = OREGetter(F);

    ORE.emit(
        [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); });
  }

  /// Emit a remark on a function. Since only OptimizationRemark is supporting
  /// this, it can't be made generic.
  void
  emitRemarkOnFunction(Function *F, StringRef RemarkName,
                       function_ref<OptimizationRemark(OptimizationRemark &&)>
                           &&RemarkCB) const {
    auto &ORE = OREGetter(F);

    ORE.emit([&]() {
      return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F));
    });
  }

  /// The underlying module.
  Module &M;

  /// The SCC we are operating on.
  SmallVectorImpl<Function *> &SCC;

  /// Callback to update the call graph, the first argument is a removed call,
  /// the second an optional replacement call.
  CallGraphUpdater &CGUpdater;

  /// Callback to get an OptimizationRemarkEmitter from a Function *
  OptimizationRemarkGetter OREGetter;

  /// OpenMP-specific information cache. Also Used for Attributor runs.
  OMPInformationCache &OMPInfoCache;

  /// Attributor instance.
  Attributor &A;

  /// Helper function to run Attributor on SCC.
  bool runAttributor() {
    if (SCC.empty())
      return false;

    registerAAs();

    ChangeStatus Changed = A.run();

    LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
                      << " functions, result: " << Changed << ".\n");

    return Changed == ChangeStatus::CHANGED;
  }

  /// Populate the Attributor with abstract attribute opportunities in the
  /// function.
  void registerAAs() {
    if (SCC.empty())
      return;

    // Create CallSite AA for all Getters.
    for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
      auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];

      auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];

      auto CreateAA = [&](Use &U, Function &Caller) {
        CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
        if (!CI)
          return false;

        auto &CB = cast<CallBase>(*CI);

        IRPosition CBPos = IRPosition::callsite_function(CB);
        A.getOrCreateAAFor<AAICVTracker>(CBPos);
        return false;
      };

      GetterRFI.foreachUse(SCC, CreateAA);
    }
  }
};

Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
  if (!OMPInfoCache.ModuleSlice.count(&F))
    return nullptr;

  // Use a scope to keep the lifetime of the CachedKernel short.
  {
    Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
    if (CachedKernel)
      return *CachedKernel;

    // TODO: We should use an AA to create an (optimistic and callback
    //       call-aware) call graph. For now we stick to simple patterns that
    //       are less powerful, basically the worst fixpoint.
    if (isKernel(F)) {
      CachedKernel = Kernel(&F);
      return *CachedKernel;
    }

    CachedKernel = nullptr;
    if (!F.hasLocalLinkage())
      return nullptr;
  }

  auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
    if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
      // Allow use in equality comparisons.
      if (Cmp->isEquality())
        return getUniqueKernelFor(*Cmp);
      return nullptr;
    }
    if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
      // Allow direct calls.
      if (CB->isCallee(&U))
        return getUniqueKernelFor(*CB);
      // Allow the use in __kmpc_kernel_prepare_parallel calls.
      if (Function *Callee = CB->getCalledFunction())
        if (Callee->getName() == "__kmpc_kernel_prepare_parallel")
          return getUniqueKernelFor(*CB);
      return nullptr;
    }
    // Disallow every other use.
    return nullptr;
  };

  // TODO: In the future we want to track more than just a unique kernel.
  SmallPtrSet<Kernel, 2> PotentialKernels;
  OMPInformationCache::foreachUse(F, [&](const Use &U) {
    PotentialKernels.insert(GetUniqueKernelForUse(U));
  });

  Kernel K = nullptr;
  if (PotentialKernels.size() == 1)
    K = *PotentialKernels.begin();

  // Cache the result.
  UniqueKernelMap[&F] = K;

  return K;
}

bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
  OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI =
      OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel];

  bool Changed = false;
  if (!KernelPrepareParallelRFI)
    return Changed;

  for (Function *F : SCC) {

    // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at
    // all.
    bool UnknownUse = false;
    bool KernelPrepareUse = false;
    unsigned NumDirectCalls = 0;

    SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
    OMPInformationCache::foreachUse(*F, [&](Use &U) {
      if (auto *CB = dyn_cast<CallBase>(U.getUser()))
        if (CB->isCallee(&U)) {
          ++NumDirectCalls;
          return;
        }

      if (isa<ICmpInst>(U.getUser())) {
        ToBeReplacedStateMachineUses.push_back(&U);
        return;
      }
      if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall(
                                   *U.getUser(), &KernelPrepareParallelRFI)) {
        KernelPrepareUse = true;
        ToBeReplacedStateMachineUses.push_back(&U);
        return;
      }
      UnknownUse = true;
    });

    // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel
    // use.
    if (!KernelPrepareUse)
      continue;

    {
      auto Remark = [&](OptimizationRemark OR) {
        return OR << "Found a parallel region that is called in a target "
                     "region but not part of a combined target construct nor "
                     "nesed inside a target construct without intermediate "
                     "code. This can lead to excessive register usage for "
                     "unrelated target regions in the same translation unit "
                     "due to spurious call edges assumed by ptxas.";
      };
      emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark);
    }

    // If this ever hits, we should investigate.
    // TODO: Checking the number of uses is not a necessary restriction and
    // should be lifted.
    if (UnknownUse || NumDirectCalls != 1 ||
        ToBeReplacedStateMachineUses.size() != 2) {
      {
        auto Remark = [&](OptimizationRemark OR) {
          return OR << "Parallel region is used in "
                    << (UnknownUse ? "unknown" : "unexpected")
                    << " ways; will not attempt to rewrite the state machine.";
        };
        emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark);
      }
      continue;
    }

    // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give
    // up if the function is not called from a unique kernel.
    Kernel K = getUniqueKernelFor(*F);
    if (!K) {
      {
        auto Remark = [&](OptimizationRemark OR) {
          return OR << "Parallel region is not known to be called from a "
                       "unique single target region, maybe the surrounding "
                       "function has external linkage?; will not attempt to "
                       "rewrite the state machine use.";
        };
        emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl",
                             Remark);
      }
      continue;
    }

    // We now know F is a parallel body function called only from the kernel K.
    // We also identified the state machine uses in which we replace the
    // function pointer by a new global symbol for identification purposes. This
    // ensures only direct calls to the function are left.

    {
      auto RemarkParalleRegion = [&](OptimizationRemark OR) {
        return OR << "Specialize parallel region that is only reached from a "
                     "single target region to avoid spurious call edges and "
                     "excessive register usage in other target regions. "
                     "(parallel region ID: "
                  << ore::NV("OpenMPParallelRegion", F->getName())
                  << ", kernel ID: "
                  << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
      };
      emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD",
                           RemarkParalleRegion);
      auto RemarkKernel = [&](OptimizationRemark OR) {
        return OR << "Target region containing the parallel region that is "
                     "specialized. (parallel region ID: "
                  << ore::NV("OpenMPParallelRegion", F->getName())
                  << ", kernel ID: "
                  << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
      };
      emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel);
    }

    Module &M = *F->getParent();
    Type *Int8Ty = Type::getInt8Ty(M.getContext());

    auto *ID = new GlobalVariable(
        M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
        UndefValue::get(Int8Ty), F->getName() + ".ID");

    for (Use *U : ToBeReplacedStateMachineUses)
      U->set(ConstantExpr::getBitCast(ID, U->get()->getType()));

    ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;

    Changed = true;
  }

  return Changed;
}

/// Abstract Attribute for tracking ICV values.
struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
  AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}

  void initialize(Attributor &A) override {
    Function *F = getAnchorScope();
    if (!F || !A.isFunctionIPOAmendable(*F))
      indicatePessimisticFixpoint();
  }

  /// Returns true if value is assumed to be tracked.
  bool isAssumedTracked() const { return getAssumed(); }

  /// Returns true if value is known to be tracked.
  bool isKnownTracked() const { return getAssumed(); }

  /// Create an abstract attribute biew for the position \p IRP.
  static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);

  /// Return the value with which \p I can be replaced for specific \p ICV.
  virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
                                                const Instruction *I,
                                                Attributor &A) const {
    return None;
  }

  /// Return an assumed unique ICV value if a single candidate is found. If
  /// there cannot be one, return a nullptr. If it is not clear yet, return the
  /// Optional::NoneType.
  virtual Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const = 0;

