AddressSanitizer.cpp 140 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
//===- AddressSanitizer.cpp - memory error detector -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
// Details of the algorithm:
//  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
//
// FIXME: This sanitizer does not yet handle scalable vectors
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iomanip>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>

using namespace llvm;

#define DEBUG_TYPE "asan"

static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
static const uint64_t kDynamicShadowSentinel =
    std::numeric_limits<uint64_t>::max();
static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
static const uint64_t kRISCV64_ShadowOffset64 = 0x20000000;
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
static const uint64_t kEmscriptenShadowOffset = 0;

static const uint64_t kMyriadShadowScale = 5;
static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
static const uint64_t kMyriadTagShift = 29;
static const uint64_t kMyriadDDRTag = 4;
static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;

// The shadow memory space is dynamically allocated.
static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;

static const size_t kMinStackMallocSize = 1 << 6;   // 64B
static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;

static const char *const kAsanModuleCtorName = "asan.module_ctor";
static const char *const kAsanModuleDtorName = "asan.module_dtor";
static const uint64_t kAsanCtorAndDtorPriority = 1;
// On Emscripten, the system needs more than one priorities for constructors.
static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
static const char *const kAsanReportErrorTemplate = "__asan_report_";
static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
static const char *const kAsanUnregisterGlobalsName =
    "__asan_unregister_globals";
static const char *const kAsanRegisterImageGlobalsName =
  "__asan_register_image_globals";
static const char *const kAsanUnregisterImageGlobalsName =
  "__asan_unregister_image_globals";
static const char *const kAsanRegisterElfGlobalsName =
  "__asan_register_elf_globals";
static const char *const kAsanUnregisterElfGlobalsName =
  "__asan_unregister_elf_globals";
static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
static const char *const kAsanInitName = "__asan_init";
static const char *const kAsanVersionCheckNamePrefix =
    "__asan_version_mismatch_check_v";
static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
static const int kMaxAsanStackMallocSizeClass = 10;
static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
static const char *const kAsanGenPrefix = "___asan_gen_";
static const char *const kODRGenPrefix = "__odr_asan_gen_";
static const char *const kSanCovGenPrefix = "__sancov_gen_";
static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
static const char *const kAsanPoisonStackMemoryName =
    "__asan_poison_stack_memory";
static const char *const kAsanUnpoisonStackMemoryName =
    "__asan_unpoison_stack_memory";

// ASan version script has __asan_* wildcard. Triple underscore prevents a
// linker (gold) warning about attempting to export a local symbol.
static const char *const kAsanGlobalsRegisteredFlagName =
    "___asan_globals_registered";

static const char *const kAsanOptionDetectUseAfterReturn =
    "__asan_option_detect_stack_use_after_return";

static const char *const kAsanShadowMemoryDynamicAddress =
    "__asan_shadow_memory_dynamic_address";

static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";

// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;

static const unsigned kAllocaRzSize = 32;

// Command-line flags.

static cl::opt<bool> ClEnableKasan(
    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClRecover(
    "asan-recover",
    cl::desc("Enable recovery mode (continue-after-error)."),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClInsertVersionCheck(
    "asan-guard-against-version-mismatch",
    cl::desc("Guard against compiler/runtime version mismatch."),
    cl::Hidden, cl::init(true));

// This flag may need to be replaced with -f[no-]asan-reads.
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
                                       cl::desc("instrument read instructions"),
                                       cl::Hidden, cl::init(true));

static cl::opt<bool> ClInstrumentWrites(
    "asan-instrument-writes", cl::desc("instrument write instructions"),
    cl::Hidden, cl::init(true));

static cl::opt<bool> ClInstrumentAtomics(
    "asan-instrument-atomics",
    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
    cl::init(true));

static cl::opt<bool>
    ClInstrumentByval("asan-instrument-byval",
                      cl::desc("instrument byval call arguments"), cl::Hidden,
                      cl::init(true));

static cl::opt<bool> ClAlwaysSlowPath(
    "asan-always-slow-path",
    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClForceDynamicShadow(
    "asan-force-dynamic-shadow",
    cl::desc("Load shadow address into a local variable for each function"),
    cl::Hidden, cl::init(false));

static cl::opt<bool>
    ClWithIfunc("asan-with-ifunc",
                cl::desc("Access dynamic shadow through an ifunc global on "
                         "platforms that support this"),
                cl::Hidden, cl::init(true));

static cl::opt<bool> ClWithIfuncSuppressRemat(
    "asan-with-ifunc-suppress-remat",
    cl::desc("Suppress rematerialization of dynamic shadow address by passing "
             "it through inline asm in prologue."),
    cl::Hidden, cl::init(true));

// This flag limits the number of instructions to be instrumented
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
// set it to 10000.
static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
    "asan-max-ins-per-bb", cl::init(10000),
    cl::desc("maximal number of instructions to instrument in any given BB"),
    cl::Hidden);

// This flag may need to be replaced with -f[no]asan-stack.
static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
                             cl::Hidden, cl::init(true));
static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
    "asan-max-inline-poisoning-size",
    cl::desc(
        "Inline shadow poisoning for blocks up to the given size in bytes."),
    cl::Hidden, cl::init(64));

static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
                                      cl::desc("Check stack-use-after-return"),
                                      cl::Hidden, cl::init(true));

static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
                                        cl::desc("Create redzones for byval "
                                                 "arguments (extra copy "
                                                 "required)"), cl::Hidden,
                                        cl::init(true));

static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
                                     cl::desc("Check stack-use-after-scope"),
                                     cl::Hidden, cl::init(false));

// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
                               cl::desc("Handle global objects"), cl::Hidden,
                               cl::init(true));

static cl::opt<bool> ClInitializers("asan-initialization-order",
                                    cl::desc("Handle C++ initializer order"),
                                    cl::Hidden, cl::init(true));

static cl::opt<bool> ClInvalidPointerPairs(
    "asan-detect-invalid-pointer-pair",
    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClInvalidPointerCmp(
    "asan-detect-invalid-pointer-cmp",
    cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClInvalidPointerSub(
    "asan-detect-invalid-pointer-sub",
    cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
    cl::init(false));

static cl::opt<unsigned> ClRealignStack(
    "asan-realign-stack",
    cl::desc("Realign stack to the value of this flag (power of two)"),
    cl::Hidden, cl::init(32));

static cl::opt<int> ClInstrumentationWithCallsThreshold(
    "asan-instrumentation-with-call-threshold",
    cl::desc(
        "If the function being instrumented contains more than "
        "this number of memory accesses, use callbacks instead of "
        "inline checks (-1 means never use callbacks)."),
    cl::Hidden, cl::init(7000));

static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
    "asan-memory-access-callback-prefix",
    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
    cl::init("__asan_"));

static cl::opt<bool>
    ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
                               cl::desc("instrument dynamic allocas"),
                               cl::Hidden, cl::init(true));

static cl::opt<bool> ClSkipPromotableAllocas(
    "asan-skip-promotable-allocas",
    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
    cl::init(true));

// These flags allow to change the shadow mapping.
// The shadow mapping looks like
//    Shadow = (Mem >> scale) + offset

static cl::opt<int> ClMappingScale("asan-mapping-scale",
                                   cl::desc("scale of asan shadow mapping"),
                                   cl::Hidden, cl::init(0));

static cl::opt<uint64_t>
    ClMappingOffset("asan-mapping-offset",
                    cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
                    cl::Hidden, cl::init(0));

// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.

static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
                           cl::Hidden, cl::init(true));

static cl::opt<bool> ClOptSameTemp(
    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
    cl::Hidden, cl::init(true));

static cl::opt<bool> ClOptGlobals("asan-opt-globals",
                                  cl::desc("Don't instrument scalar globals"),
                                  cl::Hidden, cl::init(true));

static cl::opt<bool> ClOptStack(
    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClDynamicAllocaStack(
    "asan-stack-dynamic-alloca",
    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
    cl::init(true));

static cl::opt<uint32_t> ClForceExperiment(
    "asan-force-experiment",
    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
    cl::init(0));

static cl::opt<bool>
    ClUsePrivateAlias("asan-use-private-alias",
                      cl::desc("Use private aliases for global variables"),
                      cl::Hidden, cl::init(false));

static cl::opt<bool>
    ClUseOdrIndicator("asan-use-odr-indicator",
                      cl::desc("Use odr indicators to improve ODR reporting"),
                      cl::Hidden, cl::init(false));

static cl::opt<bool>
    ClUseGlobalsGC("asan-globals-live-support",
                   cl::desc("Use linker features to support dead "
                            "code stripping of globals"),
                   cl::Hidden, cl::init(true));

// This is on by default even though there is a bug in gold:
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
static cl::opt<bool>
    ClWithComdat("asan-with-comdat",
                 cl::desc("Place ASan constructors in comdat sections"),
                 cl::Hidden, cl::init(true));

// Debug flags.

static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
                            cl::init(0));

static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
                                 cl::Hidden, cl::init(0));

static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
                                        cl::desc("Debug func"));

static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
                               cl::Hidden, cl::init(-1));

static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
                               cl::Hidden, cl::init(-1));

STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
STATISTIC(NumOptimizedAccessesToGlobalVar,
          "Number of optimized accesses to global vars");
STATISTIC(NumOptimizedAccessesToStackVar,
          "Number of optimized accesses to stack vars");

namespace {

/// This struct defines the shadow mapping using the rule:
///   shadow = (mem >> Scale) ADD-or-OR Offset.
/// If InGlobal is true, then
///   extern char __asan_shadow[];
///   shadow = (mem >> Scale) + &__asan_shadow
struct ShadowMapping {
  int Scale;
  uint64_t Offset;
  bool OrShadowOffset;
  bool InGlobal;
};

} // end anonymous namespace

static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
                                      bool IsKasan) {
  bool IsAndroid = TargetTriple.isAndroid();
  bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
  bool IsMacOS = TargetTriple.isMacOSX();
  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
  bool IsNetBSD = TargetTriple.isOSNetBSD();
  bool IsPS4CPU = TargetTriple.isPS4CPU();
  bool IsLinux = TargetTriple.isOSLinux();
  bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
                 TargetTriple.getArch() == Triple::ppc64le;
  bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
  bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
  bool IsMIPS32 = TargetTriple.isMIPS32();
  bool IsMIPS64 = TargetTriple.isMIPS64();
  bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
  bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
  bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
  bool IsWindows = TargetTriple.isOSWindows();
  bool IsFuchsia = TargetTriple.isOSFuchsia();
  bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
  bool IsEmscripten = TargetTriple.isOSEmscripten();

  ShadowMapping Mapping;

  Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
  if (ClMappingScale.getNumOccurrences() > 0) {
    Mapping.Scale = ClMappingScale;
  }

  if (LongSize == 32) {
    if (IsAndroid)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsMIPS32)
      Mapping.Offset = kMIPS32_ShadowOffset32;
    else if (IsFreeBSD)
      Mapping.Offset = kFreeBSD_ShadowOffset32;
    else if (IsNetBSD)
      Mapping.Offset = kNetBSD_ShadowOffset32;
    else if (IsIOS)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsWindows)
      Mapping.Offset = kWindowsShadowOffset32;
    else if (IsEmscripten)
      Mapping.Offset = kEmscriptenShadowOffset;
    else if (IsMyriad) {
      uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
                               (kMyriadMemorySize32 >> Mapping.Scale));
      Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
    }
    else
      Mapping.Offset = kDefaultShadowOffset32;
  } else {  // LongSize == 64
    // Fuchsia is always PIE, which means that the beginning of the address
    // space is always available.
    if (IsFuchsia)
      Mapping.Offset = 0;
    else if (IsPPC64)
      Mapping.Offset = kPPC64_ShadowOffset64;
    else if (IsSystemZ)
      Mapping.Offset = kSystemZ_ShadowOffset64;
    else if (IsFreeBSD && !IsMIPS64)
      Mapping.Offset = kFreeBSD_ShadowOffset64;
    else if (IsNetBSD) {
      if (IsKasan)
        Mapping.Offset = kNetBSDKasan_ShadowOffset64;
      else
        Mapping.Offset = kNetBSD_ShadowOffset64;
    } else if (IsPS4CPU)
      Mapping.Offset = kPS4CPU_ShadowOffset64;
    else if (IsLinux && IsX86_64) {
      if (IsKasan)
        Mapping.Offset = kLinuxKasan_ShadowOffset64;
      else
        Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
                          (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
    } else if (IsWindows && IsX86_64) {
      Mapping.Offset = kWindowsShadowOffset64;
    } else if (IsMIPS64)
      Mapping.Offset = kMIPS64_ShadowOffset64;
    else if (IsIOS)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsMacOS && IsAArch64)
      Mapping.Offset = kDynamicShadowSentinel;
    else if (IsAArch64)
      Mapping.Offset = kAArch64_ShadowOffset64;
    else if (IsRISCV64)
      Mapping.Offset = kRISCV64_ShadowOffset64;
    else
      Mapping.Offset = kDefaultShadowOffset64;
  }

  if (ClForceDynamicShadow) {
    Mapping.Offset = kDynamicShadowSentinel;
  }

  if (ClMappingOffset.getNumOccurrences() > 0) {
    Mapping.Offset = ClMappingOffset;
  }

