InstrProfiling.cpp 42.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
//===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers instrprof_* intrinsics emitted by a frontend for profiling.
// It also builds the data structures and initialization code needed for
// updating execution counts and emitting the profile at runtime.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>

using namespace llvm;

#define DEBUG_TYPE "instrprof"

// FIXME: These are to be removed after switching to the new memop value
// profiling.
// The start and end values of precise value profile range for memory
// intrinsic sizes
cl::opt<std::string> MemOPSizeRange(
    "memop-size-range",
    cl::desc("Set the range of size in memory intrinsic calls to be profiled "
             "precisely, in a format of <start_val>:<end_val>"),
    cl::init(""));

// The value that considered to be large value in  memory intrinsic.
cl::opt<unsigned> MemOPSizeLarge(
    "memop-size-large",
    cl::desc("Set large value thresthold in memory intrinsic size profiling. "
             "Value of 0 disables the large value profiling."),
    cl::init(8192));

cl::opt<bool> UseOldMemOpValueProf(
    "use-old-memop-value-prof",
    cl::desc("Use the old memop value profiling buckets. This is "
             "transitional and to be removed after switching. "),
    cl::init(false));

namespace {

cl::opt<bool> DoHashBasedCounterSplit(
    "hash-based-counter-split",
    cl::desc("Rename counter variable of a comdat function based on cfg hash"),
    cl::init(true));

cl::opt<bool> RuntimeCounterRelocation(
    "runtime-counter-relocation",
    cl::desc("Enable relocating counters at runtime."),
    cl::init(false));

cl::opt<bool> ValueProfileStaticAlloc(
    "vp-static-alloc",
    cl::desc("Do static counter allocation for value profiler"),
    cl::init(true));

cl::opt<double> NumCountersPerValueSite(
    "vp-counters-per-site",
    cl::desc("The average number of profile counters allocated "
             "per value profiling site."),
    // This is set to a very small value because in real programs, only
    // a very small percentage of value sites have non-zero targets, e.g, 1/30.
    // For those sites with non-zero profile, the average number of targets
    // is usually smaller than 2.
    cl::init(1.0));

cl::opt<bool> AtomicCounterUpdateAll(
    "instrprof-atomic-counter-update-all", cl::ZeroOrMore,
    cl::desc("Make all profile counter updates atomic (for testing only)"),
    cl::init(false));

cl::opt<bool> AtomicCounterUpdatePromoted(
    "atomic-counter-update-promoted", cl::ZeroOrMore,
    cl::desc("Do counter update using atomic fetch add "
             " for promoted counters only"),
    cl::init(false));

cl::opt<bool> AtomicFirstCounter(
    "atomic-first-counter", cl::ZeroOrMore,
    cl::desc("Use atomic fetch add for first counter in a function (usually "
             "the entry counter)"),
    cl::init(false));

// If the option is not specified, the default behavior about whether
// counter promotion is done depends on how instrumentaiton lowering
// pipeline is setup, i.e., the default value of true of this option
// does not mean the promotion will be done by default. Explicitly
// setting this option can override the default behavior.
cl::opt<bool> DoCounterPromotion("do-counter-promotion", cl::ZeroOrMore,
                                 cl::desc("Do counter register promotion"),
                                 cl::init(false));
cl::opt<unsigned> MaxNumOfPromotionsPerLoop(
    cl::ZeroOrMore, "max-counter-promotions-per-loop", cl::init(20),
    cl::desc("Max number counter promotions per loop to avoid"
             " increasing register pressure too much"));

// A debug option
cl::opt<int>
    MaxNumOfPromotions(cl::ZeroOrMore, "max-counter-promotions", cl::init(-1),
                       cl::desc("Max number of allowed counter promotions"));

cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting(
    cl::ZeroOrMore, "speculative-counter-promotion-max-exiting", cl::init(3),
    cl::desc("The max number of exiting blocks of a loop to allow "
             " speculative counter promotion"));

cl::opt<bool> SpeculativeCounterPromotionToLoop(
    cl::ZeroOrMore, "speculative-counter-promotion-to-loop", cl::init(false),
    cl::desc("When the option is false, if the target block is in a loop, "
             "the promotion will be disallowed unless the promoted counter "
             " update can be further/iteratively promoted into an acyclic "
             " region."));

cl::opt<bool> IterativeCounterPromotion(
    cl::ZeroOrMore, "iterative-counter-promotion", cl::init(true),
    cl::desc("Allow counter promotion across the whole loop nest."));

cl::opt<bool> SkipRetExitBlock(
    cl::ZeroOrMore, "skip-ret-exit-block", cl::init(true),
    cl::desc("Suppress counter promotion if exit blocks contain ret."));

class InstrProfilingLegacyPass : public ModulePass {
  InstrProfiling InstrProf;

public:
  static char ID;