  // Currently only nthreads is being tracked.
  // this array will only grow with time.
  InternalControlVar TrackableICVs[1] = {ICV_nthreads};

  /// See AbstractAttribute::getName()
  const std::string getName() const override { return "AAICVTracker"; }

  /// See AbstractAttribute::getIdAddr()
  const char *getIdAddr() const override { return &ID; }

  /// This function should return true if the type of the \p AA is AAICVTracker
  static bool classof(const AbstractAttribute *AA) {
    return (AA->getIdAddr() == &ID);
  }

  static const char ID;
};

struct AAICVTrackerFunction : public AAICVTracker {
  AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  // FIXME: come up with better string.
  const std::string getAsStr() const override { return "ICVTrackerFunction"; }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  /// We don't manifest anything for this AA.
  ChangeStatus manifest(Attributor &A) override {
    return ChangeStatus::UNCHANGED;
  }

  // Map of ICV to their values at specific program point.
  EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVReplacementValuesMap;

  ChangeStatus updateImpl(Attributor &A) override {
    ChangeStatus HasChanged = ChangeStatus::UNCHANGED;

    Function *F = getAnchorScope();

    auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());

    for (InternalControlVar ICV : TrackableICVs) {
      auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];

      auto &ValuesMap = ICVReplacementValuesMap[ICV];
      auto TrackValues = [&](Use &U, Function &) {
        CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
        if (!CI)
          return false;

        // FIXME: handle setters with more that 1 arguments.
        /// Track new value.
        if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
          HasChanged = ChangeStatus::CHANGED;

        return false;
      };

      auto CallCheck = [&](Instruction &I) {
        Optional<Value *> ReplVal = getValueForCall(A, &I, ICV);
        if (ReplVal.hasValue() &&
            ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
          HasChanged = ChangeStatus::CHANGED;

        return true;
      };

      // Track all changes of an ICV.
      SetterRFI.foreachUse(TrackValues, F);

      A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
                                /* CheckBBLivenessOnly */ true);

      /// TODO: Figure out a way to avoid adding entry in
      /// ICVReplacementValuesMap
      Instruction *Entry = &F->getEntryBlock().front();
      if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
        ValuesMap.insert(std::make_pair(Entry, nullptr));
    }

    return HasChanged;
  }

  /// Hepler to check if \p I is a call and get the value for it if it is
  /// unique.
  Optional<Value *> getValueForCall(Attributor &A, const Instruction *I,
                                    InternalControlVar &ICV) const {

    const auto *CB = dyn_cast<CallBase>(I);
    if (!CB)
      return None;

    auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
    auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
    auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
    Function *CalledFunction = CB->getCalledFunction();

    // Indirect call, assume ICV changes.
    if (CalledFunction == nullptr)
      return nullptr;
    if (CalledFunction == GetterRFI.Declaration)
      return None;
    if (CalledFunction == SetterRFI.Declaration) {
      if (ICVReplacementValuesMap[ICV].count(I))
        return ICVReplacementValuesMap[ICV].lookup(I);

      return nullptr;
    }

    // Since we don't know, assume it changes the ICV.
    if (CalledFunction->isDeclaration())
      return nullptr;

    const auto &ICVTrackingAA =
        A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB));

    if (ICVTrackingAA.isAssumedTracked())
      return ICVTrackingAA.getUniqueReplacementValue(ICV);

    // If we don't know, assume it changes.
    return nullptr;
  }

  // We don't check unique value for a function, so return None.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return None;
  }

  /// Return the value with which \p I can be replaced for specific \p ICV.
  Optional<Value *> getReplacementValue(InternalControlVar ICV,
                                        const Instruction *I,
                                        Attributor &A) const override {
    const auto &ValuesMap = ICVReplacementValuesMap[ICV];
    if (ValuesMap.count(I))
      return ValuesMap.lookup(I);

    SmallVector<const Instruction *, 16> Worklist;
    SmallPtrSet<const Instruction *, 16> Visited;
    Worklist.push_back(I);

    Optional<Value *> ReplVal;

    while (!Worklist.empty()) {
      const Instruction *CurrInst = Worklist.pop_back_val();
      if (!Visited.insert(CurrInst).second)
        continue;

      const BasicBlock *CurrBB = CurrInst->getParent();

