WholeProgramDevirt.cpp 85.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements whole program optimization of virtual calls in cases
// where we know (via !type metadata) that the list of callees is fixed. This
// includes the following:
// - Single implementation devirtualization: if a virtual call has a single
//   possible callee, replace all calls with a direct call to that callee.
// - Virtual constant propagation: if the virtual function's return type is an
//   integer <=64 bits and all possible callees are readnone, for each class and
//   each list of constant arguments: evaluate the function, store the return
//   value alongside the virtual table, and rewrite each virtual call as a load
//   from the virtual table.
// - Uniform return value optimization: if the conditions for virtual constant
//   propagation hold and each function returns the same constant value, replace
//   each virtual call with that constant.
// - Unique return value optimization for i1 return values: if the conditions
//   for virtual constant propagation hold and a single vtable's function
//   returns 0, or a single vtable's function returns 1, replace each virtual
//   call with a comparison of the vptr against that vtable's address.
//
// This pass is intended to be used during the regular and thin LTO pipelines:
//
// During regular LTO, the pass determines the best optimization for each
// virtual call and applies the resolutions directly to virtual calls that are
// eligible for virtual call optimization (i.e. calls that use either of the
// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
//
// During hybrid Regular/ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over a single merged module
//   that contains all vtables with !type metadata that participate in the link.
//   The pass computes a resolution for each virtual call and stores it in the
//   type identifier summary.
// - Import phase: this is run during the thin backends over the individual
//   modules. The pass applies the resolutions previously computed during the
//   import phase to each eligible virtual call.
//
// During ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over the index which
//   contains a summary of all vtables with !type metadata that participate in
//   the link. It computes a resolution for each virtual call and stores it in
//   the type identifier summary. Only single implementation devirtualization
//   is supported.
// - Import phase: (same as with hybrid case above).
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GlobPattern.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include <algorithm>
#include <cstddef>
#include <map>
#include <set>
#include <string>

using namespace llvm;
using namespace wholeprogramdevirt;

#define DEBUG_TYPE "wholeprogramdevirt"

static cl::opt<PassSummaryAction> ClSummaryAction(
    "wholeprogramdevirt-summary-action",
    cl::desc("What to do with the summary when running this pass"),
    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
               clEnumValN(PassSummaryAction::Import, "import",
                          "Import typeid resolutions from summary and globals"),
               clEnumValN(PassSummaryAction::Export, "export",
                          "Export typeid resolutions to summary and globals")),
    cl::Hidden);

static cl::opt<std::string> ClReadSummary(
    "wholeprogramdevirt-read-summary",
    cl::desc(
        "Read summary from given bitcode or YAML file before running pass"),
    cl::Hidden);

static cl::opt<std::string> ClWriteSummary(
    "wholeprogramdevirt-write-summary",
    cl::desc("Write summary to given bitcode or YAML file after running pass. "
             "Output file format is deduced from extension: *.bc means writing "
             "bitcode, otherwise YAML"),
    cl::Hidden);

static cl::opt<unsigned>
    ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
                cl::init(10), cl::ZeroOrMore,
                cl::desc("Maximum number of call targets per "
                         "call site to enable branch funnels"));

static cl::opt<bool>
    PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
                       cl::init(false), cl::ZeroOrMore,
                       cl::desc("Print index-based devirtualization messages"));

/// Provide a way to force enable whole program visibility in tests.
/// This is needed to support legacy tests that don't contain
/// !vcall_visibility metadata (the mere presense of type tests
/// previously implied hidden visibility).
cl::opt<bool>
    WholeProgramVisibility("whole-program-visibility", cl::init(false),
                           cl::Hidden, cl::ZeroOrMore,
                           cl::desc("Enable whole program visibility"));

/// Provide a way to force disable whole program for debugging or workarounds,
/// when enabled via the linker.
cl::opt<bool> DisableWholeProgramVisibility(
    "disable-whole-program-visibility", cl::init(false), cl::Hidden,
    cl::ZeroOrMore,
    cl::desc("Disable whole program visibility (overrides enabling options)"));

/// Provide way to prevent certain function from being devirtualized
cl::list<std::string>
    SkipFunctionNames("wholeprogramdevirt-skip",
                      cl::desc("Prevent function(s) from being devirtualized"),
                      cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);

namespace {
struct PatternList {
  std::vector<GlobPattern> Patterns;
  template <class T> void init(const T &StringList) {
    for (const auto &S : StringList)
      if (Expected<GlobPattern> Pat = GlobPattern::create(S))
        Patterns.push_back(std::move(*Pat));
  }
  bool match(StringRef S) {
    for (const GlobPattern &P : Patterns)
      if (P.match(S))
        return true;
    return false;
  }
};
} // namespace

// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
                                     bool IsAfter, uint64_t Size) {
  // Find a minimum offset taking into account only vtable sizes.
  uint64_t MinByte = 0;
  for (const VirtualCallTarget &Target : Targets) {
    if (IsAfter)
      MinByte = std::max(MinByte, Target.minAfterBytes());
    else
      MinByte = std::max(MinByte, Target.minBeforeBytes());
  }

  // Build a vector of arrays of bytes covering, for each target, a slice of the
  // used region (see AccumBitVector::BytesUsed in
  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
  // this aligns the used regions to start at MinByte.
  //
  // In this example, A, B and C are vtables, # is a byte already allocated for
  // a virtual function pointer, AAAA... (etc.) are the used regions for the
  // vtables and Offset(X) is the value computed for the Offset variable below
  // for X.
  //
  //                    Offset(A)
  //                    |       |
  //                            |MinByte
  // A: ################AAAAAAAA|AAAAAAAA
  // B: ########BBBBBBBBBBBBBBBB|BBBB
  // C: ########################|CCCCCCCCCCCCCCCC
  //            |   Offset(B)   |
  //
  // This code produces the slices of A, B and C that appear after the divider
  // at MinByte.
  std::vector<ArrayRef<uint8_t>> Used;
  for (const VirtualCallTarget &Target : Targets) {
    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
                                       : Target.TM->Bits->Before.BytesUsed;
    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
                              : MinByte - Target.minBeforeBytes();

    // Disregard used regions that are smaller than Offset. These are
    // effectively all-free regions that do not need to be checked.
    if (VTUsed.size() > Offset)
      Used.push_back(VTUsed.slice(Offset));
  }

  if (Size == 1) {
    // Find a free bit in each member of Used.
    for (unsigned I = 0;; ++I) {
      uint8_t BitsUsed = 0;
      for (auto &&B : Used)
        if (I < B.size())
          BitsUsed |= B[I];
      if (BitsUsed != 0xff)
        return (MinByte + I) * 8 +
               countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
    }
  } else {
    // Find a free (Size/8) byte region in each member of Used.
    // FIXME: see if alignment helps.
    for (unsigned I = 0;; ++I) {
      for (auto &&B : Used) {
        unsigned Byte = 0;
        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
          if (B[I + Byte])
            goto NextI;
          ++Byte;
        }
      }
      return (MinByte + I) * 8;
    NextI:;
    }
  }
}

void wholeprogramdevirt::setBeforeReturnValues(
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
  if (BitWidth == 1)
    OffsetByte = -(AllocBefore / 8 + 1);
  else
    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
  OffsetBit = AllocBefore % 8;

  for (VirtualCallTarget &Target : Targets) {
    if (BitWidth == 1)
      Target.setBeforeBit(AllocBefore);
    else
      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
  }
}

void wholeprogramdevirt::setAfterReturnValues(
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
  if (BitWidth == 1)
    OffsetByte = AllocAfter / 8;
  else
    OffsetByte = (AllocAfter + 7) / 8;
  OffsetBit = AllocAfter % 8;

  for (VirtualCallTarget &Target : Targets) {
    if (BitWidth == 1)
      Target.setAfterBit(AllocAfter);
    else
      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
  }
}

VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
    : Fn(Fn), TM(TM),
      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}

namespace {

// A slot in a set of virtual tables. The TypeID identifies the set of virtual
// tables, and the ByteOffset is the offset in bytes from the address point to
// the virtual function pointer.
struct VTableSlot {
  Metadata *TypeID;
  uint64_t ByteOffset;
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<VTableSlot> {
  static VTableSlot getEmptyKey() {
    return {DenseMapInfo<Metadata *>::getEmptyKey(),
            DenseMapInfo<uint64_t>::getEmptyKey()};
  }
  static VTableSlot getTombstoneKey() {
    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
            DenseMapInfo<uint64_t>::getTombstoneKey()};
  }
  static unsigned getHashValue(const VTableSlot &I) {
    return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
  }
  static bool isEqual(const VTableSlot &LHS,
                      const VTableSlot &RHS) {
    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
  }
};

template <> struct DenseMapInfo<VTableSlotSummary> {
  static VTableSlotSummary getEmptyKey() {
    return {DenseMapInfo<StringRef>::getEmptyKey(),
            DenseMapInfo<uint64_t>::getEmptyKey()};
  }
  static VTableSlotSummary getTombstoneKey() {
    return {DenseMapInfo<StringRef>::getTombstoneKey(),
            DenseMapInfo<uint64_t>::getTombstoneKey()};
  }
  static unsigned getHashValue(const VTableSlotSummary &I) {
    return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
  }
  static bool isEqual(const VTableSlotSummary &LHS,
                      const VTableSlotSummary &RHS) {
    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
  }
};

} // end namespace llvm

namespace {

// A virtual call site. VTable is the loaded virtual table pointer, and CS is
// the indirect virtual call.
struct VirtualCallSite {
  Value *VTable = nullptr;
  CallBase &CB;

  // If non-null, this field points to the associated unsafe use count stored in
  // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
  // of that field for details.
  unsigned *NumUnsafeUses = nullptr;

  void
  emitRemark(const StringRef OptName, const StringRef TargetName,
             function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
    Function *F = CB.getCaller();
    DebugLoc DLoc = CB.getDebugLoc();
    BasicBlock *Block = CB.getParent();

    using namespace ore;
    OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
                      << NV("Optimization", OptName)
                      << ": devirtualized a call to "
                      << NV("FunctionName", TargetName));
  }

  void replaceAndErase(
      const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
      Value *New) {
    if (RemarksEnabled)
      emitRemark(OptName, TargetName, OREGetter);
    CB.replaceAllUsesWith(New);
    if (auto *II = dyn_cast<InvokeInst>(&CB)) {
      BranchInst::Create(II->getNormalDest(), &CB);
      II->getUnwindDest()->removePredecessor(II->getParent());
    }
    CB.eraseFromParent();
    // This use is no longer unsafe.
    if (NumUnsafeUses)
      --*NumUnsafeUses;
  }
};

// Call site information collected for a specific VTableSlot and possibly a list
// of constant integer arguments. The grouping by arguments is handled by the
// VTableSlotInfo class.
struct CallSiteInfo {
  /// The set of call sites for this slot. Used during regular LTO and the
  /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
  /// call sites that appear in the merged module itself); in each of these
  /// cases we are directly operating on the call sites at the IR level.
  std::vector<VirtualCallSite> CallSites;

  /// Whether all call sites represented by this CallSiteInfo, including those
  /// in summaries, have been devirtualized. This starts off as true because a
  /// default constructed CallSiteInfo represents no call sites.
  bool AllCallSitesDevirted = true;

  // These fields are used during the export phase of ThinLTO and reflect
  // information collected from function summaries.

  /// Whether any function summary contains an llvm.assume(llvm.type.test) for
  /// this slot.
  bool SummaryHasTypeTestAssumeUsers = false;

  /// CFI-specific: a vector containing the list of function summaries that use
  /// the llvm.type.checked.load intrinsic and therefore will require
  /// resolutions for llvm.type.test in order to implement CFI checks if
  /// devirtualization was unsuccessful. If devirtualization was successful, the
  /// pass will clear this vector by calling markDevirt(). If at the end of the
  /// pass the vector is non-empty, we will need to add a use of llvm.type.test
  /// to each of the function summaries in the vector.
  std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
  std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;

  bool isExported() const {
    return SummaryHasTypeTestAssumeUsers ||
           !SummaryTypeCheckedLoadUsers.empty();
  }

  void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
    SummaryTypeCheckedLoadUsers.push_back(FS);
    AllCallSitesDevirted = false;
  }

  void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
    SummaryTypeTestAssumeUsers.push_back(FS);
    SummaryHasTypeTestAssumeUsers = true;
    AllCallSitesDevirted = false;
  }

  void markDevirt() {
    AllCallSitesDevirted = true;

    // As explained in the comment for SummaryTypeCheckedLoadUsers.
    SummaryTypeCheckedLoadUsers.clear();
  }
};

// Call site information collected for a specific VTableSlot.
struct VTableSlotInfo {
  // The set of call sites which do not have all constant integer arguments
  // (excluding "this").
  CallSiteInfo CSInfo;

  // The set of call sites with all constant integer arguments (excluding
  // "this"), grouped by argument list.
  std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;

  void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);

private:
  CallSiteInfo &findCallSiteInfo(CallBase &CB);
};

CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
  std::vector<uint64_t> Args;
  auto *CBType = dyn_cast<IntegerType>(CB.getType());
  if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
    return CSInfo;
  for (auto &&Arg : make_range(CB.arg_begin() + 1, CB.arg_end())) {
    auto *CI = dyn_cast<ConstantInt>(Arg);
    if (!CI || CI->getBitWidth() > 64)
      return CSInfo;
    Args.push_back(CI->getZExtValue());
  }
  return ConstCSInfo[Args];
}

void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
                                 unsigned *NumUnsafeUses) {
  auto &CSI = findCallSiteInfo(CB);
  CSI.AllCallSitesDevirted = false;
  CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
}

struct DevirtModule {
  Module &M;
  function_ref<AAResults &(Function &)> AARGetter;
  function_ref<DominatorTree &(Function &)> LookupDomTree;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  IntegerType *Int8Ty;
  PointerType *Int8PtrTy;
  IntegerType *Int32Ty;
  IntegerType *Int64Ty;
  IntegerType *IntPtrTy;
  /// Sizeless array type, used for imported vtables. This provides a signal
  /// to analyzers that these imports may alias, as they do for example
  /// when multiple unique return values occur in the same vtable.
  ArrayType *Int8Arr0Ty;

  bool RemarksEnabled;
  function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;

  MapVector<VTableSlot, VTableSlotInfo> CallSlots;

  // This map keeps track of the number of "unsafe" uses of a loaded function
  // pointer. The key is the associated llvm.type.test intrinsic call generated
  // by this pass. An unsafe use is one that calls the loaded function pointer
  // directly. Every time we eliminate an unsafe use (for example, by
  // devirtualizing it or by applying virtual constant propagation), we
  // decrement the value stored in this map. If a value reaches zero, we can
  // eliminate the type check by RAUWing the associated llvm.type.test call with
  // true.
  std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
  PatternList FunctionsToSkip;

  DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
               function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
               function_ref<DominatorTree &(Function &)> LookupDomTree,
               ModuleSummaryIndex *ExportSummary,
               const ModuleSummaryIndex *ImportSummary)
      : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
        ExportSummary(ExportSummary), ImportSummary(ImportSummary),
        Int8Ty(Type::getInt8Ty(M.getContext())),
        Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
        Int32Ty(Type::getInt32Ty(M.getContext())),
        Int64Ty(Type::getInt64Ty(M.getContext())),
        IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
        Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
        RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
    assert(!(ExportSummary && ImportSummary));
    FunctionsToSkip.init(SkipFunctionNames);
  }

  bool areRemarksEnabled();

  void
  scanTypeTestUsers(Function *TypeTestFunc,
                    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
  void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);

  void buildTypeIdentifierMap(
      std::vector<VTableBits> &Bits,
      DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
  bool
  tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
                            const std::set<TypeMemberInfo> &TypeMemberInfos,
                            uint64_t ByteOffset);

  void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
                             bool &IsExported);
  bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res);

  void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
                              bool &IsExported);
  void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                            VTableSlotInfo &SlotInfo,
                            WholeProgramDevirtResolution *Res, VTableSlot Slot);

  bool tryEvaluateFunctionsWithArgs(
      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
      ArrayRef<uint64_t> Args);

  void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                             uint64_t TheRetVal);
  bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           CallSiteInfo &CSInfo,
                           WholeProgramDevirtResolution::ByArg *Res);