  // OR-ing shadow offset if more efficient (at least on x86) if the offset
  // is a power of two, but on ppc64 we have to use add since the shadow
  // offset is not necessary 1/8-th of the address space.  On SystemZ,
  // we could OR the constant in a single instruction, but it's more
  // efficient to load it once and use indexed addressing.
  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
                           !IsRISCV64 &&
                           !(Mapping.Offset & (Mapping.Offset - 1)) &&
                           Mapping.Offset != kDynamicShadowSentinel;
  bool IsAndroidWithIfuncSupport =
      IsAndroid && !TargetTriple.isAndroidVersionLT(21);
  Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;

  return Mapping;
}

static uint64_t getRedzoneSizeForScale(int MappingScale) {
  // Redzone used for stack and globals is at least 32 bytes.
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
  return std::max(32U, 1U << MappingScale);
}

static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
  if (TargetTriple.isOSEmscripten()) {
    return kAsanEmscriptenCtorAndDtorPriority;
  } else {
    return kAsanCtorAndDtorPriority;
  }
}

// For a ret instruction followed by a musttail call, we cannot insert anything
// in between. Instead we use the musttail call instruction as the insertion
// point.
static Instruction *adjustForMusttailCall(Instruction *I) {
  ReturnInst *RI = dyn_cast<ReturnInst>(I);
  if (!RI)
    return I;
  Instruction *Prev = RI->getPrevNode();
  if (BitCastInst *BCI = dyn_cast_or_null<BitCastInst>(Prev))
    Prev = BCI->getPrevNode();
  if (CallInst *CI = dyn_cast_or_null<CallInst>(Prev))
    if (CI->isMustTailCall())
      return CI;
  return RI;
}

namespace {

/// Module analysis for getting various metadata about the module.
class ASanGlobalsMetadataWrapperPass : public ModulePass {
public:
  static char ID;

  ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
    initializeASanGlobalsMetadataWrapperPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    GlobalsMD = GlobalsMetadata(M);
    return false;
  }

  StringRef getPassName() const override {
    return "ASanGlobalsMetadataWrapperPass";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }

  GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }

private:
  GlobalsMetadata GlobalsMD;
};

char ASanGlobalsMetadataWrapperPass::ID = 0;

/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer {
  AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
                   bool CompileKernel = false, bool Recover = false,
                   bool UseAfterScope = false)
      : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
                                                            : CompileKernel),
        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
        UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
    C = &(M.getContext());
    LongSize = M.getDataLayout().getPointerSizeInBits();
    IntptrTy = Type::getIntNTy(*C, LongSize);
    TargetTriple = Triple(M.getTargetTriple());

    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
  }

  uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
    uint64_t ArraySize = 1;
    if (AI.isArrayAllocation()) {
      const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
      assert(CI && "non-constant array size");
      ArraySize = CI->getZExtValue();
    }
    Type *Ty = AI.getAllocatedType();
    uint64_t SizeInBytes =
        AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
    return SizeInBytes * ArraySize;
  }

  /// Check if we want (and can) handle this alloca.
  bool isInterestingAlloca(const AllocaInst &AI);

  bool ignoreAccess(Value *Ptr);
  void getInterestingMemoryOperands(
      Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);

  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
                     InterestingMemoryOperand &O, bool UseCalls,
                     const DataLayout &DL);
  void instrumentPointerComparisonOrSubtraction(Instruction *I);
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
                         Value *Addr, uint32_t TypeSize, bool IsWrite,
                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
  void instrumentUnusualSizeOrAlignment(Instruction *I,
                                        Instruction *InsertBefore, Value *Addr,
                                        uint32_t TypeSize, bool IsWrite,
                                        Value *SizeArgument, bool UseCalls,
                                        uint32_t Exp);
  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
                           Value *ShadowValue, uint32_t TypeSize);
  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
                                 bool IsWrite, size_t AccessSizeIndex,
                                 Value *SizeArgument, uint32_t Exp);
  void instrumentMemIntrinsic(MemIntrinsic *MI);
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
  bool suppressInstrumentationSiteForDebug(int &Instrumented);
  bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
  bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
  void markEscapedLocalAllocas(Function &F);

private:
  friend struct FunctionStackPoisoner;

  void initializeCallbacks(Module &M);

  bool LooksLikeCodeInBug11395(Instruction *I);
  bool GlobalIsLinkerInitialized(GlobalVariable *G);
  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
                    uint64_t TypeSize) const;

  /// Helper to cleanup per-function state.
  struct FunctionStateRAII {
    AddressSanitizer *Pass;

    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
      assert(Pass->ProcessedAllocas.empty() &&
             "last pass forgot to clear cache");
      assert(!Pass->LocalDynamicShadow);
    }

    ~FunctionStateRAII() {
      Pass->LocalDynamicShadow = nullptr;
      Pass->ProcessedAllocas.clear();
    }
  };

  LLVMContext *C;
  Triple TargetTriple;
  int LongSize;
  bool CompileKernel;
  bool Recover;
  bool UseAfterScope;
  Type *IntptrTy;
  ShadowMapping Mapping;
  FunctionCallee AsanHandleNoReturnFunc;
  FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
  Constant *AsanShadowGlobal;

  // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
  FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
  FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];

  // These arrays is indexed by AccessIsWrite and Experiment.
  FunctionCallee AsanErrorCallbackSized[2][2];
  FunctionCallee AsanMemoryAccessCallbackSized[2][2];

  FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
  Value *LocalDynamicShadow = nullptr;
  const GlobalsMetadata &GlobalsMD;
  DenseMap<const AllocaInst *, bool> ProcessedAllocas;
};

class AddressSanitizerLegacyPass : public FunctionPass {
public:
  static char ID;

  explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
                                      bool Recover = false,
                                      bool UseAfterScope = false)
      : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
        UseAfterScope(UseAfterScope) {
    initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "AddressSanitizerFunctionPass";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ASanGlobalsMetadataWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    GlobalsMetadata &GlobalsMD =
        getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
                          UseAfterScope);
    return ASan.instrumentFunction(F, TLI);
  }

private:
  bool CompileKernel;
  bool Recover;
  bool UseAfterScope;
};

class ModuleAddressSanitizer {
public:
  ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
                         bool CompileKernel = false, bool Recover = false,
                         bool UseGlobalsGC = true, bool UseOdrIndicator = false)
      : GlobalsMD(*GlobalsMD),
        CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
                                                            : CompileKernel),
        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
        UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
        // Enable aliases as they should have no downside with ODR indicators.
        UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
        UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
        // Not a typo: ClWithComdat is almost completely pointless without
        // ClUseGlobalsGC (because then it only works on modules without
        // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
        // and both suffer from gold PR19002 for which UseGlobalsGC constructor
        // argument is designed as workaround. Therefore, disable both
        // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
        // do globals-gc.
        UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) {
    C = &(M.getContext());
    int LongSize = M.getDataLayout().getPointerSizeInBits();
    IntptrTy = Type::getIntNTy(*C, LongSize);
    TargetTriple = Triple(M.getTargetTriple());
    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
  }

  bool instrumentModule(Module &);

private:
  void initializeCallbacks(Module &M);

  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
  void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
                             ArrayRef<GlobalVariable *> ExtendedGlobals,
                             ArrayRef<Constant *> MetadataInitializers);
  void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
                            ArrayRef<GlobalVariable *> ExtendedGlobals,
                            ArrayRef<Constant *> MetadataInitializers,
                            const std::string &UniqueModuleId);
  void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
                              ArrayRef<GlobalVariable *> ExtendedGlobals,
                              ArrayRef<Constant *> MetadataInitializers);
  void
  InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
                                     ArrayRef<GlobalVariable *> ExtendedGlobals,
                                     ArrayRef<Constant *> MetadataInitializers);

  GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
                                       StringRef OriginalName);
  void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
                                  StringRef InternalSuffix);
  Instruction *CreateAsanModuleDtor(Module &M);

  bool canInstrumentAliasedGlobal(const GlobalAlias &GA) const;
  bool shouldInstrumentGlobal(GlobalVariable *G) const;
  bool ShouldUseMachOGlobalsSection() const;
  StringRef getGlobalMetadataSection() const;
  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
  uint64_t getMinRedzoneSizeForGlobal() const {
    return getRedzoneSizeForScale(Mapping.Scale);
  }
  uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
  int GetAsanVersion(const Module &M) const;

  const GlobalsMetadata &GlobalsMD;
  bool CompileKernel;
  bool Recover;
  bool UseGlobalsGC;
  bool UsePrivateAlias;
  bool UseOdrIndicator;
  bool UseCtorComdat;
  Type *IntptrTy;
  LLVMContext *C;
  Triple TargetTriple;
  ShadowMapping Mapping;
  FunctionCallee AsanPoisonGlobals;
  FunctionCallee AsanUnpoisonGlobals;
  FunctionCallee AsanRegisterGlobals;
  FunctionCallee AsanUnregisterGlobals;
  FunctionCallee AsanRegisterImageGlobals;
  FunctionCallee AsanUnregisterImageGlobals;
  FunctionCallee AsanRegisterElfGlobals;
  FunctionCallee AsanUnregisterElfGlobals;

  Function *AsanCtorFunction = nullptr;
  Function *AsanDtorFunction = nullptr;
};

class ModuleAddressSanitizerLegacyPass : public ModulePass {
public:
  static char ID;

  explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
                                            bool Recover = false,
                                            bool UseGlobalGC = true,
                                            bool UseOdrIndicator = false)
      : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
        UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
    initializeModuleAddressSanitizerLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "ModuleAddressSanitizer"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ASanGlobalsMetadataWrapperPass>();
  }

  bool runOnModule(Module &M) override {
    GlobalsMetadata &GlobalsMD =
        getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
    ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
                                      UseGlobalGC, UseOdrIndicator);
    return ASanModule.instrumentModule(M);
  }

private:
  bool CompileKernel;
  bool Recover;
  bool UseGlobalGC;
  bool UseOdrIndicator;
};

// Stack poisoning does not play well with exception handling.
// When an exception is thrown, we essentially bypass the code
// that unpoisones the stack. This is why the run-time library has
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
// stack in the interceptor. This however does not work inside the
// actual function which catches the exception. Most likely because the
// compiler hoists the load of the shadow value somewhere too high.
// This causes asan to report a non-existing bug on 453.povray.
// It sounds like an LLVM bug.
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
  Function &F;
  AddressSanitizer &ASan;
  DIBuilder DIB;
  LLVMContext *C;
  Type *IntptrTy;
  Type *IntptrPtrTy;
  ShadowMapping Mapping;

  SmallVector<AllocaInst *, 16> AllocaVec;
  SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
  SmallVector<Instruction *, 8> RetVec;
  unsigned StackAlignment;

  FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
      AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
  FunctionCallee AsanSetShadowFunc[0x100] = {};
  FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
  FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;

  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
  struct AllocaPoisonCall {
    IntrinsicInst *InsBefore;
    AllocaInst *AI;
    uint64_t Size;
    bool DoPoison;
  };
  SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
  SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
  bool HasUntracedLifetimeIntrinsic = false;