      // Go up and look for all potential setters/calls that might change the
      // ICV.
      while ((CurrInst = CurrInst->getPrevNode())) {
        if (ValuesMap.count(CurrInst)) {
          Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
          // Unknown value, track new.
          if (!ReplVal.hasValue()) {
            ReplVal = NewReplVal;
            break;
          }

          // If we found a new value, we can't know the icv value anymore.
          if (NewReplVal.hasValue())
            if (ReplVal != NewReplVal)
              return nullptr;

          break;
        }

        Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV);
        if (!NewReplVal.hasValue())
          continue;

        // Unknown value, track new.
        if (!ReplVal.hasValue()) {
          ReplVal = NewReplVal;
          break;
        }

        // if (NewReplVal.hasValue())
        // We found a new value, we can't know the icv value anymore.
        if (ReplVal != NewReplVal)
          return nullptr;
      }

      // If we are in the same BB and we have a value, we are done.
      if (CurrBB == I->getParent() && ReplVal.hasValue())
        return ReplVal;

      // Go through all predecessors and add terminators for analysis.
      for (const BasicBlock *Pred : predecessors(CurrBB))
        if (const Instruction *Terminator = Pred->getTerminator())
          Worklist.push_back(Terminator);
    }

    return ReplVal;
  }
};

struct AAICVTrackerFunctionReturned : AAICVTracker {
  AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  // FIXME: come up with better string.
  const std::string getAsStr() const override {
    return "ICVTrackerFunctionReturned";
  }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  /// We don't manifest anything for this AA.
  ChangeStatus manifest(Attributor &A) override {
    return ChangeStatus::UNCHANGED;
  }

  // Map of ICV to their values at specific program point.
  EnumeratedArray<Optional<Value *>, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVReplacementValuesMap;

  /// Return the value with which \p I can be replaced for specific \p ICV.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return ICVReplacementValuesMap[ICV];
  }

  ChangeStatus updateImpl(Attributor &A) override {
    ChangeStatus Changed = ChangeStatus::UNCHANGED;
    const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
        *this, IRPosition::function(*getAnchorScope()));

    if (!ICVTrackingAA.isAssumedTracked())
      return indicatePessimisticFixpoint();

    for (InternalControlVar ICV : TrackableICVs) {
      Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
      Optional<Value *> UniqueICVValue;

      auto CheckReturnInst = [&](Instruction &I) {
        Optional<Value *> NewReplVal =
            ICVTrackingAA.getReplacementValue(ICV, &I, A);

        // If we found a second ICV value there is no unique returned value.
        if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
          return false;

        UniqueICVValue = NewReplVal;

        return true;
      };

      if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
                                     /* CheckBBLivenessOnly */ true))
        UniqueICVValue = nullptr;

      if (UniqueICVValue == ReplVal)
        continue;

      ReplVal = UniqueICVValue;
      Changed = ChangeStatus::CHANGED;
    }

    return Changed;
  }
};

struct AAICVTrackerCallSite : AAICVTracker {
  AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  void initialize(Attributor &A) override {
    Function *F = getAnchorScope();
    if (!F || !A.isFunctionIPOAmendable(*F))
      indicatePessimisticFixpoint();

    // We only initialize this AA for getters, so we need to know which ICV it
    // gets.
    auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
    for (InternalControlVar ICV : TrackableICVs) {
      auto ICVInfo = OMPInfoCache.ICVs[ICV];
      auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
      if (Getter.Declaration == getAssociatedFunction()) {
        AssociatedICV = ICVInfo.Kind;
        return;
      }
    }

    /// Unknown ICV.
    indicatePessimisticFixpoint();
  }

  ChangeStatus manifest(Attributor &A) override {
    if (!ReplVal.hasValue() || !ReplVal.getValue())
      return ChangeStatus::UNCHANGED;

    A.changeValueAfterManifest(*getCtxI(), **ReplVal);
    A.deleteAfterManifest(*getCtxI());

    return ChangeStatus::CHANGED;
  }

  // FIXME: come up with better string.
  const std::string getAsStr() const override { return "ICVTrackerCallSite"; }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  InternalControlVar AssociatedICV;
  Optional<Value *> ReplVal;

