HWAddressSanitizer.cpp 58.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
//===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file is a part of HWAddressSanitizer, an address sanity checker
/// based on tagged addressing.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <sstream>

using namespace llvm;

#define DEBUG_TYPE "hwasan"

static const char *const kHwasanModuleCtorName = "hwasan.module_ctor";
static const char *const kHwasanNoteName = "hwasan.note";
static const char *const kHwasanInitName = "__hwasan_init";
static const char *const kHwasanPersonalityThunkName =
    "__hwasan_personality_thunk";

static const char *const kHwasanShadowMemoryDynamicAddress =
    "__hwasan_shadow_memory_dynamic_address";

// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;

static const size_t kDefaultShadowScale = 4;
static const uint64_t kDynamicShadowSentinel =
    std::numeric_limits<uint64_t>::max();
static const unsigned kPointerTagShift = 56;

static const unsigned kShadowBaseAlignment = 32;

static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
    "hwasan-memory-access-callback-prefix",
    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
    cl::init("__hwasan_"));

static cl::opt<bool>
    ClInstrumentWithCalls("hwasan-instrument-with-calls",
                cl::desc("instrument reads and writes with callbacks"),
                cl::Hidden, cl::init(false));

static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads",
                                       cl::desc("instrument read instructions"),
                                       cl::Hidden, cl::init(true));

static cl::opt<bool> ClInstrumentWrites(
    "hwasan-instrument-writes", cl::desc("instrument write instructions"),
    cl::Hidden, cl::init(true));

static cl::opt<bool> ClInstrumentAtomics(
    "hwasan-instrument-atomics",
    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
    cl::init(true));

static cl::opt<bool> ClInstrumentByval("hwasan-instrument-byval",
                                       cl::desc("instrument byval arguments"),
                                       cl::Hidden, cl::init(true));

static cl::opt<bool> ClRecover(
    "hwasan-recover",
    cl::desc("Enable recovery mode (continue-after-error)."),
    cl::Hidden, cl::init(false));

static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack",
                                       cl::desc("instrument stack (allocas)"),
                                       cl::Hidden, cl::init(true));

static cl::opt<bool> ClUARRetagToZero(
    "hwasan-uar-retag-to-zero",
    cl::desc("Clear alloca tags before returning from the function to allow "
             "non-instrumented and instrumented function calls mix. When set "
             "to false, allocas are retagged before returning from the "
             "function to detect use after return."),
    cl::Hidden, cl::init(true));

static cl::opt<bool> ClGenerateTagsWithCalls(
    "hwasan-generate-tags-with-calls",
    cl::desc("generate new tags with runtime library calls"), cl::Hidden,
    cl::init(false));

static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"),
                               cl::Hidden, cl::init(false), cl::ZeroOrMore);

static cl::opt<int> ClMatchAllTag(
    "hwasan-match-all-tag",
    cl::desc("don't report bad accesses via pointers with this tag"),
    cl::Hidden, cl::init(-1));

static cl::opt<bool> ClEnableKhwasan(
    "hwasan-kernel",
    cl::desc("Enable KernelHWAddressSanitizer instrumentation"),
    cl::Hidden, cl::init(false));

// These flags allow to change the shadow mapping and control how shadow memory
// is accessed. The shadow mapping looks like:
//    Shadow = (Mem >> scale) + offset

static cl::opt<uint64_t>
    ClMappingOffset("hwasan-mapping-offset",
                    cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"),
                    cl::Hidden, cl::init(0));

static cl::opt<bool>
    ClWithIfunc("hwasan-with-ifunc",
                cl::desc("Access dynamic shadow through an ifunc global on "
                         "platforms that support this"),
                cl::Hidden, cl::init(false));

static cl::opt<bool> ClWithTls(
    "hwasan-with-tls",
    cl::desc("Access dynamic shadow through an thread-local pointer on "
             "platforms that support this"),
    cl::Hidden, cl::init(true));

static cl::opt<bool>
    ClRecordStackHistory("hwasan-record-stack-history",
                         cl::desc("Record stack frames with tagged allocations "
                                  "in a thread-local ring buffer"),
                         cl::Hidden, cl::init(true));
static cl::opt<bool>
    ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics",
                              cl::desc("instrument memory intrinsics"),
                              cl::Hidden, cl::init(true));

static cl::opt<bool>
    ClInstrumentLandingPads("hwasan-instrument-landing-pads",
                            cl::desc("instrument landing pads"), cl::Hidden,
                            cl::init(false), cl::ZeroOrMore);

static cl::opt<bool> ClUseShortGranules(
    "hwasan-use-short-granules",
    cl::desc("use short granules in allocas and outlined checks"), cl::Hidden,
    cl::init(false), cl::ZeroOrMore);

static cl::opt<bool> ClInstrumentPersonalityFunctions(
    "hwasan-instrument-personality-functions",
    cl::desc("instrument personality functions"), cl::Hidden, cl::init(false),
    cl::ZeroOrMore);

static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks",
                                       cl::desc("inline all checks"),
                                       cl::Hidden, cl::init(false));

namespace {

/// An instrumentation pass implementing detection of addressability bugs
/// using tagged pointers.
class HWAddressSanitizer {
public:
  explicit HWAddressSanitizer(Module &M, bool CompileKernel = false,
                              bool Recover = false) : M(M) {
    this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
    this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0 ?
        ClEnableKhwasan : CompileKernel;

    initializeModule();
  }

  bool sanitizeFunction(Function &F);
  void initializeModule();
  void createHwasanCtorComdat();

  void initializeCallbacks(Module &M);

  Value *getDynamicShadowIfunc(IRBuilder<> &IRB);
  Value *getDynamicShadowNonTls(IRBuilder<> &IRB);

  void untagPointerOperand(Instruction *I, Value *Addr);
  Value *shadowBase();
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
  void instrumentMemAccessInline(Value *Ptr, bool IsWrite,
                                 unsigned AccessSizeIndex,
                                 Instruction *InsertBefore);
  void instrumentMemIntrinsic(MemIntrinsic *MI);
  bool instrumentMemAccess(InterestingMemoryOperand &O);
  bool ignoreAccess(Value *Ptr);
  void getInterestingMemoryOperands(
      Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);

  bool isInterestingAlloca(const AllocaInst &AI);
  bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size);
  Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag);
  Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong);
  bool instrumentStack(
      SmallVectorImpl<AllocaInst *> &Allocas,
      DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap,
      SmallVectorImpl<Instruction *> &RetVec, Value *StackTag);
  Value *readRegister(IRBuilder<> &IRB, StringRef Name);
  bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec);
  Value *getNextTagWithCall(IRBuilder<> &IRB);
  Value *getStackBaseTag(IRBuilder<> &IRB);
  Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI,
                     unsigned AllocaNo);
  Value *getUARTag(IRBuilder<> &IRB, Value *StackTag);

  Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty);
  void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord);

  void instrumentGlobal(GlobalVariable *GV, uint8_t Tag);
  void instrumentGlobals();

  void instrumentPersonalityFunctions();

private:
  LLVMContext *C;
  Module &M;
  Triple TargetTriple;
  FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset;
  FunctionCallee HWAsanHandleVfork;

  /// This struct defines the shadow mapping using the rule:
  ///   shadow = (mem >> Scale) + Offset.
  /// If InGlobal is true, then
  ///   extern char __hwasan_shadow[];
  ///   shadow = (mem >> Scale) + &__hwasan_shadow
  /// If InTls is true, then
  ///   extern char *__hwasan_tls;
  ///   shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment)
  struct ShadowMapping {
    int Scale;
    uint64_t Offset;
    bool InGlobal;
    bool InTls;

    void init(Triple &TargetTriple);
    unsigned getObjectAlignment() const { return 1U << Scale; }
  };
  ShadowMapping Mapping;

  Type *VoidTy = Type::getVoidTy(M.getContext());
  Type *IntptrTy;
  Type *Int8PtrTy;
  Type *Int8Ty;
  Type *Int32Ty;
  Type *Int64Ty = Type::getInt64Ty(M.getContext());

  bool CompileKernel;
  bool Recover;
  bool UseShortGranules;
  bool InstrumentLandingPads;

  Function *HwasanCtorFunction;

  FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes];
  FunctionCallee HwasanMemoryAccessCallbackSized[2];

  FunctionCallee HwasanTagMemoryFunc;
  FunctionCallee HwasanGenerateTagFunc;

  Constant *ShadowGlobal;

  Value *LocalDynamicShadow = nullptr;
  Value *StackBaseTag = nullptr;
  GlobalValue *ThreadPtrGlobal = nullptr;
};

class HWAddressSanitizerLegacyPass : public FunctionPass {
public:
  // Pass identification, replacement for typeid.
  static char ID;

  explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false,
                                        bool Recover = false)
      : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) {
    initializeHWAddressSanitizerLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "HWAddressSanitizer"; }

  bool doInitialization(Module &M) override {
    HWASan = std::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover);
    return true;
  }

  bool runOnFunction(Function &F) override {
    return HWASan->sanitizeFunction(F);
  }

  bool doFinalization(Module &M) override {
    HWASan.reset();
    return false;
  }

private:
  std::unique_ptr<HWAddressSanitizer> HWASan;
  bool CompileKernel;
  bool Recover;
};

} // end anonymous namespace

char HWAddressSanitizerLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(
    HWAddressSanitizerLegacyPass, "hwasan",
    "HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
    false)
INITIALIZE_PASS_END(
    HWAddressSanitizerLegacyPass, "hwasan",
    "HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
    false)

FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel,
                                                           bool Recover) {
  assert(!CompileKernel || Recover);
  return new HWAddressSanitizerLegacyPass(CompileKernel, Recover);
}

HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover)
    : CompileKernel(CompileKernel), Recover(Recover) {}

PreservedAnalyses HWAddressSanitizerPass::run(Module &M,
                                              ModuleAnalysisManager &MAM) {
  HWAddressSanitizer HWASan(M, CompileKernel, Recover);
  bool Modified = false;
  for (Function &F : M)
    Modified |= HWASan.sanitizeFunction(F);
  if (Modified)
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}

void HWAddressSanitizer::createHwasanCtorComdat() {
  std::tie(HwasanCtorFunction, std::ignore) =
      getOrCreateSanitizerCtorAndInitFunctions(
          M, kHwasanModuleCtorName, kHwasanInitName,
          /*InitArgTypes=*/{},
          /*InitArgs=*/{},
          // This callback is invoked when the functions are created the first
          // time. Hook them into the global ctors list in that case:
          [&](Function *Ctor, FunctionCallee) {
            Comdat *CtorComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
            Ctor->setComdat(CtorComdat);
            appendToGlobalCtors(M, Ctor, 0, Ctor);
          });

  // Create a note that contains pointers to the list of global
  // descriptors. Adding a note to the output file will cause the linker to
  // create a PT_NOTE program header pointing to the note that we can use to
  // find the descriptor list starting from the program headers. A function
  // provided by the runtime initializes the shadow memory for the globals by
  // accessing the descriptor list via the note. The dynamic loader needs to
  // call this function whenever a library is loaded.
  //
  // The reason why we use a note for this instead of a more conventional
  // approach of having a global constructor pass a descriptor list pointer to
  // the runtime is because of an order of initialization problem. With
  // constructors we can encounter the following problematic scenario:
  //
  // 1) library A depends on library B and also interposes one of B's symbols
  // 2) B's constructors are called before A's (as required for correctness)
  // 3) during construction, B accesses one of its "own" globals (actually
  //    interposed by A) and triggers a HWASAN failure due to the initialization
  //    for A not having happened yet
  //
  // Even without interposition it is possible to run into similar situations in
  // cases where two libraries mutually depend on each other.
  //
  // We only need one note per binary, so put everything for the note in a
  // comdat. This needs to be a comdat with an .init_array section to prevent
  // newer versions of lld from discarding the note.
  //
  // Create the note even if we aren't instrumenting globals. This ensures that
  // binaries linked from object files with both instrumented and
  // non-instrumented globals will end up with a note, even if a comdat from an
  // object file with non-instrumented globals is selected. The note is harmless
  // if the runtime doesn't support it, since it will just be ignored.
  Comdat *NoteComdat = M.getOrInsertComdat(kHwasanModuleCtorName);

