BasicBlockUtils.cpp 52.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform manipulations on basic blocks, and
// instructions contained within basic blocks.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "basicblock-utils"

void llvm::DetatchDeadBlocks(
    ArrayRef<BasicBlock *> BBs,
    SmallVectorImpl<DominatorTree::UpdateType> *Updates,
    bool KeepOneInputPHIs) {
  for (auto *BB : BBs) {
    // Loop through all of our successors and make sure they know that one
    // of their predecessors is going away.
    SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
    for (BasicBlock *Succ : successors(BB)) {
      Succ->removePredecessor(BB, KeepOneInputPHIs);
      if (Updates && UniqueSuccessors.insert(Succ).second)
        Updates->push_back({DominatorTree::Delete, BB, Succ});
    }

    // Zap all the instructions in the block.
    while (!BB->empty()) {
      Instruction &I = BB->back();
      // If this instruction is used, replace uses with an arbitrary value.
      // Because control flow can't get here, we don't care what we replace the
      // value with.  Note that since this block is unreachable, and all values
      // contained within it must dominate their uses, that all uses will
      // eventually be removed (they are themselves dead).
      if (!I.use_empty())
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
      BB->getInstList().pop_back();
    }
    new UnreachableInst(BB->getContext(), BB);
    assert(BB->getInstList().size() == 1 &&
           isa<UnreachableInst>(BB->getTerminator()) &&
           "The successor list of BB isn't empty before "
           "applying corresponding DTU updates.");
  }
}

void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
                           bool KeepOneInputPHIs) {
  DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
}

void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
                            bool KeepOneInputPHIs) {
#ifndef NDEBUG
  // Make sure that all predecessors of each dead block is also dead.
  SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
  assert(Dead.size() == BBs.size() && "Duplicating blocks?");
  for (auto *BB : Dead)
    for (BasicBlock *Pred : predecessors(BB))
      assert(Dead.count(Pred) && "All predecessors must be dead!");
#endif

  SmallVector<DominatorTree::UpdateType, 4> Updates;
  DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);

  if (DTU)
    DTU->applyUpdatesPermissive(Updates);

  for (BasicBlock *BB : BBs)
    if (DTU)
      DTU->deleteBB(BB);
    else
      BB->eraseFromParent();
}

bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
                                      bool KeepOneInputPHIs) {
  df_iterator_default_set<BasicBlock*> Reachable;

  // Mark all reachable blocks.
  for (BasicBlock *BB : depth_first_ext(&F, Reachable))
    (void)BB/* Mark all reachable blocks */;

  // Collect all dead blocks.
  std::vector<BasicBlock*> DeadBlocks;
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (!Reachable.count(&*I)) {
      BasicBlock *BB = &*I;
      DeadBlocks.push_back(BB);
    }

  // Delete the dead blocks.
  DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);

  return !DeadBlocks.empty();
}

void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
                                   MemoryDependenceResults *MemDep) {
  if (!isa<PHINode>(BB->begin())) return;

  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    if (PN->getIncomingValue(0) != PN)
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
    else
      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));

    if (MemDep)
      MemDep->removeInstruction(PN);  // Memdep updates AA itself.

    PN->eraseFromParent();
  }
}

bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
                          MemorySSAUpdater *MSSAU) {
  // Recursively deleting a PHI may cause multiple PHIs to be deleted
  // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
  SmallVector<WeakTrackingVH, 8> PHIs;
  for (PHINode &PN : BB->phis())
    PHIs.push_back(&PN);

  bool Changed = false;
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);

  return Changed;
}

bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
                                     LoopInfo *LI, MemorySSAUpdater *MSSAU,
                                     MemoryDependenceResults *MemDep,
                                     bool PredecessorWithTwoSuccessors) {
  if (BB->hasAddressTaken())
    return false;

  // Can't merge if there are multiple predecessors, or no predecessors.
  BasicBlock *PredBB = BB->getUniquePredecessor();
  if (!PredBB) return false;

  // Don't break self-loops.
  if (PredBB == BB) return false;
  // Don't break unwinding instructions.
  if (PredBB->getTerminator()->isExceptionalTerminator())
    return false;

  // Can't merge if there are multiple distinct successors.
  if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
    return false;

  // Currently only allow PredBB to have two predecessors, one being BB.
  // Update BI to branch to BB's only successor instead of BB.
  BranchInst *PredBB_BI;
  BasicBlock *NewSucc = nullptr;
  unsigned FallThruPath;
  if (PredecessorWithTwoSuccessors) {
    if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
      return false;
    BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BB_JmpI || !BB_JmpI->isUnconditional())
      return false;
    NewSucc = BB_JmpI->getSuccessor(0);
    FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
  }

