PartialInlining.cpp 56.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
//===- PartialInlining.cpp - Inline parts of functions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs partial inlining, typically by inlining an if statement
// that surrounds the body of the function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/PartialInlining.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <memory>
#include <tuple>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "partial-inlining"

STATISTIC(NumPartialInlined,
          "Number of callsites functions partially inlined into.");
STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
                                        "cold outlined regions were partially "
                                        "inlined into its caller(s).");
STATISTIC(NumColdRegionsFound,
           "Number of cold single entry/exit regions found.");
STATISTIC(NumColdRegionsOutlined,
           "Number of cold single entry/exit regions outlined.");

// Command line option to disable partial-inlining. The default is false:
static cl::opt<bool>
    DisablePartialInlining("disable-partial-inlining", cl::init(false),
                           cl::Hidden, cl::desc("Disable partial inlining"));
// Command line option to disable multi-region partial-inlining. The default is
// false:
static cl::opt<bool> DisableMultiRegionPartialInline(
    "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
    cl::desc("Disable multi-region partial inlining"));

// Command line option to force outlining in regions with live exit variables.
// The default is false:
static cl::opt<bool>
    ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
               cl::desc("Force outline regions with live exits"));

// Command line option to enable marking outline functions with Cold Calling
// Convention. The default is false:
static cl::opt<bool>
    MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
                       cl::desc("Mark outline function calls with ColdCC"));

#ifndef NDEBUG
// Command line option to debug partial-inlining. The default is none:
static cl::opt<bool> TracePartialInlining("trace-partial-inlining",
                                          cl::init(false), cl::Hidden,
                                          cl::desc("Trace partial inlining."));
#endif

// This is an option used by testing:
static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
                                      cl::init(false), cl::ZeroOrMore,
                                      cl::ReallyHidden,
                                      cl::desc("Skip Cost Analysis"));
// Used to determine if a cold region is worth outlining based on
// its inlining cost compared to the original function.  Default is set at 10%.
// ie. if the cold region reduces the inlining cost of the original function by
// at least 10%.
static cl::opt<float> MinRegionSizeRatio(
    "min-region-size-ratio", cl::init(0.1), cl::Hidden,
    cl::desc("Minimum ratio comparing relative sizes of each "
             "outline candidate and original function"));
// Used to tune the minimum number of execution counts needed in the predecessor
// block to the cold edge. ie. confidence interval.
static cl::opt<unsigned>
    MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
                             cl::desc("Minimum block executions to consider "
                                      "its BranchProbabilityInfo valid"));
// Used to determine when an edge is considered cold. Default is set to 10%. ie.
// if the branch probability is 10% or less, then it is deemed as 'cold'.
static cl::opt<float> ColdBranchRatio(
    "cold-branch-ratio", cl::init(0.1), cl::Hidden,
    cl::desc("Minimum BranchProbability to consider a region cold."));

static cl::opt<unsigned> MaxNumInlineBlocks(
    "max-num-inline-blocks", cl::init(5), cl::Hidden,
    cl::desc("Max number of blocks to be partially inlined"));

// Command line option to set the maximum number of partial inlining allowed
// for the module. The default value of -1 means no limit.
static cl::opt<int> MaxNumPartialInlining(
    "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
    cl::desc("Max number of partial inlining. The default is unlimited"));

// Used only when PGO or user annotated branch data is absent. It is
// the least value that is used to weigh the outline region. If BFI
// produces larger value, the BFI value will be used.
static cl::opt<int>
    OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
                             cl::Hidden, cl::ZeroOrMore,
                             cl::desc("Relative frequency of outline region to "
                                      "the entry block"));

static cl::opt<unsigned> ExtraOutliningPenalty(
    "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
    cl::desc("A debug option to add additional penalty to the computed one."));

namespace {

struct FunctionOutliningInfo {
  FunctionOutliningInfo() = default;

  // Returns the number of blocks to be inlined including all blocks
  // in Entries and one return block.
  unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }

  // A set of blocks including the function entry that guard
  // the region to be outlined.
  SmallVector<BasicBlock *, 4> Entries;

  // The return block that is not included in the outlined region.
  BasicBlock *ReturnBlock = nullptr;

  // The dominating block of the region to be outlined.
  BasicBlock *NonReturnBlock = nullptr;

  // The set of blocks in Entries that that are predecessors to ReturnBlock
  SmallVector<BasicBlock *, 4> ReturnBlockPreds;
};

struct FunctionOutliningMultiRegionInfo {
  FunctionOutliningMultiRegionInfo()
      : ORI() {}

  // Container for outline regions
  struct OutlineRegionInfo {
    OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
                      BasicBlock *EntryBlock, BasicBlock *ExitBlock,
                      BasicBlock *ReturnBlock)
        : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
          ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
    SmallVector<BasicBlock *, 8> Region;
    BasicBlock *EntryBlock;
    BasicBlock *ExitBlock;
    BasicBlock *ReturnBlock;
  };

  SmallVector<OutlineRegionInfo, 4> ORI;
};

struct PartialInlinerImpl {

  PartialInlinerImpl(
      function_ref<AssumptionCache &(Function &)> GetAC,
      function_ref<AssumptionCache *(Function &)> LookupAC,
      function_ref<TargetTransformInfo &(Function &)> GTTI,
      function_ref<const TargetLibraryInfo &(Function &)> GTLI,
      ProfileSummaryInfo &ProfSI,
      function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr)
      : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
        GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {}

  bool run(Module &M);
  // Main part of the transformation that calls helper functions to find
  // outlining candidates, clone & outline the function, and attempt to
  // partially inline the resulting function. Returns true if
  // inlining was successful, false otherwise.  Also returns the outline
  // function (only if we partially inlined early returns) as there is a
  // possibility to further "peel" early return statements that were left in the
  // outline function due to code size.
  std::pair<bool, Function *> unswitchFunction(Function *F);