  Type *Int8Arr0Ty = ArrayType::get(Int8Ty, 0);
  auto Start =
      new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
                         nullptr, "__start_hwasan_globals");
  Start->setVisibility(GlobalValue::HiddenVisibility);
  Start->setDSOLocal(true);
  auto Stop =
      new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
                         nullptr, "__stop_hwasan_globals");
  Stop->setVisibility(GlobalValue::HiddenVisibility);
  Stop->setDSOLocal(true);

  // Null-terminated so actually 8 bytes, which are required in order to align
  // the note properly.
  auto *Name = ConstantDataArray::get(*C, "LLVM\0\0\0");

  auto *NoteTy = StructType::get(Int32Ty, Int32Ty, Int32Ty, Name->getType(),
                                 Int32Ty, Int32Ty);
  auto *Note =
      new GlobalVariable(M, NoteTy, /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, nullptr, kHwasanNoteName);
  Note->setSection(".note.hwasan.globals");
  Note->setComdat(NoteComdat);
  Note->setAlignment(Align(4));
  Note->setDSOLocal(true);

  // The pointers in the note need to be relative so that the note ends up being
  // placed in rodata, which is the standard location for notes.
  auto CreateRelPtr = [&](Constant *Ptr) {
    return ConstantExpr::getTrunc(
        ConstantExpr::getSub(ConstantExpr::getPtrToInt(Ptr, Int64Ty),
                             ConstantExpr::getPtrToInt(Note, Int64Ty)),
        Int32Ty);
  };
  Note->setInitializer(ConstantStruct::getAnon(
      {ConstantInt::get(Int32Ty, 8),                           // n_namesz
       ConstantInt::get(Int32Ty, 8),                           // n_descsz
       ConstantInt::get(Int32Ty, ELF::NT_LLVM_HWASAN_GLOBALS), // n_type
       Name, CreateRelPtr(Start), CreateRelPtr(Stop)}));
  appendToCompilerUsed(M, Note);

  // Create a zero-length global in hwasan_globals so that the linker will
  // always create start and stop symbols.
  auto Dummy = new GlobalVariable(
      M, Int8Arr0Ty, /*isConstantGlobal*/ true, GlobalVariable::PrivateLinkage,
      Constant::getNullValue(Int8Arr0Ty), "hwasan.dummy.global");
  Dummy->setSection("hwasan_globals");
  Dummy->setComdat(NoteComdat);
  Dummy->setMetadata(LLVMContext::MD_associated,
                     MDNode::get(*C, ValueAsMetadata::get(Note)));
  appendToCompilerUsed(M, Dummy);
}

/// Module-level initialization.
///
/// inserts a call to __hwasan_init to the module's constructor list.
void HWAddressSanitizer::initializeModule() {
  LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n");
  auto &DL = M.getDataLayout();

  TargetTriple = Triple(M.getTargetTriple());

  Mapping.init(TargetTriple);

  C = &(M.getContext());
  IRBuilder<> IRB(*C);
  IntptrTy = IRB.getIntPtrTy(DL);
  Int8PtrTy = IRB.getInt8PtrTy();
  Int8Ty = IRB.getInt8Ty();
  Int32Ty = IRB.getInt32Ty();

  HwasanCtorFunction = nullptr;

  // Older versions of Android do not have the required runtime support for
  // short granules, global or personality function instrumentation. On other
  // platforms we currently require using the latest version of the runtime.
  bool NewRuntime =
      !TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30);

  UseShortGranules =
      ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime;

  // If we don't have personality function support, fall back to landing pads.
  InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences()
                              ? ClInstrumentLandingPads
                              : !NewRuntime;

  if (!CompileKernel) {
    createHwasanCtorComdat();
    bool InstrumentGlobals =
        ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime;
    if (InstrumentGlobals)
      instrumentGlobals();

    bool InstrumentPersonalityFunctions =
        ClInstrumentPersonalityFunctions.getNumOccurrences()
            ? ClInstrumentPersonalityFunctions
            : NewRuntime;
    if (InstrumentPersonalityFunctions)
      instrumentPersonalityFunctions();
  }

  if (!TargetTriple.isAndroid()) {
    Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] {
      auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false,
                                    GlobalValue::ExternalLinkage, nullptr,
                                    "__hwasan_tls", nullptr,
                                    GlobalVariable::InitialExecTLSModel);
      appendToCompilerUsed(M, GV);
      return GV;
    });
    ThreadPtrGlobal = cast<GlobalVariable>(C);
  }
}

void HWAddressSanitizer::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
    const std::string TypeStr = AccessIsWrite ? "store" : "load";
    const std::string EndingStr = Recover ? "_noabort" : "";

    HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction(
        ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr,
        FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false));

    for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
         AccessSizeIndex++) {
      HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
          M.getOrInsertFunction(
              ClMemoryAccessCallbackPrefix + TypeStr +
                  itostr(1ULL << AccessSizeIndex) + EndingStr,
              FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false));
    }
  }

  HwasanTagMemoryFunc = M.getOrInsertFunction(
      "__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy);
  HwasanGenerateTagFunc =
      M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty);

  ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow",
                                     ArrayType::get(IRB.getInt8Ty(), 0));

  const std::string MemIntrinCallbackPrefix =
      CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
  HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
                                        IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                        IRB.getInt8PtrTy(), IntptrTy);
  HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                       IRB.getInt8PtrTy(), IntptrTy);
  HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
                                       IRB.getInt32Ty(), IntptrTy);

  HWAsanHandleVfork =
      M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy);
}

Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) {
  // An empty inline asm with input reg == output reg.
  // An opaque no-op cast, basically.
  InlineAsm *Asm = InlineAsm::get(
      FunctionType::get(Int8PtrTy, {ShadowGlobal->getType()}, false),
      StringRef(""), StringRef("=r,0"),
      /*hasSideEffects=*/false);
  return IRB.CreateCall(Asm, {ShadowGlobal}, ".hwasan.shadow");
}

Value *HWAddressSanitizer::getDynamicShadowNonTls(IRBuilder<> &IRB) {
  // Generate code only when dynamic addressing is needed.
  if (Mapping.Offset != kDynamicShadowSentinel)
    return nullptr;

  if (Mapping.InGlobal) {
    return getDynamicShadowIfunc(IRB);
  } else {
    Value *GlobalDynamicAddress =
        IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal(
            kHwasanShadowMemoryDynamicAddress, Int8PtrTy);
    return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress);
  }
}

bool HWAddressSanitizer::ignoreAccess(Value *Ptr) {
  // Do not instrument acesses from different address spaces; we cannot deal
  // with them.
  Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
  if (PtrTy->getPointerAddressSpace() != 0)
    return true;