  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
  AllocaInst *DynamicAllocaLayout = nullptr;
  IntrinsicInst *LocalEscapeCall = nullptr;

  bool HasInlineAsm = false;
  bool HasReturnsTwiceCall = false;

  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
      : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
        C(ASan.C), IntptrTy(ASan.IntptrTy),
        IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
        StackAlignment(1 << Mapping.Scale) {}

  bool runOnFunction() {
    if (!ClStack) return false;

    if (ClRedzoneByvalArgs)
      copyArgsPassedByValToAllocas();

    // Collect alloca, ret, lifetime instructions etc.
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);

    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;

    initializeCallbacks(*F.getParent());

    if (HasUntracedLifetimeIntrinsic) {
      // If there are lifetime intrinsics which couldn't be traced back to an
      // alloca, we may not know exactly when a variable enters scope, and
      // therefore should "fail safe" by not poisoning them.
      StaticAllocaPoisonCallVec.clear();
      DynamicAllocaPoisonCallVec.clear();
    }

    processDynamicAllocas();
    processStaticAllocas();

    if (ClDebugStack) {
      LLVM_DEBUG(dbgs() << F);
    }
    return true;
  }

  // Arguments marked with the "byval" attribute are implicitly copied without
  // using an alloca instruction.  To produce redzones for those arguments, we
  // copy them a second time into memory allocated with an alloca instruction.
  void copyArgsPassedByValToAllocas();

  // Finds all Alloca instructions and puts
  // poisoned red zones around all of them.
  // Then unpoison everything back before the function returns.
  void processStaticAllocas();
  void processDynamicAllocas();

  void createDynamicAllocasInitStorage();

  // ----------------------- Visitors.
  /// Collect all Ret instructions.
  void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }

  /// Collect all Resume instructions.
  void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }

  /// Collect all CatchReturnInst instructions.
  void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }

  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
                                        Value *SavedStack) {
    IRBuilder<> IRB(InstBefore);
    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
    // need to adjust extracted SP to compute the address of the most recent
    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
    // this purpose.
    if (!isa<ReturnInst>(InstBefore)) {
      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
          {IntptrTy});

      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});

      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
                                     DynamicAreaOffset);
    }

    IRB.CreateCall(
        AsanAllocasUnpoisonFunc,
        {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
  }

  // Unpoison dynamic allocas redzones.
  void unpoisonDynamicAllocas() {
    for (Instruction *Ret : RetVec)
      unpoisonDynamicAllocasBeforeInst(adjustForMusttailCall(Ret),
                                       DynamicAllocaLayout);

    for (Instruction *StackRestoreInst : StackRestoreVec)
      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
                                       StackRestoreInst->getOperand(0));
  }

  // Deploy and poison redzones around dynamic alloca call. To do this, we
  // should replace this call with another one with changed parameters and
  // replace all its uses with new address, so
  //   addr = alloca type, old_size, align
  // is replaced by
  //   new_size = (old_size + additional_size) * sizeof(type)
  //   tmp = alloca i8, new_size, max(align, 32)
  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
  // Additional_size is added to make new memory allocation contain not only
  // requested memory, but also left, partial and right redzones.
  void handleDynamicAllocaCall(AllocaInst *AI);

  /// Collect Alloca instructions we want (and can) handle.
  void visitAllocaInst(AllocaInst &AI) {
    if (!ASan.isInterestingAlloca(AI)) {
      if (AI.isStaticAlloca()) {
        // Skip over allocas that are present *before* the first instrumented
        // alloca, we don't want to move those around.
        if (AllocaVec.empty())
          return;

        StaticAllocasToMoveUp.push_back(&AI);
      }
      return;
    }

    StackAlignment = std::max(StackAlignment, AI.getAlignment());
    if (!AI.isStaticAlloca())
      DynamicAllocaVec.push_back(&AI);
    else
      AllocaVec.push_back(&AI);
  }

  /// Collect lifetime intrinsic calls to check for use-after-scope
  /// errors.
  void visitIntrinsicInst(IntrinsicInst &II) {
    Intrinsic::ID ID = II.getIntrinsicID();
    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
    if (!ASan.UseAfterScope)
      return;
    if (!II.isLifetimeStartOrEnd())
      return;
    // Found lifetime intrinsic, add ASan instrumentation if necessary.
    auto *Size = cast<ConstantInt>(II.getArgOperand(0));
    // If size argument is undefined, don't do anything.
    if (Size->isMinusOne()) return;
    // Check that size doesn't saturate uint64_t and can
    // be stored in IntptrTy.
    const uint64_t SizeValue = Size->getValue().getLimitedValue();
    if (SizeValue == ~0ULL ||
        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
      return;
    // Find alloca instruction that corresponds to llvm.lifetime argument.
    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    if (!AI) {
      HasUntracedLifetimeIntrinsic = true;
      return;
    }
    // We're interested only in allocas we can handle.
    if (!ASan.isInterestingAlloca(*AI))
      return;
    bool DoPoison = (ID == Intrinsic::lifetime_end);
    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
    if (AI->isStaticAlloca())
      StaticAllocaPoisonCallVec.push_back(APC);
    else if (ClInstrumentDynamicAllocas)
      DynamicAllocaPoisonCallVec.push_back(APC);
  }

  void visitCallBase(CallBase &CB) {
    if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
      HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
      HasReturnsTwiceCall |= CI->canReturnTwice();
    }
  }

  // ---------------------- Helpers.
  void initializeCallbacks(Module &M);

  // Copies bytes from ShadowBytes into shadow memory for indexes where
  // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
  // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
                    IRBuilder<> &IRB, Value *ShadowBase);
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
                    size_t Begin, size_t End, IRBuilder<> &IRB,
                    Value *ShadowBase);
  void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
                          ArrayRef<uint8_t> ShadowBytes, size_t Begin,
                          size_t End, IRBuilder<> &IRB, Value *ShadowBase);

  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);

  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
                               bool Dynamic);
  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
                     Instruction *ThenTerm, Value *ValueIfFalse);
};

} // end anonymous namespace

void LocationMetadata::parse(MDNode *MDN) {
  assert(MDN->getNumOperands() == 3);
  MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
  Filename = DIFilename->getString();
  LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
  ColumnNo =
      mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
}

// FIXME: It would be cleaner to instead attach relevant metadata to the globals
// we want to sanitize instead and reading this metadata on each pass over a
// function instead of reading module level metadata at first.
GlobalsMetadata::GlobalsMetadata(Module &M) {
  NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
  if (!Globals)
    return;
  for (auto MDN : Globals->operands()) {
    // Metadata node contains the global and the fields of "Entry".
    assert(MDN->getNumOperands() == 5);
    auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
    // The optimizer may optimize away a global entirely.
    if (!V)
      continue;
    auto *StrippedV = V->stripPointerCasts();
    auto *GV = dyn_cast<GlobalVariable>(StrippedV);
    if (!GV)
      continue;
    // We can already have an entry for GV if it was merged with another
    // global.
    Entry &E = Entries[GV];
    if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
      E.SourceLoc.parse(Loc);
    if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
      E.Name = Name->getString();
    ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
    E.IsDynInit |= IsDynInit->isOne();
    ConstantInt *IsExcluded =
        mdconst::extract<ConstantInt>(MDN->getOperand(4));
    E.IsExcluded |= IsExcluded->isOne();
  }
}

AnalysisKey ASanGlobalsMetadataAnalysis::Key;

GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
                                                 ModuleAnalysisManager &AM) {
  return GlobalsMetadata(M);
}

AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
                                           bool UseAfterScope)
    : CompileKernel(CompileKernel), Recover(Recover),
      UseAfterScope(UseAfterScope) {}

PreservedAnalyses AddressSanitizerPass::run(Function &F,
                                            AnalysisManager<Function> &AM) {
  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
  Module &M = *F.getParent();
  if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
    const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
    AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
    if (Sanitizer.instrumentFunction(F, TLI))
      return PreservedAnalyses::none();
    return PreservedAnalyses::all();
  }

  report_fatal_error(
      "The ASanGlobalsMetadataAnalysis is required to run before "
      "AddressSanitizer can run");
  return PreservedAnalyses::all();
}

ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
                                                       bool Recover,
                                                       bool UseGlobalGC,
                                                       bool UseOdrIndicator)
    : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
      UseOdrIndicator(UseOdrIndicator) {}

PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
                                                  AnalysisManager<Module> &AM) {
  GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
  ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
                                   UseGlobalGC, UseOdrIndicator);
  if (Sanitizer.instrumentModule(M))
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}

INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
                "Read metadata to mark which globals should be instrumented "
                "when running ASan.",
                false, true)

char AddressSanitizerLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(
    AddressSanitizerLegacyPass, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    false)
INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
    AddressSanitizerLegacyPass, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    false)

FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
                                                       bool Recover,
                                                       bool UseAfterScope) {
  assert(!CompileKernel || Recover);
  return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
}

char ModuleAddressSanitizerLegacyPass::ID = 0;

INITIALIZE_PASS(
    ModuleAddressSanitizerLegacyPass, "asan-module",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    "ModulePass",
    false, false)

ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
    bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
  assert(!CompileKernel || Recover);
  return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
                                              UseGlobalsGC, UseOdrIndicator);
}

static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
  size_t Res = countTrailingZeros(TypeSize / 8);
  assert(Res < kNumberOfAccessSizes);
  return Res;
}

/// Create a global describing a source location.
static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
                                                       LocationMetadata MD) {
  Constant *LocData[] = {
      createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
  };
  auto LocStruct = ConstantStruct::getAnon(LocData);
  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
                               GlobalValue::PrivateLinkage, LocStruct,
                               kAsanGenPrefix);
  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  return GV;
}

/// Check if \p G has been created by a trusted compiler pass.
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
  // Do not instrument @llvm.global_ctors, @llvm.used, etc.
  if (G->getName().startswith("llvm."))
    return true;

  // Do not instrument asan globals.
  if (G->getName().startswith(kAsanGenPrefix) ||
      G->getName().startswith(kSanCovGenPrefix) ||
      G->getName().startswith(kODRGenPrefix))
    return true;

  // Do not instrument gcov counter arrays.
  if (G->getName() == "__llvm_gcov_ctr")
    return true;

  return false;
}

Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
  // Shadow >> scale
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
  if (Mapping.Offset == 0) return Shadow;
  // (Shadow >> scale) | offset
  Value *ShadowBase;
  if (LocalDynamicShadow)
    ShadowBase = LocalDynamicShadow;
  else
    ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
  if (Mapping.OrShadowOffset)
    return IRB.CreateOr(Shadow, ShadowBase);
  else
    return IRB.CreateAdd(Shadow, ShadowBase);
}

// Instrument memset/memmove/memcpy
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
  IRBuilder<> IRB(MI);
  if (isa<MemTransferInst>(MI)) {
    IRB.CreateCall(
        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
  } else if (isa<MemSetInst>(MI)) {
    IRB.CreateCall(
        AsanMemset,
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
  }
  MI->eraseFromParent();
}

/// Check if we want (and can) handle this alloca.
bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);

  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
    return PreviouslySeenAllocaInfo->getSecond();

  bool IsInteresting =
      (AI.getAllocatedType()->isSized() &&
       // alloca() may be called with 0 size, ignore it.
       ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
       // We are only interested in allocas not promotable to registers.
       // Promotable allocas are common under -O0.
       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
       // inalloca allocas are not treated as static, and we don't want
       // dynamic alloca instrumentation for them as well.
       !AI.isUsedWithInAlloca() &&
       // swifterror allocas are register promoted by ISel
       !AI.isSwiftError());

  ProcessedAllocas[&AI] = IsInteresting;
  return IsInteresting;
}

bool AddressSanitizer::ignoreAccess(Value *Ptr) {
  // Do not instrument acesses from different address spaces; we cannot deal
  // with them.
  Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
  if (PtrTy->getPointerAddressSpace() != 0)
    return true;

  // Ignore swifterror addresses.
  // swifterror memory addresses are mem2reg promoted by instruction
  // selection. As such they cannot have regular uses like an instrumentation
  // function and it makes no sense to track them as memory.
  if (Ptr->isSwiftError())
    return true;