  // This class speculatively clones the function to be partial inlined.
  // At the end of partial inlining, the remaining callsites to the cloned
  // function that are not partially inlined will be fixed up to reference
  // the original function, and the cloned function will be erased.
  struct FunctionCloner {
    // Two constructors, one for single region outlining, the other for
    // multi-region outlining.
    FunctionCloner(Function *F, FunctionOutliningInfo *OI,
                   OptimizationRemarkEmitter &ORE,
                   function_ref<AssumptionCache *(Function &)> LookupAC,
                   function_ref<TargetTransformInfo &(Function &)> GetTTI);
    FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
                   OptimizationRemarkEmitter &ORE,
                   function_ref<AssumptionCache *(Function &)> LookupAC,
                   function_ref<TargetTransformInfo &(Function &)> GetTTI);

    ~FunctionCloner();

    // Prepare for function outlining: making sure there is only
    // one incoming edge from the extracted/outlined region to
    // the return block.
    void NormalizeReturnBlock();

    // Do function outlining for cold regions.
    bool doMultiRegionFunctionOutlining();
    // Do function outlining for region after early return block(s).
    // NOTE: For vararg functions that do the vararg handling in the outlined
    //       function, we temporarily generate IR that does not properly
    //       forward varargs to the outlined function. Calling InlineFunction
    //       will update calls to the outlined functions to properly forward
    //       the varargs.
    Function *doSingleRegionFunctionOutlining();

    Function *OrigFunc = nullptr;
    Function *ClonedFunc = nullptr;

    typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
    // Keep track of Outlined Functions and the basic block they're called from.
    SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;

    // ClonedFunc is inlined in one of its callers after function
    // outlining.
    bool IsFunctionInlined = false;
    // The cost of the region to be outlined.
    int OutlinedRegionCost = 0;
    // ClonedOI is specific to outlining non-early return blocks.
    std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
    // ClonedOMRI is specific to outlining cold regions.
    std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
    std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
    OptimizationRemarkEmitter &ORE;
    function_ref<AssumptionCache *(Function &)> LookupAC;
    function_ref<TargetTransformInfo &(Function &)> GetTTI;
  };

private:
  int NumPartialInlining = 0;
  function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
  function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
  function_ref<TargetTransformInfo &(Function &)> GetTTI;
  function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
  function_ref<const TargetLibraryInfo &(Function &)> GetTLI;
  ProfileSummaryInfo &PSI;

  // Return the frequency of the OutlininingBB relative to F's entry point.
  // The result is no larger than 1 and is represented using BP.
  // (Note that the outlined region's 'head' block can only have incoming
  // edges from the guarding entry blocks).
  BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner);

  // Return true if the callee of CB should be partially inlined with
  // profit.
  bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner,
                           BlockFrequency WeightedOutliningRcost,
                           OptimizationRemarkEmitter &ORE);

  // Try to inline DuplicateFunction (cloned from F with call to
  // the OutlinedFunction into its callers. Return true
  // if there is any successful inlining.
  bool tryPartialInline(FunctionCloner &Cloner);

  // Compute the mapping from use site of DuplicationFunction to the enclosing
  // BB's profile count.
  void computeCallsiteToProfCountMap(Function *DuplicateFunction,
                                     DenseMap<User *, uint64_t> &SiteCountMap);

  bool IsLimitReached() {
    return (MaxNumPartialInlining != -1 &&
            NumPartialInlining >= MaxNumPartialInlining);
  }

  static CallBase *getSupportedCallBase(User *U) {
    if (isa<CallInst>(U) || isa<InvokeInst>(U))
      return cast<CallBase>(U);
    llvm_unreachable("All uses must be calls");
    return nullptr;
  }

  static CallBase *getOneCallSiteTo(Function *F) {
    User *User = *F->user_begin();
    return getSupportedCallBase(User);
  }

  std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
    CallBase *CB = getOneCallSiteTo(F);
    DebugLoc DLoc = CB->getDebugLoc();
    BasicBlock *Block = CB->getParent();
    return std::make_tuple(DLoc, Block);
  }

  // Returns the costs associated with function outlining:
  // - The first value is the non-weighted runtime cost for making the call
  //   to the outlined function, including the addtional  setup cost in the
  //    outlined function itself;
  // - The second value is the estimated size of the new call sequence in
  //   basic block Cloner.OutliningCallBB;
  std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner);

  // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
  // approximate both the size and runtime cost (Note that in the current
  // inline cost analysis, there is no clear distinction there either).
  static int computeBBInlineCost(BasicBlock *BB, TargetTransformInfo *TTI);

  std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
  std::unique_ptr<FunctionOutliningMultiRegionInfo>
  computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE);
};

struct PartialInlinerLegacyPass : public ModulePass {
  static char ID; // Pass identification, replacement for typeid

  PartialInlinerLegacyPass() : ModulePass(ID) {
    initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
    TargetTransformInfoWrapperPass *TTIWP =
        &getAnalysis<TargetTransformInfoWrapperPass>();
    ProfileSummaryInfo &PSI =
        getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();

    auto GetAssumptionCache = [&ACT](Function &F) -> AssumptionCache & {
      return ACT->getAssumptionCache(F);
    };

    auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
      return ACT->lookupAssumptionCache(F);
    };

    auto GetTTI = [&TTIWP](Function &F) -> TargetTransformInfo & {
      return TTIWP->getTTI(F);
    };

    auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
      return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    };

    return PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI,
                              GetTLI, PSI)
        .run(M);
  }
};