  // Ignore swifterror addresses.
  // swifterror memory addresses are mem2reg promoted by instruction
  // selection. As such they cannot have regular uses like an instrumentation
  // function and it makes no sense to track them as memory.
  if (Ptr->isSwiftError())
    return true;

  return false;
}

void HWAddressSanitizer::getInterestingMemoryOperands(
    Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
  // Skip memory accesses inserted by another instrumentation.
  if (I->hasMetadata("nosanitize"))
    return;

  // Do not instrument the load fetching the dynamic shadow address.
  if (LocalDynamicShadow == I)
    return;

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
      return;
    Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
                             LI->getType(), LI->getAlign());
  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
      return;
    Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
                             SI->getValueOperand()->getType(), SI->getAlign());
  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
      return;
    Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
                             RMW->getValOperand()->getType(), None);
  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
      return;
    Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
                             XCHG->getCompareOperand()->getType(), None);
  } else if (auto CI = dyn_cast<CallInst>(I)) {
    for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
      if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
          ignoreAccess(CI->getArgOperand(ArgNo)))
        continue;
      Type *Ty = CI->getParamByValType(ArgNo);
      Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
    }
  }
}

static unsigned getPointerOperandIndex(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->getPointerOperandIndex();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getPointerOperandIndex();
  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I))
    return RMW->getPointerOperandIndex();
  if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I))
    return XCHG->getPointerOperandIndex();
  report_fatal_error("Unexpected instruction");
  return -1;
}

static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
  size_t Res = countTrailingZeros(TypeSize / 8);
  assert(Res < kNumberOfAccessSizes);
  return Res;
}

void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) {
  if (TargetTriple.isAArch64())
    return;

  IRBuilder<> IRB(I);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  Value *UntaggedPtr =
      IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType());
  I->setOperand(getPointerOperandIndex(I), UntaggedPtr);
}

Value *HWAddressSanitizer::shadowBase() {
  if (LocalDynamicShadow)
    return LocalDynamicShadow;
  return ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, Mapping.Offset),
                                   Int8PtrTy);
}

Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) {
  // Mem >> Scale
  Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale);
  if (Mapping.Offset == 0)
    return IRB.CreateIntToPtr(Shadow, Int8PtrTy);
  // (Mem >> Scale) + Offset
  return IRB.CreateGEP(Int8Ty, shadowBase(), Shadow);
}

void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite,
                                                   unsigned AccessSizeIndex,
                                                   Instruction *InsertBefore) {
  const int64_t AccessInfo = Recover * 0x20 + IsWrite * 0x10 + AccessSizeIndex;
  IRBuilder<> IRB(InsertBefore);

  if (!ClInlineAllChecks && TargetTriple.isAArch64() &&
      TargetTriple.isOSBinFormatELF() && !Recover) {
    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
    Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy);
    IRB.CreateCall(Intrinsic::getDeclaration(
                       M, UseShortGranules
                              ? Intrinsic::hwasan_check_memaccess_shortgranules
                              : Intrinsic::hwasan_check_memaccess),
                   {shadowBase(), Ptr, ConstantInt::get(Int32Ty, AccessInfo)});
    return;
  }

  Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy);
  Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift),
                                  IRB.getInt8Ty());
  Value *AddrLong = untagPointer(IRB, PtrLong);
  Value *Shadow = memToShadow(AddrLong, IRB);
  Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow);
  Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag);

  int matchAllTag = ClMatchAllTag.getNumOccurrences() > 0 ?
      ClMatchAllTag : (CompileKernel ? 0xFF : -1);
  if (matchAllTag != -1) {
    Value *TagNotIgnored = IRB.CreateICmpNE(PtrTag,
        ConstantInt::get(PtrTag->getType(), matchAllTag));
    TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored);
  }

  Instruction *CheckTerm =
      SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false,
                                MDBuilder(*C).createBranchWeights(1, 100000));

  IRB.SetInsertPoint(CheckTerm);
  Value *OutOfShortGranuleTagRange =
      IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15));
  Instruction *CheckFailTerm =
      SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover,
                                MDBuilder(*C).createBranchWeights(1, 100000));

  IRB.SetInsertPoint(CheckTerm);
  Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty);
  PtrLowBits = IRB.CreateAdd(
      PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1));
  Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag);
  SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false,
                            MDBuilder(*C).createBranchWeights(1, 100000),
                            nullptr, nullptr, CheckFailTerm->getParent());

  IRB.SetInsertPoint(CheckTerm);
  Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15);
  InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy);
  Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr);
  Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag);
  SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false,
                            MDBuilder(*C).createBranchWeights(1, 100000),
                            nullptr, nullptr, CheckFailTerm->getParent());

  IRB.SetInsertPoint(CheckFailTerm);
  InlineAsm *Asm;
  switch (TargetTriple.getArch()) {
    case Triple::x86_64:
      // The signal handler will find the data address in rdi.
      Asm = InlineAsm::get(
          FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
          "int3\nnopl " + itostr(0x40 + AccessInfo) + "(%rax)",
          "{rdi}",
          /*hasSideEffects=*/true);
      break;
    case Triple::aarch64:
    case Triple::aarch64_be:
      // The signal handler will find the data address in x0.
      Asm = InlineAsm::get(
          FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
          "brk #" + itostr(0x900 + AccessInfo),
          "{x0}",
          /*hasSideEffects=*/true);
      break;
    default:
      report_fatal_error("unsupported architecture");
  }
  IRB.CreateCall(Asm, PtrLong);
  if (Recover)
    cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent());
}

void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
  IRBuilder<> IRB(MI);
  if (isa<MemTransferInst>(MI)) {
    IRB.CreateCall(
        isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy,
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
  } else if (isa<MemSetInst>(MI)) {
    IRB.CreateCall(
        HWAsanMemset,
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
  }
  MI->eraseFromParent();
}

bool HWAddressSanitizer::instrumentMemAccess(InterestingMemoryOperand &O) {
  Value *Addr = O.getPtr();