  // Treat memory accesses to promotable allocas as non-interesting since they
  // will not cause memory violations. This greatly speeds up the instrumented
  // executable at -O0.
  if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
    if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
      return true;

  return false;
}

void AddressSanitizer::getInterestingMemoryOperands(
    Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
  // Skip memory accesses inserted by another instrumentation.
  if (I->hasMetadata("nosanitize"))
    return;

  // Do not instrument the load fetching the dynamic shadow address.
  if (LocalDynamicShadow == I)
    return;

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
      return;
    Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
                             LI->getType(), LI->getAlign());
  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
      return;
    Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
                             SI->getValueOperand()->getType(), SI->getAlign());
  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
      return;
    Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
                             RMW->getValOperand()->getType(), None);
  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
      return;
    Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
                             XCHG->getCompareOperand()->getType(), None);
  } else if (auto CI = dyn_cast<CallInst>(I)) {
    auto *F = CI->getCalledFunction();
    if (F && (F->getName().startswith("llvm.masked.load.") ||
              F->getName().startswith("llvm.masked.store."))) {
      bool IsWrite = F->getName().startswith("llvm.masked.store.");
      // Masked store has an initial operand for the value.
      unsigned OpOffset = IsWrite ? 1 : 0;
      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
        return;

      auto BasePtr = CI->getOperand(OpOffset);
      if (ignoreAccess(BasePtr))
        return;
      auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
      MaybeAlign Alignment = Align(1);
      // Otherwise no alignment guarantees. We probably got Undef.
      if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
        Alignment = Op->getMaybeAlignValue();
      Value *Mask = CI->getOperand(2 + OpOffset);
      Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
    } else {
      for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
        if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
            ignoreAccess(CI->getArgOperand(ArgNo)))
          continue;
        Type *Ty = CI->getParamByValType(ArgNo);
        Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
      }
    }
  }
}

static bool isPointerOperand(Value *V) {
  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
}

// This is a rough heuristic; it may cause both false positives and
// false negatives. The proper implementation requires cooperation with
// the frontend.
static bool isInterestingPointerComparison(Instruction *I) {
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
    if (!Cmp->isRelational())
      return false;
  } else {
    return false;
  }
  return isPointerOperand(I->getOperand(0)) &&
         isPointerOperand(I->getOperand(1));
}

// This is a rough heuristic; it may cause both false positives and
// false negatives. The proper implementation requires cooperation with
// the frontend.
static bool isInterestingPointerSubtraction(Instruction *I) {
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    if (BO->getOpcode() != Instruction::Sub)
      return false;
  } else {
    return false;
  }
  return isPointerOperand(I->getOperand(0)) &&
         isPointerOperand(I->getOperand(1));
}

bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
  // If a global variable does not have dynamic initialization we don't
  // have to instrument it.  However, if a global does not have initializer
  // at all, we assume it has dynamic initializer (in other TU).
  //
  // FIXME: Metadata should be attched directly to the global directly instead
  // of being added to llvm.asan.globals.
  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
}

void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
    Instruction *I) {
  IRBuilder<> IRB(I);
  FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
  for (Value *&i : Param) {
    if (i->getType()->isPointerTy())
      i = IRB.CreatePointerCast(i, IntptrTy);
  }
  IRB.CreateCall(F, Param);
}

static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
                                Instruction *InsertBefore, Value *Addr,
                                MaybeAlign Alignment, unsigned Granularity,
                                uint32_t TypeSize, bool IsWrite,
                                Value *SizeArgument, bool UseCalls,
                                uint32_t Exp) {
  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
  // if the data is properly aligned.
  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
       TypeSize == 128) &&
      (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
    return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
                                   nullptr, UseCalls, Exp);
  Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
                                         IsWrite, nullptr, UseCalls, Exp);
}

static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
                                        const DataLayout &DL, Type *IntptrTy,
                                        Value *Mask, Instruction *I,
                                        Value *Addr, MaybeAlign Alignment,
                                        unsigned Granularity, uint32_t TypeSize,
                                        bool IsWrite, Value *SizeArgument,
                                        bool UseCalls, uint32_t Exp) {
  auto *VTy = cast<FixedVectorType>(
      cast<PointerType>(Addr->getType())->getElementType());
  uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
  unsigned Num = VTy->getNumElements();
  auto Zero = ConstantInt::get(IntptrTy, 0);
  for (unsigned Idx = 0; Idx < Num; ++Idx) {
    Value *InstrumentedAddress = nullptr;
    Instruction *InsertBefore = I;
    if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
      // dyn_cast as we might get UndefValue
      if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
        if (Masked->isZero())
          // Mask is constant false, so no instrumentation needed.
          continue;
        // If we have a true or undef value, fall through to doInstrumentAddress
        // with InsertBefore == I
      }
    } else {
      IRBuilder<> IRB(I);
      Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
      Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
      InsertBefore = ThenTerm;
    }

    IRBuilder<> IRB(InsertBefore);
    InstrumentedAddress =
        IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
    doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
                        Granularity, ElemTypeSize, IsWrite, SizeArgument,
                        UseCalls, Exp);
  }
}

void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
                                     InterestingMemoryOperand &O, bool UseCalls,
                                     const DataLayout &DL) {
  Value *Addr = O.getPtr();

  // Optimization experiments.
  // The experiments can be used to evaluate potential optimizations that remove
  // instrumentation (assess false negatives). Instead of completely removing
  // some instrumentation, you set Exp to a non-zero value (mask of optimization
  // experiments that want to remove instrumentation of this instruction).
  // If Exp is non-zero, this pass will emit special calls into runtime
  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
  // make runtime terminate the program in a special way (with a different
  // exit status). Then you run the new compiler on a buggy corpus, collect
  // the special terminations (ideally, you don't see them at all -- no false
  // negatives) and make the decision on the optimization.
  uint32_t Exp = ClForceExperiment;

  if (ClOpt && ClOptGlobals) {
    // If initialization order checking is disabled, a simple access to a
    // dynamically initialized global is always valid.
    GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
        isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
      NumOptimizedAccessesToGlobalVar++;
      return;
    }
  }

  if (ClOpt && ClOptStack) {
    // A direct inbounds access to a stack variable is always valid.
    if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
        isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
      NumOptimizedAccessesToStackVar++;
      return;
    }
  }

  if (O.IsWrite)
    NumInstrumentedWrites++;
  else
    NumInstrumentedReads++;

  unsigned Granularity = 1 << Mapping.Scale;
  if (O.MaybeMask) {
    instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
                                Addr, O.Alignment, Granularity, O.TypeSize,
                                O.IsWrite, nullptr, UseCalls, Exp);
  } else {
    doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
                        Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
                        Exp);
  }
}

Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
                                                 Value *Addr, bool IsWrite,
                                                 size_t AccessSizeIndex,
                                                 Value *SizeArgument,
                                                 uint32_t Exp) {
  IRBuilder<> IRB(InsertBefore);
  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
  CallInst *Call = nullptr;
  if (SizeArgument) {
    if (Exp == 0)
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
                            {Addr, SizeArgument});
    else
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
                            {Addr, SizeArgument, ExpVal});
  } else {
    if (Exp == 0)
      Call =
          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
    else
      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
                            {Addr, ExpVal});
  }

  Call->setCannotMerge();
  return Call;
}

Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
                                           Value *ShadowValue,
                                           uint32_t TypeSize) {
  size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
  // Addr & (Granularity - 1)
  Value *LastAccessedByte =
      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
  // (Addr & (Granularity - 1)) + size - 1
  if (TypeSize / 8 > 1)
    LastAccessedByte = IRB.CreateAdd(
        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
  LastAccessedByte =
      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
}

void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
                                         Instruction *InsertBefore, Value *Addr,
                                         uint32_t TypeSize, bool IsWrite,
                                         Value *SizeArgument, bool UseCalls,
                                         uint32_t Exp) {
  bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;

  IRBuilder<> IRB(InsertBefore);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);

  if (UseCalls) {
    if (Exp == 0)
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
                     AddrLong);
    else
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
    return;
  }

  if (IsMyriad) {
    // Strip the cache bit and do range check.
    // AddrLong &= ~kMyriadCacheBitMask32
    AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
    // Tag = AddrLong >> kMyriadTagShift
    Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
    // Tag == kMyriadDDRTag
    Value *TagCheck =
        IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));

    Instruction *TagCheckTerm =
        SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
                                  MDBuilder(*C).createBranchWeights(1, 100000));
    assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
    IRB.SetInsertPoint(TagCheckTerm);
    InsertBefore = TagCheckTerm;
  }

  Type *ShadowTy =
      IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
  Value *CmpVal = Constant::getNullValue(ShadowTy);
  Value *ShadowValue =
      IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));

  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
  size_t Granularity = 1ULL << Mapping.Scale;
  Instruction *CrashTerm = nullptr;

  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    // We use branch weights for the slow path check, to indicate that the slow
    // path is rarely taken. This seems to be the case for SPEC benchmarks.
    Instruction *CheckTerm = SplitBlockAndInsertIfThen(
        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    IRB.SetInsertPoint(CheckTerm);
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    if (Recover) {
      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
    } else {
      BasicBlock *CrashBlock =
        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
      CrashTerm = new UnreachableInst(*C, CrashBlock);
      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
      ReplaceInstWithInst(CheckTerm, NewTerm);
    }
  } else {
    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
  }

  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
                                         AccessSizeIndex, SizeArgument, Exp);
  Crash->setDebugLoc(OrigIns->getDebugLoc());
}

// Instrument unusual size or unusual alignment.
// We can not do it with a single check, so we do 1-byte check for the first
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
// to report the actual access size.
void AddressSanitizer::instrumentUnusualSizeOrAlignment(
    Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
    bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
  IRBuilder<> IRB(InsertBefore);
  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  if (UseCalls) {
    if (Exp == 0)
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
                     {AddrLong, Size});
    else
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
  } else {
    Value *LastByte = IRB.CreateIntToPtr(
        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
        Addr->getType());
    instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
    instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
  }
}

void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
                                                  GlobalValue *ModuleName) {
  // Set up the arguments to our poison/unpoison functions.
  IRBuilder<> IRB(&GlobalInit.front(),
                  GlobalInit.front().getFirstInsertionPt());

  // Add a call to poison all external globals before the given function starts.
  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);

  // Add calls to unpoison all globals before each return instruction.
  for (auto &BB : GlobalInit.getBasicBlockList())
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
      CallInst::Create(AsanUnpoisonGlobals, "", RI);
}

void ModuleAddressSanitizer::createInitializerPoisonCalls(
    Module &M, GlobalValue *ModuleName) {
  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
  if (!GV)
    return;

  ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
  if (!CA)
    return;

  for (Use &OP : CA->operands()) {
    if (isa<ConstantAggregateZero>(OP)) continue;
    ConstantStruct *CS = cast<ConstantStruct>(OP);

    // Must have a function or null ptr.
    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
      if (F->getName() == kAsanModuleCtorName) continue;
      auto *Priority = cast<ConstantInt>(CS->getOperand(0));
      // Don't instrument CTORs that will run before asan.module_ctor.
      if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
        continue;
      poisonOneInitializer(*F, ModuleName);
    }
  }
}

bool ModuleAddressSanitizer::canInstrumentAliasedGlobal(
    const GlobalAlias &GA) const {
  // In case this function should be expanded to include rules that do not just
  // apply when CompileKernel is true, either guard all existing rules with an
  // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
  // should also apply to user space.
  assert(CompileKernel && "Only expecting to be called when compiling kernel");

  // When compiling the kernel, globals that are aliased by symbols prefixed
  // by "__" are special and cannot be padded with a redzone.
  if (GA.getName().startswith("__"))
    return false;

  return true;
}

bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
  Type *Ty = G->getValueType();
  LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");

  // FIXME: Metadata should be attched directly to the global directly instead
  // of being added to llvm.asan.globals.
  if (GlobalsMD.get(G).IsExcluded) return false;
  if (!Ty->isSized()) return false;
  if (!G->hasInitializer()) return false;
  // Only instrument globals of default address spaces
  if (G->getAddressSpace()) return false;
  if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
  // Two problems with thread-locals:
  //   - The address of the main thread's copy can't be computed at link-time.
  //   - Need to poison all copies, not just the main thread's one.
  if (G->isThreadLocal()) return false;
  // For now, just ignore this Global if the alignment is large.
  if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;