} // end anonymous namespace

std::unique_ptr<FunctionOutliningMultiRegionInfo>
PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F,
                                                    OptimizationRemarkEmitter &ORE) {
  BasicBlock *EntryBlock = &F->front();

  DominatorTree DT(*F);
  LoopInfo LI(DT);
  BranchProbabilityInfo BPI(*F, LI);
  std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
  BlockFrequencyInfo *BFI;
  if (!GetBFI) {
    ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI));
    BFI = ScopedBFI.get();
  } else
    BFI = &(GetBFI(*F));

  // Return if we don't have profiling information.
  if (!PSI.hasInstrumentationProfile())
    return std::unique_ptr<FunctionOutliningMultiRegionInfo>();

  std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
      std::make_unique<FunctionOutliningMultiRegionInfo>();

  auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) {
    BasicBlock *Dom = BlockList.front();
    return BlockList.size() > 1 && Dom->hasNPredecessors(1);
  };

  auto IsSingleExit =
      [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
    BasicBlock *ExitBlock = nullptr;
    for (auto *Block : BlockList) {
      for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) {
        if (!is_contained(BlockList, *SI)) {
          if (ExitBlock) {
            ORE.emit([&]() {
              return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
                                              &SI->front())
                     << "Region dominated by "
                     << ore::NV("Block", BlockList.front()->getName())
                     << " has more than one region exit edge.";
            });
            return nullptr;
          } else
            ExitBlock = Block;
        }
      }
    }
    return ExitBlock;
  };

  auto BBProfileCount = [BFI](BasicBlock *BB) {
    return BFI->getBlockProfileCount(BB)
               ? BFI->getBlockProfileCount(BB).getValue()
               : 0;
  };

  // Use the same computeBBInlineCost function to compute the cost savings of
  // the outlining the candidate region.
  TargetTransformInfo *FTTI = &GetTTI(*F);
  int OverallFunctionCost = 0;
  for (auto &BB : *F)
    OverallFunctionCost += computeBBInlineCost(&BB, FTTI);

#ifndef NDEBUG
  if (TracePartialInlining)
    dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n";
#endif
  int MinOutlineRegionCost =
      static_cast<int>(OverallFunctionCost * MinRegionSizeRatio);
  BranchProbability MinBranchProbability(
      static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
      MinBlockCounterExecution);
  bool ColdCandidateFound = false;
  BasicBlock *CurrEntry = EntryBlock;
  std::vector<BasicBlock *> DFS;
  DenseMap<BasicBlock *, bool> VisitedMap;
  DFS.push_back(CurrEntry);
  VisitedMap[CurrEntry] = true;
  // Use Depth First Search on the basic blocks to find CFG edges that are
  // considered cold.
  // Cold regions considered must also have its inline cost compared to the
  // overall inline cost of the original function.  The region is outlined only
  // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
  // more.
  while (!DFS.empty()) {
    auto *thisBB = DFS.back();
    DFS.pop_back();
    // Only consider regions with predecessor blocks that are considered
    // not-cold (default: part of the top 99.99% of all block counters)
    // AND greater than our minimum block execution count (default: 100).
    if (PSI.isColdBlock(thisBB, BFI) ||
        BBProfileCount(thisBB) < MinBlockCounterExecution)
      continue;
    for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) {
      if (VisitedMap[*SI])
        continue;
      VisitedMap[*SI] = true;
      DFS.push_back(*SI);
      // If branch isn't cold, we skip to the next one.
      BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI);
      if (SuccProb > MinBranchProbability)
        continue;
#ifndef NDEBUG
      if (TracePartialInlining) {
        dbgs() << "Found cold edge: " << thisBB->getName() << "->"
               << (*SI)->getName() << "\nBranch Probability = " << SuccProb
               << "\n";
      }
#endif
      SmallVector<BasicBlock *, 8> DominateVector;
      DT.getDescendants(*SI, DominateVector);
      // We can only outline single entry regions (for now).
      if (!IsSingleEntry(DominateVector))
        continue;
      BasicBlock *ExitBlock = nullptr;
      // We can only outline single exit regions (for now).
      if (!(ExitBlock = IsSingleExit(DominateVector)))
        continue;
      int OutlineRegionCost = 0;
      for (auto *BB : DominateVector)
        OutlineRegionCost += computeBBInlineCost(BB, &GetTTI(*BB->getParent()));

#ifndef NDEBUG
      if (TracePartialInlining)
        dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n";
#endif

      if (OutlineRegionCost < MinOutlineRegionCost) {
        ORE.emit([&]() {
          return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
                                            &SI->front())
                 << ore::NV("Callee", F) << " inline cost-savings smaller than "
                 << ore::NV("Cost", MinOutlineRegionCost);
        });
        continue;
      }
      // For now, ignore blocks that belong to a SISE region that is a
      // candidate for outlining.  In the future, we may want to look
      // at inner regions because the outer region may have live-exit
      // variables.
      for (auto *BB : DominateVector)
        VisitedMap[BB] = true;
      // ReturnBlock here means the block after the outline call
      BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
      // assert(ReturnBlock && "ReturnBlock is NULL somehow!");
      FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
          DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
      OutliningInfo->ORI.push_back(RegInfo);
#ifndef NDEBUG
      if (TracePartialInlining) {
        dbgs() << "Found Cold Candidate starting at block: "
               << DominateVector.front()->getName() << "\n";
      }
#endif
      ColdCandidateFound = true;
      NumColdRegionsFound++;
    }
  }
  if (ColdCandidateFound)
    return OutliningInfo;
  else
    return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
}

std::unique_ptr<FunctionOutliningInfo>
PartialInlinerImpl::computeOutliningInfo(Function *F) {
  BasicBlock *EntryBlock = &F->front();
  BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
  if (!BR || BR->isUnconditional())
    return std::unique_ptr<FunctionOutliningInfo>();