  LLVM_DEBUG(dbgs() << "Instrumenting: " << O.getInsn() << "\n");

  if (O.MaybeMask)
    return false; //FIXME

  IRBuilder<> IRB(O.getInsn());
  if (isPowerOf2_64(O.TypeSize) &&
      (O.TypeSize / 8 <= (1ULL << (kNumberOfAccessSizes - 1))) &&
      (!O.Alignment || *O.Alignment >= (1ULL << Mapping.Scale) ||
       *O.Alignment >= O.TypeSize / 8)) {
    size_t AccessSizeIndex = TypeSizeToSizeIndex(O.TypeSize);
    if (ClInstrumentWithCalls) {
      IRB.CreateCall(HwasanMemoryAccessCallback[O.IsWrite][AccessSizeIndex],
                     IRB.CreatePointerCast(Addr, IntptrTy));
    } else {
      instrumentMemAccessInline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn());
    }
  } else {
    IRB.CreateCall(HwasanMemoryAccessCallbackSized[O.IsWrite],
                   {IRB.CreatePointerCast(Addr, IntptrTy),
                    ConstantInt::get(IntptrTy, O.TypeSize / 8)});
  }
  untagPointerOperand(O.getInsn(), Addr);

  return true;
}

static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) {
  uint64_t ArraySize = 1;
  if (AI.isArrayAllocation()) {
    const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
    assert(CI && "non-constant array size");
    ArraySize = CI->getZExtValue();
  }
  Type *Ty = AI.getAllocatedType();
  uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
  return SizeInBytes * ArraySize;
}

bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI,
                                   Value *Tag, size_t Size) {
  size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
  if (!UseShortGranules)
    Size = AlignedSize;

  Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty());
  if (ClInstrumentWithCalls) {
    IRB.CreateCall(HwasanTagMemoryFunc,
                   {IRB.CreatePointerCast(AI, Int8PtrTy), JustTag,
                    ConstantInt::get(IntptrTy, AlignedSize)});
  } else {
    size_t ShadowSize = Size >> Mapping.Scale;
    Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB);
    // If this memset is not inlined, it will be intercepted in the hwasan
    // runtime library. That's OK, because the interceptor skips the checks if
    // the address is in the shadow region.
    // FIXME: the interceptor is not as fast as real memset. Consider lowering
    // llvm.memset right here into either a sequence of stores, or a call to
    // hwasan_tag_memory.
    if (ShadowSize)
      IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, Align(1));
    if (Size != AlignedSize) {
      IRB.CreateStore(
          ConstantInt::get(Int8Ty, Size % Mapping.getObjectAlignment()),
          IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize));
      IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32(
                                   Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy),
                                   AlignedSize - 1));
    }
  }
  return true;
}

static unsigned RetagMask(unsigned AllocaNo) {
  // A list of 8-bit numbers that have at most one run of non-zero bits.
  // x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these
  // masks.
  // The list does not include the value 255, which is used for UAR.
  //
  // Because we are more likely to use earlier elements of this list than later
  // ones, it is sorted in increasing order of probability of collision with a
  // mask allocated (temporally) nearby. The program that generated this list
  // can be found at:
  // https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py
  static unsigned FastMasks[] = {0,  128, 64,  192, 32,  96,  224, 112, 240,
                                 48, 16,  120, 248, 56,  24,  8,   124, 252,
                                 60, 28,  12,  4,   126, 254, 62,  30,  14,
                                 6,  2,   127, 63,  31,  15,  7,   3,   1};
  return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))];
}

Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) {
  return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy);
}

Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) {
  if (ClGenerateTagsWithCalls)
    return getNextTagWithCall(IRB);
  if (StackBaseTag)
    return StackBaseTag;
  // FIXME: use addressofreturnaddress (but implement it in aarch64 backend
  // first).
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  auto GetStackPointerFn = Intrinsic::getDeclaration(
      M, Intrinsic::frameaddress,
      IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
  Value *StackPointer = IRB.CreateCall(
      GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())});

  // Extract some entropy from the stack pointer for the tags.
  // Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ
  // between functions).
  Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy);
  Value *StackTag =
      IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20),
                    "hwasan.stack.base.tag");
  return StackTag;
}

Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag,
                                        AllocaInst *AI, unsigned AllocaNo) {
  if (ClGenerateTagsWithCalls)
    return getNextTagWithCall(IRB);
  return IRB.CreateXor(StackTag,
                       ConstantInt::get(IntptrTy, RetagMask(AllocaNo)));
}

Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) {
  if (ClUARRetagToZero)
    return ConstantInt::get(IntptrTy, 0);
  if (ClGenerateTagsWithCalls)
    return getNextTagWithCall(IRB);
  return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU));
}

// Add a tag to an address.
Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty,
                                      Value *PtrLong, Value *Tag) {
  Value *TaggedPtrLong;
  if (CompileKernel) {
    // Kernel addresses have 0xFF in the most significant byte.
    Value *ShiftedTag = IRB.CreateOr(
        IRB.CreateShl(Tag, kPointerTagShift),
        ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1));
    TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag);
  } else {
    // Userspace can simply do OR (tag << 56);
    Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift);
    TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag);
  }
  return IRB.CreateIntToPtr(TaggedPtrLong, Ty);
}

// Remove tag from an address.
Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) {
  Value *UntaggedPtrLong;
  if (CompileKernel) {
    // Kernel addresses have 0xFF in the most significant byte.
    UntaggedPtrLong = IRB.CreateOr(PtrLong,
        ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift));
  } else {
    // Userspace addresses have 0x00.
    UntaggedPtrLong = IRB.CreateAnd(PtrLong,
        ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift)));
  }
  return UntaggedPtrLong;
}

Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) {
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) {
    // Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER
    // in Bionic's libc/private/bionic_tls.h.
    Function *ThreadPointerFunc =
        Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
    Value *SlotPtr = IRB.CreatePointerCast(
        IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
                               IRB.CreateCall(ThreadPointerFunc), 0x30),
        Ty->getPointerTo(0));
    return SlotPtr;
  }
  if (ThreadPtrGlobal)
    return ThreadPtrGlobal;


  return nullptr;
}

void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) {
  if (!Mapping.InTls) {
    LocalDynamicShadow = getDynamicShadowNonTls(IRB);
    return;
  }

  if (!WithFrameRecord && TargetTriple.isAndroid()) {
    LocalDynamicShadow = getDynamicShadowIfunc(IRB);
    return;
  }

  Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy);
  assert(SlotPtr);

  Value *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
  // Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI.
  Value *ThreadLongMaybeUntagged =
      TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong);

  if (WithFrameRecord) {
    Function *F = IRB.GetInsertBlock()->getParent();
    StackBaseTag = IRB.CreateAShr(ThreadLong, 3);

    // Prepare ring buffer data.
    Value *PC;
    if (TargetTriple.getArch() == Triple::aarch64)
      PC = readRegister(IRB, "pc");
    else
      PC = IRB.CreatePtrToInt(F, IntptrTy);
    Module *M = F->getParent();
    auto GetStackPointerFn = Intrinsic::getDeclaration(
        M, Intrinsic::frameaddress,
        IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
    Value *SP = IRB.CreatePtrToInt(
        IRB.CreateCall(GetStackPointerFn,
                       {Constant::getNullValue(IRB.getInt32Ty())}),
        IntptrTy);
    // Mix SP and PC.
    // Assumptions:
    // PC is 0x0000PPPPPPPPPPPP  (48 bits are meaningful, others are zero)
    // SP is 0xsssssssssssSSSS0  (4 lower bits are zero)
    // We only really need ~20 lower non-zero bits (SSSS), so we mix like this:
    //       0xSSSSPPPPPPPPPPPP
    SP = IRB.CreateShl(SP, 44);

    // Store data to ring buffer.
    Value *RecordPtr =
        IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0));
    IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr);

    // Update the ring buffer. Top byte of ThreadLong defines the size of the
    // buffer in pages, it must be a power of two, and the start of the buffer
    // must be aligned by twice that much. Therefore wrap around of the ring
    // buffer is simply Addr &= ~((ThreadLong >> 56) << 12).
    // The use of AShr instead of LShr is due to
    //   https://bugs.llvm.org/show_bug.cgi?id=39030
    // Runtime library makes sure not to use the highest bit.
    Value *WrapMask = IRB.CreateXor(
        IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true),
        ConstantInt::get(IntptrTy, (uint64_t)-1));
    Value *ThreadLongNew = IRB.CreateAnd(
        IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask);
    IRB.CreateStore(ThreadLongNew, SlotPtr);
  }

  // Get shadow base address by aligning RecordPtr up.
  // Note: this is not correct if the pointer is already aligned.
  // Runtime library will make sure this never happens.
  LocalDynamicShadow = IRB.CreateAdd(
      IRB.CreateOr(
          ThreadLongMaybeUntagged,
          ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)),
      ConstantInt::get(IntptrTy, 1), "hwasan.shadow");
  LocalDynamicShadow = IRB.CreateIntToPtr(LocalDynamicShadow, Int8PtrTy);
}

Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) {
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  Function *ReadRegister =
      Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy);
  MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)});
  Value *Args[] = {MetadataAsValue::get(*C, MD)};
  return IRB.CreateCall(ReadRegister, Args);
}

bool HWAddressSanitizer::instrumentLandingPads(
    SmallVectorImpl<Instruction *> &LandingPadVec) {
  for (auto *LP : LandingPadVec) {
    IRBuilder<> IRB(LP->getNextNode());
    IRB.CreateCall(
        HWAsanHandleVfork,
        {readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp"
                                                                      : "sp")});
  }
  return true;
}

bool HWAddressSanitizer::instrumentStack(
    SmallVectorImpl<AllocaInst *> &Allocas,
    DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap,
    SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) {
  // Ideally, we want to calculate tagged stack base pointer, and rewrite all
  // alloca addresses using that. Unfortunately, offsets are not known yet
  // (unless we use ASan-style mega-alloca). Instead we keep the base tag in a
  // temp, shift-OR it into each alloca address and xor with the retag mask.
  // This generates one extra instruction per alloca use.
  for (unsigned N = 0; N < Allocas.size(); ++N) {
    auto *AI = Allocas[N];
    IRBuilder<> IRB(AI->getNextNode());

    // Replace uses of the alloca with tagged address.
    Value *Tag = getAllocaTag(IRB, StackTag, AI, N);
    Value *AILong = IRB.CreatePointerCast(AI, IntptrTy);
    Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag);
    std::string Name =
        AI->hasName() ? AI->getName().str() : "alloca." + itostr(N);
    Replacement->setName(Name + ".hwasan");

    AI->replaceUsesWithIf(Replacement,
                          [AILong](Use &U) { return U.getUser() != AILong; });

    for (auto *DDI : AllocaDbgMap.lookup(AI)) {
      // Prepend "tag_offset, N" to the dwarf expression.
      // Tag offset logically applies to the alloca pointer, and it makes sense
      // to put it at the beginning of the expression.
      SmallVector<uint64_t, 8> NewOps = {dwarf::DW_OP_LLVM_tag_offset,
                                         RetagMask(N)};
      DDI->setArgOperand(
          2, MetadataAsValue::get(*C, DIExpression::prependOpcodes(
                                          DDI->getExpression(), NewOps)));
    }

    size_t Size = getAllocaSizeInBytes(*AI);
    tagAlloca(IRB, AI, Tag, Size);

    for (auto RI : RetVec) {
      IRB.SetInsertPoint(RI);

      // Re-tag alloca memory with the special UAR tag.
      Value *Tag = getUARTag(IRB, StackTag);
      tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getObjectAlignment()));
    }
  }

  return true;
}

bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
  return (AI.getAllocatedType()->isSized() &&
          // FIXME: instrument dynamic allocas, too
          AI.isStaticAlloca() &&
          // alloca() may be called with 0 size, ignore it.
          getAllocaSizeInBytes(AI) > 0 &&
          // We are only interested in allocas not promotable to registers.
          // Promotable allocas are common under -O0.
          !isAllocaPromotable(&AI) &&
          // inalloca allocas are not treated as static, and we don't want
          // dynamic alloca instrumentation for them as well.
          !AI.isUsedWithInAlloca() &&
          // swifterror allocas are register promoted by ISel
          !AI.isSwiftError());
}

bool HWAddressSanitizer::sanitizeFunction(Function &F) {
  if (&F == HwasanCtorFunction)
    return false;

  if (!F.hasFnAttribute(Attribute::SanitizeHWAddress))
    return false;

  LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n");

  SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
  SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
  SmallVector<AllocaInst*, 8> AllocasToInstrument;
  SmallVector<Instruction*, 8> RetVec;
  SmallVector<Instruction*, 8> LandingPadVec;
  DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> AllocaDbgMap;
  for (auto &BB : F) {
    for (auto &Inst : BB) {
      if (ClInstrumentStack)
        if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
          if (isInterestingAlloca(*AI))
            AllocasToInstrument.push_back(AI);
          continue;
        }

      if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) ||
          isa<CleanupReturnInst>(Inst))
        RetVec.push_back(&Inst);

      if (auto *DDI = dyn_cast<DbgVariableIntrinsic>(&Inst))
        if (auto *Alloca =
                dyn_cast_or_null<AllocaInst>(DDI->getVariableLocation()))
          AllocaDbgMap[Alloca].push_back(DDI);

      if (InstrumentLandingPads && isa<LandingPadInst>(Inst))
        LandingPadVec.push_back(&Inst);

      getInterestingMemoryOperands(&Inst, OperandsToInstrument);

      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst))
        IntrinToInstrument.push_back(MI);
    }
  }

  initializeCallbacks(*F.getParent());

  bool Changed = false;

  if (!LandingPadVec.empty())
    Changed |= instrumentLandingPads(LandingPadVec);

  if (AllocasToInstrument.empty() && F.hasPersonalityFn() &&
      F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) {
    // __hwasan_personality_thunk is a no-op for functions without an
    // instrumented stack, so we can drop it.
    F.setPersonalityFn(nullptr);
    Changed = true;
  }

  if (AllocasToInstrument.empty() && OperandsToInstrument.empty() &&
      IntrinToInstrument.empty())
    return Changed;

  assert(!LocalDynamicShadow);

  Instruction *InsertPt = &*F.getEntryBlock().begin();
  IRBuilder<> EntryIRB(InsertPt);
  emitPrologue(EntryIRB,
               /*WithFrameRecord*/ ClRecordStackHistory &&
                   !AllocasToInstrument.empty());

  if (!AllocasToInstrument.empty()) {
    Value *StackTag =
        ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB);
    instrumentStack(AllocasToInstrument, AllocaDbgMap, RetVec, StackTag);
  }
  // Pad and align each of the allocas that we instrumented to stop small
  // uninteresting allocas from hiding in instrumented alloca's padding and so
  // that we have enough space to store real tags for short granules.
  DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap;
  for (AllocaInst *AI : AllocasToInstrument) {
    uint64_t Size = getAllocaSizeInBytes(*AI);
    uint64_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
    AI->setAlignment(
        Align(std::max(AI->getAlignment(), Mapping.getObjectAlignment())));
    if (Size != AlignedSize) {
      Type *AllocatedType = AI->getAllocatedType();
      if (AI->isArrayAllocation()) {
        uint64_t ArraySize =
            cast<ConstantInt>(AI->getArraySize())->getZExtValue();
        AllocatedType = ArrayType::get(AllocatedType, ArraySize);
      }
      Type *TypeWithPadding = StructType::get(
          AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size));
      auto *NewAI = new AllocaInst(
          TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI);
      NewAI->takeName(AI);
      NewAI->setAlignment(AI->getAlign());
      NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca());
      NewAI->setSwiftError(AI->isSwiftError());
      NewAI->copyMetadata(*AI);
      auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI);
      AI->replaceAllUsesWith(Bitcast);
      AllocaToPaddedAllocaMap[AI] = NewAI;
    }
  }

  if (!AllocaToPaddedAllocaMap.empty()) {
    for (auto &BB : F)
      for (auto &Inst : BB)
        if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst))
          if (auto *AI =
                  dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation()))
            if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI))
              DVI->setArgOperand(
                  0, MetadataAsValue::get(*C, LocalAsMetadata::get(NewAI)));
    for (auto &P : AllocaToPaddedAllocaMap)
      P.first->eraseFromParent();
  }

  // If we split the entry block, move any allocas that were originally in the
  // entry block back into the entry block so that they aren't treated as
  // dynamic allocas.
  if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) {
    InsertPt = &*F.getEntryBlock().begin();
    for (auto II = EntryIRB.GetInsertBlock()->begin(),
              IE = EntryIRB.GetInsertBlock()->end();
         II != IE;) {
      Instruction *I = &*II++;
      if (auto *AI = dyn_cast<AllocaInst>(I))
        if (isa<ConstantInt>(AI->getArraySize()))
          I->moveBefore(InsertPt);
    }
  }

  for (auto &Operand : OperandsToInstrument)
    instrumentMemAccess(Operand);

  if (ClInstrumentMemIntrinsics && !IntrinToInstrument.empty()) {
    for (auto Inst : IntrinToInstrument)
      instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
  }

  LocalDynamicShadow = nullptr;
  StackBaseTag = nullptr;

  return true;
}

void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) {
  Constant *Initializer = GV->getInitializer();
  uint64_t SizeInBytes =
      M.getDataLayout().getTypeAllocSize(Initializer->getType());
  uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment());
  if (SizeInBytes != NewSize) {
    // Pad the initializer out to the next multiple of 16 bytes and add the
    // required short granule tag.
    std::vector<uint8_t> Init(NewSize - SizeInBytes, 0);
    Init.back() = Tag;
    Constant *Padding = ConstantDataArray::get(*C, Init);
    Initializer = ConstantStruct::getAnon({Initializer, Padding});
  }

  auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(),
                                   GlobalValue::ExternalLinkage, Initializer,
                                   GV->getName() + ".hwasan");
  NewGV->copyAttributesFrom(GV);
  NewGV->setLinkage(GlobalValue::PrivateLinkage);
  NewGV->copyMetadata(GV, 0);
  NewGV->setAlignment(
      MaybeAlign(std::max(GV->getAlignment(), Mapping.getObjectAlignment())));