  // Can't merge if there is PHI loop.
  for (PHINode &PN : BB->phis())
    for (Value *IncValue : PN.incoming_values())
      if (IncValue == &PN)
        return false;

  LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
                    << PredBB->getName() << "\n");

  // Begin by getting rid of unneeded PHIs.
  SmallVector<AssertingVH<Value>, 4> IncomingValues;
  if (isa<PHINode>(BB->front())) {
    for (PHINode &PN : BB->phis())
      if (!isa<PHINode>(PN.getIncomingValue(0)) ||
          cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
        IncomingValues.push_back(PN.getIncomingValue(0));
    FoldSingleEntryPHINodes(BB, MemDep);
  }

  // DTU update: Collect all the edges that exit BB.
  // These dominator edges will be redirected from Pred.
  std::vector<DominatorTree::UpdateType> Updates;
  if (DTU) {
    Updates.reserve(1 + (2 * succ_size(BB)));
    // Add insert edges first. Experimentally, for the particular case of two
    // blocks that can be merged, with a single successor and single predecessor
    // respectively, it is beneficial to have all insert updates first. Deleting
    // edges first may lead to unreachable blocks, followed by inserting edges
    // making the blocks reachable again. Such DT updates lead to high compile
    // times. We add inserts before deletes here to reduce compile time.
    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
      // This successor of BB may already have PredBB as a predecessor.
      if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
        Updates.push_back({DominatorTree::Insert, PredBB, *I});
    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
      Updates.push_back({DominatorTree::Delete, BB, *I});
    Updates.push_back({DominatorTree::Delete, PredBB, BB});
  }

  Instruction *PTI = PredBB->getTerminator();
  Instruction *STI = BB->getTerminator();
  Instruction *Start = &*BB->begin();
  // If there's nothing to move, mark the starting instruction as the last
  // instruction in the block. Terminator instruction is handled separately.
  if (Start == STI)
    Start = PTI;

  // Move all definitions in the successor to the predecessor...
  PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
                               BB->begin(), STI->getIterator());

  if (MSSAU)
    MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);

  // Make all PHI nodes that referred to BB now refer to Pred as their
  // source...
  BB->replaceAllUsesWith(PredBB);

  if (PredecessorWithTwoSuccessors) {
    // Delete the unconditional branch from BB.
    BB->getInstList().pop_back();

    // Update branch in the predecessor.
    PredBB_BI->setSuccessor(FallThruPath, NewSucc);
  } else {
    // Delete the unconditional branch from the predecessor.
    PredBB->getInstList().pop_back();

    // Move terminator instruction.
    PredBB->getInstList().splice(PredBB->end(), BB->getInstList());

    // Terminator may be a memory accessing instruction too.
    if (MSSAU)
      if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
              MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
        MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
  }
  // Add unreachable to now empty BB.
  new UnreachableInst(BB->getContext(), BB);

  // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
  // do that since we might end up with redundant dbg.values describing the
  // entry PHI node post-splice.
  RemoveRedundantDbgInstrs(PredBB);

  // Inherit predecessors name if it exists.
  if (!PredBB->hasName())
    PredBB->takeName(BB);

  if (LI)
    LI->removeBlock(BB);

  if (MemDep)
    MemDep->invalidateCachedPredecessors();

  // Finally, erase the old block and update dominator info.
  if (DTU) {
    assert(BB->getInstList().size() == 1 &&
           isa<UnreachableInst>(BB->getTerminator()) &&
           "The successor list of BB isn't empty before "
           "applying corresponding DTU updates.");
    DTU->applyUpdatesPermissive(Updates);
    DTU->deleteBB(BB);
  } else {
    BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
  }

  return true;
}

bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
    SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
    LoopInfo *LI) {
  assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");

  bool BlocksHaveBeenMerged = false;
  while (!MergeBlocks.empty()) {
    BasicBlock *BB = *MergeBlocks.begin();
    BasicBlock *Dest = BB->getSingleSuccessor();
    if (Dest && (!L || L->contains(Dest))) {
      BasicBlock *Fold = Dest->getUniquePredecessor();
      (void)Fold;
      if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
        assert(Fold == BB &&
               "Expecting BB to be unique predecessor of the Dest block");
        MergeBlocks.erase(Dest);
        BlocksHaveBeenMerged = true;
      } else
        MergeBlocks.erase(BB);
    } else
      MergeBlocks.erase(BB);
  }
  return BlocksHaveBeenMerged;
}