  // Returns the global symbol name that is used to export information about the
  // given vtable slot and list of arguments.
  std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
                            StringRef Name);

  bool shouldExportConstantsAsAbsoluteSymbols();

  // This function is called during the export phase to create a symbol
  // definition containing information about the given vtable slot and list of
  // arguments.
  void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
                    Constant *C);
  void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
                      uint32_t Const, uint32_t &Storage);

  // This function is called during the import phase to create a reference to
  // the symbol definition created during the export phase.
  Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                         StringRef Name);
  Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                           StringRef Name, IntegerType *IntTy,
                           uint32_t Storage);

  Constant *getMemberAddr(const TypeMemberInfo *M);

  void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
                            Constant *UniqueMemberAddr);
  bool tryUniqueRetValOpt(unsigned BitWidth,
                          MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                          CallSiteInfo &CSInfo,
                          WholeProgramDevirtResolution::ByArg *Res,
                          VTableSlot Slot, ArrayRef<uint64_t> Args);

  void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
                             Constant *Byte, Constant *Bit);
  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res, VTableSlot Slot);

  void rebuildGlobal(VTableBits &B);

  // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
  void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);

  // If we were able to eliminate all unsafe uses for a type checked load,
  // eliminate the associated type tests by replacing them with true.
  void removeRedundantTypeTests();

  bool run();

  // Lower the module using the action and summary passed as command line
  // arguments. For testing purposes only.
  static bool
  runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
                function_ref<DominatorTree &(Function &)> LookupDomTree);
};

struct DevirtIndex {
  ModuleSummaryIndex &ExportSummary;
  // The set in which to record GUIDs exported from their module by
  // devirtualization, used by client to ensure they are not internalized.
  std::set<GlobalValue::GUID> &ExportedGUIDs;
  // A map in which to record the information necessary to locate the WPD
  // resolution for local targets in case they are exported by cross module
  // importing.
  std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;

  MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;

  PatternList FunctionsToSkip;

  DevirtIndex(
      ModuleSummaryIndex &ExportSummary,
      std::set<GlobalValue::GUID> &ExportedGUIDs,
      std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
      : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
        LocalWPDTargetsMap(LocalWPDTargetsMap) {
    FunctionsToSkip.init(SkipFunctionNames);
  }

  bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
                                 const TypeIdCompatibleVtableInfo TIdInfo,
                                 uint64_t ByteOffset);

  bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
                           VTableSlotSummary &SlotSummary,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res,
                           std::set<ValueInfo> &DevirtTargets);

  void run();
};

struct WholeProgramDevirt : public ModulePass {
  static char ID;

  bool UseCommandLine = false;

  ModuleSummaryIndex *ExportSummary = nullptr;
  const ModuleSummaryIndex *ImportSummary = nullptr;

  WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
  }

  WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
                     const ModuleSummaryIndex *ImportSummary)
      : ModulePass(ID), ExportSummary(ExportSummary),
        ImportSummary(ImportSummary) {
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    // In the new pass manager, we can request the optimization
    // remark emitter pass on a per-function-basis, which the
    // OREGetter will do for us.
    // In the old pass manager, this is harder, so we just build
    // an optimization remark emitter on the fly, when we need it.
    std::unique_ptr<OptimizationRemarkEmitter> ORE;
    auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
      ORE = std::make_unique<OptimizationRemarkEmitter>(F);
      return *ORE;
    };

    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
    };

    if (UseCommandLine)
      return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
                                         LookupDomTree);

    return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
                        ExportSummary, ImportSummary)
        .run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
  }
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
                      "Whole program devirtualization", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
                    "Whole program devirtualization", false, false)
char WholeProgramDevirt::ID = 0;

ModulePass *
llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
                                   const ModuleSummaryIndex *ImportSummary) {
  return new WholeProgramDevirt(ExportSummary, ImportSummary);
}

PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
                                              ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto AARGetter = [&](Function &F) -> AAResults & {
    return FAM.getResult<AAManager>(F);
  };
  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
  };
  auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
    return FAM.getResult<DominatorTreeAnalysis>(F);
  };
  if (UseCommandLine) {
    if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
      return PreservedAnalyses::all();
    return PreservedAnalyses::none();
  }
  if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
                    ImportSummary)
           .run())
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}

// Enable whole program visibility if enabled by client (e.g. linker) or
// internal option, and not force disabled.
static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
  return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
         !DisableWholeProgramVisibility;
}

namespace llvm {

/// If whole program visibility asserted, then upgrade all public vcall
/// visibility metadata on vtable definitions to linkage unit visibility in
/// Module IR (for regular or hybrid LTO).
void updateVCallVisibilityInModule(Module &M,
                                   bool WholeProgramVisibilityEnabledInLTO) {
  if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
    return;
  for (GlobalVariable &GV : M.globals())
    // Add linkage unit visibility to any variable with type metadata, which are
    // the vtable definitions. We won't have an existing vcall_visibility
    // metadata on vtable definitions with public visibility.
    if (GV.hasMetadata(LLVMContext::MD_type) &&
        GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
      GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
}

/// If whole program visibility asserted, then upgrade all public vcall
/// visibility metadata on vtable definition summaries to linkage unit
/// visibility in Module summary index (for ThinLTO).
void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index,
                                  bool WholeProgramVisibilityEnabledInLTO) {
  if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
    return;
  for (auto &P : Index) {
    for (auto &S : P.second.SummaryList) {
      auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
      if (!GVar || GVar->vTableFuncs().empty() ||
          GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
        continue;
      GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
    }
  }
}

void runWholeProgramDevirtOnIndex(
    ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
  DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
}

void updateIndexWPDForExports(
    ModuleSummaryIndex &Summary,
    function_ref<bool(StringRef, ValueInfo)> isExported,
    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
  for (auto &T : LocalWPDTargetsMap) {
    auto &VI = T.first;
    // This was enforced earlier during trySingleImplDevirt.
    assert(VI.getSummaryList().size() == 1 &&
           "Devirt of local target has more than one copy");
    auto &S = VI.getSummaryList()[0];
    if (!isExported(S->modulePath(), VI))
      continue;

    // It's been exported by a cross module import.
    for (auto &SlotSummary : T.second) {
      auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
      assert(TIdSum);
      auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
      assert(WPDRes != TIdSum->WPDRes.end());
      WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
          WPDRes->second.SingleImplName,
          Summary.getModuleHash(S->modulePath()));
    }
  }
}

} // end namespace llvm

static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
  // Check that summary index contains regular LTO module when performing
  // export to prevent occasional use of index from pure ThinLTO compilation
  // (-fno-split-lto-module). This kind of summary index is passed to
  // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
  const auto &ModPaths = Summary->modulePaths();
  if (ClSummaryAction != PassSummaryAction::Import &&
      ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
          ModPaths.end())
    return createStringError(
        errc::invalid_argument,
        "combined summary should contain Regular LTO module");
  return ErrorSuccess();
}

bool DevirtModule::runForTesting(
    Module &M, function_ref<AAResults &(Function &)> AARGetter,
    function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
    function_ref<DominatorTree &(Function &)> LookupDomTree) {
  std::unique_ptr<ModuleSummaryIndex> Summary =
      std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);

