DeadStoreElimination.cpp 106 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal.  Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "dse"

STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther, "Number of other instrs removed");
STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
STATISTIC(NumModifiedStores, "Number of stores modified");
STATISTIC(NumCFGChecks, "Number of stores modified");
STATISTIC(NumCFGTries, "Number of stores modified");
STATISTIC(NumCFGSuccess, "Number of stores modified");
STATISTIC(NumGetDomMemoryDefPassed,
          "Number of times a valid candidate is returned from getDomMemoryDef");
STATISTIC(NumDomMemDefChecks,
          "Number iterations check for reads in getDomMemoryDef");

DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
              "Controls which MemoryDefs are eliminated.");

static cl::opt<bool>
EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
  cl::init(true), cl::Hidden,
  cl::desc("Enable partial-overwrite tracking in DSE"));

static cl::opt<bool>
EnablePartialStoreMerging("enable-dse-partial-store-merging",
  cl::init(true), cl::Hidden,
  cl::desc("Enable partial store merging in DSE"));

static cl::opt<bool>
    EnableMemorySSA("enable-dse-memoryssa", cl::init(false), cl::Hidden,
                    cl::desc("Use the new MemorySSA-backed DSE."));

static cl::opt<unsigned>
    MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
                       cl::desc("The number of memory instructions to scan for "
                                "dead store elimination (default = 100)"));
static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
    "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
    cl::desc("The maximum number of steps while walking upwards to find "
             "MemoryDefs that may be killed (default = 90)"));

static cl::opt<unsigned> MemorySSAPartialStoreLimit(
    "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
    cl::desc("The maximum number candidates that only partially overwrite the "
             "killing MemoryDef to consider"
             " (default = 5)"));

static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
    "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
    cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
             "other stores per basic block (default = 5000)"));

static cl::opt<unsigned> MemorySSASameBBStepCost(
    "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
    cl::desc(
        "The cost of a step in the same basic block as the killing MemoryDef"
        "(default = 1)"));

static cl::opt<unsigned>
    MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
                             cl::Hidden,
                             cl::desc("The cost of a step in a different basic "
                                      "block than the killing MemoryDef"
                                      "(default = 5)"));

static cl::opt<unsigned> MemorySSAPathCheckLimit(
    "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
    cl::desc("The maximum number of blocks to check when trying to prove that "
             "all paths to an exit go through a killing block (default = 50)"));

//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
using OverlapIntervalsTy = std::map<int64_t, int64_t>;
using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;

/// Delete this instruction.  Before we do, go through and zero out all the
/// operands of this instruction.  If any of them become dead, delete them and
/// the computation tree that feeds them.
/// If ValueSet is non-null, remove any deleted instructions from it as well.
static void
deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
                      MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
                      InstOverlapIntervalsTy &IOL,
                      MapVector<Instruction *, bool> &ThrowableInst,
                      SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
  SmallVector<Instruction*, 32> NowDeadInsts;

  NowDeadInsts.push_back(I);
  --NumFastOther;

  // Keeping the iterator straight is a pain, so we let this routine tell the
  // caller what the next instruction is after we're done mucking about.
  BasicBlock::iterator NewIter = *BBI;

  // Before we touch this instruction, remove it from memdep!
  do {
    Instruction *DeadInst = NowDeadInsts.pop_back_val();
    // Mark the DeadInst as dead in the list of throwable instructions.
    auto It = ThrowableInst.find(DeadInst);
    if (It != ThrowableInst.end())
      ThrowableInst[It->first] = false;
    ++NumFastOther;

    // Try to preserve debug information attached to the dead instruction.
    salvageDebugInfo(*DeadInst);
    salvageKnowledge(DeadInst);

    // This instruction is dead, zap it, in stages.  Start by removing it from
    // MemDep, which needs to know the operands and needs it to be in the
    // function.
    MD.removeInstruction(DeadInst);

    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
      Value *Op = DeadInst->getOperand(op);
      DeadInst->setOperand(op, nullptr);

      // If this operand just became dead, add it to the NowDeadInsts list.
      if (!Op->use_empty()) continue;

      if (Instruction *OpI = dyn_cast<Instruction>(Op))
        if (isInstructionTriviallyDead(OpI, &TLI))
          NowDeadInsts.push_back(OpI);
    }

    if (ValueSet) ValueSet->remove(DeadInst);
    IOL.erase(DeadInst);

    if (NewIter == DeadInst->getIterator())
      NewIter = DeadInst->eraseFromParent();
    else
      DeadInst->eraseFromParent();
  } while (!NowDeadInsts.empty());
  *BBI = NewIter;
  // Pop dead entries from back of ThrowableInst till we find an alive entry.
  while (!ThrowableInst.empty() && !ThrowableInst.back().second)
    ThrowableInst.pop_back();
}

/// Does this instruction write some memory?  This only returns true for things
/// that we can analyze with other helpers below.
static bool hasAnalyzableMemoryWrite(Instruction *I,
                                     const TargetLibraryInfo &TLI) {
  if (isa<StoreInst>(I))
    return true;
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::memcpy_inline:
    case Intrinsic::memcpy_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memset_element_unordered_atomic:
    case Intrinsic::init_trampoline:
    case Intrinsic::lifetime_end:
    case Intrinsic::masked_store:
      return true;
    }
  }
  if (auto *CB = dyn_cast<CallBase>(I)) {
    LibFunc LF;
    if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
      switch (LF) {
      case LibFunc_strcpy:
      case LibFunc_strncpy:
      case LibFunc_strcat:
      case LibFunc_strncat:
        return true;
      default:
        return false;
      }
    }
  }
  return false;
}

/// Return a Location stored to by the specified instruction. If isRemovable
/// returns true, this function and getLocForRead completely describe the memory
/// operations for this instruction.
static MemoryLocation getLocForWrite(Instruction *Inst,
                                     const TargetLibraryInfo &TLI) {
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    return MemoryLocation::get(SI);

  if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
    // memcpy/memmove/memset.
    MemoryLocation Loc = MemoryLocation::getForDest(MI);
    return Loc;
  }

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    default:
      return MemoryLocation(); // Unhandled intrinsic.
    case Intrinsic::init_trampoline:
      return MemoryLocation(II->getArgOperand(0));
    case Intrinsic::masked_store:
      return MemoryLocation::getForArgument(II, 1, TLI);
    case Intrinsic::lifetime_end: {
      uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
      return MemoryLocation(II->getArgOperand(1), Len);
    }
    }
  }
  if (auto *CB = dyn_cast<CallBase>(Inst))
    // All the supported TLI functions so far happen to have dest as their
    // first argument.
    return MemoryLocation(CB->getArgOperand(0));
  return MemoryLocation();
}

/// Return the location read by the specified "hasAnalyzableMemoryWrite"
/// instruction if any.
static MemoryLocation getLocForRead(Instruction *Inst,
                                    const TargetLibraryInfo &TLI) {
  assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");

  // The only instructions that both read and write are the mem transfer
  // instructions (memcpy/memmove).
  if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
    return MemoryLocation::getForSource(MTI);
  return MemoryLocation();
}

/// If the value of this instruction and the memory it writes to is unused, may
/// we delete this instruction?
static bool isRemovable(Instruction *I) {
  // Don't remove volatile/atomic stores.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
    case Intrinsic::lifetime_end:
      // Never remove dead lifetime_end's, e.g. because it is followed by a
      // free.
      return false;
    case Intrinsic::init_trampoline:
      // Always safe to remove init_trampoline.
      return true;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::memcpy_inline:
      // Don't remove volatile memory intrinsics.
      return !cast<MemIntrinsic>(II)->isVolatile();
    case Intrinsic::memcpy_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memset_element_unordered_atomic:
    case Intrinsic::masked_store:
      return true;
    }
  }

  // note: only get here for calls with analyzable writes - i.e. libcalls
  if (auto *CB = dyn_cast<CallBase>(I))
    return CB->use_empty();

  return false;
}

/// Returns true if the end of this instruction can be safely shortened in
/// length.
static bool isShortenableAtTheEnd(Instruction *I) {
  // Don't shorten stores for now
  if (isa<StoreInst>(I))
    return false;

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
      default: return false;
      case Intrinsic::memset:
      case Intrinsic::memcpy:
      case Intrinsic::memcpy_element_unordered_atomic:
      case Intrinsic::memset_element_unordered_atomic:
        // Do shorten memory intrinsics.
        // FIXME: Add memmove if it's also safe to transform.
        return true;
    }
  }

  // Don't shorten libcalls calls for now.

  return false;
}

/// Returns true if the beginning of this instruction can be safely shortened
/// in length.
static bool isShortenableAtTheBeginning(Instruction *I) {
  // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
  // easily done by offsetting the source address.
  return isa<AnyMemSetInst>(I);
}

/// Return the pointer that is being written to.
static Value *getStoredPointerOperand(Instruction *I,
                                      const TargetLibraryInfo &TLI) {
  //TODO: factor this to reuse getLocForWrite
  MemoryLocation Loc = getLocForWrite(I, TLI);
  assert(Loc.Ptr &&
         "unable to find pointer written for analyzable instruction?");
  // TODO: most APIs don't expect const Value *
  return const_cast<Value*>(Loc.Ptr);
}

static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
                               const TargetLibraryInfo &TLI,
                               const Function *F) {
  uint64_t Size;
  ObjectSizeOpts Opts;
  Opts.NullIsUnknownSize = NullPointerIsDefined(F);

  if (getObjectSize(V, Size, DL, &TLI, Opts))
    return Size;
  return MemoryLocation::UnknownSize;
}

namespace {

enum OverwriteResult {
  OW_Begin,
  OW_Complete,
  OW_End,
  OW_PartialEarlierWithFullLater,
  OW_MaybePartial,
  OW_Unknown
};

} // end anonymous namespace

/// Check if two instruction are masked stores that completely
/// overwrite one another. More specifically, \p Later has to
/// overwrite \p Earlier.
template <typename AATy>
static OverwriteResult isMaskedStoreOverwrite(const Instruction *Later,
                                              const Instruction *Earlier,
                                              AATy &AA) {
  const auto *IIL = dyn_cast<IntrinsicInst>(Later);
  const auto *IIE = dyn_cast<IntrinsicInst>(Earlier);
  if (IIL == nullptr || IIE == nullptr)
    return OW_Unknown;
  if (IIL->getIntrinsicID() != Intrinsic::masked_store ||
      IIE->getIntrinsicID() != Intrinsic::masked_store)
    return OW_Unknown;
  // Pointers.
  Value *LP = IIL->getArgOperand(1)->stripPointerCasts();
  Value *EP = IIE->getArgOperand(1)->stripPointerCasts();
  if (LP != EP && !AA.isMustAlias(LP, EP))
    return OW_Unknown;
  // Masks.
  // TODO: check that Later's mask is a superset of the Earlier's mask.
  if (IIL->getArgOperand(3) != IIE->getArgOperand(3))
    return OW_Unknown;
  return OW_Complete;
}