  InstrProfilingLegacyPass() : ModulePass(ID) {}
  InstrProfilingLegacyPass(const InstrProfOptions &Options, bool IsCS = false)
      : ModulePass(ID), InstrProf(Options, IsCS) {
    initializeInstrProfilingLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Frontend instrumentation-based coverage lowering";
  }

  bool runOnModule(Module &M) override {
    auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
      return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    };
    return InstrProf.run(M, GetTLI);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }
};

///
/// A helper class to promote one counter RMW operation in the loop
/// into register update.
///
/// RWM update for the counter will be sinked out of the loop after
/// the transformation.
///
class PGOCounterPromoterHelper : public LoadAndStorePromoter {
public:
  PGOCounterPromoterHelper(
      Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init,
      BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks,
      ArrayRef<Instruction *> InsertPts,
      DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
      LoopInfo &LI)
      : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks),
        InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) {
    assert(isa<LoadInst>(L));
    assert(isa<StoreInst>(S));
    SSA.AddAvailableValue(PH, Init);
  }

  void doExtraRewritesBeforeFinalDeletion() override {
    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
      BasicBlock *ExitBlock = ExitBlocks[i];
      Instruction *InsertPos = InsertPts[i];
      // Get LiveIn value into the ExitBlock. If there are multiple
      // predecessors, the value is defined by a PHI node in this
      // block.
      Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
      Value *Addr = cast<StoreInst>(Store)->getPointerOperand();
      Type *Ty = LiveInValue->getType();
      IRBuilder<> Builder(InsertPos);
      if (AtomicCounterUpdatePromoted)
        // automic update currently can only be promoted across the current
        // loop, not the whole loop nest.
        Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue,
                                AtomicOrdering::SequentiallyConsistent);
      else {
        LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted");
        auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue);
        auto *NewStore = Builder.CreateStore(NewVal, Addr);

        // Now update the parent loop's candidate list:
        if (IterativeCounterPromotion) {
          auto *TargetLoop = LI.getLoopFor(ExitBlock);
          if (TargetLoop)
            LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore);
        }
      }
    }
  }

private:
  Instruction *Store;
  ArrayRef<BasicBlock *> ExitBlocks;
  ArrayRef<Instruction *> InsertPts;
  DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
  LoopInfo &LI;
};

/// A helper class to do register promotion for all profile counter
/// updates in a loop.
///
class PGOCounterPromoter {
public:
  PGOCounterPromoter(
      DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
      Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI)
      : LoopToCandidates(LoopToCands), ExitBlocks(), InsertPts(), L(CurLoop),
        LI(LI), BFI(BFI) {

    // Skip collection of ExitBlocks and InsertPts for loops that will not be
    // able to have counters promoted.
    SmallVector<BasicBlock *, 8> LoopExitBlocks;
    SmallPtrSet<BasicBlock *, 8> BlockSet;

    L.getExitBlocks(LoopExitBlocks);
    if (!isPromotionPossible(&L, LoopExitBlocks))
      return;

    for (BasicBlock *ExitBlock : LoopExitBlocks) {
      if (BlockSet.insert(ExitBlock).second) {
        ExitBlocks.push_back(ExitBlock);
        InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
      }
    }
  }

  bool run(int64_t *NumPromoted) {
    // Skip 'infinite' loops:
    if (ExitBlocks.size() == 0)
      return false;

    // Skip if any of the ExitBlocks contains a ret instruction.
    // This is to prevent dumping of incomplete profile -- if the
    // the loop is a long running loop and dump is called in the middle
    // of the loop, the result profile is incomplete.
    // FIXME: add other heuristics to detect long running loops.
    if (SkipRetExitBlock) {
      for (auto BB : ExitBlocks)
        if (dyn_cast<ReturnInst>(BB->getTerminator()) != nullptr)
          return false;
    }

    unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L);
    if (MaxProm == 0)
      return false;

    unsigned Promoted = 0;
    for (auto &Cand : LoopToCandidates[&L]) {

      SmallVector<PHINode *, 4> NewPHIs;
      SSAUpdater SSA(&NewPHIs);
      Value *InitVal = ConstantInt::get(Cand.first->getType(), 0);

      // If BFI is set, we will use it to guide the promotions.
      if (BFI) {
        auto *BB = Cand.first->getParent();
        auto InstrCount = BFI->getBlockProfileCount(BB);
        if (!InstrCount)
          continue;
        auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader());
        // If the average loop trip count is not greater than 1.5, we skip
        // promotion.
        if (PreheaderCount &&
            (PreheaderCount.getValue() * 3) >= (InstrCount.getValue() * 2))
          continue;
      }

      PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal,
                                        L.getLoopPreheader(), ExitBlocks,
                                        InsertPts, LoopToCandidates, LI);
      Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second}));
      Promoted++;
      if (Promoted >= MaxProm)
        break;

      (*NumPromoted)++;
      if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions)
        break;
    }

    LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth="
                      << L.getLoopDepth() << ")\n");
    return Promoted != 0;
  }

private:
  bool allowSpeculativeCounterPromotion(Loop *LP) {
    SmallVector<BasicBlock *, 8> ExitingBlocks;
    L.getExitingBlocks(ExitingBlocks);
    // Not considierered speculative.
    if (ExitingBlocks.size() == 1)
      return true;
    if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
      return false;
    return true;
  }

  // Check whether the loop satisfies the basic conditions needed to perform
  // Counter Promotions.
  bool isPromotionPossible(Loop *LP,
                           const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) {
    // We can't insert into a catchswitch.
    if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) {
          return isa<CatchSwitchInst>(Exit->getTerminator());
        }))
      return false;

    if (!LP->hasDedicatedExits())
      return false;

    BasicBlock *PH = LP->getLoopPreheader();
    if (!PH)
      return false;

    return true;
  }

  // Returns the max number of Counter Promotions for LP.
  unsigned getMaxNumOfPromotionsInLoop(Loop *LP) {
    SmallVector<BasicBlock *, 8> LoopExitBlocks;
    LP->getExitBlocks(LoopExitBlocks);
    if (!isPromotionPossible(LP, LoopExitBlocks))
      return 0;

    SmallVector<BasicBlock *, 8> ExitingBlocks;
    LP->getExitingBlocks(ExitingBlocks);

    // If BFI is set, we do more aggressive promotions based on BFI.
    if (BFI)
      return (unsigned)-1;

    // Not considierered speculative.
    if (ExitingBlocks.size() == 1)
      return MaxNumOfPromotionsPerLoop;

    if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
      return 0;

    // Whether the target block is in a loop does not matter:
    if (SpeculativeCounterPromotionToLoop)
      return MaxNumOfPromotionsPerLoop;

    // Now check the target block:
    unsigned MaxProm = MaxNumOfPromotionsPerLoop;
    for (auto *TargetBlock : LoopExitBlocks) {
      auto *TargetLoop = LI.getLoopFor(TargetBlock);
      if (!TargetLoop)
        continue;
      unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop);
      unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size();
      MaxProm =
          std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) -
                                PendingCandsInTarget);
    }
    return MaxProm;
  }

  DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
  SmallVector<BasicBlock *, 8> ExitBlocks;
  SmallVector<Instruction *, 8> InsertPts;
  Loop &L;
  LoopInfo &LI;
  BlockFrequencyInfo *BFI;
};

enum class ValueProfilingCallType {
  // Individual values are tracked. Currently used for indiret call target
  // profiling.
  Default,

  // The old memop size value profiling. FIXME: To be removed after switching to
  // the new one.
  OldMemOp,

  // MemOp: the (new) memop size value profiling with extended buckets.
  MemOp
};

} // end anonymous namespace

PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
    return FAM.getResult<TargetLibraryAnalysis>(F);
  };
  if (!run(M, GetTLI))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

char InstrProfilingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(
    InstrProfilingLegacyPass, "instrprof",
    "Frontend instrumentation-based coverage lowering.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
    InstrProfilingLegacyPass, "instrprof",
    "Frontend instrumentation-based coverage lowering.", false, false)

ModulePass *
llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options,
                                     bool IsCS) {
  return new InstrProfilingLegacyPass(Options, IsCS);
}

static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) {
  InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr);
  if (Inc)
    return Inc;
  return dyn_cast<InstrProfIncrementInst>(Instr);
}

bool InstrProfiling::lowerIntrinsics(Function *F) {
  bool MadeChange = false;
  PromotionCandidates.clear();
  for (BasicBlock &BB : *F) {
    for (auto I = BB.begin(), E = BB.end(); I != E;) {
      auto Instr = I++;
      InstrProfIncrementInst *Inc = castToIncrementInst(&*Instr);
      if (Inc) {
        lowerIncrement(Inc);
        MadeChange = true;
      } else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(Instr)) {
        lowerValueProfileInst(Ind);
        MadeChange = true;
      }
    }
  }

  if (!MadeChange)
    return false;

  promoteCounterLoadStores(F);
  return true;
}

bool InstrProfiling::isRuntimeCounterRelocationEnabled() const {
  if (RuntimeCounterRelocation.getNumOccurrences() > 0)
    return RuntimeCounterRelocation;

  return TT.isOSFuchsia();
}

bool InstrProfiling::isCounterPromotionEnabled() const {
  if (DoCounterPromotion.getNumOccurrences() > 0)
    return DoCounterPromotion;

  return Options.DoCounterPromotion;
}

void InstrProfiling::promoteCounterLoadStores(Function *F) {
  if (!isCounterPromotionEnabled())
    return;