  // It is invalid to ICF two globals that have different tags. In the case
  // where the size of the global is a multiple of the tag granularity the
  // contents of the globals may be the same but the tags (i.e. symbol values)
  // may be different, and the symbols are not considered during ICF. In the
  // case where the size is not a multiple of the granularity, the short granule
  // tags would discriminate two globals with different tags, but there would
  // otherwise be nothing stopping such a global from being incorrectly ICF'd
  // with an uninstrumented (i.e. tag 0) global that happened to have the short
  // granule tag in the last byte.
  NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None);

  // Descriptor format (assuming little-endian):
  // bytes 0-3: relative address of global
  // bytes 4-6: size of global (16MB ought to be enough for anyone, but in case
  // it isn't, we create multiple descriptors)
  // byte 7: tag
  auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty);
  const uint64_t MaxDescriptorSize = 0xfffff0;
  for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes;
       DescriptorPos += MaxDescriptorSize) {
    auto *Descriptor =
        new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage,
                           nullptr, GV->getName() + ".hwasan.descriptor");
    auto *GVRelPtr = ConstantExpr::getTrunc(
        ConstantExpr::getAdd(
            ConstantExpr::getSub(
                ConstantExpr::getPtrToInt(NewGV, Int64Ty),
                ConstantExpr::getPtrToInt(Descriptor, Int64Ty)),
            ConstantInt::get(Int64Ty, DescriptorPos)),
        Int32Ty);
    uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize);
    auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24));
    Descriptor->setComdat(NewGV->getComdat());
    Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag}));
    Descriptor->setSection("hwasan_globals");
    Descriptor->setMetadata(LLVMContext::MD_associated,
                            MDNode::get(*C, ValueAsMetadata::get(NewGV)));
    appendToCompilerUsed(M, Descriptor);
  }

  Constant *Aliasee = ConstantExpr::getIntToPtr(
      ConstantExpr::getAdd(
          ConstantExpr::getPtrToInt(NewGV, Int64Ty),
          ConstantInt::get(Int64Ty, uint64_t(Tag) << kPointerTagShift)),
      GV->getType());
  auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(),
                                    GV->getLinkage(), "", Aliasee, &M);
  Alias->setVisibility(GV->getVisibility());
  Alias->takeName(GV);
  GV->replaceAllUsesWith(Alias);
  GV->eraseFromParent();
}

void HWAddressSanitizer::instrumentGlobals() {
  std::vector<GlobalVariable *> Globals;
  for (GlobalVariable &GV : M.globals()) {
    if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") ||
        GV.isThreadLocal())
      continue;

    // Common symbols can't have aliases point to them, so they can't be tagged.
    if (GV.hasCommonLinkage())
      continue;

    // Globals with custom sections may be used in __start_/__stop_ enumeration,
    // which would be broken both by adding tags and potentially by the extra
    // padding/alignment that we insert.
    if (GV.hasSection())
      continue;

    Globals.push_back(&GV);
  }

  MD5 Hasher;
  Hasher.update(M.getSourceFileName());
  MD5::MD5Result Hash;
  Hasher.final(Hash);
  uint8_t Tag = Hash[0];

  for (GlobalVariable *GV : Globals) {
    // Skip tag 0 in order to avoid collisions with untagged memory.
    if (Tag == 0)
      Tag = 1;
    instrumentGlobal(GV, Tag++);
  }
}

void HWAddressSanitizer::instrumentPersonalityFunctions() {
  // We need to untag stack frames as we unwind past them. That is the job of
  // the personality function wrapper, which either wraps an existing
  // personality function or acts as a personality function on its own. Each
  // function that has a personality function or that can be unwound past has
  // its personality function changed to a thunk that calls the personality
  // function wrapper in the runtime.
  MapVector<Constant *, std::vector<Function *>> PersonalityFns;
  for (Function &F : M) {
    if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress))
      continue;

    if (F.hasPersonalityFn()) {
      PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F);
    } else if (!F.hasFnAttribute(Attribute::NoUnwind)) {
      PersonalityFns[nullptr].push_back(&F);
    }
  }

  if (PersonalityFns.empty())
    return;

  FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction(
      "__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty,
      Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy);
  FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy);
  FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy);

  for (auto &P : PersonalityFns) {
    std::string ThunkName = kHwasanPersonalityThunkName;
    if (P.first)
      ThunkName += ("." + P.first->getName()).str();
    FunctionType *ThunkFnTy = FunctionType::get(
        Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false);
    bool IsLocal = P.first && (!isa<GlobalValue>(P.first) ||
                               cast<GlobalValue>(P.first)->hasLocalLinkage());
    auto *ThunkFn = Function::Create(ThunkFnTy,
                                     IsLocal ? GlobalValue::InternalLinkage
                                             : GlobalValue::LinkOnceODRLinkage,
                                     ThunkName, &M);
    if (!IsLocal) {
      ThunkFn->setVisibility(GlobalValue::HiddenVisibility);
      ThunkFn->setComdat(M.getOrInsertComdat(ThunkName));
    }

    auto *BB = BasicBlock::Create(*C, "entry", ThunkFn);
    IRBuilder<> IRB(BB);
    CallInst *WrapperCall = IRB.CreateCall(
        HwasanPersonalityWrapper,
        {ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2),
         ThunkFn->getArg(3), ThunkFn->getArg(4),
         P.first ? IRB.CreateBitCast(P.first, Int8PtrTy)
                 : Constant::getNullValue(Int8PtrTy),
         IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy),
         IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)});
    WrapperCall->setTailCall();
    IRB.CreateRet(WrapperCall);

    for (Function *F : P.second)
      F->setPersonalityFn(ThunkFn);
  }
}

void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple) {
  Scale = kDefaultShadowScale;
  if (ClMappingOffset.getNumOccurrences() > 0) {
    InGlobal = false;
    InTls = false;
    Offset = ClMappingOffset;
  } else if (ClEnableKhwasan || ClInstrumentWithCalls) {
    InGlobal = false;
    InTls = false;
    Offset = 0;
  } else if (ClWithIfunc) {
    InGlobal = true;
    InTls = false;
    Offset = kDynamicShadowSentinel;
  } else if (ClWithTls) {
    InGlobal = false;
    InTls = true;
    Offset = kDynamicShadowSentinel;
  } else {
    InGlobal = false;
    InTls = false;
    Offset = kDynamicShadowSentinel;
  }
}