/// Return 'OW_Complete' if a store to the 'Later' location (by \p LaterI
/// instruction) completely overwrites a store to the 'Earlier' location.
/// (by \p EarlierI instruction).
/// Return OW_MaybePartial if \p Later does not completely overwrite
/// \p Earlier, but they both write to the same underlying object. In that
/// case, use isPartialOverwrite to check if \p Later partially overwrites
/// \p Earlier. Returns 'OW_Unknown' if nothing can be determined.
template <typename AATy>
static OverwriteResult
isOverwrite(const Instruction *LaterI, const Instruction *EarlierI,
            const MemoryLocation &Later, const MemoryLocation &Earlier,
            const DataLayout &DL, const TargetLibraryInfo &TLI,
            int64_t &EarlierOff, int64_t &LaterOff, AATy &AA,
            const Function *F) {
  // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
  // get imprecise values here, though (except for unknown sizes).
  if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise()) {
    // Masked stores have imprecise locations, but we can reason about them
    // to some extent.
    return isMaskedStoreOverwrite(LaterI, EarlierI, AA);
  }

  const uint64_t LaterSize = Later.Size.getValue();
  const uint64_t EarlierSize = Earlier.Size.getValue();

  const Value *P1 = Earlier.Ptr->stripPointerCasts();
  const Value *P2 = Later.Ptr->stripPointerCasts();

  // If the start pointers are the same, we just have to compare sizes to see if
  // the later store was larger than the earlier store.
  if (P1 == P2 || AA.isMustAlias(P1, P2)) {
    // Make sure that the Later size is >= the Earlier size.
    if (LaterSize >= EarlierSize)
      return OW_Complete;
  }

  // Check to see if the later store is to the entire object (either a global,
  // an alloca, or a byval/inalloca argument).  If so, then it clearly
  // overwrites any other store to the same object.
  const Value *UO1 = getUnderlyingObject(P1), *UO2 = getUnderlyingObject(P2);

  // If we can't resolve the same pointers to the same object, then we can't
  // analyze them at all.
  if (UO1 != UO2)
    return OW_Unknown;

  // If the "Later" store is to a recognizable object, get its size.
  uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
  if (ObjectSize != MemoryLocation::UnknownSize)
    if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
      return OW_Complete;

  // Okay, we have stores to two completely different pointers.  Try to
  // decompose the pointer into a "base + constant_offset" form.  If the base
  // pointers are equal, then we can reason about the two stores.
  EarlierOff = 0;
  LaterOff = 0;
  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);

  // If the base pointers still differ, we have two completely different stores.
  if (BP1 != BP2)
    return OW_Unknown;

  // The later store completely overlaps the earlier store if:
  //
  // 1. Both start at the same offset and the later one's size is greater than
  //    or equal to the earlier one's, or
  //
  //      |--earlier--|
  //      |--   later   --|
  //
  // 2. The earlier store has an offset greater than the later offset, but which
  //    still lies completely within the later store.
  //
  //        |--earlier--|
  //    |-----  later  ------|
  //
  // We have to be careful here as *Off is signed while *.Size is unsigned.
  if (EarlierOff >= LaterOff &&
      LaterSize >= EarlierSize &&
      uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
    return OW_Complete;

  // Later may overwrite earlier completely with other partial writes.
  return OW_MaybePartial;
}

/// Return 'OW_Complete' if a store to the 'Later' location completely
/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
/// beginning of the 'Earlier' location is overwritten by 'Later'.
/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
/// overwritten by a latter (smaller) store which doesn't write outside the big
/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
/// NOTE: This function must only be called if both \p Later and \p Earlier
/// write to the same underlying object with valid \p EarlierOff and \p
/// LaterOff.
static OverwriteResult isPartialOverwrite(const MemoryLocation &Later,
                                          const MemoryLocation &Earlier,
                                          int64_t EarlierOff, int64_t LaterOff,
                                          Instruction *DepWrite,
                                          InstOverlapIntervalsTy &IOL) {
  const uint64_t LaterSize = Later.Size.getValue();
  const uint64_t EarlierSize = Earlier.Size.getValue();
  // We may now overlap, although the overlap is not complete. There might also
  // be other incomplete overlaps, and together, they might cover the complete
  // earlier write.
  // Note: The correctness of this logic depends on the fact that this function
  // is not even called providing DepWrite when there are any intervening reads.
  if (EnablePartialOverwriteTracking &&
      LaterOff < int64_t(EarlierOff + EarlierSize) &&
      int64_t(LaterOff + LaterSize) >= EarlierOff) {

    // Insert our part of the overlap into the map.
    auto &IM = IOL[DepWrite];
    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
                      << ", " << int64_t(EarlierOff + EarlierSize)
                      << ") Later [" << LaterOff << ", "
                      << int64_t(LaterOff + LaterSize) << ")\n");

    // Make sure that we only insert non-overlapping intervals and combine
    // adjacent intervals. The intervals are stored in the map with the ending
    // offset as the key (in the half-open sense) and the starting offset as
    // the value.
    int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;

    // Find any intervals ending at, or after, LaterIntStart which start
    // before LaterIntEnd.
    auto ILI = IM.lower_bound(LaterIntStart);
    if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
      // This existing interval is overlapped with the current store somewhere
      // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
      // intervals and adjusting our start and end.
      LaterIntStart = std::min(LaterIntStart, ILI->second);
      LaterIntEnd = std::max(LaterIntEnd, ILI->first);
      ILI = IM.erase(ILI);

      // Continue erasing and adjusting our end in case other previous
      // intervals are also overlapped with the current store.
      //
      // |--- ealier 1 ---|  |--- ealier 2 ---|
      //     |------- later---------|
      //
      while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
        assert(ILI->second > LaterIntStart && "Unexpected interval");
        LaterIntEnd = std::max(LaterIntEnd, ILI->first);
        ILI = IM.erase(ILI);
      }
    }

    IM[LaterIntEnd] = LaterIntStart;

    ILI = IM.begin();
    if (ILI->second <= EarlierOff &&
        ILI->first >= int64_t(EarlierOff + EarlierSize)) {
      LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
                        << EarlierOff << ", "
                        << int64_t(EarlierOff + EarlierSize)
                        << ") Composite Later [" << ILI->second << ", "
                        << ILI->first << ")\n");
      ++NumCompletePartials;
      return OW_Complete;
    }
  }

  // Check for an earlier store which writes to all the memory locations that
  // the later store writes to.
  if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
      int64_t(EarlierOff + EarlierSize) > LaterOff &&
      uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
                      << EarlierOff << ", "
                      << int64_t(EarlierOff + EarlierSize)
                      << ") by a later store [" << LaterOff << ", "
                      << int64_t(LaterOff + LaterSize) << ")\n");
    // TODO: Maybe come up with a better name?
    return OW_PartialEarlierWithFullLater;
  }

  // Another interesting case is if the later store overwrites the end of the
  // earlier store.
  //
  //      |--earlier--|
  //                |--   later   --|
  //
  // In this case we may want to trim the size of earlier to avoid generating
  // writes to addresses which will definitely be overwritten later
  if (!EnablePartialOverwriteTracking &&
      (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
       int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
    return OW_End;

  // Finally, we also need to check if the later store overwrites the beginning
  // of the earlier store.
  //
  //                |--earlier--|
  //      |--   later   --|
  //
  // In this case we may want to move the destination address and trim the size
  // of earlier to avoid generating writes to addresses which will definitely
  // be overwritten later.
  if (!EnablePartialOverwriteTracking &&
      (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
    assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
           "Expect to be handled as OW_Complete");
    return OW_Begin;
  }
  // Otherwise, they don't completely overlap.
  return OW_Unknown;
}

/// If 'Inst' might be a self read (i.e. a noop copy of a
/// memory region into an identical pointer) then it doesn't actually make its
/// input dead in the traditional sense.  Consider this case:
///
///   memmove(A <- B)
///   memmove(A <- A)
///
/// In this case, the second store to A does not make the first store to A dead.
/// The usual situation isn't an explicit A<-A store like this (which can be
/// trivially removed) but a case where two pointers may alias.
///
/// This function detects when it is unsafe to remove a dependent instruction
/// because the DSE inducing instruction may be a self-read.
static bool isPossibleSelfRead(Instruction *Inst,
                               const MemoryLocation &InstStoreLoc,
                               Instruction *DepWrite,
                               const TargetLibraryInfo &TLI,
                               AliasAnalysis &AA) {
  // Self reads can only happen for instructions that read memory.  Get the
  // location read.
  MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
  if (!InstReadLoc.Ptr)
    return false; // Not a reading instruction.

  // If the read and written loc obviously don't alias, it isn't a read.
  if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
    return false;

  if (isa<AnyMemCpyInst>(Inst)) {
    // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
    // but in practice memcpy(A <- B) either means that A and B are disjoint or
    // are equal (i.e. there are not partial overlaps).  Given that, if we have:
    //
    //   memcpy/memmove(A <- B)  // DepWrite
    //   memcpy(A <- B)  // Inst
    //
    // with Inst reading/writing a >= size than DepWrite, we can reason as
    // follows:
    //
    //   - If A == B then both the copies are no-ops, so the DepWrite can be
    //     removed.
    //   - If A != B then A and B are disjoint locations in Inst.  Since
    //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
    //     Therefore DepWrite can be removed.
    MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);

    if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
      return false;
  }

  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
  // then it can't be considered dead.
  return true;
}

/// Returns true if the memory which is accessed by the second instruction is not
/// modified between the first and the second instruction.
/// Precondition: Second instruction must be dominated by the first
/// instruction.
template <typename AATy>
static bool
memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, AATy &AA,
                           const DataLayout &DL, DominatorTree *DT) {
  // Do a backwards scan through the CFG from SecondI to FirstI. Look for
  // instructions which can modify the memory location accessed by SecondI.
  //
  // While doing the walk keep track of the address to check. It might be
  // different in different basic blocks due to PHI translation.
  using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
  SmallVector<BlockAddressPair, 16> WorkList;
  // Keep track of the address we visited each block with. Bail out if we
  // visit a block with different addresses.
  DenseMap<BasicBlock *, Value *> Visited;

  BasicBlock::iterator FirstBBI(FirstI);
  ++FirstBBI;
  BasicBlock::iterator SecondBBI(SecondI);
  BasicBlock *FirstBB = FirstI->getParent();
  BasicBlock *SecondBB = SecondI->getParent();
  MemoryLocation MemLoc = MemoryLocation::get(SecondI);
  auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);

  // Start checking the SecondBB.
  WorkList.push_back(
      std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
  bool isFirstBlock = true;

  // Check all blocks going backward until we reach the FirstBB.
  while (!WorkList.empty()) {
    BlockAddressPair Current = WorkList.pop_back_val();
    BasicBlock *B = Current.first;
    PHITransAddr &Addr = Current.second;
    Value *Ptr = Addr.getAddr();

    // Ignore instructions before FirstI if this is the FirstBB.
    BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());