  // Handle the command-line summary arguments. This code is for testing
  // purposes only, so we handle errors directly.
  if (!ClReadSummary.empty()) {
    ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
                          ": ");
    auto ReadSummaryFile =
        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
    if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
            getModuleSummaryIndex(*ReadSummaryFile)) {
      Summary = std::move(*SummaryOrErr);
      ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
    } else {
      // Try YAML if we've failed with bitcode.
      consumeError(SummaryOrErr.takeError());
      yaml::Input In(ReadSummaryFile->getBuffer());
      In >> *Summary;
      ExitOnErr(errorCodeToError(In.error()));
    }
  }

  bool Changed =
      DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
                   ClSummaryAction == PassSummaryAction::Export ? Summary.get()
                                                                : nullptr,
                   ClSummaryAction == PassSummaryAction::Import ? Summary.get()
                                                                : nullptr)
          .run();

  if (!ClWriteSummary.empty()) {
    ExitOnError ExitOnErr(
        "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
    std::error_code EC;
    if (StringRef(ClWriteSummary).endswith(".bc")) {
      raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
      ExitOnErr(errorCodeToError(EC));
      WriteIndexToFile(*Summary, OS);
    } else {
      raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
      ExitOnErr(errorCodeToError(EC));
      yaml::Output Out(OS);
      Out << *Summary;
    }
  }

  return Changed;
}

void DevirtModule::buildTypeIdentifierMap(
    std::vector<VTableBits> &Bits,
    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
  Bits.reserve(M.getGlobalList().size());
  SmallVector<MDNode *, 2> Types;
  for (GlobalVariable &GV : M.globals()) {
    Types.clear();
    GV.getMetadata(LLVMContext::MD_type, Types);
    if (GV.isDeclaration() || Types.empty())
      continue;

    VTableBits *&BitsPtr = GVToBits[&GV];
    if (!BitsPtr) {
      Bits.emplace_back();
      Bits.back().GV = &GV;
      Bits.back().ObjectSize =
          M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
      BitsPtr = &Bits.back();
    }

    for (MDNode *Type : Types) {
      auto TypeID = Type->getOperand(1).get();

      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();

      TypeIdMap[TypeID].insert({BitsPtr, Offset});
    }
  }
}

bool DevirtModule::tryFindVirtualCallTargets(
    std::vector<VirtualCallTarget> &TargetsForSlot,
    const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
  for (const TypeMemberInfo &TM : TypeMemberInfos) {
    if (!TM.Bits->GV->isConstant())
      return false;

    // We cannot perform whole program devirtualization analysis on a vtable
    // with public LTO visibility.
    if (TM.Bits->GV->getVCallVisibility() ==
        GlobalObject::VCallVisibilityPublic)
      return false;

    Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
                                       TM.Offset + ByteOffset, M);
    if (!Ptr)
      return false;

    auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
    if (!Fn)
      return false;

    if (FunctionsToSkip.match(Fn->getName()))
      return false;

    // We can disregard __cxa_pure_virtual as a possible call target, as
    // calls to pure virtuals are UB.
    if (Fn->getName() == "__cxa_pure_virtual")
      continue;

    TargetsForSlot.push_back({Fn, &TM});
  }

  // Give up if we couldn't find any targets.
  return !TargetsForSlot.empty();
}

bool DevirtIndex::tryFindVirtualCallTargets(
    std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
    uint64_t ByteOffset) {
  for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
    // Find the first non-available_externally linkage vtable initializer.
    // We can have multiple available_externally, linkonce_odr and weak_odr
    // vtable initializers, however we want to skip available_externally as they
    // do not have type metadata attached, and therefore the summary will not
    // contain any vtable functions. We can also have multiple external
    // vtable initializers in the case of comdats, which we cannot check here.
    // The linker should give an error in this case.
    //
    // Also, handle the case of same-named local Vtables with the same path
    // and therefore the same GUID. This can happen if there isn't enough
    // distinguishing path when compiling the source file. In that case we
    // conservatively return false early.
    const GlobalVarSummary *VS = nullptr;
    bool LocalFound = false;
    for (auto &S : P.VTableVI.getSummaryList()) {
      if (GlobalValue::isLocalLinkage(S->linkage())) {
        if (LocalFound)
          return false;
        LocalFound = true;
      }
      if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
        VS = cast<GlobalVarSummary>(S->getBaseObject());
        // We cannot perform whole program devirtualization analysis on a vtable
        // with public LTO visibility.
        if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
          return false;
      }
    }
    if (!VS->isLive())
      continue;
    for (auto VTP : VS->vTableFuncs()) {
      if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
        continue;

      TargetsForSlot.push_back(VTP.FuncVI);
    }
  }

  // Give up if we couldn't find any targets.
  return !TargetsForSlot.empty();
}

void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
                                         Constant *TheFn, bool &IsExported) {
  auto Apply = [&](CallSiteInfo &CSInfo) {
    for (auto &&VCallSite : CSInfo.CallSites) {
      if (RemarksEnabled)
        VCallSite.emitRemark("single-impl",
                             TheFn->stripPointerCasts()->getName(), OREGetter);
      VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast(
          TheFn, VCallSite.CB.getCalledOperand()->getType()));
      // This use is no longer unsafe.
      if (VCallSite.NumUnsafeUses)
        --*VCallSite.NumUnsafeUses;
    }
    if (CSInfo.isExported())
      IsExported = true;
    CSInfo.markDevirt();
  };
  Apply(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    Apply(P.second);
}

static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
  // We can't add calls if we haven't seen a definition
  if (Callee.getSummaryList().empty())
    return false;

  // Insert calls into the summary index so that the devirtualized targets
  // are eligible for import.
  // FIXME: Annotate type tests with hotness. For now, mark these as hot
  // to better ensure we have the opportunity to inline them.
  bool IsExported = false;
  auto &S = Callee.getSummaryList()[0];
  CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
  auto AddCalls = [&](CallSiteInfo &CSInfo) {
    for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
      FS->addCall({Callee, CI});
      IsExported |= S->modulePath() != FS->modulePath();
    }
    for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
      FS->addCall({Callee, CI});
      IsExported |= S->modulePath() != FS->modulePath();
    }
  };
  AddCalls(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    AddCalls(P.second);
  return IsExported;
}

bool DevirtModule::trySingleImplDevirt(
    ModuleSummaryIndex *ExportSummary,
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res) {
  // See if the program contains a single implementation of this virtual
  // function.
  Function *TheFn = TargetsForSlot[0].Fn;
  for (auto &&Target : TargetsForSlot)
    if (TheFn != Target.Fn)
      return false;

  // If so, update each call site to call that implementation directly.
  if (RemarksEnabled)
    TargetsForSlot[0].WasDevirt = true;

  bool IsExported = false;
  applySingleImplDevirt(SlotInfo, TheFn, IsExported);
  if (!IsExported)
    return false;

  // If the only implementation has local linkage, we must promote to external
  // to make it visible to thin LTO objects. We can only get here during the
  // ThinLTO export phase.
  if (TheFn->hasLocalLinkage()) {
    std::string NewName = (TheFn->getName() + "$merged").str();

    // Since we are renaming the function, any comdats with the same name must
    // also be renamed. This is required when targeting COFF, as the comdat name
    // must match one of the names of the symbols in the comdat.
    if (Comdat *C = TheFn->getComdat()) {
      if (C->getName() == TheFn->getName()) {
        Comdat *NewC = M.getOrInsertComdat(NewName);
        NewC->setSelectionKind(C->getSelectionKind());
        for (GlobalObject &GO : M.global_objects())
          if (GO.getComdat() == C)
            GO.setComdat(NewC);
      }
    }

    TheFn->setLinkage(GlobalValue::ExternalLinkage);
    TheFn->setVisibility(GlobalValue::HiddenVisibility);
    TheFn->setName(NewName);
  }
  if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
    // Any needed promotion of 'TheFn' has already been done during
    // LTO unit split, so we can ignore return value of AddCalls.
    AddCalls(SlotInfo, TheFnVI);