  DominatorTree DT(*F);
  LoopInfo LI(DT);
  DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates;

  std::unique_ptr<BlockFrequencyInfo> BFI;
  if (Options.UseBFIInPromotion) {
    std::unique_ptr<BranchProbabilityInfo> BPI;
    BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F)));
    BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI));
  }

  for (const auto &LoadStore : PromotionCandidates) {
    auto *CounterLoad = LoadStore.first;
    auto *CounterStore = LoadStore.second;
    BasicBlock *BB = CounterLoad->getParent();
    Loop *ParentLoop = LI.getLoopFor(BB);
    if (!ParentLoop)
      continue;
    LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore);
  }

  SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder();

  // Do a post-order traversal of the loops so that counter updates can be
  // iteratively hoisted outside the loop nest.
  for (auto *Loop : llvm::reverse(Loops)) {
    PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get());
    Promoter.run(&TotalCountersPromoted);
  }
}

/// Check if the module contains uses of any profiling intrinsics.
static bool containsProfilingIntrinsics(Module &M) {
  if (auto *F = M.getFunction(
          Intrinsic::getName(llvm::Intrinsic::instrprof_increment)))
    if (!F->use_empty())
      return true;
  if (auto *F = M.getFunction(
          Intrinsic::getName(llvm::Intrinsic::instrprof_increment_step)))
    if (!F->use_empty())
      return true;
  if (auto *F = M.getFunction(
          Intrinsic::getName(llvm::Intrinsic::instrprof_value_profile)))
    if (!F->use_empty())
      return true;
  return false;
}

bool InstrProfiling::run(
    Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) {
  this->M = &M;
  this->GetTLI = std::move(GetTLI);
  NamesVar = nullptr;
  NamesSize = 0;
  ProfileDataMap.clear();
  UsedVars.clear();
  getMemOPSizeRangeFromOption(MemOPSizeRange, MemOPSizeRangeStart,
                              MemOPSizeRangeLast);
  TT = Triple(M.getTargetTriple());

  // Emit the runtime hook even if no counters are present.
  bool MadeChange = emitRuntimeHook();

  // Improve compile time by avoiding linear scans when there is no work.
  GlobalVariable *CoverageNamesVar =
      M.getNamedGlobal(getCoverageUnusedNamesVarName());
  if (!containsProfilingIntrinsics(M) && !CoverageNamesVar)
    return MadeChange;

  // We did not know how many value sites there would be inside
  // the instrumented function. This is counting the number of instrumented
  // target value sites to enter it as field in the profile data variable.
  for (Function &F : M) {
    InstrProfIncrementInst *FirstProfIncInst = nullptr;
    for (BasicBlock &BB : F)
      for (auto I = BB.begin(), E = BB.end(); I != E; I++)
        if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I))
          computeNumValueSiteCounts(Ind);
        else if (FirstProfIncInst == nullptr)
          FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I);

    // Value profiling intrinsic lowering requires per-function profile data
    // variable to be created first.
    if (FirstProfIncInst != nullptr)
      static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst));
  }

  for (Function &F : M)
    MadeChange |= lowerIntrinsics(&F);

  if (CoverageNamesVar) {
    lowerCoverageData(CoverageNamesVar);
    MadeChange = true;
  }

  if (!MadeChange)
    return false;

  emitVNodes();
  emitNameData();
  emitRegistration();
  emitUses();
  emitInitialization();
  return true;
}

static FunctionCallee getOrInsertValueProfilingCall(
    Module &M, const TargetLibraryInfo &TLI,
    ValueProfilingCallType CallType = ValueProfilingCallType::Default) {
  LLVMContext &Ctx = M.getContext();
  auto *ReturnTy = Type::getVoidTy(M.getContext());

  AttributeList AL;
  if (auto AK = TLI.getExtAttrForI32Param(false))
    AL = AL.addParamAttribute(M.getContext(), 2, AK);