    BasicBlock::iterator EI;
    if (isFirstBlock) {
      // Ignore instructions after SecondI if this is the first visit of SecondBB.
      assert(B == SecondBB && "first block is not the store block");
      EI = SecondBBI;
      isFirstBlock = false;
    } else {
      // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
      // In this case we also have to look at instructions after SecondI.
      EI = B->end();
    }
    for (; BI != EI; ++BI) {
      Instruction *I = &*BI;
      if (I->mayWriteToMemory() && I != SecondI)
        if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
          return false;
    }
    if (B != FirstBB) {
      assert(B != &FirstBB->getParent()->getEntryBlock() &&
          "Should not hit the entry block because SI must be dominated by LI");
      for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
        PHITransAddr PredAddr = Addr;
        if (PredAddr.NeedsPHITranslationFromBlock(B)) {
          if (!PredAddr.IsPotentiallyPHITranslatable())
            return false;
          if (PredAddr.PHITranslateValue(B, *PredI, DT, false))
            return false;
        }
        Value *TranslatedPtr = PredAddr.getAddr();
        auto Inserted = Visited.insert(std::make_pair(*PredI, TranslatedPtr));
        if (!Inserted.second) {
          // We already visited this block before. If it was with a different
          // address - bail out!
          if (TranslatedPtr != Inserted.first->second)
            return false;
          // ... otherwise just skip it.
          continue;
        }
        WorkList.push_back(std::make_pair(*PredI, PredAddr));
      }
    }
  }
  return true;
}

/// Find all blocks that will unconditionally lead to the block BB and append
/// them to F.
static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
                                   BasicBlock *BB, DominatorTree *DT) {
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    BasicBlock *Pred = *I;
    if (Pred == BB) continue;
    Instruction *PredTI = Pred->getTerminator();
    if (PredTI->getNumSuccessors() != 1)
      continue;

    if (DT->isReachableFromEntry(Pred))
      Blocks.push_back(Pred);
  }
}

/// Handle frees of entire structures whose dependency is a store
/// to a field of that structure.
static bool handleFree(CallInst *F, AliasAnalysis *AA,
                       MemoryDependenceResults *MD, DominatorTree *DT,
                       const TargetLibraryInfo *TLI,
                       InstOverlapIntervalsTy &IOL,
                       MapVector<Instruction *, bool> &ThrowableInst) {
  bool MadeChange = false;

  MemoryLocation Loc = MemoryLocation(F->getOperand(0));
  SmallVector<BasicBlock *, 16> Blocks;
  Blocks.push_back(F->getParent());

  while (!Blocks.empty()) {
    BasicBlock *BB = Blocks.pop_back_val();
    Instruction *InstPt = BB->getTerminator();
    if (BB == F->getParent()) InstPt = F;

    MemDepResult Dep =
        MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
    while (Dep.isDef() || Dep.isClobber()) {
      Instruction *Dependency = Dep.getInst();
      if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
          !isRemovable(Dependency))
        break;

      Value *DepPointer =
          getUnderlyingObject(getStoredPointerOperand(Dependency, *TLI));

      // Check for aliasing.
      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
        break;

      LLVM_DEBUG(
          dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
                 << *Dependency << '\n');

      // DCE instructions only used to calculate that store.
      BasicBlock::iterator BBI(Dependency);
      deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL,
                            ThrowableInst);
      ++NumFastStores;
      MadeChange = true;

      // Inst's old Dependency is now deleted. Compute the next dependency,
      // which may also be dead, as in
      //    s[0] = 0;
      //    s[1] = 0; // This has just been deleted.
      //    free(s);
      Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
    }

    if (Dep.isNonLocal())
      findUnconditionalPreds(Blocks, BB, DT);
  }

  return MadeChange;
}

/// Check to see if the specified location may alias any of the stack objects in
/// the DeadStackObjects set. If so, they become live because the location is
/// being loaded.
static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
                                  SmallSetVector<const Value *, 16> &DeadStackObjects,
                                  const DataLayout &DL, AliasAnalysis *AA,
                                  const TargetLibraryInfo *TLI,
                                  const Function *F) {
  const Value *UnderlyingPointer = getUnderlyingObject(LoadedLoc.Ptr);

  // A constant can't be in the dead pointer set.
  if (isa<Constant>(UnderlyingPointer))
    return;

  // If the kill pointer can be easily reduced to an alloca, don't bother doing
  // extraneous AA queries.
  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    DeadStackObjects.remove(UnderlyingPointer);
    return;
  }

  // Remove objects that could alias LoadedLoc.
  DeadStackObjects.remove_if([&](const Value *I) {
    // See if the loaded location could alias the stack location.
    MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
    return !AA->isNoAlias(StackLoc, LoadedLoc);
  });
}

/// Remove dead stores to stack-allocated locations in the function end block.
/// Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
                           MemoryDependenceResults *MD,
                           const TargetLibraryInfo *TLI,
                           InstOverlapIntervalsTy &IOL,
                           MapVector<Instruction *, bool> &ThrowableInst) {
  bool MadeChange = false;

  // Keep track of all of the stack objects that are dead at the end of the
  // function.
  SmallSetVector<const Value*, 16> DeadStackObjects;

  // Find all of the alloca'd pointers in the entry block.
  BasicBlock &Entry = BB.getParent()->front();
  for (Instruction &I : Entry) {
    if (isa<AllocaInst>(&I))
      DeadStackObjects.insert(&I);

    // Okay, so these are dead heap objects, but if the pointer never escapes
    // then it's leaked by this function anyways.
    else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
      DeadStackObjects.insert(&I);
  }

  // Treat byval or inalloca arguments the same, stores to them are dead at the
  // end of the function.
  for (Argument &AI : BB.getParent()->args())
    if (AI.hasPassPointeeByValueCopyAttr())
      DeadStackObjects.insert(&AI);

  const DataLayout &DL = BB.getModule()->getDataLayout();

  // Scan the basic block backwards
  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    --BBI;

    // If we find a store, check to see if it points into a dead stack value.
    if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
      // See through pointer-to-pointer bitcasts
      SmallVector<const Value *, 4> Pointers;
      getUnderlyingObjects(getStoredPointerOperand(&*BBI, *TLI), Pointers);

      // Stores to stack values are valid candidates for removal.
      bool AllDead = true;
      for (const Value *Pointer : Pointers)
        if (!DeadStackObjects.count(Pointer)) {
          AllDead = false;
          break;
        }

      if (AllDead) {
        Instruction *Dead = &*BBI;

        LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
                          << *Dead << "\n  Objects: ";
                   for (SmallVectorImpl<const Value *>::iterator I =
                            Pointers.begin(),
                        E = Pointers.end();
                        I != E; ++I) {
                     dbgs() << **I;
                     if (std::next(I) != E)
                       dbgs() << ", ";
                   } dbgs()
                   << '\n');

        // DCE instructions only used to calculate that store.
        deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, ThrowableInst,
                              &DeadStackObjects);
        ++NumFastStores;
        MadeChange = true;
        continue;
      }
    }

    // Remove any dead non-memory-mutating instructions.
    if (isInstructionTriviallyDead(&*BBI, TLI)) {
      LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
                        << *&*BBI << '\n');
      deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, ThrowableInst,
                            &DeadStackObjects);
      ++NumFastOther;
      MadeChange = true;
      continue;
    }

    if (isa<AllocaInst>(BBI)) {
      // Remove allocas from the list of dead stack objects; there can't be
      // any references before the definition.
      DeadStackObjects.remove(&*BBI);
      continue;
    }

    if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
      // Remove allocation function calls from the list of dead stack objects;
      // there can't be any references before the definition.
      if (isAllocLikeFn(&*BBI, TLI))
        DeadStackObjects.remove(&*BBI);

      // If this call does not access memory, it can't be loading any of our
      // pointers.
      if (AA->doesNotAccessMemory(Call))
        continue;

      // If the call might load from any of our allocas, then any store above
      // the call is live.
      DeadStackObjects.remove_if([&](const Value *I) {
        // See if the call site touches the value.
        return isRefSet(AA->getModRefInfo(
            Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
      });

      // If all of the allocas were clobbered by the call then we're not going
      // to find anything else to process.
      if (DeadStackObjects.empty())
        break;

      continue;
    }

    // We can remove the dead stores, irrespective of the fence and its ordering
    // (release/acquire/seq_cst). Fences only constraints the ordering of
    // already visible stores, it does not make a store visible to other
    // threads. So, skipping over a fence does not change a store from being
    // dead.
    if (isa<FenceInst>(*BBI))
      continue;

    MemoryLocation LoadedLoc;

    // If we encounter a use of the pointer, it is no longer considered dead
    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
      if (!L->isUnordered()) // Be conservative with atomic/volatile load
        break;
      LoadedLoc = MemoryLocation::get(L);
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
      LoadedLoc = MemoryLocation::get(V);
    } else if (!BBI->mayReadFromMemory()) {
      // Instruction doesn't read memory.  Note that stores that weren't removed
      // above will hit this case.
      continue;
    } else {
      // Unknown inst; assume it clobbers everything.
      break;
    }

    // Remove any allocas from the DeadPointer set that are loaded, as this
    // makes any stores above the access live.
    removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());

    // If all of the allocas were clobbered by the access then we're not going
    // to find anything else to process.
    if (DeadStackObjects.empty())
      break;
  }

  return MadeChange;
}

static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
                         int64_t &EarlierSize, int64_t LaterOffset,
                         int64_t LaterSize, bool IsOverwriteEnd) {
  // TODO: base this on the target vector size so that if the earlier
  // store was too small to get vector writes anyway then its likely
  // a good idea to shorten it
  // Power of 2 vector writes are probably always a bad idea to optimize
  // as any store/memset/memcpy is likely using vector instructions so
  // shortening it to not vector size is likely to be slower
  auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
  unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
  if (!IsOverwriteEnd)
    LaterOffset = int64_t(LaterOffset + LaterSize);

  if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
      !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
    return false;

  int64_t NewLength = IsOverwriteEnd
                          ? LaterOffset - EarlierOffset
                          : EarlierSize - (LaterOffset - EarlierOffset);

  if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
    // When shortening an atomic memory intrinsic, the newly shortened
    // length must remain an integer multiple of the element size.
    const uint32_t ElementSize = AMI->getElementSizeInBytes();
    if (0 != NewLength % ElementSize)
      return false;
  }

  LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
                    << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
                    << *EarlierWrite << "\n  KILLER (offset " << LaterOffset
                    << ", " << EarlierSize << ")\n");

  Value *EarlierWriteLength = EarlierIntrinsic->getLength();
  Value *TrimmedLength =
      ConstantInt::get(EarlierWriteLength->getType(), NewLength);
  EarlierIntrinsic->setLength(TrimmedLength);