  ChangeStatus updateImpl(Attributor &A) override {
    const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
        *this, IRPosition::function(*getAnchorScope()));

    // We don't have any information, so we assume it changes the ICV.
    if (!ICVTrackingAA.isAssumedTracked())
      return indicatePessimisticFixpoint();

    Optional<Value *> NewReplVal =
        ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);

    if (ReplVal == NewReplVal)
      return ChangeStatus::UNCHANGED;

    ReplVal = NewReplVal;
    return ChangeStatus::CHANGED;
  }

  // Return the value with which associated value can be replaced for specific
  // \p ICV.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return ReplVal;
  }
};

struct AAICVTrackerCallSiteReturned : AAICVTracker {
  AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
      : AAICVTracker(IRP, A) {}

  // FIXME: come up with better string.
  const std::string getAsStr() const override {
    return "ICVTrackerCallSiteReturned";
  }

  // FIXME: come up with some stats.
  void trackStatistics() const override {}

  /// We don't manifest anything for this AA.
  ChangeStatus manifest(Attributor &A) override {
    return ChangeStatus::UNCHANGED;
  }

  // Map of ICV to their values at specific program point.
  EnumeratedArray<Optional<Value *>, InternalControlVar,
                  InternalControlVar::ICV___last>
      ICVReplacementValuesMap;

  /// Return the value with which associated value can be replaced for specific
  /// \p ICV.
  Optional<Value *>
  getUniqueReplacementValue(InternalControlVar ICV) const override {
    return ICVReplacementValuesMap[ICV];
  }

  ChangeStatus updateImpl(Attributor &A) override {
    ChangeStatus Changed = ChangeStatus::UNCHANGED;
    const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
        *this, IRPosition::returned(*getAssociatedFunction()));

    // We don't have any information, so we assume it changes the ICV.
    if (!ICVTrackingAA.isAssumedTracked())
      return indicatePessimisticFixpoint();

    for (InternalControlVar ICV : TrackableICVs) {
      Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
      Optional<Value *> NewReplVal =
          ICVTrackingAA.getUniqueReplacementValue(ICV);

      if (ReplVal == NewReplVal)
        continue;

      ReplVal = NewReplVal;
      Changed = ChangeStatus::CHANGED;
    }
    return Changed;
  }
};
} // namespace

const char AAICVTracker::ID = 0;

AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
                                              Attributor &A) {
  AAICVTracker *AA = nullptr;
  switch (IRP.getPositionKind()) {
  case IRPosition::IRP_INVALID:
  case IRPosition::IRP_FLOAT:
  case IRPosition::IRP_ARGUMENT:
  case IRPosition::IRP_CALL_SITE_ARGUMENT:
    llvm_unreachable("ICVTracker can only be created for function position!");
  case IRPosition::IRP_RETURNED:
    AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
    break;
  case IRPosition::IRP_CALL_SITE_RETURNED:
    AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
    break;
  case IRPosition::IRP_CALL_SITE:
    AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
    break;
  case IRPosition::IRP_FUNCTION:
    AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
    break;
  }

  return *AA;
}

PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C,
                                     CGSCCAnalysisManager &AM,
                                     LazyCallGraph &CG, CGSCCUpdateResult &UR) {
  if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule))
    return PreservedAnalyses::all();

  if (DisableOpenMPOptimizations)
    return PreservedAnalyses::all();

  SmallVector<Function *, 16> SCC;
  // If there are kernels in the module, we have to run on all SCC's.
  bool SCCIsInteresting = !OMPInModule.getKernels().empty();
  for (LazyCallGraph::Node &N : C) {
    Function *Fn = &N.getFunction();
    SCC.push_back(Fn);

    // Do we already know that the SCC contains kernels,
    // or that OpenMP functions are called from this SCC?
    if (SCCIsInteresting)
      continue;
    // If not, let's check that.
    SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
  }

  if (!SCCIsInteresting || SCC.empty())
    return PreservedAnalyses::all();

  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();

  AnalysisGetter AG(FAM);

  auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
  };

  CallGraphUpdater CGUpdater;
  CGUpdater.initialize(CG, C, AM, UR);