  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
  Res->SingleImplName = std::string(TheFn->getName());

  return true;
}

bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
                                      VTableSlotSummary &SlotSummary,
                                      VTableSlotInfo &SlotInfo,
                                      WholeProgramDevirtResolution *Res,
                                      std::set<ValueInfo> &DevirtTargets) {
  // See if the program contains a single implementation of this virtual
  // function.
  auto TheFn = TargetsForSlot[0];
  for (auto &&Target : TargetsForSlot)
    if (TheFn != Target)
      return false;

  // Don't devirtualize if we don't have target definition.
  auto Size = TheFn.getSummaryList().size();
  if (!Size)
    return false;

  // Don't devirtualize function if we're told to skip it
  // in -wholeprogramdevirt-skip.
  if (FunctionsToSkip.match(TheFn.name()))
    return false;

  // If the summary list contains multiple summaries where at least one is
  // a local, give up, as we won't know which (possibly promoted) name to use.
  for (auto &S : TheFn.getSummaryList())
    if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
      return false;

  // Collect functions devirtualized at least for one call site for stats.
  if (PrintSummaryDevirt)
    DevirtTargets.insert(TheFn);

  auto &S = TheFn.getSummaryList()[0];
  bool IsExported = AddCalls(SlotInfo, TheFn);
  if (IsExported)
    ExportedGUIDs.insert(TheFn.getGUID());

  // Record in summary for use in devirtualization during the ThinLTO import
  // step.
  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
  if (GlobalValue::isLocalLinkage(S->linkage())) {
    if (IsExported)
      // If target is a local function and we are exporting it by
      // devirtualizing a call in another module, we need to record the
      // promoted name.
      Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
          TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
    else {
      LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
      Res->SingleImplName = std::string(TheFn.name());
    }
  } else
    Res->SingleImplName = std::string(TheFn.name());

  // Name will be empty if this thin link driven off of serialized combined
  // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
  // legacy LTO API anyway.
  assert(!Res->SingleImplName.empty());

  return true;
}

void DevirtModule::tryICallBranchFunnel(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
  Triple T(M.getTargetTriple());
  if (T.getArch() != Triple::x86_64)
    return;

  if (TargetsForSlot.size() > ClThreshold)
    return;

  bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
  if (!HasNonDevirt)
    for (auto &P : SlotInfo.ConstCSInfo)
      if (!P.second.AllCallSitesDevirted) {
        HasNonDevirt = true;
        break;
      }

  if (!HasNonDevirt)
    return;

  FunctionType *FT =
      FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
  Function *JT;
  if (isa<MDString>(Slot.TypeID)) {
    JT = Function::Create(FT, Function::ExternalLinkage,
                          M.getDataLayout().getProgramAddressSpace(),
                          getGlobalName(Slot, {}, "branch_funnel"), &M);
    JT->setVisibility(GlobalValue::HiddenVisibility);
  } else {
    JT = Function::Create(FT, Function::InternalLinkage,
                          M.getDataLayout().getProgramAddressSpace(),
                          "branch_funnel", &M);
  }
  JT->addAttribute(1, Attribute::Nest);

  std::vector<Value *> JTArgs;
  JTArgs.push_back(JT->arg_begin());
  for (auto &T : TargetsForSlot) {
    JTArgs.push_back(getMemberAddr(T.TM));
    JTArgs.push_back(T.Fn);
  }

  BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
  Function *Intr =
      Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});

  auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
  CI->setTailCallKind(CallInst::TCK_MustTail);
  ReturnInst::Create(M.getContext(), nullptr, BB);

  bool IsExported = false;
  applyICallBranchFunnel(SlotInfo, JT, IsExported);
  if (IsExported)
    Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
}

void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
                                          Constant *JT, bool &IsExported) {
  auto Apply = [&](CallSiteInfo &CSInfo) {
    if (CSInfo.isExported())
      IsExported = true;
    if (CSInfo.AllCallSitesDevirted)
      return;
    for (auto &&VCallSite : CSInfo.CallSites) {
      CallBase &CB = VCallSite.CB;

      // Jump tables are only profitable if the retpoline mitigation is enabled.
      Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
      if (!FSAttr.isValid() ||
          !FSAttr.getValueAsString().contains("+retpoline"))
        continue;

      if (RemarksEnabled)
        VCallSite.emitRemark("branch-funnel",
                             JT->stripPointerCasts()->getName(), OREGetter);

      // Pass the address of the vtable in the nest register, which is r10 on
      // x86_64.
      std::vector<Type *> NewArgs;
      NewArgs.push_back(Int8PtrTy);
      for (Type *T : CB.getFunctionType()->params())
        NewArgs.push_back(T);
      FunctionType *NewFT =
          FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
                            CB.getFunctionType()->isVarArg());
      PointerType *NewFTPtr = PointerType::getUnqual(NewFT);

      IRBuilder<> IRB(&CB);
      std::vector<Value *> Args;
      Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
      Args.insert(Args.end(), CB.arg_begin(), CB.arg_end());

      CallBase *NewCS = nullptr;
      if (isa<CallInst>(CB))
        NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
      else
        NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
                                 cast<InvokeInst>(CB).getNormalDest(),
                                 cast<InvokeInst>(CB).getUnwindDest(), Args);
      NewCS->setCallingConv(CB.getCallingConv());

      AttributeList Attrs = CB.getAttributes();
      std::vector<AttributeSet> NewArgAttrs;
      NewArgAttrs.push_back(AttributeSet::get(
          M.getContext(), ArrayRef<Attribute>{Attribute::get(
                              M.getContext(), Attribute::Nest)}));
      for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
        NewArgAttrs.push_back(Attrs.getParamAttributes(I));
      NewCS->setAttributes(
          AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
                             Attrs.getRetAttributes(), NewArgAttrs));

      CB.replaceAllUsesWith(NewCS);
      CB.eraseFromParent();

      // This use is no longer unsafe.
      if (VCallSite.NumUnsafeUses)
        --*VCallSite.NumUnsafeUses;
    }
    // Don't mark as devirtualized because there may be callers compiled without
    // retpoline mitigation, which would mean that they are lowered to
    // llvm.type.test and therefore require an llvm.type.test resolution for the
    // type identifier.
  };
  Apply(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    Apply(P.second);
}

bool DevirtModule::tryEvaluateFunctionsWithArgs(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    ArrayRef<uint64_t> Args) {
  // Evaluate each function and store the result in each target's RetVal
  // field.
  for (VirtualCallTarget &Target : TargetsForSlot) {
    if (Target.Fn->arg_size() != Args.size() + 1)
      return false;

    Evaluator Eval(M.getDataLayout(), nullptr);
    SmallVector<Constant *, 2> EvalArgs;
    EvalArgs.push_back(
        Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
    for (unsigned I = 0; I != Args.size(); ++I) {
      auto *ArgTy = dyn_cast<IntegerType>(
          Target.Fn->getFunctionType()->getParamType(I + 1));
      if (!ArgTy)
        return false;
      EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
    }