  EarlierSize = NewLength;
  if (!IsOverwriteEnd) {
    int64_t OffsetMoved = (LaterOffset - EarlierOffset);
    Value *Indices[1] = {
        ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
    GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
        EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
        EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
    NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
    EarlierIntrinsic->setDest(NewDestGEP);
    EarlierOffset = EarlierOffset + OffsetMoved;
  }
  return true;
}

static bool tryToShortenEnd(Instruction *EarlierWrite,
                            OverlapIntervalsTy &IntervalMap,
                            int64_t &EarlierStart, int64_t &EarlierSize) {
  if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
    return false;

  OverlapIntervalsTy::iterator OII = --IntervalMap.end();
  int64_t LaterStart = OII->second;
  int64_t LaterSize = OII->first - LaterStart;

  if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
      LaterStart + LaterSize >= EarlierStart + EarlierSize) {
    if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
                     LaterSize, true)) {
      IntervalMap.erase(OII);
      return true;
    }
  }
  return false;
}

static bool tryToShortenBegin(Instruction *EarlierWrite,
                              OverlapIntervalsTy &IntervalMap,
                              int64_t &EarlierStart, int64_t &EarlierSize) {
  if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
    return false;

  OverlapIntervalsTy::iterator OII = IntervalMap.begin();
  int64_t LaterStart = OII->second;
  int64_t LaterSize = OII->first - LaterStart;

  if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
    assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
           "Should have been handled as OW_Complete");
    if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
                     LaterSize, false)) {
      IntervalMap.erase(OII);
      return true;
    }
  }
  return false;
}

static bool removePartiallyOverlappedStores(const DataLayout &DL,
                                            InstOverlapIntervalsTy &IOL,
                                            const TargetLibraryInfo &TLI) {
  bool Changed = false;
  for (auto OI : IOL) {
    Instruction *EarlierWrite = OI.first;
    MemoryLocation Loc = getLocForWrite(EarlierWrite, TLI);
    assert(isRemovable(EarlierWrite) && "Expect only removable instruction");

    const Value *Ptr = Loc.Ptr->stripPointerCasts();
    int64_t EarlierStart = 0;
    int64_t EarlierSize = int64_t(Loc.Size.getValue());
    GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
    OverlapIntervalsTy &IntervalMap = OI.second;
    Changed |=
        tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
    if (IntervalMap.empty())
      continue;
    Changed |=
        tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
  }
  return Changed;
}

static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
                               AliasAnalysis *AA, MemoryDependenceResults *MD,
                               const DataLayout &DL,
                               const TargetLibraryInfo *TLI,
                               InstOverlapIntervalsTy &IOL,
                               MapVector<Instruction *, bool> &ThrowableInst,
                               DominatorTree *DT) {
  // Must be a store instruction.
  StoreInst *SI = dyn_cast<StoreInst>(Inst);
  if (!SI)
    return false;

  // If we're storing the same value back to a pointer that we just loaded from,
  // then the store can be removed.
  if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
    if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
        isRemovable(SI) &&
        memoryIsNotModifiedBetween(DepLoad, SI, *AA, DL, DT)) {

      LLVM_DEBUG(
          dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
                 << *DepLoad << "\n  STORE: " << *SI << '\n');

      deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, ThrowableInst);
      ++NumRedundantStores;
      return true;
    }
  }

  // Remove null stores into the calloc'ed objects
  Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
  if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
    Instruction *UnderlyingPointer =
        dyn_cast<Instruction>(getUnderlyingObject(SI->getPointerOperand()));

    if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
        memoryIsNotModifiedBetween(UnderlyingPointer, SI, *AA, DL, DT)) {
      LLVM_DEBUG(
          dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
                 << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');

      deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, ThrowableInst);
      ++NumRedundantStores;
      return true;
    }
  }
  return false;
}

template <typename AATy>
static Constant *tryToMergePartialOverlappingStores(
    StoreInst *Earlier, StoreInst *Later, int64_t InstWriteOffset,
    int64_t DepWriteOffset, const DataLayout &DL, AATy &AA, DominatorTree *DT) {

  if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
      DL.typeSizeEqualsStoreSize(Earlier->getValueOperand()->getType()) &&
      Later && isa<ConstantInt>(Later->getValueOperand()) &&
      DL.typeSizeEqualsStoreSize(Later->getValueOperand()->getType()) &&
      memoryIsNotModifiedBetween(Earlier, Later, AA, DL, DT)) {
    // If the store we find is:
    //   a) partially overwritten by the store to 'Loc'
    //   b) the later store is fully contained in the earlier one and
    //   c) they both have a constant value
    //   d) none of the two stores need padding
    // Merge the two stores, replacing the earlier store's value with a
    // merge of both values.
    // TODO: Deal with other constant types (vectors, etc), and probably
    // some mem intrinsics (if needed)

    APInt EarlierValue =
        cast<ConstantInt>(Earlier->getValueOperand())->getValue();
    APInt LaterValue = cast<ConstantInt>(Later->getValueOperand())->getValue();
    unsigned LaterBits = LaterValue.getBitWidth();
    assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
    LaterValue = LaterValue.zext(EarlierValue.getBitWidth());

    // Offset of the smaller store inside the larger store
    unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
    unsigned LShiftAmount = DL.isBigEndian() ? EarlierValue.getBitWidth() -
                                                   BitOffsetDiff - LaterBits
                                             : BitOffsetDiff;
    APInt Mask = APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
                                   LShiftAmount + LaterBits);
    // Clear the bits we'll be replacing, then OR with the smaller
    // store, shifted appropriately.
    APInt Merged = (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
    LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *Earlier
                      << "\n  Later: " << *Later
                      << "\n  Merged Value: " << Merged << '\n');
    return ConstantInt::get(Earlier->getValueOperand()->getType(), Merged);
  }
  return nullptr;
}

static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
                                MemoryDependenceResults *MD, DominatorTree *DT,
                                const TargetLibraryInfo *TLI) {
  const DataLayout &DL = BB.getModule()->getDataLayout();
  bool MadeChange = false;

  MapVector<Instruction *, bool> ThrowableInst;

  // A map of interval maps representing partially-overwritten value parts.
  InstOverlapIntervalsTy IOL;

  // Do a top-down walk on the BB.
  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    // Handle 'free' calls specially.
    if (CallInst *F = isFreeCall(&*BBI, TLI)) {
      MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, ThrowableInst);
      // Increment BBI after handleFree has potentially deleted instructions.
      // This ensures we maintain a valid iterator.
      ++BBI;
      continue;
    }

    Instruction *Inst = &*BBI++;

    if (Inst->mayThrow()) {
      ThrowableInst[Inst] = true;
      continue;
    }

    // Check to see if Inst writes to memory.  If not, continue.
    if (!hasAnalyzableMemoryWrite(Inst, *TLI))
      continue;

    // eliminateNoopStore will update in iterator, if necessary.
    if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL,
                           ThrowableInst, DT)) {
      MadeChange = true;
      continue;
    }

    // If we find something that writes memory, get its memory dependence.
    MemDepResult InstDep = MD->getDependency(Inst);

    // Ignore any store where we can't find a local dependence.
    // FIXME: cross-block DSE would be fun. :)
    if (!InstDep.isDef() && !InstDep.isClobber())
      continue;

    // Figure out what location is being stored to.
    MemoryLocation Loc = getLocForWrite(Inst, *TLI);

    // If we didn't get a useful location, fail.
    if (!Loc.Ptr)
      continue;

    // Loop until we find a store we can eliminate or a load that
    // invalidates the analysis. Without an upper bound on the number of
    // instructions examined, this analysis can become very time-consuming.
    // However, the potential gain diminishes as we process more instructions
    // without eliminating any of them. Therefore, we limit the number of
    // instructions we look at.
    auto Limit = MD->getDefaultBlockScanLimit();
    while (InstDep.isDef() || InstDep.isClobber()) {
      // Get the memory clobbered by the instruction we depend on.  MemDep will
      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
      // end up depending on a may- or must-aliased load, then we can't optimize
      // away the store and we bail out.  However, if we depend on something
      // that overwrites the memory location we *can* potentially optimize it.
      //
      // Find out what memory location the dependent instruction stores.
      Instruction *DepWrite = InstDep.getInst();
      if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
        break;
      MemoryLocation DepLoc = getLocForWrite(DepWrite, *TLI);
      // If we didn't get a useful location, or if it isn't a size, bail out.
      if (!DepLoc.Ptr)
        break;

      // Find the last throwable instruction not removed by call to
      // deleteDeadInstruction.
      Instruction *LastThrowing = nullptr;
      if (!ThrowableInst.empty())
        LastThrowing = ThrowableInst.back().first;

      // Make sure we don't look past a call which might throw. This is an
      // issue because MemoryDependenceAnalysis works in the wrong direction:
      // it finds instructions which dominate the current instruction, rather than
      // instructions which are post-dominated by the current instruction.
      //
      // If the underlying object is a non-escaping memory allocation, any store
      // to it is dead along the unwind edge. Otherwise, we need to preserve
      // the store.
      if (LastThrowing && DepWrite->comesBefore(LastThrowing)) {
        const Value *Underlying = getUnderlyingObject(DepLoc.Ptr);
        bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
        if (!IsStoreDeadOnUnwind) {
            // We're looking for a call to an allocation function
            // where the allocation doesn't escape before the last
            // throwing instruction; PointerMayBeCaptured
            // reasonably fast approximation.
            IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
                !PointerMayBeCaptured(Underlying, false, true);
        }
        if (!IsStoreDeadOnUnwind)
          break;
      }

      // If we find a write that is a) removable (i.e., non-volatile), b) is
      // completely obliterated by the store to 'Loc', and c) which we know that
      // 'Inst' doesn't load from, then we can remove it.
      // Also try to merge two stores if a later one only touches memory written
      // to by the earlier one.
      if (isRemovable(DepWrite) &&
          !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
        int64_t InstWriteOffset, DepWriteOffset;
        OverwriteResult OR = isOverwrite(Inst, DepWrite, Loc, DepLoc, DL, *TLI,
                                         DepWriteOffset, InstWriteOffset, *AA,
                                         BB.getParent());
        if (OR == OW_MaybePartial)
          OR = isPartialOverwrite(Loc, DepLoc, DepWriteOffset, InstWriteOffset,
                                  DepWrite, IOL);

        if (OR == OW_Complete) {
          LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DepWrite
                            << "\n  KILLER: " << *Inst << '\n');

          // Delete the store and now-dead instructions that feed it.
          deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
                                ThrowableInst);
          ++NumFastStores;
          MadeChange = true;