  // Returns true if Succ is BB's successor
  auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
    return is_contained(successors(BB), Succ);
  };

  auto IsReturnBlock = [](BasicBlock *BB) {
    Instruction *TI = BB->getTerminator();
    return isa<ReturnInst>(TI);
  };

  auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
    if (IsReturnBlock(Succ1))
      return std::make_tuple(Succ1, Succ2);
    if (IsReturnBlock(Succ2))
      return std::make_tuple(Succ2, Succ1);

    return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
  };

  // Detect a triangular shape:
  auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
    if (IsSuccessor(Succ1, Succ2))
      return std::make_tuple(Succ1, Succ2);
    if (IsSuccessor(Succ2, Succ1))
      return std::make_tuple(Succ2, Succ1);

    return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
  };

  std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
      std::make_unique<FunctionOutliningInfo>();

  BasicBlock *CurrEntry = EntryBlock;
  bool CandidateFound = false;
  do {
    // The number of blocks to be inlined has already reached
    // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
    // disables partial inlining for the function.
    if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
      break;

    if (succ_size(CurrEntry) != 2)
      break;

    BasicBlock *Succ1 = *succ_begin(CurrEntry);
    BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);

    BasicBlock *ReturnBlock, *NonReturnBlock;
    std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);

    if (ReturnBlock) {
      OutliningInfo->Entries.push_back(CurrEntry);
      OutliningInfo->ReturnBlock = ReturnBlock;
      OutliningInfo->NonReturnBlock = NonReturnBlock;
      CandidateFound = true;
      break;
    }

    BasicBlock *CommSucc;
    BasicBlock *OtherSucc;
    std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);

    if (!CommSucc)
      break;

    OutliningInfo->Entries.push_back(CurrEntry);
    CurrEntry = OtherSucc;
  } while (true);

  if (!CandidateFound)
    return std::unique_ptr<FunctionOutliningInfo>();

  // Do sanity check of the entries: threre should not
  // be any successors (not in the entry set) other than
  // {ReturnBlock, NonReturnBlock}
  assert(OutliningInfo->Entries[0] == &F->front() &&
         "Function Entry must be the first in Entries vector");
  DenseSet<BasicBlock *> Entries;
  for (BasicBlock *E : OutliningInfo->Entries)
    Entries.insert(E);

  // Returns true of BB has Predecessor which is not
  // in Entries set.
  auto HasNonEntryPred = [Entries](BasicBlock *BB) {
    for (auto Pred : predecessors(BB)) {
      if (!Entries.count(Pred))
        return true;
    }
    return false;
  };
  auto CheckAndNormalizeCandidate =
      [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
        for (BasicBlock *E : OutliningInfo->Entries) {
          for (auto Succ : successors(E)) {
            if (Entries.count(Succ))
              continue;
            if (Succ == OutliningInfo->ReturnBlock)
              OutliningInfo->ReturnBlockPreds.push_back(E);
            else if (Succ != OutliningInfo->NonReturnBlock)
              return false;
          }
          // There should not be any outside incoming edges either:
          if (HasNonEntryPred(E))
            return false;
        }
        return true;
      };

  if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
    return std::unique_ptr<FunctionOutliningInfo>();

  // Now further growing the candidate's inlining region by
  // peeling off dominating blocks from the outlining region:
  while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
    BasicBlock *Cand = OutliningInfo->NonReturnBlock;
    if (succ_size(Cand) != 2)
      break;

    if (HasNonEntryPred(Cand))
      break;

    BasicBlock *Succ1 = *succ_begin(Cand);
    BasicBlock *Succ2 = *(succ_begin(Cand) + 1);

    BasicBlock *ReturnBlock, *NonReturnBlock;
    std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
    if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
      break;

    if (NonReturnBlock->getSinglePredecessor() != Cand)
      break;

    // Now grow and update OutlininigInfo:
    OutliningInfo->Entries.push_back(Cand);
    OutliningInfo->NonReturnBlock = NonReturnBlock;
    OutliningInfo->ReturnBlockPreds.push_back(Cand);
    Entries.insert(Cand);
  }

  return OutliningInfo;
}

// Check if there is PGO data or user annotated branch data:
static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
  if (F->hasProfileData())
    return true;
  // Now check if any of the entry block has MD_prof data:
  for (auto *E : OI->Entries) {
    BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
    if (!BR || BR->isUnconditional())
      continue;
    uint64_t T, F;
    if (BR->extractProfMetadata(T, F))
      return true;
  }
  return false;
}

BranchProbability
PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) {
  BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
  auto EntryFreq =
      Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
  auto OutliningCallFreq =
      Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
  // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
  // we outlined any regions, so we may encounter situations where the
  // OutliningCallFreq is *slightly* bigger than the EntryFreq.
  if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) {
    OutliningCallFreq = EntryFreq;
  }
  auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
      OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());

  if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get()))
    return OutlineRegionRelFreq;

  // When profile data is not available, we need to be conservative in
  // estimating the overall savings. Static branch prediction can usually
  // guess the branch direction right (taken/non-taken), but the guessed
  // branch probability is usually not biased enough. In case when the
  // outlined region is predicted to be likely, its probability needs
  // to be made higher (more biased) to not under-estimate the cost of
  // function outlining. On the other hand, if the outlined region
  // is predicted to be less likely, the predicted probablity is usually
  // higher than the actual. For instance, the actual probability of the
  // less likely target is only 5%, but the guessed probablity can be
  // 40%. In the latter case, there is no need for further adjustement.
  // FIXME: add an option for this.
  if (OutlineRegionRelFreq < BranchProbability(45, 100))
    return OutlineRegionRelFreq;