  SetVector<Function *> Functions(SCC.begin(), SCC.end());
  BumpPtrAllocator Allocator;
  OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
                                /*CGSCC*/ Functions, OMPInModule.getKernels());

  Attributor A(Functions, InfoCache, CGUpdater);

  OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
  bool Changed = OMPOpt.run();
  if (Changed)
    return PreservedAnalyses::none();

  return PreservedAnalyses::all();
}

namespace {

struct OpenMPOptLegacyPass : public CallGraphSCCPass {
  CallGraphUpdater CGUpdater;
  OpenMPInModule OMPInModule;
  static char ID;

  OpenMPOptLegacyPass() : CallGraphSCCPass(ID) {
    initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    CallGraphSCCPass::getAnalysisUsage(AU);
  }

  bool doInitialization(CallGraph &CG) override {
    // Disable the pass if there is no OpenMP (runtime call) in the module.
    containsOpenMP(CG.getModule(), OMPInModule);
    return false;
  }

  bool runOnSCC(CallGraphSCC &CGSCC) override {
    if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule))
      return false;
    if (DisableOpenMPOptimizations || skipSCC(CGSCC))
      return false;

    SmallVector<Function *, 16> SCC;
    // If there are kernels in the module, we have to run on all SCC's.
    bool SCCIsInteresting = !OMPInModule.getKernels().empty();
    for (CallGraphNode *CGN : CGSCC) {
      Function *Fn = CGN->getFunction();
      if (!Fn || Fn->isDeclaration())
        continue;
      SCC.push_back(Fn);

      // Do we already know that the SCC contains kernels,
      // or that OpenMP functions are called from this SCC?
      if (SCCIsInteresting)
        continue;
      // If not, let's check that.
      SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
    }

    if (!SCCIsInteresting || SCC.empty())
      return false;

    CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    CGUpdater.initialize(CG, CGSCC);

    // Maintain a map of functions to avoid rebuilding the ORE
    DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
    auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
      std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
      if (!ORE)
        ORE = std::make_unique<OptimizationRemarkEmitter>(F);
      return *ORE;
    };

    AnalysisGetter AG;
    SetVector<Function *> Functions(SCC.begin(), SCC.end());
    BumpPtrAllocator Allocator;
    OMPInformationCache InfoCache(
        *(Functions.back()->getParent()), AG, Allocator,
        /*CGSCC*/ Functions, OMPInModule.getKernels());

    Attributor A(Functions, InfoCache, CGUpdater);

    OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
    return OMPOpt.run();
  }

  bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
};

} // end anonymous namespace

void OpenMPInModule::identifyKernels(Module &M) {

  NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
  if (!MD)
    return;

  for (auto *Op : MD->operands()) {
    if (Op->getNumOperands() < 2)
      continue;
    MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
    if (!KindID || KindID->getString() != "kernel")
      continue;

    Function *KernelFn =
        mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
    if (!KernelFn)
      continue;

    ++NumOpenMPTargetRegionKernels;

    Kernels.insert(KernelFn);
  }
}

bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) {
  if (OMPInModule.isKnown())
    return OMPInModule;

  auto RecordFunctionsContainingUsesOf = [&](Function *F) {
    for (User *U : F->users())
      if (auto *I = dyn_cast<Instruction>(U))
        OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction());
  };

  // MSVC doesn't like long if-else chains for some reason and instead just
  // issues an error. Work around it..
  do {
#define OMP_RTL(_Enum, _Name, ...)                                             \
  if (Function *F = M.getFunction(_Name)) {                                    \
    RecordFunctionsContainingUsesOf(F);                                        \
    OMPInModule = true;                                                        \
  }
#include "llvm/Frontend/OpenMP/OMPKinds.def"
  } while (false);

  // Identify kernels once. TODO: We should split the OMPInformationCache into a
  // module and an SCC part. The kernel information, among other things, could
  // go into the module part.
  if (OMPInModule.isKnown() && OMPInModule) {
    OMPInModule.identifyKernels(M);
    return true;
  }

  return OMPInModule = false;
}

char OpenMPOptLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt",
                      "OpenMP specific optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt",
                    "OpenMP specific optimizations", false, false)

Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); }