          // We erased DepWrite; start over.
          InstDep = MD->getDependency(Inst);
          continue;
        } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
                   ((OR == OW_Begin &&
                     isShortenableAtTheBeginning(DepWrite)))) {
          assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
                                                    "when partial-overwrite "
                                                    "tracking is enabled");
          // The overwrite result is known, so these must be known, too.
          int64_t EarlierSize = DepLoc.Size.getValue();
          int64_t LaterSize = Loc.Size.getValue();
          bool IsOverwriteEnd = (OR == OW_End);
          MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
                                    InstWriteOffset, LaterSize, IsOverwriteEnd);
        } else if (EnablePartialStoreMerging &&
                   OR == OW_PartialEarlierWithFullLater) {
          auto *Earlier = dyn_cast<StoreInst>(DepWrite);
          auto *Later = dyn_cast<StoreInst>(Inst);
          if (Constant *C = tryToMergePartialOverlappingStores(
                  Earlier, Later, InstWriteOffset, DepWriteOffset, DL, *AA,
                  DT)) {
            auto *SI = new StoreInst(
                C, Earlier->getPointerOperand(), false, Earlier->getAlign(),
                Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);

            unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
                                   LLVMContext::MD_alias_scope,
                                   LLVMContext::MD_noalias,
                                   LLVMContext::MD_nontemporal};
            SI->copyMetadata(*DepWrite, MDToKeep);
            ++NumModifiedStores;

            // Delete the old stores and now-dead instructions that feed them.
            deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL,
                                  ThrowableInst);
            deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
                                  ThrowableInst);
            MadeChange = true;

            // We erased DepWrite and Inst (Loc); start over.
            break;
          }
        }
      }

      // If this is a may-aliased store that is clobbering the store value, we
      // can keep searching past it for another must-aliased pointer that stores
      // to the same location.  For example, in:
      //   store -> P
      //   store -> Q
      //   store -> P
      // we can remove the first store to P even though we don't know if P and Q
      // alias.
      if (DepWrite == &BB.front()) break;

      // Can't look past this instruction if it might read 'Loc'.
      if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
        break;

      InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
                                             DepWrite->getIterator(), &BB,
                                             /*QueryInst=*/ nullptr, &Limit);
    }
  }

  if (EnablePartialOverwriteTracking)
    MadeChange |= removePartiallyOverlappedStores(DL, IOL, *TLI);

  // If this block ends in a return, unwind, or unreachable, all allocas are
  // dead at its end, which means stores to them are also dead.
  if (BB.getTerminator()->getNumSuccessors() == 0)
    MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, ThrowableInst);

  return MadeChange;
}

static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
                                MemoryDependenceResults *MD, DominatorTree *DT,
                                const TargetLibraryInfo *TLI) {
  bool MadeChange = false;
  for (BasicBlock &BB : F)
    // Only check non-dead blocks.  Dead blocks may have strange pointer
    // cycles that will confuse alias analysis.
    if (DT->isReachableFromEntry(&BB))
      MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);

  return MadeChange;
}

namespace {
//=============================================================================
// MemorySSA backed dead store elimination.
//
// The code below implements dead store elimination using MemorySSA. It uses
// the following general approach: given a MemoryDef, walk upwards to find
// clobbering MemoryDefs that may be killed by the starting def. Then check
// that there are no uses that may read the location of the original MemoryDef
// in between both MemoryDefs. A bit more concretely:
//
// For all MemoryDefs StartDef:
// 1. Get the next dominating clobbering MemoryDef (EarlierAccess) by walking
//    upwards.
// 2. Check that there are no reads between EarlierAccess and the StartDef by
//    checking all uses starting at EarlierAccess and walking until we see
//    StartDef.
// 3. For each found CurrentDef, check that:
//   1. There are no barrier instructions between CurrentDef and StartDef (like
//       throws or stores with ordering constraints).
//   2. StartDef is executed whenever CurrentDef is executed.
//   3. StartDef completely overwrites CurrentDef.
// 4. Erase CurrentDef from the function and MemorySSA.

// Returns true if \p M is an intrisnic that does not read or write memory.
bool isNoopIntrinsic(MemoryUseOrDef *M) {
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(M->getMemoryInst())) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::invariant_end:
    case Intrinsic::launder_invariant_group:
    case Intrinsic::assume:
      return true;
    case Intrinsic::dbg_addr:
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_label:
    case Intrinsic::dbg_value:
      llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
    default:
      return false;
    }
  }
  return false;
}

// Check if we can ignore \p D for DSE.
bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
  Instruction *DI = D->getMemoryInst();
  // Calls that only access inaccessible memory cannot read or write any memory
  // locations we consider for elimination.
  if (auto *CB = dyn_cast<CallBase>(DI))
    if (CB->onlyAccessesInaccessibleMemory())
      return true;

  // We can eliminate stores to locations not visible to the caller across
  // throwing instructions.
  if (DI->mayThrow() && !DefVisibleToCaller)
    return true;

  // We can remove the dead stores, irrespective of the fence and its ordering
  // (release/acquire/seq_cst). Fences only constraints the ordering of
  // already visible stores, it does not make a store visible to other
  // threads. So, skipping over a fence does not change a store from being
  // dead.
  if (isa<FenceInst>(DI))
    return true;

  // Skip intrinsics that do not really read or modify memory.
  if (isNoopIntrinsic(D))
    return true;

  return false;
}

struct DSEState {
  Function &F;
  AliasAnalysis &AA;

  /// The single BatchAA instance that is used to cache AA queries. It will
  /// not be invalidated over the whole run. This is safe, because:
  /// 1. Only memory writes are removed, so the alias cache for memory
  ///    locations remains valid.
  /// 2. No new instructions are added (only instructions removed), so cached
  ///    information for a deleted value cannot be accessed by a re-used new
  ///    value pointer.
  BatchAAResults BatchAA;

  MemorySSA &MSSA;
  DominatorTree &DT;
  PostDominatorTree &PDT;
  const TargetLibraryInfo &TLI;
  const DataLayout &DL;

  // All MemoryDefs that potentially could kill other MemDefs.
  SmallVector<MemoryDef *, 64> MemDefs;
  // Any that should be skipped as they are already deleted
  SmallPtrSet<MemoryAccess *, 4> SkipStores;
  // Keep track of all of the objects that are invisible to the caller before
  // the function returns.
  // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet;
  DenseMap<const Value *, bool> InvisibleToCallerBeforeRet;
  // Keep track of all of the objects that are invisible to the caller after
  // the function returns.
  DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
  // Keep track of blocks with throwing instructions not modeled in MemorySSA.
  SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
  // Post-order numbers for each basic block. Used to figure out if memory
  // accesses are executed before another access.
  DenseMap<BasicBlock *, unsigned> PostOrderNumbers;

  /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
  /// basic block.
  DenseMap<BasicBlock *, InstOverlapIntervalsTy> IOLs;

  struct CheckCache {
    SmallPtrSet<MemoryAccess *, 16> KnownNoReads;
    SmallPtrSet<MemoryAccess *, 16> KnownReads;

    bool isKnownNoRead(MemoryAccess *A) const {
      return KnownNoReads.find(A) != KnownNoReads.end();
    }
    bool isKnownRead(MemoryAccess *A) const {
      return KnownReads.find(A) != KnownReads.end();
    }
  };

  DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
           PostDominatorTree &PDT, const TargetLibraryInfo &TLI)
      : F(F), AA(AA), BatchAA(AA), MSSA(MSSA), DT(DT), PDT(PDT), TLI(TLI),
        DL(F.getParent()->getDataLayout()) {}

  static DSEState get(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
                      DominatorTree &DT, PostDominatorTree &PDT,
                      const TargetLibraryInfo &TLI) {
    DSEState State(F, AA, MSSA, DT, PDT, TLI);
    // Collect blocks with throwing instructions not modeled in MemorySSA and
    // alloc-like objects.
    unsigned PO = 0;
    for (BasicBlock *BB : post_order(&F)) {
      State.PostOrderNumbers[BB] = PO++;
      for (Instruction &I : *BB) {
        MemoryAccess *MA = MSSA.getMemoryAccess(&I);
        if (I.mayThrow() && !MA)
          State.ThrowingBlocks.insert(I.getParent());

        auto *MD = dyn_cast_or_null<MemoryDef>(MA);
        if (MD && State.MemDefs.size() < MemorySSADefsPerBlockLimit &&
            (State.getLocForWriteEx(&I) || State.isMemTerminatorInst(&I)))
          State.MemDefs.push_back(MD);
      }
    }

    // Treat byval or inalloca arguments the same as Allocas, stores to them are
    // dead at the end of the function.
    for (Argument &AI : F.args())
      if (AI.hasPassPointeeByValueCopyAttr()) {
        // For byval, the caller doesn't know the address of the allocation.
        if (AI.hasByValAttr())
          State.InvisibleToCallerBeforeRet.insert({&AI, true});
        State.InvisibleToCallerAfterRet.insert({&AI, true});
      }

    return State;
  }

  bool isInvisibleToCallerAfterRet(const Value *V) {
    if (isa<AllocaInst>(V))
      return true;
    auto I = InvisibleToCallerAfterRet.insert({V, false});
    if (I.second) {
      if (!isInvisibleToCallerBeforeRet(V)) {
        I.first->second = false;
      } else {
        auto *Inst = dyn_cast<Instruction>(V);
        if (Inst && isAllocLikeFn(Inst, &TLI))
          I.first->second = !PointerMayBeCaptured(V, true, false);
      }
    }
    return I.first->second;
  }

  bool isInvisibleToCallerBeforeRet(const Value *V) {
    if (isa<AllocaInst>(V))
      return true;
    auto I = InvisibleToCallerBeforeRet.insert({V, false});
    if (I.second) {
      auto *Inst = dyn_cast<Instruction>(V);
      if (Inst && isAllocLikeFn(Inst, &TLI))
        // NOTE: This could be made more precise by PointerMayBeCapturedBefore
        // with the killing MemoryDef. But we refrain from doing so for now to
        // limit compile-time and this does not cause any changes to the number
        // of stores removed on a large test set in practice.
        I.first->second = !PointerMayBeCaptured(V, false, true);
    }
    return I.first->second;
  }

  Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const {
    if (!I->mayWriteToMemory())
      return None;

    if (auto *MTI = dyn_cast<AnyMemIntrinsic>(I))
      return {MemoryLocation::getForDest(MTI)};

    if (auto *CB = dyn_cast<CallBase>(I)) {
      LibFunc LF;
      if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
        switch (LF) {
        case LibFunc_strcpy:
        case LibFunc_strncpy:
        case LibFunc_strcat:
        case LibFunc_strncat:
          return {MemoryLocation(CB->getArgOperand(0))};
        default:
          break;
        }
      }
      switch (CB->getIntrinsicID()) {
      case Intrinsic::init_trampoline:
        return {MemoryLocation(CB->getArgOperand(0))};
      case Intrinsic::masked_store:
        return {MemoryLocation::getForArgument(CB, 1, TLI)};
      default:
        break;
      }
      return None;
    }

    return MemoryLocation::getOrNone(I);
  }

  /// Returns true if \p UseInst completely overwrites \p DefLoc
  /// (stored by \p DefInst).
  bool isCompleteOverwrite(MemoryLocation DefLoc, Instruction *DefInst,
                           Instruction *UseInst) {
    // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
    // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
    // MemoryDef.
    if (!UseInst->mayWriteToMemory())
      return false;

    if (auto *CB = dyn_cast<CallBase>(UseInst))
      if (CB->onlyAccessesInaccessibleMemory())
        return false;

    int64_t InstWriteOffset, DepWriteOffset;
    if (auto CC = getLocForWriteEx(UseInst))
      return isOverwrite(UseInst, DefInst, *CC, DefLoc, DL, TLI, DepWriteOffset,
                         InstWriteOffset, BatchAA, &F) == OW_Complete;
    return false;
  }