/// Remove redundant instructions within sequences of consecutive dbg.value
/// instructions. This is done using a backward scan to keep the last dbg.value
/// describing a specific variable/fragment.
///
/// BackwardScan strategy:
/// ----------------------
/// Given a sequence of consecutive DbgValueInst like this
///
///   dbg.value ..., "x", FragmentX1  (*)
///   dbg.value ..., "y", FragmentY1
///   dbg.value ..., "x", FragmentX2
///   dbg.value ..., "x", FragmentX1  (**)
///
/// then the instruction marked with (*) can be removed (it is guaranteed to be
/// obsoleted by the instruction marked with (**) as the latter instruction is
/// describing the same variable using the same fragment info).
///
/// Possible improvements:
/// - Check fully overlapping fragments and not only identical fragments.
/// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
///   instructions being part of the sequence of consecutive instructions.
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
  SmallVector<DbgValueInst *, 8> ToBeRemoved;
  SmallDenseSet<DebugVariable> VariableSet;
  for (auto &I : reverse(*BB)) {
    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
      DebugVariable Key(DVI->getVariable(),
                        DVI->getExpression(),
                        DVI->getDebugLoc()->getInlinedAt());
      auto R = VariableSet.insert(Key);
      // If the same variable fragment is described more than once it is enough
      // to keep the last one (i.e. the first found since we for reverse
      // iteration).
      if (!R.second)
        ToBeRemoved.push_back(DVI);
      continue;
    }
    // Sequence with consecutive dbg.value instrs ended. Clear the map to
    // restart identifying redundant instructions if case we find another
    // dbg.value sequence.
    VariableSet.clear();
  }

  for (auto &Instr : ToBeRemoved)
    Instr->eraseFromParent();

  return !ToBeRemoved.empty();
}

/// Remove redundant dbg.value instructions using a forward scan. This can
/// remove a dbg.value instruction that is redundant due to indicating that a
/// variable has the same value as already being indicated by an earlier
/// dbg.value.
///
/// ForwardScan strategy:
/// ---------------------
/// Given two identical dbg.value instructions, separated by a block of
/// instructions that isn't describing the same variable, like this
///
///   dbg.value X1, "x", FragmentX1  (**)
///   <block of instructions, none being "dbg.value ..., "x", ...">
///   dbg.value X1, "x", FragmentX1  (*)
///
/// then the instruction marked with (*) can be removed. Variable "x" is already
/// described as being mapped to the SSA value X1.
///
/// Possible improvements:
/// - Keep track of non-overlapping fragments.
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
  SmallVector<DbgValueInst *, 8> ToBeRemoved;
  DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
  for (auto &I : *BB) {
    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
      DebugVariable Key(DVI->getVariable(),
                        NoneType(),
                        DVI->getDebugLoc()->getInlinedAt());
      auto VMI = VariableMap.find(Key);
      // Update the map if we found a new value/expression describing the
      // variable, or if the variable wasn't mapped already.
      if (VMI == VariableMap.end() ||
          VMI->second.first != DVI->getValue() ||
          VMI->second.second != DVI->getExpression()) {
        VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
        continue;
      }
      // Found an identical mapping. Remember the instruction for later removal.
      ToBeRemoved.push_back(DVI);
    }
  }

  for (auto &Instr : ToBeRemoved)
    Instr->eraseFromParent();

  return !ToBeRemoved.empty();
}

bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
  bool MadeChanges = false;
  // By using the "backward scan" strategy before the "forward scan" strategy we
  // can remove both dbg.value (2) and (3) in a situation like this:
  //
  //   (1) dbg.value V1, "x", DIExpression()
  //       ...
  //   (2) dbg.value V2, "x", DIExpression()
  //   (3) dbg.value V1, "x", DIExpression()
  //
  // The backward scan will remove (2), it is made obsolete by (3). After
  // getting (2) out of the way, the foward scan will remove (3) since "x"
  // already is described as having the value V1 at (1).
  MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
  MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);

  if (MadeChanges)
    LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
                      << BB->getName() << "\n");
  return MadeChanges;
}

void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
                                BasicBlock::iterator &BI, Value *V) {
  Instruction &I = *BI;
  // Replaces all of the uses of the instruction with uses of the value
  I.replaceAllUsesWith(V);

  // Make sure to propagate a name if there is one already.
  if (I.hasName() && !V->hasName())
    V->takeName(&I);