  if (CallType == ValueProfilingCallType::Default ||
      CallType == ValueProfilingCallType::MemOp) {
    Type *ParamTypes[] = {
#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
#include "llvm/ProfileData/InstrProfData.inc"
    };
    auto *ValueProfilingCallTy =
        FunctionType::get(ReturnTy, makeArrayRef(ParamTypes), false);
    StringRef FuncName = CallType == ValueProfilingCallType::Default
                             ? getInstrProfValueProfFuncName()
                             : getInstrProfValueProfMemOpFuncName();
    return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL);
  } else {
    // FIXME: This code is to be removed after switching to the new memop value
    // profiling.
    assert(CallType == ValueProfilingCallType::OldMemOp);
    Type *RangeParamTypes[] = {
#define VALUE_RANGE_PROF 1
#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
#include "llvm/ProfileData/InstrProfData.inc"
#undef VALUE_RANGE_PROF
    };
    auto *ValueRangeProfilingCallTy =
        FunctionType::get(ReturnTy, makeArrayRef(RangeParamTypes), false);
    return M.getOrInsertFunction(getInstrProfValueRangeProfFuncName(),
                                 ValueRangeProfilingCallTy, AL);
  }
}

void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) {
  GlobalVariable *Name = Ind->getName();
  uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
  uint64_t Index = Ind->getIndex()->getZExtValue();
  auto It = ProfileDataMap.find(Name);
  if (It == ProfileDataMap.end()) {
    PerFunctionProfileData PD;
    PD.NumValueSites[ValueKind] = Index + 1;
    ProfileDataMap[Name] = PD;
  } else if (It->second.NumValueSites[ValueKind] <= Index)
    It->second.NumValueSites[ValueKind] = Index + 1;
}

void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) {
  GlobalVariable *Name = Ind->getName();
  auto It = ProfileDataMap.find(Name);
  assert(It != ProfileDataMap.end() && It->second.DataVar &&
         "value profiling detected in function with no counter incerement");

  GlobalVariable *DataVar = It->second.DataVar;
  uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
  uint64_t Index = Ind->getIndex()->getZExtValue();
  for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind)
    Index += It->second.NumValueSites[Kind];

  IRBuilder<> Builder(Ind);
  bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() ==
                      llvm::InstrProfValueKind::IPVK_MemOPSize);
  CallInst *Call = nullptr;
  auto *TLI = &GetTLI(*Ind->getFunction());

  // To support value profiling calls within Windows exception handlers, funclet
  // information contained within operand bundles needs to be copied over to
  // the library call. This is required for the IR to be processed by the
  // WinEHPrepare pass.
  SmallVector<OperandBundleDef, 1> OpBundles;
  Ind->getOperandBundlesAsDefs(OpBundles);
  if (!IsMemOpSize) {
    Value *Args[3] = {Ind->getTargetValue(),
                      Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
                      Builder.getInt32(Index)};
    Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args,
                              OpBundles);
  } else if (!UseOldMemOpValueProf) {
    Value *Args[3] = {Ind->getTargetValue(),
                      Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
                      Builder.getInt32(Index)};
    Call = Builder.CreateCall(
        getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp),
        Args, OpBundles);
  } else {
    Value *Args[6] = {
        Ind->getTargetValue(),
        Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
        Builder.getInt32(Index),
        Builder.getInt64(MemOPSizeRangeStart),
        Builder.getInt64(MemOPSizeRangeLast),
        Builder.getInt64(MemOPSizeLarge == 0 ? INT64_MIN : MemOPSizeLarge)};
    Call = Builder.CreateCall(getOrInsertValueProfilingCall(
                                  *M, *TLI, ValueProfilingCallType::OldMemOp),
                              Args, OpBundles);
  }
  if (auto AK = TLI->getExtAttrForI32Param(false))
    Call->addParamAttr(2, AK);
  Ind->replaceAllUsesWith(Call);
  Ind->eraseFromParent();
}

void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) {
  GlobalVariable *Counters = getOrCreateRegionCounters(Inc);

  IRBuilder<> Builder(Inc);
  uint64_t Index = Inc->getIndex()->getZExtValue();
  Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters->getValueType(),
                                                   Counters, 0, Index);

  if (isRuntimeCounterRelocationEnabled()) {
    Type *Int64Ty = Type::getInt64Ty(M->getContext());
    Type *Int64PtrTy = Type::getInt64PtrTy(M->getContext());
    Function *Fn = Inc->getParent()->getParent();
    Instruction &I = Fn->getEntryBlock().front();
    LoadInst *LI = dyn_cast<LoadInst>(&I);
    if (!LI) {
      IRBuilder<> Builder(&I);
      Type *Int64Ty = Type::getInt64Ty(M->getContext());
      GlobalVariable *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName());
      if (!Bias) {
        Bias = new GlobalVariable(*M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage,
                                  Constant::getNullValue(Int64Ty),
                                  getInstrProfCounterBiasVarName());
        Bias->setVisibility(GlobalVariable::HiddenVisibility);
      }
      LI = Builder.CreateLoad(Int64Ty, Bias);
    }
    auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), LI);
    Addr = Builder.CreateIntToPtr(Add, Int64PtrTy);
  }