  /// Returns true if \p Def is not read before returning from the function.
  bool isWriteAtEndOfFunction(MemoryDef *Def) {
    LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
                      << *Def->getMemoryInst()
                      << ") is at the end the function \n");

    auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst());
    if (!MaybeLoc) {
      LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
      return false;
    }

    SmallVector<MemoryAccess *, 4> WorkList;
    SmallPtrSet<MemoryAccess *, 8> Visited;
    auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
      if (!Visited.insert(Acc).second)
        return;
      for (Use &U : Acc->uses())
        WorkList.push_back(cast<MemoryAccess>(U.getUser()));
    };
    PushMemUses(Def);
    for (unsigned I = 0; I < WorkList.size(); I++) {
      if (WorkList.size() >= MemorySSAScanLimit) {
        LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
        return false;
      }

      MemoryAccess *UseAccess = WorkList[I];
      // Simply adding the users of MemoryPhi to the worklist is not enough,
      // because we might miss read clobbers in different iterations of a loop,
      // for example.
      // TODO: Add support for phi translation to handle the loop case.
      if (isa<MemoryPhi>(UseAccess))
        return false;

      // TODO: Checking for aliasing is expensive. Consider reducing the amount
      // of times this is called and/or caching it.
      Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
      if (isReadClobber(*MaybeLoc, UseInst)) {
        LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
        return false;
      }

      if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
        PushMemUses(UseDef);
    }
    return true;
  }

  /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
  /// pair with the MemoryLocation terminated by \p I and a boolean flag
  /// indicating whether \p I is a free-like call.
  Optional<std::pair<MemoryLocation, bool>>
  getLocForTerminator(Instruction *I) const {
    uint64_t Len;
    Value *Ptr;
    if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
                                                      m_Value(Ptr))))
      return {std::make_pair(MemoryLocation(Ptr, Len), false)};

    if (auto *CB = dyn_cast<CallBase>(I)) {
      if (isFreeCall(I, &TLI))
        return {std::make_pair(MemoryLocation(CB->getArgOperand(0)), true)};
    }

    return None;
  }

  /// Returns true if \p I is a memory terminator instruction like
  /// llvm.lifetime.end or free.
  bool isMemTerminatorInst(Instruction *I) const {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
    return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) ||
           isFreeCall(I, &TLI);
  }

  /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
  /// instruction \p AccessI.
  bool isMemTerminator(MemoryLocation Loc, Instruction *AccessI,
                       Instruction *MaybeTerm) {
    Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
        getLocForTerminator(MaybeTerm);

    if (!MaybeTermLoc)
      return false;

    // If the terminator is a free-like call, all accesses to the underlying
    // object can be considered terminated.
    if (getUnderlyingObject(Loc.Ptr) !=
        getUnderlyingObject(MaybeTermLoc->first.Ptr))
      return false;

    int64_t InstWriteOffset, DepWriteOffset;
    return MaybeTermLoc->second ||
           isOverwrite(MaybeTerm, AccessI, MaybeTermLoc->first, Loc, DL, TLI,
                       DepWriteOffset, InstWriteOffset, BatchAA,
                       &F) == OW_Complete;
  }

  // Returns true if \p Use may read from \p DefLoc.
  bool isReadClobber(MemoryLocation DefLoc, Instruction *UseInst) {
    // Monotonic or weaker atomic stores can be re-ordered and do not need to be
    // treated as read clobber.
    if (auto SI = dyn_cast<StoreInst>(UseInst))
      return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);

    if (!UseInst->mayReadFromMemory())
      return false;

    if (auto *CB = dyn_cast<CallBase>(UseInst))
      if (CB->onlyAccessesInaccessibleMemory())
        return false;

    // NOTE: For calls, the number of stores removed could be slightly improved
    // by using AA.callCapturesBefore(UseInst, DefLoc, &DT), but that showed to
    // be expensive compared to the benefits in practice. For now, avoid more
    // expensive analysis to limit compile-time.
    return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
  }

  /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
  /// loop. In particular, this guarantees that it only references a single
  /// MemoryLocation during execution of the containing function.
  bool IsGuaranteedLoopInvariant(Value *Ptr) {
    auto IsGuaranteedLoopInvariantBase = [this](Value *Ptr) {
      Ptr = Ptr->stripPointerCasts();
      if (auto *I = dyn_cast<Instruction>(Ptr)) {
        if (isa<AllocaInst>(Ptr))
          return true;

        if (isAllocLikeFn(I, &TLI))
          return true;

        return false;
      }
      return true;
    };

    Ptr = Ptr->stripPointerCasts();
    if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
      return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
             GEP->hasAllConstantIndices();
    }
    return IsGuaranteedLoopInvariantBase(Ptr);
  }

  // Find a MemoryDef writing to \p DefLoc and dominating \p StartAccess, with
  // no read access between them or on any other path to a function exit block
  // if \p DefLoc is not accessible after the function returns. If there is no
  // such MemoryDef, return None. The returned value may not (completely)
  // overwrite \p DefLoc. Currently we bail out when we encounter an aliasing
  // MemoryUse (read).
  Optional<MemoryAccess *>
  getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
                  MemoryLocation DefLoc, const Value *DefUO, CheckCache &Cache,
                  unsigned &ScanLimit, unsigned &WalkerStepLimit,
                  bool IsMemTerm, unsigned &PartialLimit) {
    if (ScanLimit == 0 || WalkerStepLimit == 0) {
      LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
      return None;
    }

    MemoryAccess *Current = StartAccess;
    Instruction *KillingI = KillingDef->getMemoryInst();
    bool StepAgain;
    LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");

    // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
    do {
      StepAgain = false;
      LLVM_DEBUG({
        dbgs() << "   visiting " << *Current;
        if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
          dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
                 << ")";
        dbgs() << "\n";
      });

      // Reached TOP.
      if (MSSA.isLiveOnEntryDef(Current)) {
        LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
        return None;
      }

      // Cost of a step. Accesses in the same block are more likely to be valid
      // candidates for elimination, hence consider them cheaper.
      unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
                              ? MemorySSASameBBStepCost
                              : MemorySSAOtherBBStepCost;
      if (WalkerStepLimit <= StepCost) {
        LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
        return None;
      }
      WalkerStepLimit -= StepCost;

      // Return for MemoryPhis. They cannot be eliminated directly and the
      // caller is responsible for traversing them.
      if (isa<MemoryPhi>(Current)) {
        LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
        return Current;
      }

      // Below, check if CurrentDef is a valid candidate to be eliminated by
      // KillingDef. If it is not, check the next candidate.
      MemoryDef *CurrentDef = cast<MemoryDef>(Current);
      Instruction *CurrentI = CurrentDef->getMemoryInst();

      if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(DefUO))) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        continue;
      }

      // Before we try to remove anything, check for any extra throwing
      // instructions that block us from DSEing
      if (mayThrowBetween(KillingI, CurrentI, DefUO)) {
        LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
        return None;
      }

      // Check for anything that looks like it will be a barrier to further
      // removal
      if (isDSEBarrier(DefUO, CurrentI)) {
        LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
        return None;
      }

      // If Current is known to be on path that reads DefLoc or is a read
      // clobber, bail out, as the path is not profitable. We skip this check
      // for intrinsic calls, because the code knows how to handle memcpy
      // intrinsics.
      if (!isa<IntrinsicInst>(CurrentI) &&
          (Cache.KnownReads.contains(Current) ||
           isReadClobber(DefLoc, CurrentI))) {
        Cache.KnownReads.insert(Current);
        return None;
      }

      // Quick check if there are direct uses that are read-clobbers.
      if (any_of(Current->uses(), [this, &DefLoc, StartAccess](Use &U) {
            if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
              return !MSSA.dominates(StartAccess, UseOrDef) &&
                     isReadClobber(DefLoc, UseOrDef->getMemoryInst());
            return false;
          })) {
        Cache.KnownReads.insert(Current);
        LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
        return None;
      }

      // If Current cannot be analyzed or is not removable, check the next
      // candidate.
      if (!hasAnalyzableMemoryWrite(CurrentI, TLI) || !isRemovable(CurrentI)) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        continue;
      }

      // If Current does not have an analyzable write location, skip it
      auto CurrentLoc = getLocForWriteEx(CurrentI);
      if (!CurrentLoc) {
        StepAgain = true;
        Current = CurrentDef->getDefiningAccess();
        continue;
      }

      if (IsMemTerm) {
        // If the killing def is a memory terminator (e.g. lifetime.end), check
        // the next candidate if the current Current does not write the same
        // underlying object as the terminator.
        if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
          StepAgain = true;
          Current = CurrentDef->getDefiningAccess();
        }
        continue;
      } else {
        // AliasAnalysis does not account for loops. Limit elimination to
        // candidates for which we can guarantee they always store to the same
        // memory location and not multiple locations in a loop.
        if (Current->getBlock() != KillingDef->getBlock() &&
            !IsGuaranteedLoopInvariant(const_cast<Value *>(CurrentLoc->Ptr))) {
          StepAgain = true;
          Current = CurrentDef->getDefiningAccess();
          WalkerStepLimit -= 1;
          continue;
        }

        int64_t InstWriteOffset, DepWriteOffset;
        auto OR = isOverwrite(KillingI, CurrentI, DefLoc, *CurrentLoc, DL, TLI,
                              DepWriteOffset, InstWriteOffset, BatchAA, &F);
        // If Current does not write to the same object as KillingDef, check
        // the next candidate.
        if (OR == OW_Unknown) {
          StepAgain = true;
          Current = CurrentDef->getDefiningAccess();
        } else if (OR == OW_MaybePartial) {
          // If KillingDef only partially overwrites Current, check the next
          // candidate if the partial step limit is exceeded. This aggressively
          // limits the number of candidates for partial store elimination,
          // which are less likely to be removable in the end.
          if (PartialLimit <= 1) {
            StepAgain = true;
            Current = CurrentDef->getDefiningAccess();
            WalkerStepLimit -= 1;
            continue;
          }
          PartialLimit -= 1;
        }
      }
    } while (StepAgain);

    // Accesses to objects accessible after the function returns can only be
    // eliminated if the access is killed along all paths to the exit. Collect
    // the blocks with killing (=completely overwriting MemoryDefs) and check if
    // they cover all paths from EarlierAccess to any function exit.
    SmallPtrSet<Instruction *, 16> KillingDefs;
    KillingDefs.insert(KillingDef->getMemoryInst());
    MemoryAccess *EarlierAccess = Current;
    Instruction *EarlierMemInst =
        cast<MemoryDef>(EarlierAccess)->getMemoryInst();
    LLVM_DEBUG(dbgs() << "  Checking for reads of " << *EarlierAccess << " ("
                      << *EarlierMemInst << ")\n");