    Constant *RetVal;
    if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
        !isa<ConstantInt>(RetVal))
      return false;
    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
  }
  return true;
}

void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                                         uint64_t TheRetVal) {
  for (auto Call : CSInfo.CallSites)
    Call.replaceAndErase(
        "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
        ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
  CSInfo.markDevirt();
}

bool DevirtModule::tryUniformRetValOpt(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
    WholeProgramDevirtResolution::ByArg *Res) {
  // Uniform return value optimization. If all functions return the same
  // constant, replace all calls with that constant.
  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
  for (const VirtualCallTarget &Target : TargetsForSlot)
    if (Target.RetVal != TheRetVal)
      return false;

  if (CSInfo.isExported()) {
    Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
    Res->Info = TheRetVal;
  }

  applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
  if (RemarksEnabled)
    for (auto &&Target : TargetsForSlot)
      Target.WasDevirt = true;
  return true;
}

std::string DevirtModule::getGlobalName(VTableSlot Slot,
                                        ArrayRef<uint64_t> Args,
                                        StringRef Name) {
  std::string FullName = "__typeid_";
  raw_string_ostream OS(FullName);
  OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
  for (uint64_t Arg : Args)
    OS << '_' << Arg;
  OS << '_' << Name;
  return OS.str();
}

bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
  Triple T(M.getTargetTriple());
  return T.isX86() && T.getObjectFormat() == Triple::ELF;
}

void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                StringRef Name, Constant *C) {
  GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
                                        getGlobalName(Slot, Args, Name), C, &M);
  GA->setVisibility(GlobalValue::HiddenVisibility);
}

void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                  StringRef Name, uint32_t Const,
                                  uint32_t &Storage) {
  if (shouldExportConstantsAsAbsoluteSymbols()) {
    exportGlobal(
        Slot, Args, Name,
        ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
    return;
  }

  Storage = Const;
}

Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                     StringRef Name) {
  Constant *C =
      M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
  auto *GV = dyn_cast<GlobalVariable>(C);
  if (GV)
    GV->setVisibility(GlobalValue::HiddenVisibility);
  return C;
}

Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                       StringRef Name, IntegerType *IntTy,
                                       uint32_t Storage) {
  if (!shouldExportConstantsAsAbsoluteSymbols())
    return ConstantInt::get(IntTy, Storage);

  Constant *C = importGlobal(Slot, Args, Name);
  auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
  C = ConstantExpr::getPtrToInt(C, IntTy);

  // We only need to set metadata if the global is newly created, in which
  // case it would not have hidden visibility.
  if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
    return C;

  auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
    GV->setMetadata(LLVMContext::MD_absolute_symbol,
                    MDNode::get(M.getContext(), {MinC, MaxC}));
  };
  unsigned AbsWidth = IntTy->getBitWidth();
  if (AbsWidth == IntPtrTy->getBitWidth())
    SetAbsRange(~0ull, ~0ull); // Full set.
  else
    SetAbsRange(0, 1ull << AbsWidth);
  return C;
}

void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                                        bool IsOne,
                                        Constant *UniqueMemberAddr) {
  for (auto &&Call : CSInfo.CallSites) {
    IRBuilder<> B(&Call.CB);
    Value *Cmp =
        B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
                     B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
    Cmp = B.CreateZExt(Cmp, Call.CB.getType());
    Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
                         Cmp);
  }
  CSInfo.markDevirt();
}

Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
  Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
  return ConstantExpr::getGetElementPtr(Int8Ty, C,
                                        ConstantInt::get(Int64Ty, M->Offset));
}

bool DevirtModule::tryUniqueRetValOpt(
    unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
    VTableSlot Slot, ArrayRef<uint64_t> Args) {
  // IsOne controls whether we look for a 0 or a 1.
  auto tryUniqueRetValOptFor = [&](bool IsOne) {
    const TypeMemberInfo *UniqueMember = nullptr;
    for (const VirtualCallTarget &Target : TargetsForSlot) {
      if (Target.RetVal == (IsOne ? 1 : 0)) {
        if (UniqueMember)
          return false;
        UniqueMember = Target.TM;
      }
    }

    // We should have found a unique member or bailed out by now. We already
    // checked for a uniform return value in tryUniformRetValOpt.
    assert(UniqueMember);

    Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
    if (CSInfo.isExported()) {
      Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
      Res->Info = IsOne;

      exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
    }

    // Replace each call with the comparison.
    applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
                         UniqueMemberAddr);

    // Update devirtualization statistics for targets.
    if (RemarksEnabled)
      for (auto &&Target : TargetsForSlot)
        Target.WasDevirt = true;

    return true;
  };

  if (BitWidth == 1) {
    if (tryUniqueRetValOptFor(true))
      return true;
    if (tryUniqueRetValOptFor(false))
      return true;
  }
  return false;
}

void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
                                         Constant *Byte, Constant *Bit) {
  for (auto Call : CSInfo.CallSites) {
    auto *RetType = cast<IntegerType>(Call.CB.getType());
    IRBuilder<> B(&Call.CB);
    Value *Addr =
        B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
    if (RetType->getBitWidth() == 1) {
      Value *Bits = B.CreateLoad(Int8Ty, Addr);
      Value *BitsAndBit = B.CreateAnd(Bits, Bit);
      auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
      Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
                           OREGetter, IsBitSet);
    } else {
      Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
      Value *Val = B.CreateLoad(RetType, ValAddr);
      Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
                           OREGetter, Val);
    }
  }
  CSInfo.markDevirt();
}

bool DevirtModule::tryVirtualConstProp(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
  // This only works if the function returns an integer.
  auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
  if (!RetType)
    return false;
  unsigned BitWidth = RetType->getBitWidth();
  if (BitWidth > 64)
    return false;

  // Make sure that each function is defined, does not access memory, takes at
  // least one argument, does not use its first argument (which we assume is
  // 'this'), and has the same return type.
  //
  // Note that we test whether this copy of the function is readnone, rather
  // than testing function attributes, which must hold for any copy of the
  // function, even a less optimized version substituted at link time. This is
  // sound because the virtual constant propagation optimizations effectively
  // inline all implementations of the virtual function into each call site,
  // rather than using function attributes to perform local optimization.
  for (VirtualCallTarget &Target : TargetsForSlot) {
    if (Target.Fn->isDeclaration() ||
        computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
            MAK_ReadNone ||
        Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
        Target.Fn->getReturnType() != RetType)
      return false;
  }

  for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
      continue;

    WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
    if (Res)
      ResByArg = &Res->ResByArg[CSByConstantArg.first];

    if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
      continue;

    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
                           ResByArg, Slot, CSByConstantArg.first))
      continue;

    // Find an allocation offset in bits in all vtables associated with the
    // type.
    uint64_t AllocBefore =
        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
    uint64_t AllocAfter =
        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);

    // Calculate the total amount of padding needed to store a value at both
    // ends of the object.
    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
    for (auto &&Target : TargetsForSlot) {
      TotalPaddingBefore += std::max<int64_t>(
          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
      TotalPaddingAfter += std::max<int64_t>(
          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
    }

    // If the amount of padding is too large, give up.
    // FIXME: do something smarter here.
    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
      continue;

    // Calculate the offset to the value as a (possibly negative) byte offset
    // and (if applicable) a bit offset, and store the values in the targets.
    int64_t OffsetByte;
    uint64_t OffsetBit;
    if (TotalPaddingBefore <= TotalPaddingAfter)
      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
                            OffsetBit);
    else
      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
                           OffsetBit);

    if (RemarksEnabled)
      for (auto &&Target : TargetsForSlot)
        Target.WasDevirt = true;


    if (CSByConstantArg.second.isExported()) {
      ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
      exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
                     ResByArg->Byte);
      exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
                     ResByArg->Bit);
    }

    // Rewrite each call to a load from OffsetByte/OffsetBit.
    Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
    Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
    applyVirtualConstProp(CSByConstantArg.second,
                          TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
  }
  return true;
}

void DevirtModule::rebuildGlobal(VTableBits &B) {
  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
    return;

  // Align the before byte array to the global's minimum alignment so that we
  // don't break any alignment requirements on the global.
  Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
      B.GV->getAlign(), B.GV->getValueType());
  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));

  // Before was stored in reverse order; flip it now.
  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);

  // Build an anonymous global containing the before bytes, followed by the
  // original initializer, followed by the after bytes.
  auto NewInit = ConstantStruct::getAnon(
      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
       B.GV->getInitializer(),
       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
  auto NewGV =
      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
  NewGV->setSection(B.GV->getSection());
  NewGV->setComdat(B.GV->getComdat());
  NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));

  // Copy the original vtable's metadata to the anonymous global, adjusting
  // offsets as required.
  NewGV->copyMetadata(B.GV, B.Before.Bytes.size());