  if (Options.Atomic || AtomicCounterUpdateAll ||
      (Index == 0 && AtomicFirstCounter)) {
    Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(),
                            AtomicOrdering::Monotonic);
  } else {
    Value *IncStep = Inc->getStep();
    Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount");
    auto *Count = Builder.CreateAdd(Load, Inc->getStep());
    auto *Store = Builder.CreateStore(Count, Addr);
    if (isCounterPromotionEnabled())
      PromotionCandidates.emplace_back(cast<Instruction>(Load), Store);
  }
  Inc->eraseFromParent();
}

void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) {
  ConstantArray *Names =
      cast<ConstantArray>(CoverageNamesVar->getInitializer());
  for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) {
    Constant *NC = Names->getOperand(I);
    Value *V = NC->stripPointerCasts();
    assert(isa<GlobalVariable>(V) && "Missing reference to function name");
    GlobalVariable *Name = cast<GlobalVariable>(V);

    Name->setLinkage(GlobalValue::PrivateLinkage);
    ReferencedNames.push_back(Name);
    NC->dropAllReferences();
  }
  CoverageNamesVar->eraseFromParent();
}

/// Get the name of a profiling variable for a particular function.
static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) {
  StringRef NamePrefix = getInstrProfNameVarPrefix();
  StringRef Name = Inc->getName()->getName().substr(NamePrefix.size());
  Function *F = Inc->getParent()->getParent();
  Module *M = F->getParent();
  if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) ||
      !canRenameComdatFunc(*F))
    return (Prefix + Name).str();
  uint64_t FuncHash = Inc->getHash()->getZExtValue();
  SmallVector<char, 24> HashPostfix;
  if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix)))
    return (Prefix + Name).str();
  return (Prefix + Name + "." + Twine(FuncHash)).str();
}

static inline bool shouldRecordFunctionAddr(Function *F) {
  // Check the linkage
  bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage();
  if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
      !HasAvailableExternallyLinkage)
    return true;

  // A function marked 'alwaysinline' with available_externally linkage can't
  // have its address taken. Doing so would create an undefined external ref to
  // the function, which would fail to link.
  if (HasAvailableExternallyLinkage &&
      F->hasFnAttribute(Attribute::AlwaysInline))
    return false;

  // Prohibit function address recording if the function is both internal and
  // COMDAT. This avoids the profile data variable referencing internal symbols
  // in COMDAT.
  if (F->hasLocalLinkage() && F->hasComdat())
    return false;

  // Check uses of this function for other than direct calls or invokes to it.
  // Inline virtual functions have linkeOnceODR linkage. When a key method
  // exists, the vtable will only be emitted in the TU where the key method
  // is defined. In a TU where vtable is not available, the function won't
  // be 'addresstaken'. If its address is not recorded here, the profile data
  // with missing address may be picked by the linker leading  to missing
  // indirect call target info.
  return F->hasAddressTaken() || F->hasLinkOnceLinkage();
}

static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) {
  // Don't do this for Darwin.  compiler-rt uses linker magic.
  if (TT.isOSDarwin())
    return false;
  // Use linker script magic to get data/cnts/name start/end.
  if (TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() ||
      TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS4CPU() ||
      TT.isOSWindows())
    return false;

  return true;
}

GlobalVariable *
InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) {
  GlobalVariable *NamePtr = Inc->getName();
  auto It = ProfileDataMap.find(NamePtr);
  PerFunctionProfileData PD;
  if (It != ProfileDataMap.end()) {
    if (It->second.RegionCounters)
      return It->second.RegionCounters;
    PD = It->second;
  }

  // Match the linkage and visibility of the name global. COFF supports using
  // comdats with internal symbols, so do that if we can.
  Function *Fn = Inc->getParent()->getParent();
  GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage();
  GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility();
  if (TT.isOSBinFormatCOFF()) {
    Linkage = GlobalValue::InternalLinkage;
    Visibility = GlobalValue::DefaultVisibility;
  }

  // Move the name variable to the right section. Place them in a COMDAT group
  // if the associated function is a COMDAT. This will make sure that only one
  // copy of counters of the COMDAT function will be emitted after linking. Keep
  // in mind that this pass may run before the inliner, so we need to create a
  // new comdat group for the counters and profiling data. If we use the comdat
  // of the parent function, that will result in relocations against discarded
  // sections.
  bool NeedComdat = needsComdatForCounter(*Fn, *M);
  if (NeedComdat) {
    if (TT.isOSBinFormatCOFF()) {
      // For COFF, put the counters, data, and values each into their own
      // comdats. We can't use a group because the Visual C++ linker will
      // report duplicate symbol errors if there are multiple external symbols
      // with the same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE.
      Linkage = GlobalValue::LinkOnceODRLinkage;
      Visibility = GlobalValue::HiddenVisibility;
    }
  }
  std::string DataVarName = getVarName(Inc, getInstrProfDataVarPrefix());
  auto MaybeSetComdat = [=](GlobalVariable *GV) {
    if (NeedComdat)
      GV->setComdat(M->getOrInsertComdat(TT.isOSBinFormatCOFF() ? GV->getName()
                                                                : DataVarName));
  };

  uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
  LLVMContext &Ctx = M->getContext();
  ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);