  // Delete the unnecessary instruction now...
  BI = BIL.erase(BI);
}

void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
                               BasicBlock::iterator &BI, Instruction *I) {
  assert(I->getParent() == nullptr &&
         "ReplaceInstWithInst: Instruction already inserted into basic block!");

  // Copy debug location to newly added instruction, if it wasn't already set
  // by the caller.
  if (!I->getDebugLoc())
    I->setDebugLoc(BI->getDebugLoc());

  // Insert the new instruction into the basic block...
  BasicBlock::iterator New = BIL.insert(BI, I);

  // Replace all uses of the old instruction, and delete it.
  ReplaceInstWithValue(BIL, BI, I);

  // Move BI back to point to the newly inserted instruction
  BI = New;
}

void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
  BasicBlock::iterator BI(From);
  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}

BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
                            LoopInfo *LI, MemorySSAUpdater *MSSAU) {
  unsigned SuccNum = GetSuccessorNumber(BB, Succ);

  // If this is a critical edge, let SplitCriticalEdge do it.
  Instruction *LatchTerm = BB->getTerminator();
  if (SplitCriticalEdge(
          LatchTerm, SuccNum,
          CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
    return LatchTerm->getSuccessor(SuccNum);

  // If the edge isn't critical, then BB has a single successor or Succ has a
  // single pred.  Split the block.
  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    // If the successor only has a single pred, split the top of the successor
    // block.
    assert(SP == BB && "CFG broken");
    SP = nullptr;
    return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
  }

  // Otherwise, if BB has a single successor, split it at the bottom of the
  // block.
  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
         "Should have a single succ!");
  return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
}

unsigned
llvm::SplitAllCriticalEdges(Function &F,
                            const CriticalEdgeSplittingOptions &Options) {
  unsigned NumBroken = 0;
  for (BasicBlock &BB : F) {
    Instruction *TI = BB.getTerminator();
    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
        !isa<CallBrInst>(TI))
      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
        if (SplitCriticalEdge(TI, i, Options))
          ++NumBroken;
  }
  return NumBroken;
}

BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
                             DominatorTree *DT, LoopInfo *LI,
                             MemorySSAUpdater *MSSAU, const Twine &BBName) {
  BasicBlock::iterator SplitIt = SplitPt->getIterator();
  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
    ++SplitIt;
  std::string Name = BBName.str();
  BasicBlock *New = Old->splitBasicBlock(
      SplitIt, Name.empty() ? Old->getName() + ".split" : Name);

  // The new block lives in whichever loop the old one did. This preserves
  // LCSSA as well, because we force the split point to be after any PHI nodes.
  if (LI)
    if (Loop *L = LI->getLoopFor(Old))
      L->addBasicBlockToLoop(New, *LI);

  if (DT)
    // Old dominates New. New node dominates all other nodes dominated by Old.
    if (DomTreeNode *OldNode = DT->getNode(Old)) {
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());

      DomTreeNode *NewNode = DT->addNewBlock(New, Old);
      for (DomTreeNode *I : Children)
        DT->changeImmediateDominator(I, NewNode);
    }

  // Move MemoryAccesses still tracked in Old, but part of New now.
  // Update accesses in successor blocks accordingly.
  if (MSSAU)
    MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));

  return New;
}

/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
                                      ArrayRef<BasicBlock *> Preds,
                                      DominatorTree *DT, LoopInfo *LI,
                                      MemorySSAUpdater *MSSAU,
                                      bool PreserveLCSSA, bool &HasLoopExit) {
  // Update dominator tree if available.
  if (DT) {
    if (OldBB == DT->getRootNode()->getBlock()) {
      assert(NewBB == &NewBB->getParent()->getEntryBlock());
      DT->setNewRoot(NewBB);
    } else {
      // Split block expects NewBB to have a non-empty set of predecessors.
      DT->splitBlock(NewBB);
    }
  }

  // Update MemoryPhis after split if MemorySSA is available
  if (MSSAU)
    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);

  // The rest of the logic is only relevant for updating the loop structures.
  if (!LI)
    return;

  assert(DT && "DT should be available to update LoopInfo!");
  Loop *L = LI->getLoopFor(OldBB);

  // If we need to preserve loop analyses, collect some information about how
  // this split will affect loops.
  bool IsLoopEntry = !!L;
  bool SplitMakesNewLoopHeader = false;
  for (BasicBlock *Pred : Preds) {
    // Preds that are not reachable from entry should not be used to identify if
    // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
    // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
    // as true and make the NewBB the header of some loop. This breaks LI.
    if (!DT->isReachableFromEntry(Pred))
      continue;
    // If we need to preserve LCSSA, determine if any of the preds is a loop
    // exit.
    if (PreserveLCSSA)
      if (Loop *PL = LI->getLoopFor(Pred))
        if (!PL->contains(OldBB))
          HasLoopExit = true;