  // For non-COFF targets, only instrument globals known to be defined by this
  // TU.
  // FIXME: We can instrument comdat globals on ELF if we are using the
  // GC-friendly metadata scheme.
  if (!TargetTriple.isOSBinFormatCOFF()) {
    if (!G->hasExactDefinition() || G->hasComdat())
      return false;
  } else {
    // On COFF, don't instrument non-ODR linkages.
    if (G->isInterposable())
      return false;
  }

  // If a comdat is present, it must have a selection kind that implies ODR
  // semantics: no duplicates, any, or exact match.
  if (Comdat *C = G->getComdat()) {
    switch (C->getSelectionKind()) {
    case Comdat::Any:
    case Comdat::ExactMatch:
    case Comdat::NoDuplicates:
      break;
    case Comdat::Largest:
    case Comdat::SameSize:
      return false;
    }
  }

  if (G->hasSection()) {
    // The kernel uses explicit sections for mostly special global variables
    // that we should not instrument. E.g. the kernel may rely on their layout
    // without redzones, or remove them at link time ("discard.*"), etc.
    if (CompileKernel)
      return false;

    StringRef Section = G->getSection();

    // Globals from llvm.metadata aren't emitted, do not instrument them.
    if (Section == "llvm.metadata") return false;
    // Do not instrument globals from special LLVM sections.
    if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;

    // Do not instrument function pointers to initialization and termination
    // routines: dynamic linker will not properly handle redzones.
    if (Section.startswith(".preinit_array") ||
        Section.startswith(".init_array") ||
        Section.startswith(".fini_array")) {
      return false;
    }

    // Do not instrument user-defined sections (with names resembling
    // valid C identifiers)
    if (TargetTriple.isOSBinFormatELF()) {
      if (std::all_of(Section.begin(), Section.end(),
                      [](char c) { return llvm::isAlnum(c) || c == '_'; }))
        return false;
    }

    // On COFF, if the section name contains '$', it is highly likely that the
    // user is using section sorting to create an array of globals similar to
    // the way initialization callbacks are registered in .init_array and
    // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
    // to such globals is counterproductive, because the intent is that they
    // will form an array, and out-of-bounds accesses are expected.
    // See https://github.com/google/sanitizers/issues/305
    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
    if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
      LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
                        << *G << "\n");
      return false;
    }

    if (TargetTriple.isOSBinFormatMachO()) {
      StringRef ParsedSegment, ParsedSection;
      unsigned TAA = 0, StubSize = 0;
      bool TAAParsed;
      std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
      assert(ErrorCode.empty() && "Invalid section specifier.");

      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
      // them.
      if (ParsedSegment == "__OBJC" ||
          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
        LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
        return false;
      }
      // See https://github.com/google/sanitizers/issues/32
      // Constant CFString instances are compiled in the following way:
      //  -- the string buffer is emitted into
      //     __TEXT,__cstring,cstring_literals
      //  -- the constant NSConstantString structure referencing that buffer
      //     is placed into __DATA,__cfstring
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
      // Moreover, it causes the linker to crash on OS X 10.7
      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
        LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
        return false;
      }
      // The linker merges the contents of cstring_literals and removes the
      // trailing zeroes.
      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
        LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
        return false;
      }
    }
  }

  if (CompileKernel) {
    // Globals that prefixed by "__" are special and cannot be padded with a
    // redzone.
    if (G->getName().startswith("__"))
      return false;
  }

  return true;
}

// On Mach-O platforms, we emit global metadata in a separate section of the
// binary in order to allow the linker to properly dead strip. This is only
// supported on recent versions of ld64.
bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
  if (!TargetTriple.isOSBinFormatMachO())
    return false;

  if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
    return true;
  if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
    return true;
  if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
    return true;

  return false;
}

StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
  switch (TargetTriple.getObjectFormat()) {
  case Triple::COFF:  return ".ASAN$GL";
  case Triple::ELF:   return "asan_globals";
  case Triple::MachO: return "__DATA,__asan_globals,regular";
  case Triple::Wasm:
  case Triple::GOFF:
  case Triple::XCOFF:
    report_fatal_error(
        "ModuleAddressSanitizer not implemented for object file format");
  case Triple::UnknownObjectFormat:
    break;
  }
  llvm_unreachable("unsupported object format");
}

void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);

  // Declare our poisoning and unpoisoning functions.
  AsanPoisonGlobals =
      M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
  AsanUnpoisonGlobals =
      M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());

  // Declare functions that register/unregister globals.
  AsanRegisterGlobals = M.getOrInsertFunction(
      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
  AsanUnregisterGlobals = M.getOrInsertFunction(
      kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);

  // Declare the functions that find globals in a shared object and then invoke
  // the (un)register function on them.
  AsanRegisterImageGlobals = M.getOrInsertFunction(
      kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
  AsanUnregisterImageGlobals = M.getOrInsertFunction(
      kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);

  AsanRegisterElfGlobals =
      M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
                            IntptrTy, IntptrTy, IntptrTy);
  AsanUnregisterElfGlobals =
      M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
                            IntptrTy, IntptrTy, IntptrTy);
}

// Put the metadata and the instrumented global in the same group. This ensures
// that the metadata is discarded if the instrumented global is discarded.
void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
    GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
  Module &M = *G->getParent();
  Comdat *C = G->getComdat();
  if (!C) {
    if (!G->hasName()) {
      // If G is unnamed, it must be internal. Give it an artificial name
      // so we can put it in a comdat.
      assert(G->hasLocalLinkage());
      G->setName(Twine(kAsanGenPrefix) + "_anon_global");
    }

    if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
      std::string Name = std::string(G->getName());
      Name += InternalSuffix;
      C = M.getOrInsertComdat(Name);
    } else {
      C = M.getOrInsertComdat(G->getName());
    }

    // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
    // linkage to internal linkage so that a symbol table entry is emitted. This
    // is necessary in order to create the comdat group.
    if (TargetTriple.isOSBinFormatCOFF()) {
      C->setSelectionKind(Comdat::NoDuplicates);
      if (G->hasPrivateLinkage())
        G->setLinkage(GlobalValue::InternalLinkage);
    }
    G->setComdat(C);
  }

  assert(G->hasComdat());
  Metadata->setComdat(G->getComdat());
}

// Create a separate metadata global and put it in the appropriate ASan
// global registration section.
GlobalVariable *
ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
                                             StringRef OriginalName) {
  auto Linkage = TargetTriple.isOSBinFormatMachO()
                     ? GlobalVariable::InternalLinkage
                     : GlobalVariable::PrivateLinkage;
  GlobalVariable *Metadata = new GlobalVariable(
      M, Initializer->getType(), false, Linkage, Initializer,
      Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
  Metadata->setSection(getGlobalMetadataSection());
  return Metadata;
}

Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
  AsanDtorFunction =
      Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
                       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);

  return ReturnInst::Create(*C, AsanDtorBB);
}

void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
  auto &DL = M.getDataLayout();

  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
    Constant *Initializer = MetadataInitializers[i];
    GlobalVariable *G = ExtendedGlobals[i];
    GlobalVariable *Metadata =
        CreateMetadataGlobal(M, Initializer, G->getName());
    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
    Metadata->setMetadata(LLVMContext::MD_associated, MD);
    MetadataGlobals[i] = Metadata;

    // The MSVC linker always inserts padding when linking incrementally. We
    // cope with that by aligning each struct to its size, which must be a power
    // of two.
    unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
    assert(isPowerOf2_32(SizeOfGlobalStruct) &&
           "global metadata will not be padded appropriately");
    Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));

    SetComdatForGlobalMetadata(G, Metadata, "");
  }

  // Update llvm.compiler.used, adding the new metadata globals. This is
  // needed so that during LTO these variables stay alive.
  if (!MetadataGlobals.empty())
    appendToCompilerUsed(M, MetadataGlobals);
}

void ModuleAddressSanitizer::InstrumentGlobalsELF(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers,
    const std::string &UniqueModuleId) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());

  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
    GlobalVariable *G = ExtendedGlobals[i];
    GlobalVariable *Metadata =
        CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
    Metadata->setMetadata(LLVMContext::MD_associated, MD);
    MetadataGlobals[i] = Metadata;

    SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
  }

  // Update llvm.compiler.used, adding the new metadata globals. This is
  // needed so that during LTO these variables stay alive.
  if (!MetadataGlobals.empty())
    appendToCompilerUsed(M, MetadataGlobals);

  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
  // to look up the loaded image that contains it. Second, we can store in it
  // whether registration has already occurred, to prevent duplicate
  // registration.
  //
  // Common linkage ensures that there is only one global per shared library.
  GlobalVariable *RegisteredFlag = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);

  // Create start and stop symbols.
  GlobalVariable *StartELFMetadata = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
      "__start_" + getGlobalMetadataSection());
  StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
  GlobalVariable *StopELFMetadata = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
      "__stop_" + getGlobalMetadataSection());
  StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);

  // Create a call to register the globals with the runtime.
  IRB.CreateCall(AsanRegisterElfGlobals,
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
                  IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
                  IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});

  // We also need to unregister globals at the end, e.g., when a shared library
  // gets closed.
  IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
  IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
                      {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
                       IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
                       IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
}

void ModuleAddressSanitizer::InstrumentGlobalsMachO(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());

  // On recent Mach-O platforms, use a structure which binds the liveness of
  // the global variable to the metadata struct. Keep the list of "Liveness" GV
  // created to be added to llvm.compiler.used
  StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
  SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());

  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
    Constant *Initializer = MetadataInitializers[i];
    GlobalVariable *G = ExtendedGlobals[i];
    GlobalVariable *Metadata =
        CreateMetadataGlobal(M, Initializer, G->getName());

    // On recent Mach-O platforms, we emit the global metadata in a way that
    // allows the linker to properly strip dead globals.
    auto LivenessBinder =
        ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
                            ConstantExpr::getPointerCast(Metadata, IntptrTy));
    GlobalVariable *Liveness = new GlobalVariable(
        M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
        Twine("__asan_binder_") + G->getName());
    Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
    LivenessGlobals[i] = Liveness;
  }

  // Update llvm.compiler.used, adding the new liveness globals. This is
  // needed so that during LTO these variables stay alive. The alternative
  // would be to have the linker handling the LTO symbols, but libLTO
  // current API does not expose access to the section for each symbol.
  if (!LivenessGlobals.empty())
    appendToCompilerUsed(M, LivenessGlobals);

  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
  // to look up the loaded image that contains it. Second, we can store in it
  // whether registration has already occurred, to prevent duplicate
  // registration.
  //
  // common linkage ensures that there is only one global per shared library.
  GlobalVariable *RegisteredFlag = new GlobalVariable(
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);

  IRB.CreateCall(AsanRegisterImageGlobals,
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});

  // We also need to unregister globals at the end, e.g., when a shared library
  // gets closed.
  IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
  IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
                      {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
}

void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
    ArrayRef<Constant *> MetadataInitializers) {
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
  unsigned N = ExtendedGlobals.size();
  assert(N > 0);

  // On platforms that don't have a custom metadata section, we emit an array
  // of global metadata structures.
  ArrayType *ArrayOfGlobalStructTy =
      ArrayType::get(MetadataInitializers[0]->getType(), N);
  auto AllGlobals = new GlobalVariable(
      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
      ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
  if (Mapping.Scale > 3)
    AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));

  IRB.CreateCall(AsanRegisterGlobals,
                 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
                  ConstantInt::get(IntptrTy, N)});

  // We also need to unregister globals at the end, e.g., when a shared library
  // gets closed.
  IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M));
  IRB_Dtor.CreateCall(AsanUnregisterGlobals,
                      {IRB.CreatePointerCast(AllGlobals, IntptrTy),
                       ConstantInt::get(IntptrTy, N)});
}

// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
// Sets *CtorComdat to true if the global registration code emitted into the
// asan constructor is comdat-compatible.
bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
                                               bool *CtorComdat) {
  *CtorComdat = false;