  // Build an alias named after the original global, pointing at the second
  // element (the original initializer).
  auto Alias = GlobalAlias::create(
      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
      ConstantExpr::getGetElementPtr(
          NewInit->getType(), NewGV,
          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
                               ConstantInt::get(Int32Ty, 1)}),
      &M);
  Alias->setVisibility(B.GV->getVisibility());
  Alias->takeName(B.GV);

  B.GV->replaceAllUsesWith(Alias);
  B.GV->eraseFromParent();
}

bool DevirtModule::areRemarksEnabled() {
  const auto &FL = M.getFunctionList();
  for (const Function &Fn : FL) {
    const auto &BBL = Fn.getBasicBlockList();
    if (BBL.empty())
      continue;
    auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
    return DI.isEnabled();
  }
  return false;
}

void DevirtModule::scanTypeTestUsers(
    Function *TypeTestFunc,
    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
  // Find all virtual calls via a virtual table pointer %p under an assumption
  // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
  // points to a member of the type identifier %md. Group calls by (type ID,
  // offset) pair (effectively the identity of the virtual function) and store
  // to CallSlots.
  for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
       I != E;) {
    auto CI = dyn_cast<CallInst>(I->getUser());
    ++I;
    if (!CI)
      continue;

    // Search for virtual calls based on %p and add them to DevirtCalls.
    SmallVector<DevirtCallSite, 1> DevirtCalls;
    SmallVector<CallInst *, 1> Assumes;
    auto &DT = LookupDomTree(*CI->getFunction());
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);

    Metadata *TypeId =
        cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
    // If we found any, add them to CallSlots.
    if (!Assumes.empty()) {
      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
      for (DevirtCallSite Call : DevirtCalls)
        CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
    }

    auto RemoveTypeTestAssumes = [&]() {
      // We no longer need the assumes or the type test.
      for (auto Assume : Assumes)
        Assume->eraseFromParent();
      // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
      // may use the vtable argument later.
      if (CI->use_empty())
        CI->eraseFromParent();
    };

    // At this point we could remove all type test assume sequences, as they
    // were originally inserted for WPD. However, we can keep these in the
    // code stream for later analysis (e.g. to help drive more efficient ICP
    // sequences). They will eventually be removed by a second LowerTypeTests
    // invocation that cleans them up. In order to do this correctly, the first
    // LowerTypeTests invocation needs to know that they have "Unknown" type
    // test resolution, so that they aren't treated as Unsat and lowered to
    // False, which will break any uses on assumes. Below we remove any type
    // test assumes that will not be treated as Unknown by LTT.

    // The type test assumes will be treated by LTT as Unsat if the type id is
    // not used on a global (in which case it has no entry in the TypeIdMap).
    if (!TypeIdMap.count(TypeId))
      RemoveTypeTestAssumes();

    // For ThinLTO importing, we need to remove the type test assumes if this is
    // an MDString type id without a corresponding TypeIdSummary. Any
    // non-MDString type ids are ignored and treated as Unknown by LTT, so their
    // type test assumes can be kept. If the MDString type id is missing a
    // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
    // exporting phase of WPD from analyzing it), then it would be treated as
    // Unsat by LTT and we need to remove its type test assumes here. If not
    // used on a vcall we don't need them for later optimization use in any
    // case.
    else if (ImportSummary && isa<MDString>(TypeId)) {
      const TypeIdSummary *TidSummary =
          ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
      if (!TidSummary)
        RemoveTypeTestAssumes();
      else
        // If one was created it should not be Unsat, because if we reached here
        // the type id was used on a global.
        assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
    }
  }
}

void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
  Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);

  for (auto I = TypeCheckedLoadFunc->use_begin(),
            E = TypeCheckedLoadFunc->use_end();
       I != E;) {
    auto CI = dyn_cast<CallInst>(I->getUser());
    ++I;
    if (!CI)
      continue;

    Value *Ptr = CI->getArgOperand(0);
    Value *Offset = CI->getArgOperand(1);
    Value *TypeIdValue = CI->getArgOperand(2);
    Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();

    SmallVector<DevirtCallSite, 1> DevirtCalls;
    SmallVector<Instruction *, 1> LoadedPtrs;
    SmallVector<Instruction *, 1> Preds;
    bool HasNonCallUses = false;
    auto &DT = LookupDomTree(*CI->getFunction());
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
                                               HasNonCallUses, CI, DT);

    // Start by generating "pessimistic" code that explicitly loads the function
    // pointer from the vtable and performs the type check. If possible, we will
    // eliminate the load and the type check later.

    // If possible, only generate the load at the point where it is used.
    // This helps avoid unnecessary spills.
    IRBuilder<> LoadB(
        (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
    Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
    Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
    Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);

    for (Instruction *LoadedPtr : LoadedPtrs) {
      LoadedPtr->replaceAllUsesWith(LoadedValue);
      LoadedPtr->eraseFromParent();
    }

    // Likewise for the type test.
    IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
    CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});

    for (Instruction *Pred : Preds) {
      Pred->replaceAllUsesWith(TypeTestCall);
      Pred->eraseFromParent();
    }

    // We have already erased any extractvalue instructions that refer to the
    // intrinsic call, but the intrinsic may have other non-extractvalue uses
    // (although this is unlikely). In that case, explicitly build a pair and
    // RAUW it.
    if (!CI->use_empty()) {
      Value *Pair = UndefValue::get(CI->getType());
      IRBuilder<> B(CI);
      Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
      Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
      CI->replaceAllUsesWith(Pair);
    }

    // The number of unsafe uses is initially the number of uses.
    auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
    NumUnsafeUses = DevirtCalls.size();

    // If the function pointer has a non-call user, we cannot eliminate the type
    // check, as one of those users may eventually call the pointer. Increment
    // the unsafe use count to make sure it cannot reach zero.
    if (HasNonCallUses)
      ++NumUnsafeUses;
    for (DevirtCallSite Call : DevirtCalls) {
      CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
                                                   &NumUnsafeUses);
    }

    CI->eraseFromParent();
  }
}

void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
  auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
  if (!TypeId)
    return;
  const TypeIdSummary *TidSummary =
      ImportSummary->getTypeIdSummary(TypeId->getString());
  if (!TidSummary)
    return;
  auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
  if (ResI == TidSummary->WPDRes.end())
    return;
  const WholeProgramDevirtResolution &Res = ResI->second;

  if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
    assert(!Res.SingleImplName.empty());
    // The type of the function in the declaration is irrelevant because every
    // call site will cast it to the correct type.
    Constant *SingleImpl =
        cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
                                             Type::getVoidTy(M.getContext()))
                           .getCallee());

    // This is the import phase so we should not be exporting anything.
    bool IsExported = false;
    applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
    assert(!IsExported);
  }

  for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
    auto I = Res.ResByArg.find(CSByConstantArg.first);
    if (I == Res.ResByArg.end())
      continue;
    auto &ResByArg = I->second;
    // FIXME: We should figure out what to do about the "function name" argument
    // to the apply* functions, as the function names are unavailable during the
    // importing phase. For now we just pass the empty string. This does not
    // impact correctness because the function names are just used for remarks.
    switch (ResByArg.TheKind) {
    case WholeProgramDevirtResolution::ByArg::UniformRetVal:
      applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
      break;
    case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
      Constant *UniqueMemberAddr =
          importGlobal(Slot, CSByConstantArg.first, "unique_member");
      applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
                           UniqueMemberAddr);
      break;
    }
    case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
      Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
                                      Int32Ty, ResByArg.Byte);
      Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
                                     ResByArg.Bit);
      applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
      break;
    }
    default:
      break;
    }
  }

  if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
    // The type of the function is irrelevant, because it's bitcast at calls
    // anyhow.
    Constant *JT = cast<Constant>(
        M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
                              Type::getVoidTy(M.getContext()))
            .getCallee());
    bool IsExported = false;
    applyICallBranchFunnel(SlotInfo, JT, IsExported);
    assert(!IsExported);
  }
}

void DevirtModule::removeRedundantTypeTests() {
  auto True = ConstantInt::getTrue(M.getContext());
  for (auto &&U : NumUnsafeUsesForTypeTest) {
    if (U.second == 0) {
      U.first->replaceAllUsesWith(True);
      U.first->eraseFromParent();
    }
  }
}

bool DevirtModule::run() {
  // If only some of the modules were split, we cannot correctly perform
  // this transformation. We already checked for the presense of type tests
  // with partially split modules during the thin link, and would have emitted
  // an error if any were found, so here we can simply return.
  if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
      (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
    return false;