    // If we need to preserve LoopInfo, note whether any of the preds crosses
    // an interesting loop boundary.
    if (!L)
      continue;
    if (L->contains(Pred))
      IsLoopEntry = false;
    else
      SplitMakesNewLoopHeader = true;
  }

  // Unless we have a loop for OldBB, nothing else to do here.
  if (!L)
    return;

  if (IsLoopEntry) {
    // Add the new block to the nearest enclosing loop (and not an adjacent
    // loop). To find this, examine each of the predecessors and determine which
    // loops enclose them, and select the most-nested loop which contains the
    // loop containing the block being split.
    Loop *InnermostPredLoop = nullptr;
    for (BasicBlock *Pred : Preds) {
      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
        // Seek a loop which actually contains the block being split (to avoid
        // adjacent loops).
        while (PredLoop && !PredLoop->contains(OldBB))
          PredLoop = PredLoop->getParentLoop();

        // Select the most-nested of these loops which contains the block.
        if (PredLoop && PredLoop->contains(OldBB) &&
            (!InnermostPredLoop ||
             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
          InnermostPredLoop = PredLoop;
      }
    }

    if (InnermostPredLoop)
      InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
  } else {
    L->addBasicBlockToLoop(NewBB, *LI);
    if (SplitMakesNewLoopHeader)
      L->moveToHeader(NewBB);
  }
}

/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
/// This also updates AliasAnalysis, if available.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
                           ArrayRef<BasicBlock *> Preds, BranchInst *BI,
                           bool HasLoopExit) {
  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    PHINode *PN = cast<PHINode>(I++);

    // Check to see if all of the values coming in are the same.  If so, we
    // don't need to create a new PHI node, unless it's needed for LCSSA.
    Value *InVal = nullptr;
    if (!HasLoopExit) {
      InVal = PN->getIncomingValueForBlock(Preds[0]);
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        if (!PredSet.count(PN->getIncomingBlock(i)))
          continue;
        if (!InVal)
          InVal = PN->getIncomingValue(i);
        else if (InVal != PN->getIncomingValue(i)) {
          InVal = nullptr;
          break;
        }
      }
    }

    if (InVal) {
      // If all incoming values for the new PHI would be the same, just don't
      // make a new PHI.  Instead, just remove the incoming values from the old
      // PHI.

      // NOTE! This loop walks backwards for a reason! First off, this minimizes
      // the cost of removal if we end up removing a large number of values, and
      // second off, this ensures that the indices for the incoming values
      // aren't invalidated when we remove one.
      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
        if (PredSet.count(PN->getIncomingBlock(i)))
          PN->removeIncomingValue(i, false);

      // Add an incoming value to the PHI node in the loop for the preheader
      // edge.
      PN->addIncoming(InVal, NewBB);
      continue;
    }

    // If the values coming into the block are not the same, we need a new
    // PHI.
    // Create the new PHI node, insert it into NewBB at the end of the block
    PHINode *NewPHI =
        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);

    // NOTE! This loop walks backwards for a reason! First off, this minimizes
    // the cost of removal if we end up removing a large number of values, and
    // second off, this ensures that the indices for the incoming values aren't
    // invalidated when we remove one.
    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
      BasicBlock *IncomingBB = PN->getIncomingBlock(i);
      if (PredSet.count(IncomingBB)) {
        Value *V = PN->removeIncomingValue(i, false);
        NewPHI->addIncoming(V, IncomingBB);
      }
    }

    PN->addIncoming(NewPHI, NewBB);
  }
}

BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
                                         ArrayRef<BasicBlock *> Preds,
                                         const char *Suffix, DominatorTree *DT,
                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
                                         bool PreserveLCSSA) {
  // Do not attempt to split that which cannot be split.
  if (!BB->canSplitPredecessors())
    return nullptr;

  // For the landingpads we need to act a bit differently.
  // Delegate this work to the SplitLandingPadPredecessors.
  if (BB->isLandingPad()) {
    SmallVector<BasicBlock*, 2> NewBBs;
    std::string NewName = std::string(Suffix) + ".split-lp";

    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
                                LI, MSSAU, PreserveLCSSA);
    return NewBBs[0];
  }