  OutlineRegionRelFreq = std::max(
      OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));

  return OutlineRegionRelFreq;
}

bool PartialInlinerImpl::shouldPartialInline(
    CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost,
    OptimizationRemarkEmitter &ORE) {
  using namespace ore;

  Function *Callee = CB.getCalledFunction();
  assert(Callee == Cloner.ClonedFunc);

  if (SkipCostAnalysis)
    return isInlineViable(*Callee).isSuccess();

  Function *Caller = CB.getCaller();
  auto &CalleeTTI = GetTTI(*Callee);
  bool RemarksEnabled =
      Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
          DEBUG_TYPE);
  InlineCost IC =
      getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache,
                    GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr);

  if (IC.isAlways()) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB)
             << NV("Callee", Cloner.OrigFunc)
             << " should always be fully inlined, not partially";
    });
    return false;
  }

  if (IC.isNever()) {
    ORE.emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB)
             << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
             << NV("Caller", Caller)
             << " because it should never be inlined (cost=never)";
    });
    return false;
  }

  if (!IC) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB)
             << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
             << NV("Caller", Caller) << " because too costly to inline (cost="
             << NV("Cost", IC.getCost()) << ", threshold="
             << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
    });
    return false;
  }
  const DataLayout &DL = Caller->getParent()->getDataLayout();

  // The savings of eliminating the call:
  int NonWeightedSavings = getCallsiteCost(CB, DL);
  BlockFrequency NormWeightedSavings(NonWeightedSavings);

  // Weighted saving is smaller than weighted cost, return false
  if (NormWeightedSavings < WeightedOutliningRcost) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
                                        &CB)
             << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
             << NV("Caller", Caller) << " runtime overhead (overhead="
             << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
             << ", savings="
             << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
             << ")"
             << " of making the outlined call is too high";
    });

    return false;
  }

  ORE.emit([&]() {
    return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB)
           << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
           << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
           << " (threshold="
           << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
  });
  return true;
}

// TODO: Ideally  we should share Inliner's InlineCost Analysis code.
// For now use a simplified version. The returned 'InlineCost' will be used
// to esimate the size cost as well as runtime cost of the BB.
int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB,
                                            TargetTransformInfo *TTI) {
  int InlineCost = 0;
  const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
  for (Instruction &I : BB->instructionsWithoutDebug()) {
    // Skip free instructions.
    switch (I.getOpcode()) {
    case Instruction::BitCast:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::Alloca:
    case Instruction::PHI:
      continue;
    case Instruction::GetElementPtr:
      if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
        continue;
      break;
    default:
      break;
    }

    if (I.isLifetimeStartOrEnd())
      continue;

    if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
      Intrinsic::ID IID = II->getIntrinsicID();
      SmallVector<Type *, 4> Tys;
      FastMathFlags FMF;
      for (Value *Val : II->args())
        Tys.push_back(Val->getType());

      if (auto *FPMO = dyn_cast<FPMathOperator>(II))
        FMF = FPMO->getFastMathFlags();

      IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF);
      InlineCost += TTI->getIntrinsicInstrCost(ICA, TTI::TCK_SizeAndLatency);
      continue;
    }

    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
      InlineCost += getCallsiteCost(*CI, DL);
      continue;
    }

    if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
      InlineCost += getCallsiteCost(*II, DL);
      continue;
    }

    if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
      InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
      continue;
    }
    InlineCost += InlineConstants::InstrCost;
  }
  return InlineCost;
}

std::tuple<int, int>
PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) {
  int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
  for (auto FuncBBPair : Cloner.OutlinedFunctions) {
    Function *OutlinedFunc = FuncBBPair.first;
    BasicBlock* OutliningCallBB = FuncBBPair.second;
    // Now compute the cost of the call sequence to the outlined function
    // 'OutlinedFunction' in BB 'OutliningCallBB':
    auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc);
    OutliningFuncCallCost +=
        computeBBInlineCost(OutliningCallBB, OutlinedFuncTTI);

    // Now compute the cost of the extracted/outlined function itself:
    for (BasicBlock &BB : *OutlinedFunc)
      OutlinedFunctionCost += computeBBInlineCost(&BB, OutlinedFuncTTI);
  }
  assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
         "Outlined function cost should be no less than the outlined region");

  // The code extractor introduces a new root and exit stub blocks with
  // additional unconditional branches. Those branches will be eliminated
  // later with bb layout. The cost should be adjusted accordingly:
  OutlinedFunctionCost -=
      2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();

  int OutliningRuntimeOverhead =
      OutliningFuncCallCost +
      (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
      ExtraOutliningPenalty;

  return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
}

// Create the callsite to profile count map which is
// used to update the original function's entry count,
// after the function is partially inlined into the callsite.
void PartialInlinerImpl::computeCallsiteToProfCountMap(
    Function *DuplicateFunction,
    DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
  std::vector<User *> Users(DuplicateFunction->user_begin(),
                            DuplicateFunction->user_end());
  Function *CurrentCaller = nullptr;
  std::unique_ptr<BlockFrequencyInfo> TempBFI;
  BlockFrequencyInfo *CurrentCallerBFI = nullptr;

  auto ComputeCurrBFI = [&,this](Function *Caller) {
      // For the old pass manager:
      if (!GetBFI) {
        DominatorTree DT(*Caller);
        LoopInfo LI(DT);
        BranchProbabilityInfo BPI(*Caller, LI);
        TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
        CurrentCallerBFI = TempBFI.get();
      } else {
        // New pass manager:
        CurrentCallerBFI = &(GetBFI(*Caller));
      }
  };

  for (User *User : Users) {
    CallBase *CB = getSupportedCallBase(User);
    Function *Caller = CB->getCaller();
    if (CurrentCaller != Caller) {
      CurrentCaller = Caller;
      ComputeCurrBFI(Caller);
    } else {
      assert(CurrentCallerBFI && "CallerBFI is not set");
    }
    BasicBlock *CallBB = CB->getParent();
    auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
    if (Count)
      CallSiteToProfCountMap[User] = *Count;
    else
      CallSiteToProfCountMap[User] = 0;
  }
}