  Function *TypeTestFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
  Function *TypeCheckedLoadFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));

  // Normally if there are no users of the devirtualization intrinsics in the
  // module, this pass has nothing to do. But if we are exporting, we also need
  // to handle any users that appear only in the function summaries.
  if (!ExportSummary &&
      (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
       AssumeFunc->use_empty()) &&
      (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
    return false;

  // Rebuild type metadata into a map for easy lookup.
  std::vector<VTableBits> Bits;
  DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
  buildTypeIdentifierMap(Bits, TypeIdMap);

  if (TypeTestFunc && AssumeFunc)
    scanTypeTestUsers(TypeTestFunc, TypeIdMap);

  if (TypeCheckedLoadFunc)
    scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);

  if (ImportSummary) {
    for (auto &S : CallSlots)
      importResolution(S.first, S.second);

    removeRedundantTypeTests();

    // We have lowered or deleted the type instrinsics, so we will no
    // longer have enough information to reason about the liveness of virtual
    // function pointers in GlobalDCE.
    for (GlobalVariable &GV : M.globals())
      GV.eraseMetadata(LLVMContext::MD_vcall_visibility);

    // The rest of the code is only necessary when exporting or during regular
    // LTO, so we are done.
    return true;
  }

  if (TypeIdMap.empty())
    return true;

  // Collect information from summary about which calls to try to devirtualize.
  if (ExportSummary) {
    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
    for (auto &P : TypeIdMap) {
      if (auto *TypeId = dyn_cast<MDString>(P.first))
        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
            TypeId);
    }

    for (auto &P : *ExportSummary) {
      for (auto &S : P.second.SummaryList) {
        auto *FS = dyn_cast<FunctionSummary>(S.get());
        if (!FS)
          continue;
        // FIXME: Only add live functions.
        for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
          }
        }
        for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
          }
        }
        for (const FunctionSummary::ConstVCall &VC :
             FS->type_test_assume_const_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
            CallSlots[{MD, VC.VFunc.Offset}]
                .ConstCSInfo[VC.Args]
                .addSummaryTypeTestAssumeUser(FS);
          }
        }
        for (const FunctionSummary::ConstVCall &VC :
             FS->type_checked_load_const_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
            CallSlots[{MD, VC.VFunc.Offset}]
                .ConstCSInfo[VC.Args]
                .addSummaryTypeCheckedLoadUser(FS);
          }
        }
      }
    }
  }

  // For each (type, offset) pair:
  bool DidVirtualConstProp = false;
  std::map<std::string, Function*> DevirtTargets;
  for (auto &S : CallSlots) {
    // Search each of the members of the type identifier for the virtual
    // function implementation at offset S.first.ByteOffset, and add to
    // TargetsForSlot.
    std::vector<VirtualCallTarget> TargetsForSlot;
    WholeProgramDevirtResolution *Res = nullptr;
    const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
    if (ExportSummary && isa<MDString>(S.first.TypeID) &&
        TypeMemberInfos.size())
      // For any type id used on a global's type metadata, create the type id
      // summary resolution regardless of whether we can devirtualize, so that
      // lower type tests knows the type id is not Unsat. If it was not used on
      // a global's type metadata, the TypeIdMap entry set will be empty, and
      // we don't want to create an entry (with the default Unknown type
      // resolution), which can prevent detection of the Unsat.
      Res = &ExportSummary
                 ->getOrInsertTypeIdSummary(
                     cast<MDString>(S.first.TypeID)->getString())
                 .WPDRes[S.first.ByteOffset];
    if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
                                  S.first.ByteOffset)) {

      if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
        DidVirtualConstProp |=
            tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);

        tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
      }

      // Collect functions devirtualized at least for one call site for stats.
      if (RemarksEnabled)
        for (const auto &T : TargetsForSlot)
          if (T.WasDevirt)
            DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
    }

    // CFI-specific: if we are exporting and any llvm.type.checked.load
    // intrinsics were *not* devirtualized, we need to add the resulting
    // llvm.type.test intrinsics to the function summaries so that the
    // LowerTypeTests pass will export them.
    if (ExportSummary && isa<MDString>(S.first.TypeID)) {
      auto GUID =
          GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
      for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
        FS->addTypeTest(GUID);
      for (auto &CCS : S.second.ConstCSInfo)
        for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
          FS->addTypeTest(GUID);
    }
  }

  if (RemarksEnabled) {
    // Generate remarks for each devirtualized function.
    for (const auto &DT : DevirtTargets) {
      Function *F = DT.second;

      using namespace ore;
      OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
                        << "devirtualized "
                        << NV("FunctionName", DT.first));
    }
  }

  removeRedundantTypeTests();

  // Rebuild each global we touched as part of virtual constant propagation to
  // include the before and after bytes.
  if (DidVirtualConstProp)
    for (VTableBits &B : Bits)
      rebuildGlobal(B);

  // We have lowered or deleted the type instrinsics, so we will no
  // longer have enough information to reason about the liveness of virtual
  // function pointers in GlobalDCE.
  for (GlobalVariable &GV : M.globals())
    GV.eraseMetadata(LLVMContext::MD_vcall_visibility);

  return true;
}

void DevirtIndex::run() {
  if (ExportSummary.typeIdCompatibleVtableMap().empty())
    return;

  DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
  for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
    NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
  }

  // Collect information from summary about which calls to try to devirtualize.
  for (auto &P : ExportSummary) {
    for (auto &S : P.second.SummaryList) {
      auto *FS = dyn_cast<FunctionSummary>(S.get());
      if (!FS)
        continue;
      // FIXME: Only add live functions.
      for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
        for (StringRef Name : NameByGUID[VF.GUID]) {
          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
        }
      }
      for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
        for (StringRef Name : NameByGUID[VF.GUID]) {
          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
        }
      }
      for (const FunctionSummary::ConstVCall &VC :
           FS->type_test_assume_const_vcalls()) {
        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
          CallSlots[{Name, VC.VFunc.Offset}]
              .ConstCSInfo[VC.Args]
              .addSummaryTypeTestAssumeUser(FS);
        }
      }
      for (const FunctionSummary::ConstVCall &VC :
           FS->type_checked_load_const_vcalls()) {
        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
          CallSlots[{Name, VC.VFunc.Offset}]
              .ConstCSInfo[VC.Args]
              .addSummaryTypeCheckedLoadUser(FS);
        }
      }
    }
  }

  std::set<ValueInfo> DevirtTargets;
  // For each (type, offset) pair:
  for (auto &S : CallSlots) {
    // Search each of the members of the type identifier for the virtual
    // function implementation at offset S.first.ByteOffset, and add to
    // TargetsForSlot.
    std::vector<ValueInfo> TargetsForSlot;
    auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
    assert(TidSummary);
    // Create the type id summary resolution regardlness of whether we can
    // devirtualize, so that lower type tests knows the type id is used on
    // a global and not Unsat.
    WholeProgramDevirtResolution *Res =
        &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
             .WPDRes[S.first.ByteOffset];
    if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
                                  S.first.ByteOffset)) {

      if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
                               DevirtTargets))
        continue;
    }
  }

  // Optionally have the thin link print message for each devirtualized
  // function.
  if (PrintSummaryDevirt)
    for (const auto &DT : DevirtTargets)
      errs() << "Devirtualized call to " << DT << "\n";

  return;
}