  // Create new basic block, insert right before the original block.
  BasicBlock *NewBB = BasicBlock::Create(
      BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);

  // The new block unconditionally branches to the old block.
  BranchInst *BI = BranchInst::Create(BB, NewBB);

  Loop *L = nullptr;
  BasicBlock *OldLatch = nullptr;
  // Splitting the predecessors of a loop header creates a preheader block.
  if (LI && LI->isLoopHeader(BB)) {
    L = LI->getLoopFor(BB);
    // Using the loop start line number prevents debuggers stepping into the
    // loop body for this instruction.
    BI->setDebugLoc(L->getStartLoc());

    // If BB is the header of the Loop, it is possible that the loop is
    // modified, such that the current latch does not remain the latch of the
    // loop. If that is the case, the loop metadata from the current latch needs
    // to be applied to the new latch.
    OldLatch = L->getLoopLatch();
  } else
    BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());

  // Move the edges from Preds to point to NewBB instead of BB.
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    // This is slightly more strict than necessary; the minimum requirement
    // is that there be no more than one indirectbr branching to BB. And
    // all BlockAddress uses would need to be updated.
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
           "Cannot split an edge from an IndirectBrInst");
    assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
           "Cannot split an edge from a CallBrInst");
    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
  }

  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
  // node becomes an incoming value for BB's phi node.  However, if the Preds
  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
  // account for the newly created predecessor.
  if (Preds.empty()) {
    // Insert dummy values as the incoming value.
    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
  }

  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
  bool HasLoopExit = false;
  UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
                            HasLoopExit);

  if (!Preds.empty()) {
    // Update the PHI nodes in BB with the values coming from NewBB.
    UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
  }

  if (OldLatch) {
    BasicBlock *NewLatch = L->getLoopLatch();
    if (NewLatch != OldLatch) {
      MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
      NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
      OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
    }
  }

  return NewBB;
}

void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
                                       ArrayRef<BasicBlock *> Preds,
                                       const char *Suffix1, const char *Suffix2,
                                       SmallVectorImpl<BasicBlock *> &NewBBs,
                                       DominatorTree *DT, LoopInfo *LI,
                                       MemorySSAUpdater *MSSAU,
                                       bool PreserveLCSSA) {
  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");

  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
  // it right before the original block.
  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
                                          OrigBB->getName() + Suffix1,
                                          OrigBB->getParent(), OrigBB);
  NewBBs.push_back(NewBB1);

  // The new block unconditionally branches to the old block.
  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
  BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());

  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    // This is slightly more strict than necessary; the minimum requirement
    // is that there be no more than one indirectbr branching to BB. And
    // all BlockAddress uses would need to be updated.
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
           "Cannot split an edge from an IndirectBrInst");
    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
  }

  bool HasLoopExit = false;
  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
                            HasLoopExit);

  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);

  // Move the remaining edges from OrigBB to point to NewBB2.
  SmallVector<BasicBlock*, 8> NewBB2Preds;
  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
       i != e; ) {
    BasicBlock *Pred = *i++;
    if (Pred == NewBB1) continue;
    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
           "Cannot split an edge from an IndirectBrInst");
    NewBB2Preds.push_back(Pred);
    e = pred_end(OrigBB);
  }

  BasicBlock *NewBB2 = nullptr;
  if (!NewBB2Preds.empty()) {
    // Create another basic block for the rest of OrigBB's predecessors.
    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
                                OrigBB->getName() + Suffix2,
                                OrigBB->getParent(), OrigBB);
    NewBBs.push_back(NewBB2);

    // The new block unconditionally branches to the old block.
    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());

    // Move the remaining edges from OrigBB to point to NewBB2.
    for (BasicBlock *NewBB2Pred : NewBB2Preds)
      NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);

    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    HasLoopExit = false;
    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
                              PreserveLCSSA, HasLoopExit);

    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
  }

  LandingPadInst *LPad = OrigBB->getLandingPadInst();
  Instruction *Clone1 = LPad->clone();
  Clone1->setName(Twine("lpad") + Suffix1);
  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);

  if (NewBB2) {
    Instruction *Clone2 = LPad->clone();
    Clone2->setName(Twine("lpad") + Suffix2);
    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);