  // Build set of globals that are aliased by some GA, where
  // canInstrumentAliasedGlobal(GA) returns false.
  SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
  if (CompileKernel) {
    for (auto &GA : M.aliases()) {
      if (const auto *GV = dyn_cast<GlobalVariable>(GA.getAliasee())) {
        if (!canInstrumentAliasedGlobal(GA))
          AliasedGlobalExclusions.insert(GV);
      }
    }
  }

  SmallVector<GlobalVariable *, 16> GlobalsToChange;
  for (auto &G : M.globals()) {
    if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
      GlobalsToChange.push_back(&G);
  }

  size_t n = GlobalsToChange.size();
  if (n == 0) {
    *CtorComdat = true;
    return false;
  }

  auto &DL = M.getDataLayout();

  // A global is described by a structure
  //   size_t beg;
  //   size_t size;
  //   size_t size_with_redzone;
  //   const char *name;
  //   const char *module_name;
  //   size_t has_dynamic_init;
  //   void *source_location;
  //   size_t odr_indicator;
  // We initialize an array of such structures and pass it to a run-time call.
  StructType *GlobalStructTy =
      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
                      IntptrTy, IntptrTy, IntptrTy);
  SmallVector<GlobalVariable *, 16> NewGlobals(n);
  SmallVector<Constant *, 16> Initializers(n);

  bool HasDynamicallyInitializedGlobals = false;

  // We shouldn't merge same module names, as this string serves as unique
  // module ID in runtime.
  GlobalVariable *ModuleName = createPrivateGlobalForString(
      M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);

  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = GlobalsToChange[i];

    // FIXME: Metadata should be attched directly to the global directly instead
    // of being added to llvm.asan.globals.
    auto MD = GlobalsMD.get(G);
    StringRef NameForGlobal = G->getName();
    // Create string holding the global name (use global name from metadata
    // if it's available, otherwise just write the name of global variable).
    GlobalVariable *Name = createPrivateGlobalForString(
        M, MD.Name.empty() ? NameForGlobal : MD.Name,
        /*AllowMerging*/ true, kAsanGenPrefix);

    Type *Ty = G->getValueType();
    const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
    const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);

    StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
    Constant *NewInitializer = ConstantStruct::get(
        NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));

    // Create a new global variable with enough space for a redzone.
    GlobalValue::LinkageTypes Linkage = G->getLinkage();
    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
      Linkage = GlobalValue::InternalLinkage;
    GlobalVariable *NewGlobal =
        new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
                           "", G, G->getThreadLocalMode());
    NewGlobal->copyAttributesFrom(G);
    NewGlobal->setComdat(G->getComdat());
    NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
    // Don't fold globals with redzones. ODR violation detector and redzone
    // poisoning implicitly creates a dependence on the global's address, so it
    // is no longer valid for it to be marked unnamed_addr.
    NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);

    // Move null-terminated C strings to "__asan_cstring" section on Darwin.
    if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
        G->isConstant()) {
      auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
      if (Seq && Seq->isCString())
        NewGlobal->setSection("__TEXT,__asan_cstring,regular");
    }

    // Transfer the debug info and type metadata.  The payload starts at offset
    // zero so we can copy the metadata over as is.
    NewGlobal->copyMetadata(G, 0);

    Value *Indices2[2];
    Indices2[0] = IRB.getInt32(0);
    Indices2[1] = IRB.getInt32(0);

    G->replaceAllUsesWith(
        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
    NewGlobal->takeName(G);
    G->eraseFromParent();
    NewGlobals[i] = NewGlobal;

    Constant *SourceLoc;
    if (!MD.SourceLoc.empty()) {
      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
    } else {
      SourceLoc = ConstantInt::get(IntptrTy, 0);
    }

    Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
    GlobalValue *InstrumentedGlobal = NewGlobal;

    bool CanUsePrivateAliases =
        TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
        TargetTriple.isOSBinFormatWasm();
    if (CanUsePrivateAliases && UsePrivateAlias) {
      // Create local alias for NewGlobal to avoid crash on ODR between
      // instrumented and non-instrumented libraries.
      InstrumentedGlobal =
          GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
    }

    // ODR should not happen for local linkage.
    if (NewGlobal->hasLocalLinkage()) {
      ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
                                               IRB.getInt8PtrTy());
    } else if (UseOdrIndicator) {
      // With local aliases, we need to provide another externally visible
      // symbol __odr_asan_XXX to detect ODR violation.
      auto *ODRIndicatorSym =
          new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
                             Constant::getNullValue(IRB.getInt8Ty()),
                             kODRGenPrefix + NameForGlobal, nullptr,
                             NewGlobal->getThreadLocalMode());

      // Set meaningful attributes for indicator symbol.
      ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
      ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
      ODRIndicatorSym->setAlignment(Align(1));
      ODRIndicator = ODRIndicatorSym;
    }

    Constant *Initializer = ConstantStruct::get(
        GlobalStructTy,
        ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
        ConstantInt::get(IntptrTy, SizeInBytes),
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
        ConstantExpr::getPointerCast(Name, IntptrTy),
        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
        ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));

    if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;

    LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");

    Initializers[i] = Initializer;
  }

  // Add instrumented globals to llvm.compiler.used list to avoid LTO from
  // ConstantMerge'ing them.
  SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
  for (size_t i = 0; i < n; i++) {
    GlobalVariable *G = NewGlobals[i];
    if (G->getName().empty()) continue;
    GlobalsToAddToUsedList.push_back(G);
  }
  appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));

  std::string ELFUniqueModuleId =
      (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
                                                        : "";

  if (!ELFUniqueModuleId.empty()) {
    InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
    *CtorComdat = true;
  } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
    InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
  } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
    InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
  } else {
    InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
  }

  // Create calls for poisoning before initializers run and unpoisoning after.
  if (HasDynamicallyInitializedGlobals)
    createInitializerPoisonCalls(M, ModuleName);

  LLVM_DEBUG(dbgs() << M);
  return true;
}

uint64_t
ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
  constexpr uint64_t kMaxRZ = 1 << 18;
  const uint64_t MinRZ = getMinRedzoneSizeForGlobal();

  // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
  uint64_t RZ =
      std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));

  // Round up to multiple of MinRZ.
  if (SizeInBytes % MinRZ)
    RZ += MinRZ - (SizeInBytes % MinRZ);
  assert((RZ + SizeInBytes) % MinRZ == 0);

  return RZ;
}

int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
  int LongSize = M.getDataLayout().getPointerSizeInBits();
  bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
  int Version = 8;
  // 32-bit Android is one version ahead because of the switch to dynamic
  // shadow.
  Version += (LongSize == 32 && isAndroid);
  return Version;
}

bool ModuleAddressSanitizer::instrumentModule(Module &M) {
  initializeCallbacks(M);

  // Create a module constructor. A destructor is created lazily because not all
  // platforms, and not all modules need it.
  if (CompileKernel) {
    // The kernel always builds with its own runtime, and therefore does not
    // need the init and version check calls.
    AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
  } else {
    std::string AsanVersion = std::to_string(GetAsanVersion(M));
    std::string VersionCheckName =
        ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
    std::tie(AsanCtorFunction, std::ignore) =
        createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
                                            kAsanInitName, /*InitArgTypes=*/{},
                                            /*InitArgs=*/{}, VersionCheckName);
  }

  bool CtorComdat = true;
  if (ClGlobals) {
    IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
    InstrumentGlobals(IRB, M, &CtorComdat);
  }

  const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);

  // Put the constructor and destructor in comdat if both
  // (1) global instrumentation is not TU-specific
  // (2) target is ELF.
  if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
    AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
    appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
    if (AsanDtorFunction) {
      AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
      appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
    }
  } else {
    appendToGlobalCtors(M, AsanCtorFunction, Priority);
    if (AsanDtorFunction)
      appendToGlobalDtors(M, AsanDtorFunction, Priority);
  }

  return true;
}

void AddressSanitizer::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  // Create __asan_report* callbacks.
  // IsWrite, TypeSize and Exp are encoded in the function name.
  for (int Exp = 0; Exp < 2; Exp++) {
    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
      const std::string TypeStr = AccessIsWrite ? "store" : "load";
      const std::string ExpStr = Exp ? "exp_" : "";
      const std::string EndingStr = Recover ? "_noabort" : "";

      SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
      SmallVector<Type *, 2> Args1{1, IntptrTy};
      if (Exp) {
        Type *ExpType = Type::getInt32Ty(*C);
        Args2.push_back(ExpType);
        Args1.push_back(ExpType);
      }
      AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
          kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
          FunctionType::get(IRB.getVoidTy(), Args2, false));

      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
          ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
          FunctionType::get(IRB.getVoidTy(), Args2, false));

      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
           AccessSizeIndex++) {
        const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
            M.getOrInsertFunction(
                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
                FunctionType::get(IRB.getVoidTy(), Args1, false));

        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
            M.getOrInsertFunction(
                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
                FunctionType::get(IRB.getVoidTy(), Args1, false));
      }
    }
  }

  const std::string MemIntrinCallbackPrefix =
      CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
  AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                      IRB.getInt8PtrTy(), IntptrTy);
  AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
                                     IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                     IRB.getInt8PtrTy(), IntptrTy);
  AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
                                     IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                     IRB.getInt32Ty(), IntptrTy);

  AsanHandleNoReturnFunc =
      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());

  AsanPtrCmpFunction =
      M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
  AsanPtrSubFunction =
      M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
  if (Mapping.InGlobal)
    AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
                                           ArrayType::get(IRB.getInt8Ty(), 0));
}

bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
  // For each NSObject descendant having a +load method, this method is invoked
  // by the ObjC runtime before any of the static constructors is called.
  // Therefore we need to instrument such methods with a call to __asan_init
  // at the beginning in order to initialize our runtime before any access to
  // the shadow memory.
  // We cannot just ignore these methods, because they may call other
  // instrumented functions.
  if (F.getName().find(" load]") != std::string::npos) {
    FunctionCallee AsanInitFunction =
        declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
    IRBuilder<> IRB(&F.front(), F.front().begin());
    IRB.CreateCall(AsanInitFunction, {});
    return true;
  }
  return false;
}

bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
  // Generate code only when dynamic addressing is needed.
  if (Mapping.Offset != kDynamicShadowSentinel)
    return false;

  IRBuilder<> IRB(&F.front().front());
  if (Mapping.InGlobal) {
    if (ClWithIfuncSuppressRemat) {
      // An empty inline asm with input reg == output reg.
      // An opaque pointer-to-int cast, basically.
      InlineAsm *Asm = InlineAsm::get(
          FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
          StringRef(""), StringRef("=r,0"),
          /*hasSideEffects=*/false);
      LocalDynamicShadow =
          IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
    } else {
      LocalDynamicShadow =
          IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
    }
  } else {
    Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
        kAsanShadowMemoryDynamicAddress, IntptrTy);
    LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
  }
  return true;
}

void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
  // Find the one possible call to llvm.localescape and pre-mark allocas passed
  // to it as uninteresting. This assumes we haven't started processing allocas
  // yet. This check is done up front because iterating the use list in
  // isInterestingAlloca would be algorithmically slower.
  assert(ProcessedAllocas.empty() && "must process localescape before allocas");

  // Try to get the declaration of llvm.localescape. If it's not in the module,
  // we can exit early.
  if (!F.getParent()->getFunction("llvm.localescape")) return;

  // Look for a call to llvm.localescape call in the entry block. It can't be in
  // any other block.
  for (Instruction &I : F.getEntryBlock()) {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
      // We found a call. Mark all the allocas passed in as uninteresting.
      for (Value *Arg : II->arg_operands()) {
        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
        assert(AI && AI->isStaticAlloca() &&
               "non-static alloca arg to localescape");
        ProcessedAllocas[AI] = false;
      }
      break;
    }
  }
}

bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
  bool ShouldInstrument =
      ClDebugMin < 0 || ClDebugMax < 0 ||
      (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
  Instrumented++;
  return !ShouldInstrument;
}

bool AddressSanitizer::instrumentFunction(Function &F,
                                          const TargetLibraryInfo *TLI) {
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
  if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
  if (F.getName().startswith("__asan_")) return false;

  bool FunctionModified = false;