PartialInlinerImpl::FunctionCloner::FunctionCloner(
    Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
    function_ref<AssumptionCache *(Function &)> LookupAC,
    function_ref<TargetTransformInfo &(Function &)> GetTTI)
    : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) {
  ClonedOI = std::make_unique<FunctionOutliningInfo>();

  // Clone the function, so that we can hack away on it.
  ValueToValueMapTy VMap;
  ClonedFunc = CloneFunction(F, VMap);

  ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
  ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
  for (BasicBlock *BB : OI->Entries) {
    ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
  }
  for (BasicBlock *E : OI->ReturnBlockPreds) {
    BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
    ClonedOI->ReturnBlockPreds.push_back(NewE);
  }
  // Go ahead and update all uses to the duplicate, so that we can just
  // use the inliner functionality when we're done hacking.
  F->replaceAllUsesWith(ClonedFunc);
}

PartialInlinerImpl::FunctionCloner::FunctionCloner(
    Function *F, FunctionOutliningMultiRegionInfo *OI,
    OptimizationRemarkEmitter &ORE,
    function_ref<AssumptionCache *(Function &)> LookupAC,
    function_ref<TargetTransformInfo &(Function &)> GetTTI)
    : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) {
  ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>();

  // Clone the function, so that we can hack away on it.
  ValueToValueMapTy VMap;
  ClonedFunc = CloneFunction(F, VMap);

  // Go through all Outline Candidate Regions and update all BasicBlock
  // information.
  for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
       OI->ORI) {
    SmallVector<BasicBlock *, 8> Region;
    for (BasicBlock *BB : RegionInfo.Region) {
      Region.push_back(cast<BasicBlock>(VMap[BB]));
    }
    BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
    BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
    BasicBlock *NewReturnBlock = nullptr;
    if (RegionInfo.ReturnBlock)
      NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
    FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
        Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
    ClonedOMRI->ORI.push_back(MappedRegionInfo);
  }
  // Go ahead and update all uses to the duplicate, so that we can just
  // use the inliner functionality when we're done hacking.
  F->replaceAllUsesWith(ClonedFunc);
}

void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() {
  auto getFirstPHI = [](BasicBlock *BB) {
    BasicBlock::iterator I = BB->begin();
    PHINode *FirstPhi = nullptr;
    while (I != BB->end()) {
      PHINode *Phi = dyn_cast<PHINode>(I);
      if (!Phi)
        break;
      if (!FirstPhi) {
        FirstPhi = Phi;
        break;
      }
    }
    return FirstPhi;
  };

  // Shouldn't need to normalize PHIs if we're not outlining non-early return
  // blocks.
  if (!ClonedOI)
    return;

  // Special hackery is needed with PHI nodes that have inputs from more than
  // one extracted block.  For simplicity, just split the PHIs into a two-level
  // sequence of PHIs, some of which will go in the extracted region, and some
  // of which will go outside.
  BasicBlock *PreReturn = ClonedOI->ReturnBlock;
  // only split block when necessary:
  PHINode *FirstPhi = getFirstPHI(PreReturn);
  unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();

  if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
    return;

  auto IsTrivialPhi = [](PHINode *PN) -> Value * {
    Value *CommonValue = PN->getIncomingValue(0);
    if (all_of(PN->incoming_values(),
               [&](Value *V) { return V == CommonValue; }))
      return CommonValue;
    return nullptr;
  };

  ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
      ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
  BasicBlock::iterator I = PreReturn->begin();
  Instruction *Ins = &ClonedOI->ReturnBlock->front();
  SmallVector<Instruction *, 4> DeadPhis;
  while (I != PreReturn->end()) {
    PHINode *OldPhi = dyn_cast<PHINode>(I);
    if (!OldPhi)
      break;

    PHINode *RetPhi =
        PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
    OldPhi->replaceAllUsesWith(RetPhi);
    Ins = ClonedOI->ReturnBlock->getFirstNonPHI();

    RetPhi->addIncoming(&*I, PreReturn);
    for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
      RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
      OldPhi->removeIncomingValue(E);
    }

    // After incoming values splitting, the old phi may become trivial.
    // Keeping the trivial phi can introduce definition inside the outline
    // region which is live-out, causing necessary overhead (load, store
    // arg passing etc).
    if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
      OldPhi->replaceAllUsesWith(OldPhiVal);
      DeadPhis.push_back(OldPhi);
    }
    ++I;
  }
  for (auto *DP : DeadPhis)
    DP->eraseFromParent();

  for (auto E : ClonedOI->ReturnBlockPreds) {
    E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
  }
}

bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {

  auto ComputeRegionCost = [&](SmallVectorImpl<BasicBlock *> &Region) {
    int Cost = 0;
    for (BasicBlock* BB : Region)
      Cost += computeBBInlineCost(BB, &GetTTI(*BB->getParent()));
    return Cost;
  };

  assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");

  if (ClonedOMRI->ORI.empty())
    return false;

  // The CodeExtractor needs a dominator tree.
  DominatorTree DT;
  DT.recalculate(*ClonedFunc);

  // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
  LoopInfo LI(DT);
  BranchProbabilityInfo BPI(*ClonedFunc, LI);
  ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));

  // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
  CodeExtractorAnalysisCache CEAC(*ClonedFunc);

  SetVector<Value *> Inputs, Outputs, Sinks;
  for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
       ClonedOMRI->ORI) {
    int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region);

    CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
                     ClonedFuncBFI.get(), &BPI,
                     LookupAC(*RegionInfo.EntryBlock->getParent()),
                     /* AllowVarargs */ false);

    CE.findInputsOutputs(Inputs, Outputs, Sinks);

#ifndef NDEBUG
    if (TracePartialInlining) {
      dbgs() << "inputs: " << Inputs.size() << "\n";
      dbgs() << "outputs: " << Outputs.size() << "\n";
      for (Value *value : Inputs)
        dbgs() << "value used in func: " << *value << "\n";
      for (Value *output : Outputs)
        dbgs() << "instr used in func: " << *output << "\n";
    }
#endif
    // Do not extract regions that have live exit variables.
    if (Outputs.size() > 0 && !ForceLiveExit)
      continue;

    Function *OutlinedFunc = CE.extractCodeRegion(CEAC);

    if (OutlinedFunc) {
      CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc);
      BasicBlock *OutliningCallBB = OCS->getParent();
      assert(OutliningCallBB->getParent() == ClonedFunc);
      OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
      NumColdRegionsOutlined++;
      OutlinedRegionCost += CurrentOutlinedRegionCost;

      if (MarkOutlinedColdCC) {
        OutlinedFunc->setCallingConv(CallingConv::Cold);
        OCS->setCallingConv(CallingConv::Cold);
      }
    } else
      ORE.emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
                                        &RegionInfo.Region.front()->front())
               << "Failed to extract region at block "
               << ore::NV("Block", RegionInfo.Region.front());
      });
  }

  return !OutlinedFunctions.empty();
}

Function *
PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
  // Returns true if the block is to be partial inlined into the caller
  // (i.e. not to be extracted to the out of line function)
  auto ToBeInlined = [&, this](BasicBlock *BB) {
    return BB == ClonedOI->ReturnBlock ||
           llvm::is_contained(ClonedOI->Entries, BB);
  };

  assert(ClonedOI && "Expecting OutlineInfo for single region outline");
  // The CodeExtractor needs a dominator tree.
  DominatorTree DT;
  DT.recalculate(*ClonedFunc);

  // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
  LoopInfo LI(DT);
  BranchProbabilityInfo BPI(*ClonedFunc, LI);
  ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));

  // Gather up the blocks that we're going to extract.
  std::vector<BasicBlock *> ToExtract;
  auto *ClonedFuncTTI = &GetTTI(*ClonedFunc);
  ToExtract.push_back(ClonedOI->NonReturnBlock);
  OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost(
      ClonedOI->NonReturnBlock, ClonedFuncTTI);
  for (BasicBlock &BB : *ClonedFunc)
    if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
      ToExtract.push_back(&BB);
      // FIXME: the code extractor may hoist/sink more code
      // into the outlined function which may make the outlining
      // overhead (the difference of the outlined function cost
      // and OutliningRegionCost) look larger.
      OutlinedRegionCost += computeBBInlineCost(&BB, ClonedFuncTTI);
    }

  // Extract the body of the if.
  CodeExtractorAnalysisCache CEAC(*ClonedFunc);
  Function *OutlinedFunc =
      CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
                    ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
                    /* AllowVarargs */ true)
          .extractCodeRegion(CEAC);

  if (OutlinedFunc) {
    BasicBlock *OutliningCallBB =
        PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc)
            ->getParent();
    assert(OutliningCallBB->getParent() == ClonedFunc);
    OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
  } else
    ORE.emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
                                      &ToExtract.front()->front())
             << "Failed to extract region at block "
             << ore::NV("Block", ToExtract.front());
    });

  return OutlinedFunc;
}

PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
  // Ditch the duplicate, since we're done with it, and rewrite all remaining
  // users (function pointers, etc.) back to the original function.
  ClonedFunc->replaceAllUsesWith(OrigFunc);
  ClonedFunc->eraseFromParent();
  if (!IsFunctionInlined) {
    // Remove each function that was speculatively created if there is no
    // reference.
    for (auto FuncBBPair : OutlinedFunctions) {
      Function *Func = FuncBBPair.first;
      Func->eraseFromParent();
    }
  }
}

std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) {

  if (F->hasAddressTaken())
    return {false, nullptr};

  // Let inliner handle it
  if (F->hasFnAttribute(Attribute::AlwaysInline))
    return {false, nullptr};

  if (F->hasFnAttribute(Attribute::NoInline))
    return {false, nullptr};

  if (PSI.isFunctionEntryCold(F))
    return {false, nullptr};

  if (F->users().empty())
    return {false, nullptr};

  OptimizationRemarkEmitter ORE(F);

  // Only try to outline cold regions if we have a profile summary, which
  // implies we have profiling information.
  if (PSI.hasProfileSummary() && F->hasProfileData() &&
      !DisableMultiRegionPartialInline) {
    std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
        computeOutliningColdRegionsInfo(F, ORE);
    if (OMRI) {
      FunctionCloner Cloner(F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI);

#ifndef NDEBUG
      if (TracePartialInlining) {
        dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n";
        dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold()
               << "\n";
      }
#endif
      bool DidOutline = Cloner.doMultiRegionFunctionOutlining();

      if (DidOutline) {
#ifndef NDEBUG
        if (TracePartialInlining) {
          dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
          Cloner.ClonedFunc->print(dbgs());
          dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
        }
#endif

        if (tryPartialInline(Cloner))
          return {true, nullptr};
      }
    }
  }

