ThinLTOBitcodeWriter.cpp
20.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
namespace {
// Promote each local-linkage entity defined by ExportM and used by ImportM by
// changing visibility and appending the given ModuleId.
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
SetVector<GlobalValue *> &PromoteExtra) {
DenseMap<const Comdat *, Comdat *> RenamedComdats;
for (auto &ExportGV : ExportM.global_values()) {
if (!ExportGV.hasLocalLinkage())
continue;
auto Name = ExportGV.getName();
GlobalValue *ImportGV = nullptr;
if (!PromoteExtra.count(&ExportGV)) {
ImportGV = ImportM.getNamedValue(Name);
if (!ImportGV)
continue;
ImportGV->removeDeadConstantUsers();
if (ImportGV->use_empty()) {
ImportGV->eraseFromParent();
continue;
}
}
std::string NewName = (Name + ModuleId).str();
if (const auto *C = ExportGV.getComdat())
if (C->getName() == Name)
RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
ExportGV.setName(NewName);
ExportGV.setLinkage(GlobalValue::ExternalLinkage);
ExportGV.setVisibility(GlobalValue::HiddenVisibility);
if (ImportGV) {
ImportGV->setName(NewName);
ImportGV->setVisibility(GlobalValue::HiddenVisibility);
}
}
if (!RenamedComdats.empty())
for (auto &GO : ExportM.global_objects())
if (auto *C = GO.getComdat()) {
auto Replacement = RenamedComdats.find(C);
if (Replacement != RenamedComdats.end())
GO.setComdat(Replacement->second);
}
}
// Promote all internal (i.e. distinct) type ids used by the module by replacing
// them with external type ids formed using the module id.
//
// Note that this needs to be done before we clone the module because each clone
// will receive its own set of distinct metadata nodes.
void promoteTypeIds(Module &M, StringRef ModuleId) {
DenseMap<Metadata *, Metadata *> LocalToGlobal;
auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
Metadata *MD =
cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
Metadata *&GlobalMD = LocalToGlobal[MD];
if (!GlobalMD) {
std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
GlobalMD = MDString::get(M.getContext(), NewName);
}
CI->setArgOperand(ArgNo,
MetadataAsValue::get(M.getContext(), GlobalMD));
}
};
if (Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
for (const Use &U : TypeTestFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 1);
}
}
if (Function *TypeCheckedLoadFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
for (const Use &U : TypeCheckedLoadFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 2);
}
}
for (GlobalObject &GO : M.global_objects()) {
SmallVector<MDNode *, 1> MDs;
GO.getMetadata(LLVMContext::MD_type, MDs);
GO.eraseMetadata(LLVMContext::MD_type);
for (auto MD : MDs) {
auto I = LocalToGlobal.find(MD->getOperand(1));
if (I == LocalToGlobal.end()) {
GO.addMetadata(LLVMContext::MD_type, *MD);
continue;
}
GO.addMetadata(
LLVMContext::MD_type,
*MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
}
}
}
// Drop unused globals, and drop type information from function declarations.
// FIXME: If we made functions typeless then there would be no need to do this.
void simplifyExternals(Module &M) {
FunctionType *EmptyFT =
FunctionType::get(Type::getVoidTy(M.getContext()), false);
for (auto I = M.begin(), E = M.end(); I != E;) {
Function &F = *I++;
if (F.isDeclaration() && F.use_empty()) {
F.eraseFromParent();
continue;
}
if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
// Changing the type of an intrinsic may invalidate the IR.
F.getName().startswith("llvm."))
continue;
Function *NewF =
Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
F.getAddressSpace(), "", &M);
NewF->setVisibility(F.getVisibility());
NewF->takeName(&F);
F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
F.eraseFromParent();
}
for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
GlobalVariable &GV = *I++;
if (GV.isDeclaration() && GV.use_empty()) {
GV.eraseFromParent();
continue;
}
}
}
static void
filterModule(Module *M,
function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
std::vector<GlobalValue *> V;
for (GlobalValue &GV : M->global_values())
if (!ShouldKeepDefinition(&GV))
V.push_back(&GV);
for (GlobalValue *GV : V)
if (!convertToDeclaration(*GV))
GV->eraseFromParent();
}
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
if (auto *F = dyn_cast<Function>(C))
return Fn(F);
if (isa<GlobalValue>(C))
return;
for (Value *Op : C->operands())
forEachVirtualFunction(cast<Constant>(Op), Fn);
}
// If it's possible to split M into regular and thin LTO parts, do so and write
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
// regular LTO bitcode file to OS.
void splitAndWriteThinLTOBitcode(
raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter, Module &M) {
std::string ModuleId = getUniqueModuleId(&M);
if (ModuleId.empty()) {
// We couldn't generate a module ID for this module, write it out as a
// regular LTO module with an index for summary-based dead stripping.