    SmallSetVector<MemoryAccess *, 32> WorkList;
    auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
      for (Use &U : Acc->uses())
        WorkList.insert(cast<MemoryAccess>(U.getUser()));
    };
    PushMemUses(EarlierAccess);

    // Optimistically collect all accesses for reads. If we do not find any
    // read clobbers, add them to the cache.
    SmallPtrSet<MemoryAccess *, 16> KnownNoReads;
    if (!EarlierMemInst->mayReadFromMemory())
      KnownNoReads.insert(EarlierAccess);
    // Check if EarlierDef may be read.
    for (unsigned I = 0; I < WorkList.size(); I++) {
      MemoryAccess *UseAccess = WorkList[I];

      LLVM_DEBUG(dbgs() << "   " << *UseAccess);
      // Bail out if the number of accesses to check exceeds the scan limit.
      if (ScanLimit < (WorkList.size() - I)) {
        LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
        return None;
      }
      --ScanLimit;
      NumDomMemDefChecks++;

      // Check if we already visited this access.
      if (Cache.isKnownNoRead(UseAccess)) {
        LLVM_DEBUG(dbgs() << " ... skip, discovered that " << *UseAccess
                          << " is safe earlier.\n");
        continue;
      }
      if (Cache.isKnownRead(UseAccess)) {
        LLVM_DEBUG(dbgs() << " ... bail out, discovered that " << *UseAccess
                          << " has a read-clobber earlier.\n");
        return None;
      }
      KnownNoReads.insert(UseAccess);

      if (isa<MemoryPhi>(UseAccess)) {
        if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
              return DT.properlyDominates(KI->getParent(),
                                          UseAccess->getBlock());
            })) {
          LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
          continue;
        }
        LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
        PushMemUses(UseAccess);
        continue;
      }

      Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
      LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");

      if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
            return DT.dominates(KI, UseInst);
          })) {
        LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
        continue;
      }

      if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess))) {
        LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
        PushMemUses(UseAccess);
        continue;
      }

      // A memory terminator kills all preceeding MemoryDefs and all succeeding
      // MemoryAccesses. We do not have to check it's users.
      if (isMemTerminator(DefLoc, KillingI, UseInst))
        continue;

      if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(DefUO)) {
        LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
        Cache.KnownReads.insert(UseAccess);
        Cache.KnownReads.insert(StartAccess);
        Cache.KnownReads.insert(EarlierAccess);
        return None;
      }

      // Uses which may read the original MemoryDef mean we cannot eliminate the
      // original MD. Stop walk.
      if (isReadClobber(DefLoc, UseInst)) {
        LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
        Cache.KnownReads.insert(UseAccess);
        Cache.KnownReads.insert(StartAccess);
        Cache.KnownReads.insert(EarlierAccess);
        return None;
      }

      // For the KillingDef and EarlierAccess we only have to check if it reads
      // the memory location.
      // TODO: It would probably be better to check for self-reads before
      // calling the function.
      if (KillingDef == UseAccess || EarlierAccess == UseAccess) {
        LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
        continue;
      }

      // Check all uses for MemoryDefs, except for defs completely overwriting
      // the original location. Otherwise we have to check uses of *all*
      // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
      // miss cases like the following
      //   1 = Def(LoE) ; <----- EarlierDef stores [0,1]
      //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
      //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
      //                  (The Use points to the *first* Def it may alias)
      //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
      //                  stores [0,1]
      if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
        if (isCompleteOverwrite(DefLoc, KillingI, UseInst)) {
          if (!isInvisibleToCallerAfterRet(DefUO) &&
              UseAccess != EarlierAccess) {
            BasicBlock *MaybeKillingBlock = UseInst->getParent();
            if (PostOrderNumbers.find(MaybeKillingBlock)->second <
                PostOrderNumbers.find(EarlierAccess->getBlock())->second) {

              LLVM_DEBUG(dbgs()
                         << "    ... found killing def " << *UseInst << "\n");
              KillingDefs.insert(UseInst);
            }
          }
        } else
          PushMemUses(UseDef);
      }
    }

    // For accesses to locations visible after the function returns, make sure
    // that the location is killed (=overwritten) along all paths from
    // EarlierAccess to the exit.
    if (!isInvisibleToCallerAfterRet(DefUO)) {
      SmallPtrSet<BasicBlock *, 16> KillingBlocks;
      for (Instruction *KD : KillingDefs)
        KillingBlocks.insert(KD->getParent());
      assert(!KillingBlocks.empty() &&
             "Expected at least a single killing block");

      // Find the common post-dominator of all killing blocks.
      BasicBlock *CommonPred = *KillingBlocks.begin();
      for (auto I = std::next(KillingBlocks.begin()), E = KillingBlocks.end();
           I != E; I++) {
        if (!CommonPred)
          break;
        CommonPred = PDT.findNearestCommonDominator(CommonPred, *I);
      }

      // If CommonPred is in the set of killing blocks, just check if it
      // post-dominates EarlierAccess.
      if (KillingBlocks.count(CommonPred)) {
        if (PDT.dominates(CommonPred, EarlierAccess->getBlock()))
          return {EarlierAccess};
        return None;
      }

      // If the common post-dominator does not post-dominate EarlierAccess,
      // there is a path from EarlierAccess to an exit not going through a
      // killing block.
      if (PDT.dominates(CommonPred, EarlierAccess->getBlock())) {
        SetVector<BasicBlock *> WorkList;

        // If CommonPred is null, there are multiple exits from the function.
        // They all have to be added to the worklist.
        if (CommonPred)
          WorkList.insert(CommonPred);
        else
          for (BasicBlock *R : PDT.roots())
            WorkList.insert(R);

        NumCFGTries++;
        // Check if all paths starting from an exit node go through one of the
        // killing blocks before reaching EarlierAccess.
        for (unsigned I = 0; I < WorkList.size(); I++) {
          NumCFGChecks++;
          BasicBlock *Current = WorkList[I];
          if (KillingBlocks.count(Current))
            continue;
          if (Current == EarlierAccess->getBlock())
            return None;

          // EarlierAccess is reachable from the entry, so we don't have to
          // explore unreachable blocks further.
          if (!DT.isReachableFromEntry(Current))
            continue;

          for (BasicBlock *Pred : predecessors(Current))
            WorkList.insert(Pred);

          if (WorkList.size() >= MemorySSAPathCheckLimit)
            return None;
        }
        NumCFGSuccess++;
        return {EarlierAccess};
      }
      return None;
    }

    // No aliasing MemoryUses of EarlierAccess found, EarlierAccess is
    // potentially dead.
    Cache.KnownNoReads.insert(KnownNoReads.begin(), KnownNoReads.end());
    return {EarlierAccess};
  }

  // Delete dead memory defs
  void deleteDeadInstruction(Instruction *SI) {
    MemorySSAUpdater Updater(&MSSA);
    SmallVector<Instruction *, 32> NowDeadInsts;
    NowDeadInsts.push_back(SI);
    --NumFastOther;

    while (!NowDeadInsts.empty()) {
      Instruction *DeadInst = NowDeadInsts.pop_back_val();
      ++NumFastOther;

      // Try to preserve debug information attached to the dead instruction.
      salvageDebugInfo(*DeadInst);
      salvageKnowledge(DeadInst);

      // Remove the Instruction from MSSA.
      if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
        if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
          SkipStores.insert(MD);
        }
        Updater.removeMemoryAccess(MA);
      }

      auto I = IOLs.find(DeadInst->getParent());
      if (I != IOLs.end())
        I->second.erase(DeadInst);
      // Remove its operands
      for (Use &O : DeadInst->operands())
        if (Instruction *OpI = dyn_cast<Instruction>(O)) {
          O = nullptr;
          if (isInstructionTriviallyDead(OpI, &TLI))
            NowDeadInsts.push_back(OpI);
        }

      DeadInst->eraseFromParent();
    }
  }

  // Check for any extra throws between SI and NI that block DSE.  This only
  // checks extra maythrows (those that aren't MemoryDef's). MemoryDef that may
  // throw are handled during the walk from one def to the next.
  bool mayThrowBetween(Instruction *SI, Instruction *NI,
                       const Value *SILocUnd) {
    // First see if we can ignore it by using the fact that SI is an
    // alloca/alloca like object that is not visible to the caller during
    // execution of the function.
    if (SILocUnd && isInvisibleToCallerBeforeRet(SILocUnd))
      return false;

    if (SI->getParent() == NI->getParent())
      return ThrowingBlocks.count(SI->getParent());
    return !ThrowingBlocks.empty();
  }

  // Check if \p NI acts as a DSE barrier for \p SI. The following instructions
  // act as barriers:
  //  * A memory instruction that may throw and \p SI accesses a non-stack
  //  object.
  //  * Atomic stores stronger that monotonic.
  bool isDSEBarrier(const Value *SILocUnd, Instruction *NI) {
    // If NI may throw it acts as a barrier, unless we are to an alloca/alloca
    // like object that does not escape.
    if (NI->mayThrow() && !isInvisibleToCallerBeforeRet(SILocUnd))
      return true;

    // If NI is an atomic load/store stronger than monotonic, do not try to
    // eliminate/reorder it.
    if (NI->isAtomic()) {
      if (auto *LI = dyn_cast<LoadInst>(NI))
        return isStrongerThanMonotonic(LI->getOrdering());
      if (auto *SI = dyn_cast<StoreInst>(NI))
        return isStrongerThanMonotonic(SI->getOrdering());
      if (auto *ARMW = dyn_cast<AtomicRMWInst>(NI))
        return isStrongerThanMonotonic(ARMW->getOrdering());
      if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(NI))
        return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
               isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
      llvm_unreachable("other instructions should be skipped in MemorySSA");
    }
    return false;
  }

  /// Eliminate writes to objects that are not visible in the caller and are not
  /// accessed before returning from the function.
  bool eliminateDeadWritesAtEndOfFunction() {
    bool MadeChange = false;
    LLVM_DEBUG(
        dbgs()
        << "Trying to eliminate MemoryDefs at the end of the function\n");
    for (int I = MemDefs.size() - 1; I >= 0; I--) {
      MemoryDef *Def = MemDefs[I];
      if (SkipStores.find(Def) != SkipStores.end() ||
          !isRemovable(Def->getMemoryInst()))
        continue;

      Instruction *DefI = Def->getMemoryInst();
      SmallVector<const Value *, 4> Pointers;
      auto DefLoc = getLocForWriteEx(DefI);
      if (!DefLoc)
        continue;

      // NOTE: Currently eliminating writes at the end of a function is limited
      // to MemoryDefs with a single underlying object, to save compile-time. In
      // practice it appears the case with multiple underlying objects is very
      // uncommon. If it turns out to be important, we can use
      // getUnderlyingObjects here instead.
      const Value *UO = getUnderlyingObject(DefLoc->Ptr);
      if (!UO || !isInvisibleToCallerAfterRet(UO))
        continue;

      if (isWriteAtEndOfFunction(Def)) {
        // See through pointer-to-pointer bitcasts
        LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
                             "of the function\n");
        deleteDeadInstruction(DefI);
        ++NumFastStores;
        MadeChange = true;
      }
    }
    return MadeChange;
  }