  // If needed, insert __asan_init before checking for SanitizeAddress attr.
  // This function needs to be called even if the function body is not
  // instrumented.
  if (maybeInsertAsanInitAtFunctionEntry(F))
    FunctionModified = true;

  // Leave if the function doesn't need instrumentation.
  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;

  LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");

  initializeCallbacks(*F.getParent());

  FunctionStateRAII CleanupObj(this);

  FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);

  // We can't instrument allocas used with llvm.localescape. Only static allocas
  // can be passed to that intrinsic.
  markEscapedLocalAllocas(F);

  // We want to instrument every address only once per basic block (unless there
  // are calls between uses).
  SmallPtrSet<Value *, 16> TempsToInstrument;
  SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
  SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
  SmallVector<Instruction *, 8> NoReturnCalls;
  SmallVector<BasicBlock *, 16> AllBlocks;
  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
  int NumAllocas = 0;

  // Fill the set of memory operations to instrument.
  for (auto &BB : F) {
    AllBlocks.push_back(&BB);
    TempsToInstrument.clear();
    int NumInsnsPerBB = 0;
    for (auto &Inst : BB) {
      if (LooksLikeCodeInBug11395(&Inst)) return false;
      SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
      getInterestingMemoryOperands(&Inst, InterestingOperands);

      if (!InterestingOperands.empty()) {
        for (auto &Operand : InterestingOperands) {
          if (ClOpt && ClOptSameTemp) {
            Value *Ptr = Operand.getPtr();
            // If we have a mask, skip instrumentation if we've already
            // instrumented the full object. But don't add to TempsToInstrument
            // because we might get another load/store with a different mask.
            if (Operand.MaybeMask) {
              if (TempsToInstrument.count(Ptr))
                continue; // We've seen this (whole) temp in the current BB.
            } else {
              if (!TempsToInstrument.insert(Ptr).second)
                continue; // We've seen this temp in the current BB.
            }
          }
          OperandsToInstrument.push_back(Operand);
          NumInsnsPerBB++;
        }
      } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
                  isInterestingPointerComparison(&Inst)) ||
                 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
                  isInterestingPointerSubtraction(&Inst))) {
        PointerComparisonsOrSubtracts.push_back(&Inst);
      } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
        // ok, take it.
        IntrinToInstrument.push_back(MI);
        NumInsnsPerBB++;
      } else {
        if (isa<AllocaInst>(Inst)) NumAllocas++;
        if (auto *CB = dyn_cast<CallBase>(&Inst)) {
          // A call inside BB.
          TempsToInstrument.clear();
          if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
            NoReturnCalls.push_back(CB);
        }
        if (CallInst *CI = dyn_cast<CallInst>(&Inst))
          maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
      }
      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
    }
  }

  bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
                   OperandsToInstrument.size() + IntrinToInstrument.size() >
                       (unsigned)ClInstrumentationWithCallsThreshold);
  const DataLayout &DL = F.getParent()->getDataLayout();
  ObjectSizeOpts ObjSizeOpts;
  ObjSizeOpts.RoundToAlign = true;
  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);

  // Instrument.
  int NumInstrumented = 0;
  for (auto &Operand : OperandsToInstrument) {
    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
      instrumentMop(ObjSizeVis, Operand, UseCalls,
                    F.getParent()->getDataLayout());
    FunctionModified = true;
  }
  for (auto Inst : IntrinToInstrument) {
    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
      instrumentMemIntrinsic(Inst);
    FunctionModified = true;
  }

  FunctionStackPoisoner FSP(F, *this);
  bool ChangedStack = FSP.runOnFunction();

  // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
  // See e.g. https://github.com/google/sanitizers/issues/37
  for (auto CI : NoReturnCalls) {
    IRBuilder<> IRB(CI);
    IRB.CreateCall(AsanHandleNoReturnFunc, {});
  }

  for (auto Inst : PointerComparisonsOrSubtracts) {
    instrumentPointerComparisonOrSubtraction(Inst);
    FunctionModified = true;
  }

  if (ChangedStack || !NoReturnCalls.empty())
    FunctionModified = true;

  LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
                    << F << "\n");

  return FunctionModified;
}

// Workaround for bug 11395: we don't want to instrument stack in functions
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
// FIXME: remove once the bug 11395 is fixed.
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
  if (LongSize != 32) return false;
  CallInst *CI = dyn_cast<CallInst>(I);
  if (!CI || !CI->isInlineAsm()) return false;
  if (CI->getNumArgOperands() <= 5) return false;
  // We have inline assembly with quite a few arguments.
  return true;
}

void FunctionStackPoisoner::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
    std::string Suffix = itostr(i);
    AsanStackMallocFunc[i] = M.getOrInsertFunction(
        kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
    AsanStackFreeFunc[i] =
        M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
                              IRB.getVoidTy(), IntptrTy, IntptrTy);
  }
  if (ASan.UseAfterScope) {
    AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
        kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
    AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
        kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
  }

  for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
    std::ostringstream Name;
    Name << kAsanSetShadowPrefix;
    Name << std::setw(2) << std::setfill('0') << std::hex << Val;
    AsanSetShadowFunc[Val] =
        M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
  }

  AsanAllocaPoisonFunc = M.getOrInsertFunction(
      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
  AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
      kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
}

void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
                                               ArrayRef<uint8_t> ShadowBytes,
                                               size_t Begin, size_t End,
                                               IRBuilder<> &IRB,
                                               Value *ShadowBase) {
  if (Begin >= End)
    return;

  const size_t LargestStoreSizeInBytes =
      std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);

  const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();

  // Poison given range in shadow using larges store size with out leading and
  // trailing zeros in ShadowMask. Zeros never change, so they need neither
  // poisoning nor up-poisoning. Still we don't mind if some of them get into a
  // middle of a store.
  for (size_t i = Begin; i < End;) {
    if (!ShadowMask[i]) {
      assert(!ShadowBytes[i]);
      ++i;
      continue;
    }

    size_t StoreSizeInBytes = LargestStoreSizeInBytes;
    // Fit store size into the range.
    while (StoreSizeInBytes > End - i)
      StoreSizeInBytes /= 2;

    // Minimize store size by trimming trailing zeros.
    for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
      while (j <= StoreSizeInBytes / 2)
        StoreSizeInBytes /= 2;
    }

    uint64_t Val = 0;
    for (size_t j = 0; j < StoreSizeInBytes; j++) {
      if (IsLittleEndian)
        Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
      else
        Val = (Val << 8) | ShadowBytes[i + j];
    }

    Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
    Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
    IRB.CreateAlignedStore(
        Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
        Align(1));

    i += StoreSizeInBytes;
  }
}

void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
                                         ArrayRef<uint8_t> ShadowBytes,
                                         IRBuilder<> &IRB, Value *ShadowBase) {
  copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
}

void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
                                         ArrayRef<uint8_t> ShadowBytes,
                                         size_t Begin, size_t End,
                                         IRBuilder<> &IRB, Value *ShadowBase) {
  assert(ShadowMask.size() == ShadowBytes.size());
  size_t Done = Begin;
  for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
    if (!ShadowMask[i]) {
      assert(!ShadowBytes[i]);
      continue;
    }
    uint8_t Val = ShadowBytes[i];
    if (!AsanSetShadowFunc[Val])
      continue;

    // Skip same values.
    for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
    }

    if (j - i >= ClMaxInlinePoisoningSize) {
      copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
      IRB.CreateCall(AsanSetShadowFunc[Val],
                     {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
                      ConstantInt::get(IntptrTy, j - i)});
      Done = j;
    }
  }

  copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
}

// Fake stack allocator (asan_fake_stack.h) has 11 size classes
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
static int StackMallocSizeClass(uint64_t LocalStackSize) {
  assert(LocalStackSize <= kMaxStackMallocSize);
  uint64_t MaxSize = kMinStackMallocSize;
  for (int i = 0;; i++, MaxSize *= 2)
    if (LocalStackSize <= MaxSize) return i;
  llvm_unreachable("impossible LocalStackSize");
}

void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
  Instruction *CopyInsertPoint = &F.front().front();
  if (CopyInsertPoint == ASan.LocalDynamicShadow) {
    // Insert after the dynamic shadow location is determined
    CopyInsertPoint = CopyInsertPoint->getNextNode();
    assert(CopyInsertPoint);
  }
  IRBuilder<> IRB(CopyInsertPoint);
  const DataLayout &DL = F.getParent()->getDataLayout();
  for (Argument &Arg : F.args()) {
    if (Arg.hasByValAttr()) {
      Type *Ty = Arg.getParamByValType();
      const Align Alignment =
          DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);

      AllocaInst *AI = IRB.CreateAlloca(
          Ty, nullptr,
          (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
              ".byval");
      AI->setAlignment(Alignment);
      Arg.replaceAllUsesWith(AI);

      uint64_t AllocSize = DL.getTypeAllocSize(Ty);
      IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
    }
  }
}

PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
                                          Value *ValueIfTrue,
                                          Instruction *ThenTerm,
                                          Value *ValueIfFalse) {
  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
  PHI->addIncoming(ValueIfFalse, CondBlock);
  BasicBlock *ThenBlock = ThenTerm->getParent();
  PHI->addIncoming(ValueIfTrue, ThenBlock);
  return PHI;
}

Value *FunctionStackPoisoner::createAllocaForLayout(
    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
  AllocaInst *Alloca;
  if (Dynamic) {
    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
                              "MyAlloca");
  } else {
    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
                              nullptr, "MyAlloca");
    assert(Alloca->isStaticAlloca());
  }
  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
  size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
  Alloca->setAlignment(Align(FrameAlignment));
  return IRB.CreatePointerCast(Alloca, IntptrTy);
}

void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
  BasicBlock &FirstBB = *F.begin();
  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
  DynamicAllocaLayout->setAlignment(Align(32));
}

void FunctionStackPoisoner::processDynamicAllocas() {
  if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
    assert(DynamicAllocaPoisonCallVec.empty());
    return;
  }

  // Insert poison calls for lifetime intrinsics for dynamic allocas.
  for (const auto &APC : DynamicAllocaPoisonCallVec) {
    assert(APC.InsBefore);
    assert(APC.AI);
    assert(ASan.isInterestingAlloca(*APC.AI));
    assert(!APC.AI->isStaticAlloca());

    IRBuilder<> IRB(APC.InsBefore);
    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
    // Dynamic allocas will be unpoisoned unconditionally below in
    // unpoisonDynamicAllocas.
    // Flag that we need unpoison static allocas.
  }

  // Handle dynamic allocas.
  createDynamicAllocasInitStorage();
  for (auto &AI : DynamicAllocaVec)
    handleDynamicAllocaCall(AI);
  unpoisonDynamicAllocas();
}

/// Collect instructions in the entry block after \p InsBefore which initialize
/// permanent storage for a function argument. These instructions must remain in
/// the entry block so that uninitialized values do not appear in backtraces. An
/// added benefit is that this conserves spill slots. This does not move stores
/// before instrumented / "interesting" allocas.
static void findStoresToUninstrumentedArgAllocas(
    AddressSanitizer &ASan, Instruction &InsBefore,
    SmallVectorImpl<Instruction *> &InitInsts) {
  Instruction *Start = InsBefore.getNextNonDebugInstruction();
  for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
    // Argument initialization looks like:
    // 1) store <Argument>, <Alloca> OR
    // 2) <CastArgument> = cast <Argument> to ...
    //    store <CastArgument> to <Alloca>
    // Do not consider any other kind of instruction.
    //
    // Note: This covers all known cases, but may not be exhaustive. An
    // alternative to pattern-matching stores is to DFS over all Argument uses:
    // this might be more general, but is probably much more complicated.
    if (isa<AllocaInst>(It) || isa<CastInst>(It))
      continue;
    if (auto *Store = dyn_cast<StoreInst>(It)) {
      // The store destination must be an alloca that isn't interesting for
      // ASan to instrument. These are moved up before InsBefore, and they're
      // not interesting because allocas for arguments can be mem2reg'd.
      auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
      if (!Alloca || ASan.isInterestingAlloca(*Alloca))
        continue;