ProfileSummaryInfo PSI(M);
M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
if (ThinLinkOS)
// We don't have a ThinLTO part, but still write the module to the
// ThinLinkOS if requested so that the expected output file is produced.
WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
&Index);
return;
}
promoteTypeIds(M, ModuleId);
// Returns whether a global or its associated global has attached type
// metadata. The former may participate in CFI or whole-program
// devirtualization, so they need to appear in the merged module instead of
// the thin LTO module. Similarly, globals that are associated with globals
// with type metadata need to appear in the merged module because they will
// reference the global's section directly.
auto HasTypeMetadata = [](const GlobalObject *GO) {
if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
if (AssocGO->hasMetadata(LLVMContext::MD_type))
return true;
return GO->hasMetadata(LLVMContext::MD_type);
};
// Collect the set of virtual functions that are eligible for virtual constant
// propagation. Each eligible function must not access memory, must return
// an integer of width <=64 bits, must take at least one argument, must not
// use its first argument (assumed to be "this") and all arguments other than
// the first one must be of <=64 bit integer type.
//
// Note that we test whether this copy of the function is readnone, rather
// than testing function attributes, which must hold for any copy of the
// function, even a less optimized version substituted at link time. This is
// sound because the virtual constant propagation optimizations effectively
// inline all implementations of the virtual function into each call site,
// rather than using function attributes to perform local optimization.
DenseSet<const Function *> EligibleVirtualFns;
// If any member of a comdat lives in MergedM, put all members of that
// comdat in MergedM to keep the comdat together.
DenseSet<const Comdat *> MergedMComdats;
for (GlobalVariable &GV : M.globals())
if (HasTypeMetadata(&GV)) {
if (const auto *C = GV.getComdat())
MergedMComdats.insert(C);
forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
auto *RT = dyn_cast<IntegerType>(F->getReturnType());
if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
!F->arg_begin()->use_empty())
return;
for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
if (!ArgT || ArgT->getBitWidth() > 64)
return;
}
if (!F->isDeclaration() &&
computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
EligibleVirtualFns.insert(F);
});
}
ValueToValueMapTy VMap;
std::unique_ptr<Module> MergedM(
CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return true;
if (auto *F = dyn_cast<Function>(GV))
return EligibleVirtualFns.count(F);
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
return HasTypeMetadata(GVar);
return false;
}));
StripDebugInfo(*MergedM);
MergedM->setModuleInlineAsm("");
for (Function &F : *MergedM)
if (!F.isDeclaration()) {
// Reset the linkage of all functions eligible for virtual constant
// propagation. The canonical definitions live in the thin LTO module so
// that they can be imported.
F.setLinkage(GlobalValue::AvailableExternallyLinkage);
F.setComdat(nullptr);
}
SetVector<GlobalValue *> CfiFunctions;
for (auto &F : M)
if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
CfiFunctions.insert(&F);
// Remove all globals with type metadata, globals with comdats that live in
// MergedM, and aliases pointing to such globals from the thin LTO module.
filterModule(&M, [&](const GlobalValue *GV) {
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
if (HasTypeMetadata(GVar))
return false;
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return false;
return true;
});
promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
auto &Ctx = MergedM->getContext();
SmallVector<MDNode *, 8> CfiFunctionMDs;
for (auto V : CfiFunctions) {
Function &F = *cast<Function>(V);
SmallVector<MDNode *, 2> Types;
F.getMetadata(LLVMContext::MD_type, Types);
SmallVector<Metadata *, 4> Elts;
Elts.push_back(MDString::get(Ctx, F.getName()));
CfiFunctionLinkage Linkage;
if (lowertypetests::isJumpTableCanonical(&F))
Linkage = CFL_Definition;
else if (F.hasExternalWeakLinkage())
Linkage = CFL_WeakDeclaration;
else
Linkage = CFL_Declaration;
Elts.push_back(ConstantAsMetadata::get(
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
for (auto Type : Types)
Elts.push_back(Type);
CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
}
if(!CfiFunctionMDs.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
for (auto MD : CfiFunctionMDs)
NMD->addOperand(MD);
}
SmallVector<MDNode *, 8> FunctionAliases;
for (auto &A : M.aliases()) {
if (!isa<Function>(A.getAliasee()))
continue;
auto *F = cast<Function>(A.getAliasee());
Metadata *Elts[] = {
MDString::get(Ctx, A.getName()),
MDString::get(Ctx, F->getName()),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
};
FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
}
if (!FunctionAliases.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
for (auto MD : FunctionAliases)
NMD->addOperand(MD);
}
SmallVector<MDNode *, 8> Symvers;
ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
Function *F = M.getFunction(Name);
if (!F || F->use_empty())
return;
Symvers.push_back(MDTuple::get(
Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
});
if (!Symvers.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
for (auto MD : Symvers)
NMD->addOperand(MD);
}
simplifyExternals(*MergedM);
// FIXME: Try to re-use BSI and PFI from the original module here.