  // Fall-thru to regular partial inlining if we:
  //    i) can't find any cold regions to outline, or
  //   ii) can't inline the outlined function anywhere.
  std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
  if (!OI)
    return {false, nullptr};

  FunctionCloner Cloner(F, OI.get(), ORE, LookupAssumptionCache, GetTTI);
  Cloner.NormalizeReturnBlock();

  Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();

  if (!OutlinedFunction)
    return {false, nullptr};

  bool AnyInline = tryPartialInline(Cloner);

  if (AnyInline)
    return {true, OutlinedFunction};

  return {false, nullptr};
}

bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
  if (Cloner.OutlinedFunctions.empty())
    return false;

  int SizeCost = 0;
  BlockFrequency WeightedRcost;
  int NonWeightedRcost;
  std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner);

  // Only calculate RelativeToEntryFreq when we are doing single region
  // outlining.
  BranchProbability RelativeToEntryFreq;
  if (Cloner.ClonedOI) {
    RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
  } else
    // RelativeToEntryFreq doesn't make sense when we have more than one
    // outlined call because each call will have a different relative frequency
    // to the entry block.  We can consider using the average, but the
    // usefulness of that information is questionable. For now, assume we never
    // execute the calls to outlined functions.
    RelativeToEntryFreq = BranchProbability(0, 1);

  WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;

  // The call sequence(s) to the outlined function(s) are larger than the sum of
  // the original outlined region size(s), it does not increase the chances of
  // inlining the function with outlining (The inliner uses the size increase to
  // model the cost of inlining a callee).
  if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
    OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
    DebugLoc DLoc;
    BasicBlock *Block;
    std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc);
    OrigFuncORE.emit([&]() {
      return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
                                        DLoc, Block)
             << ore::NV("Function", Cloner.OrigFunc)
             << " not partially inlined into callers (Original Size = "
             << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
             << ", Size of call sequence to outlined function = "
             << ore::NV("NewSize", SizeCost) << ")";
    });
    return false;
  }

  assert(Cloner.OrigFunc->users().empty() &&
         "F's users should all be replaced!");

  std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
                            Cloner.ClonedFunc->user_end());

  DenseMap<User *, uint64_t> CallSiteToProfCountMap;
  auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
  if (CalleeEntryCount)
    computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);

  uint64_t CalleeEntryCountV =
      (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);

  bool AnyInline = false;
  for (User *User : Users) {
    CallBase *CB = getSupportedCallBase(User);

    if (IsLimitReached())
      continue;

    OptimizationRemarkEmitter CallerORE(CB->getCaller());
    if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE))
      continue;

    // Construct remark before doing the inlining, as after successful inlining
    // the callsite is removed.
    OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB);
    OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
       << ore::NV("Caller", CB->getCaller());

    InlineFunctionInfo IFI(nullptr, GetAssumptionCache, &PSI);
    // We can only forward varargs when we outlined a single region, else we
    // bail on vararg functions.
    if (!InlineFunction(*CB, IFI, nullptr, true,
                        (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
                                         : nullptr))
             .isSuccess())
      continue;

    CallerORE.emit(OR);

    // Now update the entry count:
    if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
      uint64_t CallSiteCount = CallSiteToProfCountMap[User];
      CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
    }

    AnyInline = true;
    NumPartialInlining++;
    // Update the stats
    if (Cloner.ClonedOI)
      NumPartialInlined++;
    else
      NumColdOutlinePartialInlined++;

  }

  if (AnyInline) {
    Cloner.IsFunctionInlined = true;
    if (CalleeEntryCount)
      Cloner.OrigFunc->setEntryCount(
          CalleeEntryCount.setCount(CalleeEntryCountV));
    OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
    OrigFuncORE.emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
             << "Partially inlined into at least one caller";
    });

  }

  return AnyInline;
}

bool PartialInlinerImpl::run(Module &M) {
  if (DisablePartialInlining)
    return false;

  std::vector<Function *> Worklist;
  Worklist.reserve(M.size());
  for (Function &F : M)
    if (!F.use_empty() && !F.isDeclaration())
      Worklist.push_back(&F);

  bool Changed = false;
  while (!Worklist.empty()) {
    Function *CurrFunc = Worklist.back();
    Worklist.pop_back();

    if (CurrFunc->use_empty())
      continue;

    bool Recursive = false;
    for (User *U : CurrFunc->users())
      if (Instruction *I = dyn_cast<Instruction>(U))
        if (I->getParent()->getParent() == CurrFunc) {
          Recursive = true;
          break;
        }
    if (Recursive)
      continue;

    std::pair<bool, Function * > Result = unswitchFunction(CurrFunc);
    if (Result.second)
      Worklist.push_back(Result.second);
    Changed |= Result.first;
  }

  return Changed;
}

char PartialInlinerLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
                      "Partial Inliner", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
                    "Partial Inliner", false, false)

ModulePass *llvm::createPartialInliningPass() {
  return new PartialInlinerLegacyPass();
}

PreservedAnalyses PartialInlinerPass::run(Module &M,
                                          ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();

  auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & {
    return FAM.getResult<AssumptionAnalysis>(F);
  };

  auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
    return FAM.getCachedResult<AssumptionAnalysis>(F);
  };

  auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
    return FAM.getResult<BlockFrequencyAnalysis>(F);
  };

  auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
    return FAM.getResult<TargetIRAnalysis>(F);
  };

  auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
    return FAM.getResult<TargetLibraryAnalysis>(F);
  };

  ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);

  if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI,
                         GetTLI, PSI, GetBFI)
          .run(M))
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}