  /// \returns true if \p Def is a no-op store, either because it
  /// directly stores back a loaded value or stores zero to a calloced object.
  bool storeIsNoop(MemoryDef *Def, MemoryLocation DefLoc, const Value *DefUO) {
    StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst());
    if (!Store)
      return false;

    if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
      if (LoadI->getPointerOperand() == Store->getOperand(1)) {
        // Get the defining access for the load.
        auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
        // Fast path: the defining accesses are the same.
        if (LoadAccess == Def->getDefiningAccess())
          return true;

        // Look through phi accesses. Recursively scan all phi accesses by
        // adding them to a worklist. Bail when we run into a memory def that
        // does not match LoadAccess.
        SetVector<MemoryAccess *> ToCheck;
        MemoryAccess *Current = Def->getDefiningAccess();
        // We don't want to bail when we run into the store memory def. But,
        // the phi access may point to it. So, pretend like we've already
        // checked it.
        ToCheck.insert(Def);
        ToCheck.insert(Current);
        // Start at current (1) to simulate already having checked Def.
        for (unsigned I = 1; I < ToCheck.size(); ++I) {
          Current = ToCheck[I];
          if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
            // Check all the operands.
            for (auto &Use : PhiAccess->incoming_values())
              ToCheck.insert(cast<MemoryAccess>(&Use));
            continue;
          }

          // If we found a memory def, bail. This happens when we have an
          // unrelated write in between an otherwise noop store.
          assert(isa<MemoryDef>(Current) &&
                 "Only MemoryDefs should reach here.");
          // TODO: Skip no alias MemoryDefs that have no aliasing reads.
          // We are searching for the definition of the store's destination.
          // So, if that is the same definition as the load, then this is a
          // noop. Otherwise, fail.
          if (LoadAccess != Current)
            return false;
        }
        return true;
      }
    }

    Constant *StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
    if (StoredConstant && StoredConstant->isNullValue()) {
      auto *DefUOInst = dyn_cast<Instruction>(DefUO);
      if (DefUOInst && isCallocLikeFn(DefUOInst, &TLI)) {
        auto *UnderlyingDef = cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst));
        // If UnderlyingDef is the clobbering access of Def, no instructions
        // between them can modify the memory location.
        auto *ClobberDef =
            MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def);
        return UnderlyingDef == ClobberDef;
      }
    }
    return false;
  }
};

bool eliminateDeadStoresMemorySSA(Function &F, AliasAnalysis &AA,
                                  MemorySSA &MSSA, DominatorTree &DT,
                                  PostDominatorTree &PDT,
                                  const TargetLibraryInfo &TLI) {
  bool MadeChange = false;

  DSEState State = DSEState::get(F, AA, MSSA, DT, PDT, TLI);
  // For each store:
  for (unsigned I = 0; I < State.MemDefs.size(); I++) {
    MemoryDef *KillingDef = State.MemDefs[I];
    if (State.SkipStores.count(KillingDef))
      continue;
    Instruction *SI = KillingDef->getMemoryInst();

    auto MaybeSILoc = State.getLocForWriteEx(SI);
    if (State.isMemTerminatorInst(SI))
      MaybeSILoc = State.getLocForTerminator(SI).map(
          [](const std::pair<MemoryLocation, bool> &P) { return P.first; });
    else
      MaybeSILoc = State.getLocForWriteEx(SI);

    if (!MaybeSILoc) {
      LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
                        << *SI << "\n");
      continue;
    }
    MemoryLocation SILoc = *MaybeSILoc;
    assert(SILoc.Ptr && "SILoc should not be null");
    const Value *SILocUnd = getUnderlyingObject(SILoc.Ptr);

    // Check if the store is a no-op.
    if (isRemovable(SI) && State.storeIsNoop(KillingDef, SILoc, SILocUnd)) {
      LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *SI << '\n');
      State.deleteDeadInstruction(SI);
      NumRedundantStores++;
      MadeChange = true;
      continue;
    }

    MemoryAccess *Current = KillingDef;
    LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
                      << *KillingDef << " (" << *SI << ")\n");

    unsigned ScanLimit = MemorySSAScanLimit;
    unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
    unsigned PartialLimit = MemorySSAPartialStoreLimit;
    // Worklist of MemoryAccesses that may be killed by KillingDef.
    SetVector<MemoryAccess *> ToCheck;
    ToCheck.insert(KillingDef->getDefiningAccess());

    if (!SILocUnd)
      continue;
    bool IsMemTerm = State.isMemTerminatorInst(SI);
    DSEState::CheckCache Cache;
    // Check if MemoryAccesses in the worklist are killed by KillingDef.
    for (unsigned I = 0; I < ToCheck.size(); I++) {
      Current = ToCheck[I];
      if (State.SkipStores.count(Current))
        continue;

      Optional<MemoryAccess *> Next = State.getDomMemoryDef(
          KillingDef, Current, SILoc, SILocUnd, Cache, ScanLimit,
          WalkerStepLimit, IsMemTerm, PartialLimit);

      if (!Next) {
        LLVM_DEBUG(dbgs() << "  finished walk\n");
        continue;
      }

      MemoryAccess *EarlierAccess = *Next;
      LLVM_DEBUG(dbgs() << " Checking if we can kill " << *EarlierAccess);
      if (isa<MemoryPhi>(EarlierAccess)) {
        LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
        for (Value *V : cast<MemoryPhi>(EarlierAccess)->incoming_values()) {
          MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
          BasicBlock *IncomingBlock = IncomingAccess->getBlock();
          BasicBlock *PhiBlock = EarlierAccess->getBlock();

          // We only consider incoming MemoryAccesses that come before the
          // MemoryPhi. Otherwise we could discover candidates that do not
          // strictly dominate our starting def.
          if (State.PostOrderNumbers[IncomingBlock] >
              State.PostOrderNumbers[PhiBlock])
            ToCheck.insert(IncomingAccess);
        }
        continue;
      }
      MemoryDef *NextDef = dyn_cast<MemoryDef>(EarlierAccess);
      Instruction *NI = NextDef->getMemoryInst();
      LLVM_DEBUG(dbgs() << " (" << *NI << ")\n");
      ToCheck.insert(NextDef->getDefiningAccess());
      NumGetDomMemoryDefPassed++;

      if (!DebugCounter::shouldExecute(MemorySSACounter))
        continue;

      MemoryLocation NILoc = *State.getLocForWriteEx(NI);

      if (IsMemTerm) {
        const Value *NIUnd = getUnderlyingObject(NILoc.Ptr);
        if (SILocUnd != NIUnd)
          continue;
        LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *NI
                          << "\n  KILLER: " << *SI << '\n');
        State.deleteDeadInstruction(NI);
        ++NumFastStores;
        MadeChange = true;
      } else {
        // Check if NI overwrites SI.
        int64_t InstWriteOffset, DepWriteOffset;
        OverwriteResult OR =
            isOverwrite(SI, NI, SILoc, NILoc, State.DL, TLI, DepWriteOffset,
                        InstWriteOffset, State.BatchAA, &F);
        if (OR == OW_MaybePartial) {
          auto Iter = State.IOLs.insert(
              std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
                  NI->getParent(), InstOverlapIntervalsTy()));
          auto &IOL = Iter.first->second;
          OR = isPartialOverwrite(SILoc, NILoc, DepWriteOffset, InstWriteOffset,
                                  NI, IOL);
        }

        if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
          auto *Earlier = dyn_cast<StoreInst>(NI);
          auto *Later = dyn_cast<StoreInst>(SI);
          // We are re-using tryToMergePartialOverlappingStores, which requires
          // Earlier to domiante Later.
          // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
          if (Earlier && Later && DT.dominates(Earlier, Later)) {
            if (Constant *Merged = tryToMergePartialOverlappingStores(
                    Earlier, Later, InstWriteOffset, DepWriteOffset, State.DL,
                    State.BatchAA, &DT)) {

              // Update stored value of earlier store to merged constant.
              Earlier->setOperand(0, Merged);
              ++NumModifiedStores;
              MadeChange = true;

              // Remove later store and remove any outstanding overlap intervals
              // for the updated store.
              State.deleteDeadInstruction(Later);
              auto I = State.IOLs.find(Earlier->getParent());
              if (I != State.IOLs.end())
                I->second.erase(Earlier);
              break;
            }
          }
        }

        if (OR == OW_Complete) {
          LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *NI
                            << "\n  KILLER: " << *SI << '\n');
          State.deleteDeadInstruction(NI);
          ++NumFastStores;
          MadeChange = true;
        }
      }
    }
  }

  if (EnablePartialOverwriteTracking)
    for (auto &KV : State.IOLs)
      MadeChange |= removePartiallyOverlappedStores(State.DL, KV.second, TLI);

  MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
  return MadeChange;
}
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// DSE Pass
//===----------------------------------------------------------------------===//
PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);

  bool Changed = false;
  if (EnableMemorySSA) {
    MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
    PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);

    Changed = eliminateDeadStoresMemorySSA(F, AA, MSSA, DT, PDT, TLI);
  } else {
    MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);

    Changed = eliminateDeadStores(F, &AA, &MD, &DT, &TLI);
  }

#ifdef LLVM_ENABLE_STATS
  if (AreStatisticsEnabled())
    for (auto &I : instructions(F))
      NumRemainingStores += isa<StoreInst>(&I);
#endif

  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  if (EnableMemorySSA)
    PA.preserve<MemorySSAAnalysis>();
  else
    PA.preserve<MemoryDependenceAnalysis>();
  return PA;
}

namespace {

/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
class DSELegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  DSELegacyPass() : FunctionPass(ID) {
    initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    const TargetLibraryInfo &TLI =
        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);

    bool Changed = false;
    if (EnableMemorySSA) {
      MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
      PostDominatorTree &PDT =
          getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();

      Changed = eliminateDeadStoresMemorySSA(F, AA, MSSA, DT, PDT, TLI);
    } else {
      MemoryDependenceResults &MD =
          getAnalysis<MemoryDependenceWrapperPass>().getMemDep();

      Changed = eliminateDeadStores(F, &AA, &MD, &DT, &TLI);
    }

#ifdef LLVM_ENABLE_STATS
    if (AreStatisticsEnabled())
      for (auto &I : instructions(F))
        NumRemainingStores += isa<StoreInst>(&I);
#endif

    return Changed;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();

    if (EnableMemorySSA) {
      AU.addRequired<PostDominatorTreeWrapperPass>();
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<PostDominatorTreeWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    } else {
      AU.addRequired<MemoryDependenceWrapperPass>();
      AU.addPreserved<MemoryDependenceWrapperPass>();
    }
  }
};

} // end anonymous namespace

char DSELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
                    false)

FunctionPass *llvm::createDeadStoreEliminationPass() {
  return new DSELegacyPass();
}