      Value *Val = Store->getValueOperand();
      bool IsDirectArgInit = isa<Argument>(Val);
      bool IsArgInitViaCast =
          isa<CastInst>(Val) &&
          isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
          // Check that the cast appears directly before the store. Otherwise
          // moving the cast before InsBefore may break the IR.
          Val == It->getPrevNonDebugInstruction();
      bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
      if (!IsArgInit)
        continue;

      if (IsArgInitViaCast)
        InitInsts.push_back(cast<Instruction>(Val));
      InitInsts.push_back(Store);
      continue;
    }

    // Do not reorder past unknown instructions: argument initialization should
    // only involve casts and stores.
    return;
  }
}

void FunctionStackPoisoner::processStaticAllocas() {
  if (AllocaVec.empty()) {
    assert(StaticAllocaPoisonCallVec.empty());
    return;
  }

  int StackMallocIdx = -1;
  DebugLoc EntryDebugLocation;
  if (auto SP = F.getSubprogram())
    EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);

  Instruction *InsBefore = AllocaVec[0];
  IRBuilder<> IRB(InsBefore);

  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
  // debug info is broken, because only entry-block allocas are treated as
  // regular stack slots.
  auto InsBeforeB = InsBefore->getParent();
  assert(InsBeforeB == &F.getEntryBlock());
  for (auto *AI : StaticAllocasToMoveUp)
    if (AI->getParent() == InsBeforeB)
      AI->moveBefore(InsBefore);

  // Move stores of arguments into entry-block allocas as well. This prevents
  // extra stack slots from being generated (to house the argument values until
  // they can be stored into the allocas). This also prevents uninitialized
  // values from being shown in backtraces.
  SmallVector<Instruction *, 8> ArgInitInsts;
  findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
  for (Instruction *ArgInitInst : ArgInitInsts)
    ArgInitInst->moveBefore(InsBefore);

  // If we have a call to llvm.localescape, keep it in the entry block.
  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);

  SmallVector<ASanStackVariableDescription, 16> SVD;
  SVD.reserve(AllocaVec.size());
  for (AllocaInst *AI : AllocaVec) {
    ASanStackVariableDescription D = {AI->getName().data(),
                                      ASan.getAllocaSizeInBytes(*AI),
                                      0,
                                      AI->getAlignment(),
                                      AI,
                                      0,
                                      0};
    SVD.push_back(D);
  }

  // Minimal header size (left redzone) is 4 pointers,
  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
  size_t Granularity = 1ULL << Mapping.Scale;
  size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
  const ASanStackFrameLayout &L =
      ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);

  // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
  DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
  for (auto &Desc : SVD)
    AllocaToSVDMap[Desc.AI] = &Desc;

  // Update SVD with information from lifetime intrinsics.
  for (const auto &APC : StaticAllocaPoisonCallVec) {
    assert(APC.InsBefore);
    assert(APC.AI);
    assert(ASan.isInterestingAlloca(*APC.AI));
    assert(APC.AI->isStaticAlloca());

    ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
    Desc.LifetimeSize = Desc.Size;
    if (const DILocation *FnLoc = EntryDebugLocation.get()) {
      if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
        if (LifetimeLoc->getFile() == FnLoc->getFile())
          if (unsigned Line = LifetimeLoc->getLine())
            Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
      }
    }
  }

  auto DescriptionString = ComputeASanStackFrameDescription(SVD);
  LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
  uint64_t LocalStackSize = L.FrameSize;
  bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
                       LocalStackSize <= kMaxStackMallocSize;
  bool DoDynamicAlloca = ClDynamicAllocaStack;
  // Don't do dynamic alloca or stack malloc if:
  // 1) There is inline asm: too often it makes assumptions on which registers
  //    are available.
  // 2) There is a returns_twice call (typically setjmp), which is
  //    optimization-hostile, and doesn't play well with introduced indirect
  //    register-relative calculation of local variable addresses.
  DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
  DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;

  Value *StaticAlloca =
      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);

  Value *FakeStack;
  Value *LocalStackBase;
  Value *LocalStackBaseAlloca;
  uint8_t DIExprFlags = DIExpression::ApplyOffset;

  if (DoStackMalloc) {
    LocalStackBaseAlloca =
        IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
    // void *FakeStack = __asan_option_detect_stack_use_after_return
    //     ? __asan_stack_malloc_N(LocalStackSize)
    //     : nullptr;
    // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
    Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
        kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
    Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
        IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
        Constant::getNullValue(IRB.getInt32Ty()));
    Instruction *Term =
        SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
    IRBuilder<> IRBIf(Term);
    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
    Value *FakeStackValue =
        IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
                         ConstantInt::get(IntptrTy, LocalStackSize));
    IRB.SetInsertPoint(InsBefore);
    FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
                          ConstantInt::get(IntptrTy, 0));

    Value *NoFakeStack =
        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
    Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
    IRBIf.SetInsertPoint(Term);
    Value *AllocaValue =
        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;

    IRB.SetInsertPoint(InsBefore);
    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
    IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
    DIExprFlags |= DIExpression::DerefBefore;
  } else {
    // void *FakeStack = nullptr;
    // void *LocalStackBase = alloca(LocalStackSize);
    FakeStack = ConstantInt::get(IntptrTy, 0);
    LocalStackBase =
        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
    LocalStackBaseAlloca = LocalStackBase;
  }

  // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
  // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
  // later passes and can result in dropped variable coverage in debug info.
  Value *LocalStackBaseAllocaPtr =
      isa<PtrToIntInst>(LocalStackBaseAlloca)
          ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
          : LocalStackBaseAlloca;
  assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
         "Variable descriptions relative to ASan stack base will be dropped");

  // Replace Alloca instructions with base+offset.
  for (const auto &Desc : SVD) {
    AllocaInst *AI = Desc.AI;
    replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
                      Desc.Offset);
    Value *NewAllocaPtr = IRB.CreateIntToPtr(
        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
        AI->getType());
    AI->replaceAllUsesWith(NewAllocaPtr);
  }

  // The left-most redzone has enough space for at least 4 pointers.
  // Write the Magic value to redzone[0].
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
                  BasePlus0);
  // Write the frame description constant to redzone[1].
  Value *BasePlus1 = IRB.CreateIntToPtr(
      IRB.CreateAdd(LocalStackBase,
                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
      IntptrPtrTy);
  GlobalVariable *StackDescriptionGlobal =
      createPrivateGlobalForString(*F.getParent(), DescriptionString,
                                   /*AllowMerging*/ true, kAsanGenPrefix);
  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
  IRB.CreateStore(Description, BasePlus1);
  // Write the PC to redzone[2].
  Value *BasePlus2 = IRB.CreateIntToPtr(
      IRB.CreateAdd(LocalStackBase,
                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
      IntptrPtrTy);
  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);

  const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);

  // Poison the stack red zones at the entry.
  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
  // As mask we must use most poisoned case: red zones and after scope.
  // As bytes we can use either the same or just red zones only.
  copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);

  if (!StaticAllocaPoisonCallVec.empty()) {
    const auto &ShadowInScope = GetShadowBytes(SVD, L);

    // Poison static allocas near lifetime intrinsics.
    for (const auto &APC : StaticAllocaPoisonCallVec) {
      const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
      assert(Desc.Offset % L.Granularity == 0);
      size_t Begin = Desc.Offset / L.Granularity;
      size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;

      IRBuilder<> IRB(APC.InsBefore);
      copyToShadow(ShadowAfterScope,
                   APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
                   IRB, ShadowBase);
    }
  }

  SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
  SmallVector<uint8_t, 64> ShadowAfterReturn;

  // (Un)poison the stack before all ret instructions.
  for (Instruction *Ret : RetVec) {
    Instruction *Adjusted = adjustForMusttailCall(Ret);
    IRBuilder<> IRBRet(Adjusted);
    // Mark the current frame as retired.
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
                       BasePlus0);
    if (DoStackMalloc) {
      assert(StackMallocIdx >= 0);
      // if FakeStack != 0  // LocalStackBase == FakeStack
      //     // In use-after-return mode, poison the whole stack frame.
      //     if StackMallocIdx <= 4
      //         // For small sizes inline the whole thing:
      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
      //         **SavedFlagPtr(FakeStack) = 0
      //     else
      //         __asan_stack_free_N(FakeStack, LocalStackSize)
      // else
      //     <This is not a fake stack; unpoison the redzones>
      Value *Cmp =
          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
      Instruction *ThenTerm, *ElseTerm;
      SplitBlockAndInsertIfThenElse(Cmp, Adjusted, &ThenTerm, &ElseTerm);

      IRBuilder<> IRBPoison(ThenTerm);
      if (StackMallocIdx <= 4) {
        int ClassSize = kMinStackMallocSize << StackMallocIdx;
        ShadowAfterReturn.resize(ClassSize / L.Granularity,
                                 kAsanStackUseAfterReturnMagic);
        copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
                     ShadowBase);
        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
            FakeStack,
            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
        Value *SavedFlagPtr = IRBPoison.CreateLoad(
            IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
        IRBPoison.CreateStore(
            Constant::getNullValue(IRBPoison.getInt8Ty()),
            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
      } else {
        // For larger frames call __asan_stack_free_*.
        IRBPoison.CreateCall(
            AsanStackFreeFunc[StackMallocIdx],
            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
      }

      IRBuilder<> IRBElse(ElseTerm);
      copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
    } else {
      copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
    }
  }

  // We are done. Remove the old unused alloca instructions.
  for (auto AI : AllocaVec) AI->eraseFromParent();
}

void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
                                         IRBuilder<> &IRB, bool DoPoison) {
  // For now just insert the call to ASan runtime.
  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
  IRB.CreateCall(
      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
      {AddrArg, SizeArg});
}

// Handling llvm.lifetime intrinsics for a given %alloca:
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
//     could be poisoned by previous llvm.lifetime.end instruction, as the
//     variable may go in and out of scope several times, e.g. in loops).
// (3) if we poisoned at least one %alloca in a function,
//     unpoison the whole stack frame at function exit.
void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
  IRBuilder<> IRB(AI);

  const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;

  Value *Zero = Constant::getNullValue(IntptrTy);
  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);

  // Since we need to extend alloca with additional memory to locate
  // redzones, and OldSize is number of allocated blocks with
  // ElementSize size, get allocated memory size in bytes by
  // OldSize * ElementSize.
  const unsigned ElementSize =
      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
  Value *OldSize =
      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
                    ConstantInt::get(IntptrTy, ElementSize));

  // PartialSize = OldSize % 32
  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);

  // Misalign = kAllocaRzSize - PartialSize;
  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);

  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);

  // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
  // Alignment is added to locate left redzone, PartialPadding for possible
  // partial redzone and kAllocaRzSize for right redzone respectively.
  Value *AdditionalChunkSize = IRB.CreateAdd(
      ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);

  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);

  // Insert new alloca with new NewSize and Alignment params.
  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
  NewAlloca->setAlignment(Align(Alignment));

  // NewAddress = Address + Alignment
  Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
                                    ConstantInt::get(IntptrTy, Alignment));

  // Insert __asan_alloca_poison call for new created alloca.
  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});

  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
  // for unpoisoning stuff.
  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);

  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());

  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
  AI->replaceAllUsesWith(NewAddressPtr);

  // We are done. Erase old alloca from parent.
  AI->eraseFromParent();
}

// isSafeAccess returns true if Addr is always inbounds with respect to its
// base object. For example, it is a field access or an array access with
// constant inbounds index.
bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
                                    Value *Addr, uint64_t TypeSize) const {
  SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
  if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
  uint64_t Size = SizeOffset.first.getZExtValue();
  int64_t Offset = SizeOffset.second.getSExtValue();
  // Three checks are required to ensure safety:
  // . Offset >= 0  (since the offset is given from the base ptr)
  // . Size >= Offset  (unsigned)
  // . Size - Offset >= NeededSize  (unsigned)
  return Offset >= 0 && Size >= uint64_t(Offset) &&
         Size - uint64_t(Offset) >= TypeSize / 8;
}