  // Create the counters variable.
  auto *CounterPtr =
      new GlobalVariable(*M, CounterTy, false, Linkage,
                         Constant::getNullValue(CounterTy),
                         getVarName(Inc, getInstrProfCountersVarPrefix()));
  CounterPtr->setVisibility(Visibility);
  CounterPtr->setSection(
      getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat()));
  CounterPtr->setAlignment(Align(8));
  MaybeSetComdat(CounterPtr);
  CounterPtr->setLinkage(Linkage);

  auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
  // Allocate statically the array of pointers to value profile nodes for
  // the current function.
  Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy);
  if (ValueProfileStaticAlloc && !needsRuntimeRegistrationOfSectionRange(TT)) {
    uint64_t NS = 0;
    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
      NS += PD.NumValueSites[Kind];
    if (NS) {
      ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS);

      auto *ValuesVar =
          new GlobalVariable(*M, ValuesTy, false, Linkage,
                             Constant::getNullValue(ValuesTy),
                             getVarName(Inc, getInstrProfValuesVarPrefix()));
      ValuesVar->setVisibility(Visibility);
      ValuesVar->setSection(
          getInstrProfSectionName(IPSK_vals, TT.getObjectFormat()));
      ValuesVar->setAlignment(Align(8));
      MaybeSetComdat(ValuesVar);
      ValuesPtrExpr =
          ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx));
    }
  }

  // Create data variable.
  auto *Int16Ty = Type::getInt16Ty(Ctx);
  auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1);
  Type *DataTypes[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
  };
  auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes));

  Constant *FunctionAddr = shouldRecordFunctionAddr(Fn)
                               ? ConstantExpr::getBitCast(Fn, Int8PtrTy)
                               : ConstantPointerNull::get(Int8PtrTy);

  Constant *Int16ArrayVals[IPVK_Last + 1];
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]);

  Constant *DataVals[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
  };
  auto *Data =
      new GlobalVariable(*M, DataTy, false, Linkage,
                         ConstantStruct::get(DataTy, DataVals), DataVarName);
  Data->setVisibility(Visibility);
  Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat()));
  Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT));
  MaybeSetComdat(Data);
  Data->setLinkage(Linkage);

  PD.RegionCounters = CounterPtr;
  PD.DataVar = Data;
  ProfileDataMap[NamePtr] = PD;

  // Mark the data variable as used so that it isn't stripped out.
  UsedVars.push_back(Data);
  // Now that the linkage set by the FE has been passed to the data and counter
  // variables, reset Name variable's linkage and visibility to private so that
  // it can be removed later by the compiler.
  NamePtr->setLinkage(GlobalValue::PrivateLinkage);
  // Collect the referenced names to be used by emitNameData.
  ReferencedNames.push_back(NamePtr);

  return CounterPtr;
}

void InstrProfiling::emitVNodes() {
  if (!ValueProfileStaticAlloc)
    return;

  // For now only support this on platforms that do
  // not require runtime registration to discover
  // named section start/end.
  if (needsRuntimeRegistrationOfSectionRange(TT))
    return;

  size_t TotalNS = 0;
  for (auto &PD : ProfileDataMap) {
    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
      TotalNS += PD.second.NumValueSites[Kind];
  }

  if (!TotalNS)
    return;

  uint64_t NumCounters = TotalNS * NumCountersPerValueSite;
// Heuristic for small programs with very few total value sites.
// The default value of vp-counters-per-site is chosen based on
// the observation that large apps usually have a low percentage
// of value sites that actually have any profile data, and thus
// the average number of counters per site is low. For small
// apps with very few sites, this may not be true. Bump up the
// number of counters in this case.
#define INSTR_PROF_MIN_VAL_COUNTS 10
  if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS)
    NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2);

  auto &Ctx = M->getContext();
  Type *VNodeTypes[] = {
#define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
  };
  auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes));

  ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters);
  auto *VNodesVar = new GlobalVariable(
      *M, VNodesTy, false, GlobalValue::PrivateLinkage,
      Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName());
  VNodesVar->setSection(
      getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat()));
  UsedVars.push_back(VNodesVar);
}

void InstrProfiling::emitNameData() {
  std::string UncompressedData;

  if (ReferencedNames.empty())
    return;

  std::string CompressedNameStr;
  if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr,
                                          DoInstrProfNameCompression)) {
    report_fatal_error(toString(std::move(E)), false);
  }

  auto &Ctx = M->getContext();
  auto *NamesVal = ConstantDataArray::getString(
      Ctx, StringRef(CompressedNameStr), false);
  NamesVar = new GlobalVariable(*M, NamesVal->getType(), true,
                                GlobalValue::PrivateLinkage, NamesVal,
                                getInstrProfNamesVarName());
  NamesSize = CompressedNameStr.size();
  NamesVar->setSection(
      getInstrProfSectionName(IPSK_name, TT.getObjectFormat()));
  // On COFF, it's important to reduce the alignment down to 1 to prevent the
  // linker from inserting padding before the start of the names section or
  // between names entries.
  NamesVar->setAlignment(Align(1));
  UsedVars.push_back(NamesVar);

  for (auto *NamePtr : ReferencedNames)
    NamePtr->eraseFromParent();
}

void InstrProfiling::emitRegistration() {
  if (!needsRuntimeRegistrationOfSectionRange(TT))
    return;

  // Construct the function.
  auto *VoidTy = Type::getVoidTy(M->getContext());
  auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext());
  auto *Int64Ty = Type::getInt64Ty(M->getContext());
  auto *RegisterFTy = FunctionType::get(VoidTy, false);
  auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage,
                                     getInstrProfRegFuncsName(), M);
  RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  if (Options.NoRedZone)
    RegisterF->addFnAttr(Attribute::NoRedZone);

  auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false);
  auto *RuntimeRegisterF =
      Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage,
                       getInstrProfRegFuncName(), M);

  IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF));
  for (Value *Data : UsedVars)
    if (Data != NamesVar && !isa<Function>(Data))
      IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy));

  if (NamesVar) {
    Type *ParamTypes[] = {VoidPtrTy, Int64Ty};
    auto *NamesRegisterTy =
        FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false);
    auto *NamesRegisterF =
        Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage,
                         getInstrProfNamesRegFuncName(), M);
    IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy),
                                    IRB.getInt64(NamesSize)});
  }

  IRB.CreateRetVoid();
}

bool InstrProfiling::emitRuntimeHook() {
  // We expect the linker to be invoked with -u<hook_var> flag for Linux or
  // Fuchsia, in which case there is no need to emit the user function.
  if (TT.isOSLinux() || TT.isOSFuchsia())
    return false;

  // If the module's provided its own runtime, we don't need to do anything.
  if (M->getGlobalVariable(getInstrProfRuntimeHookVarName()))
    return false;

  // Declare an external variable that will pull in the runtime initialization.
  auto *Int32Ty = Type::getInt32Ty(M->getContext());
  auto *Var =
      new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage,
                         nullptr, getInstrProfRuntimeHookVarName());

  // Make a function that uses it.
  auto *User = Function::Create(FunctionType::get(Int32Ty, false),
                                GlobalValue::LinkOnceODRLinkage,
                                getInstrProfRuntimeHookVarUseFuncName(), M);
  User->addFnAttr(Attribute::NoInline);
  if (Options.NoRedZone)
    User->addFnAttr(Attribute::NoRedZone);
  User->setVisibility(GlobalValue::HiddenVisibility);
  if (TT.supportsCOMDAT())
    User->setComdat(M->getOrInsertComdat(User->getName()));

  IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User));
  auto *Load = IRB.CreateLoad(Int32Ty, Var);
  IRB.CreateRet(Load);

  // Mark the user variable as used so that it isn't stripped out.
  UsedVars.push_back(User);
  return true;
}

void InstrProfiling::emitUses() {
  if (!UsedVars.empty())
    appendToUsed(*M, UsedVars);
}

void InstrProfiling::emitInitialization() {
  // Create ProfileFileName variable. Don't don't this for the
  // context-sensitive instrumentation lowering: This lowering is after
  // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should
  // have already create the variable before LTO/ThinLTO linking.
  if (!IsCS)
    createProfileFileNameVar(*M, Options.InstrProfileOutput);
  Function *RegisterF = M->getFunction(getInstrProfRegFuncsName());
  if (!RegisterF)
    return;

  // Create the initialization function.
  auto *VoidTy = Type::getVoidTy(M->getContext());
  auto *F = Function::Create(FunctionType::get(VoidTy, false),
                             GlobalValue::InternalLinkage,
                             getInstrProfInitFuncName(), M);
  F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  F->addFnAttr(Attribute::NoInline);
  if (Options.NoRedZone)
    F->addFnAttr(Attribute::NoRedZone);

  // Add the basic block and the necessary calls.
  IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F));
  IRB.CreateCall(RegisterF, {});
  IRB.CreateRetVoid();

  appendToGlobalCtors(*M, F, 0);
}