    // Create a PHI node for the two cloned landingpad instructions only
    // if the original landingpad instruction has some uses.
    if (!LPad->use_empty()) {
      assert(!LPad->getType()->isTokenTy() &&
             "Split cannot be applied if LPad is token type. Otherwise an "
             "invalid PHINode of token type would be created.");
      PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
      PN->addIncoming(Clone1, NewBB1);
      PN->addIncoming(Clone2, NewBB2);
      LPad->replaceAllUsesWith(PN);
    }
    LPad->eraseFromParent();
  } else {
    // There is no second clone. Just replace the landing pad with the first
    // clone.
    LPad->replaceAllUsesWith(Clone1);
    LPad->eraseFromParent();
  }
}

ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
                                             BasicBlock *Pred,
                                             DomTreeUpdater *DTU) {
  Instruction *UncondBranch = Pred->getTerminator();
  // Clone the return and add it to the end of the predecessor.
  Instruction *NewRet = RI->clone();
  Pred->getInstList().push_back(NewRet);

  // If the return instruction returns a value, and if the value was a
  // PHI node in "BB", propagate the right value into the return.
  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
       i != e; ++i) {
    Value *V = *i;
    Instruction *NewBC = nullptr;
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
      // Return value might be bitcasted. Clone and insert it before the
      // return instruction.
      V = BCI->getOperand(0);
      NewBC = BCI->clone();
      Pred->getInstList().insert(NewRet->getIterator(), NewBC);
      *i = NewBC;
    }

    Instruction *NewEV = nullptr;
    if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
      V = EVI->getOperand(0);
      NewEV = EVI->clone();
      if (NewBC) {
        NewBC->setOperand(0, NewEV);
        Pred->getInstList().insert(NewBC->getIterator(), NewEV);
      } else {
        Pred->getInstList().insert(NewRet->getIterator(), NewEV);
        *i = NewEV;
      }
    }

    if (PHINode *PN = dyn_cast<PHINode>(V)) {
      if (PN->getParent() == BB) {
        if (NewEV) {
          NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
        } else if (NewBC)
          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
        else
          *i = PN->getIncomingValueForBlock(Pred);
      }
    }
  }

  // Update any PHI nodes in the returning block to realize that we no
  // longer branch to them.
  BB->removePredecessor(Pred);
  UncondBranch->eraseFromParent();

  if (DTU)
    DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});

  return cast<ReturnInst>(NewRet);
}

Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
                                             Instruction *SplitBefore,
                                             bool Unreachable,
                                             MDNode *BranchWeights,
                                             DominatorTree *DT, LoopInfo *LI,
                                             BasicBlock *ThenBlock) {
  BasicBlock *Head = SplitBefore->getParent();
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
  Instruction *HeadOldTerm = Head->getTerminator();
  LLVMContext &C = Head->getContext();
  Instruction *CheckTerm;
  bool CreateThenBlock = (ThenBlock == nullptr);
  if (CreateThenBlock) {
    ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    if (Unreachable)
      CheckTerm = new UnreachableInst(C, ThenBlock);
    else
      CheckTerm = BranchInst::Create(Tail, ThenBlock);
    CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
  } else
    CheckTerm = ThenBlock->getTerminator();
  BranchInst *HeadNewTerm =
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);

  if (DT) {
    if (DomTreeNode *OldNode = DT->getNode(Head)) {
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());

      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
      for (DomTreeNode *Child : Children)
        DT->changeImmediateDominator(Child, NewNode);

      // Head dominates ThenBlock.
      if (CreateThenBlock)
        DT->addNewBlock(ThenBlock, Head);
      else
        DT->changeImmediateDominator(ThenBlock, Head);
    }
  }

  if (LI) {
    if (Loop *L = LI->getLoopFor(Head)) {
      L->addBasicBlockToLoop(ThenBlock, *LI);
      L->addBasicBlockToLoop(Tail, *LI);
    }
  }

  return CheckTerm;
}

void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
                                         Instruction **ThenTerm,
                                         Instruction **ElseTerm,
                                         MDNode *BranchWeights) {
  BasicBlock *Head = SplitBefore->getParent();
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
  Instruction *HeadOldTerm = Head->getTerminator();
  LLVMContext &C = Head->getContext();
  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
  BranchInst *HeadNewTerm =
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
}

Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
                             BasicBlock *&IfFalse) {
  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
  BasicBlock *Pred1 = nullptr;
  BasicBlock *Pred2 = nullptr;

  if (SomePHI) {
    if (SomePHI->getNumIncomingValues() != 2)
      return nullptr;
    Pred1 = SomePHI->getIncomingBlock(0);
    Pred2 = SomePHI->getIncomingBlock(1);
  } else {
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    if (PI == PE) // No predecessor
      return nullptr;
    Pred1 = *PI++;
    if (PI == PE) // Only one predecessor
      return nullptr;
    Pred2 = *PI++;
    if (PI != PE) // More than two predecessors
      return nullptr;
  }