ProfileSummaryInfo PSI(M);
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
// Mark the merged module as requiring full LTO. We still want an index for
// it though, so that it can participate in summary-based dead stripping.
MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
ModuleSummaryIndex MergedMIndex =
buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
SmallVector<char, 0> Buffer;
BitcodeWriter W(Buffer);
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
/*GenerateHash=*/true, &ModHash);
W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
W.writeSymtab();
W.writeStrtab();
OS << Buffer;
// If a minimized bitcode module was requested for the thin link, only
// the information that is needed by thin link will be written in the
// given OS (the merged module will be written as usual).
if (ThinLinkOS) {
Buffer.clear();
BitcodeWriter W2(Buffer);
StripDebugInfo(M);
W2.writeThinLinkBitcode(M, Index, ModHash);
W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
&MergedMIndex);
W2.writeSymtab();
W2.writeStrtab();
*ThinLinkOS << Buffer;
}
}
// Check if the LTO Unit splitting has been enabled.
bool enableSplitLTOUnit(Module &M) {
bool EnableSplitLTOUnit = false;
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("EnableSplitLTOUnit")))
EnableSplitLTOUnit = MD->getZExtValue();
return EnableSplitLTOUnit;
}
// Returns whether this module needs to be split because it uses type metadata.
bool hasTypeMetadata(Module &M) {
for (auto &GO : M.global_objects()) {
if (GO.hasMetadata(LLVMContext::MD_type))
return true;
}
return false;
}
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter,
Module &M, const ModuleSummaryIndex *Index) {
std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
// See if this module has any type metadata. If so, we try to split it
// or at least promote type ids to enable WPD.
if (hasTypeMetadata(M)) {
if (enableSplitLTOUnit(M))
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
// Promote type ids as needed for index-based WPD.
std::string ModuleId = getUniqueModuleId(&M);
if (!ModuleId.empty()) {
promoteTypeIds(M, ModuleId);
// Need to rebuild the index so that it contains type metadata
// for the newly promoted type ids.
// FIXME: Probably should not bother building the index at all
// in the caller of writeThinLTOBitcode (which does so via the
// ModuleSummaryIndexAnalysis pass), since we have to rebuild it
// anyway whenever there is type metadata (here or in
// splitAndWriteThinLTOBitcode). Just always build it once via the
// buildModuleSummaryIndex when Module(s) are ready.
ProfileSummaryInfo PSI(M);
NewIndex = std::make_unique<ModuleSummaryIndex>(
buildModuleSummaryIndex(M, nullptr, &PSI));
Index = NewIndex.get();
}
}
// Write it out as an unsplit ThinLTO module.
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
/*GenerateHash=*/true, &ModHash);
// If a minimized bitcode module was requested for the thin link, only
// the information that is needed by thin link will be written in the
// given OS.
if (ThinLinkOS && Index)
WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
}
class WriteThinLTOBitcode : public ModulePass {
raw_ostream &OS; // raw_ostream to print on
// The output stream on which to emit a minimized module for use
// just in the thin link, if requested.
raw_ostream *ThinLinkOS;
public:
static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
: ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
bool runOnModule(Module &M) override {
const ModuleSummaryIndex *Index =
&(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ModuleSummaryIndexWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
} // anonymous namespace
char WriteThinLTOBitcode::ID = 0;
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
raw_ostream *ThinLinkOS) {
return new WriteThinLTOBitcode(Str, ThinLinkOS);
}
PreservedAnalyses
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
writeThinLTOBitcode(OS, ThinLinkOS,
[&FAM](Function &F) -> AAResults & {
return FAM.getResult<AAManager>(F);
},
M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
return PreservedAnalyses::all();
}