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
  if (!Pred1Br || !Pred2Br)
    return nullptr;

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return nullptr;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (!Pred2->getSinglePredecessor())
      return nullptr;

    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return nullptr;
    }

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
    return nullptr;

  // Otherwise, if this is a conditional branch, then we can use it!
  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
  if (!BI) return nullptr;

  assert(BI->isConditional() && "Two successors but not conditional?");
  if (BI->getSuccessor(0) == Pred1) {
    IfTrue = Pred1;
    IfFalse = Pred2;
  } else {
    IfTrue = Pred2;
    IfFalse = Pred1;
  }
  return BI->getCondition();
}

// After creating a control flow hub, the operands of PHINodes in an outgoing
// block Out no longer match the predecessors of that block. Predecessors of Out
// that are incoming blocks to the hub are now replaced by just one edge from
// the hub. To match this new control flow, the corresponding values from each
// PHINode must now be moved a new PHINode in the first guard block of the hub.
//
// This operation cannot be performed with SSAUpdater, because it involves one
// new use: If the block Out is in the list of Incoming blocks, then the newly
// created PHI in the Hub will use itself along that edge from Out to Hub.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
                          const SetVector<BasicBlock *> &Incoming,
                          BasicBlock *FirstGuardBlock) {
  auto I = Out->begin();
  while (I != Out->end() && isa<PHINode>(I)) {
    auto Phi = cast<PHINode>(I);
    auto NewPhi =
        PHINode::Create(Phi->getType(), Incoming.size(),
                        Phi->getName() + ".moved", &FirstGuardBlock->back());
    for (auto In : Incoming) {
      Value *V = UndefValue::get(Phi->getType());
      if (In == Out) {
        V = NewPhi;
      } else if (Phi->getBasicBlockIndex(In) != -1) {
        V = Phi->removeIncomingValue(In, false);
      }
      NewPhi->addIncoming(V, In);
    }
    assert(NewPhi->getNumIncomingValues() == Incoming.size());
    if (Phi->getNumOperands() == 0) {
      Phi->replaceAllUsesWith(NewPhi);
      I = Phi->eraseFromParent();
      continue;
    }
    Phi->addIncoming(NewPhi, GuardBlock);
    ++I;
  }
}

using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
using BBSetVector = SetVector<BasicBlock *>;

// Redirects the terminator of the incoming block to the first guard
// block in the hub. The condition of the original terminator (if it
// was conditional) and its original successors are returned as a
// tuple <condition, succ0, succ1>. The function additionally filters
// out successors that are not in the set of outgoing blocks.
//
// - condition is non-null iff the branch is conditional.
// - Succ1 is non-null iff the sole/taken target is an outgoing block.
// - Succ2 is non-null iff condition is non-null and the fallthrough
//         target is an outgoing block.
static std::tuple<Value *, BasicBlock *, BasicBlock *>
redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
              const BBSetVector &Outgoing) {
  auto Branch = cast<BranchInst>(BB->getTerminator());
  auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;

  BasicBlock *Succ0 = Branch->getSuccessor(0);
  BasicBlock *Succ1 = nullptr;
  Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;

  if (Branch->isUnconditional()) {
    Branch->setSuccessor(0, FirstGuardBlock);
    assert(Succ0);
  } else {
    Succ1 = Branch->getSuccessor(1);
    Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
    assert(Succ0 || Succ1);
    if (Succ0 && !Succ1) {
      Branch->setSuccessor(0, FirstGuardBlock);
    } else if (Succ1 && !Succ0) {
      Branch->setSuccessor(1, FirstGuardBlock);
    } else {
      Branch->eraseFromParent();
      BranchInst::Create(FirstGuardBlock, BB);
    }
  }

  assert(Succ0 || Succ1);
  return std::make_tuple(Condition, Succ0, Succ1);
}

// Capture the existing control flow as guard predicates, and redirect
// control flow from every incoming block to the first guard block in
// the hub.
//
// There is one guard predicate for each outgoing block OutBB. The
// predicate is a PHINode with one input for each InBB which
// represents whether the hub should transfer control flow to OutBB if
// it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
// evaluates them in the same order as the Outgoing set-vector, and
// control branches to the first outgoing block whose predicate
// evaluates to true.
static void convertToGuardPredicates(
    BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
    SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
    const BBSetVector &Outgoing) {
  auto &Context = Incoming.front()->getContext();
  auto BoolTrue = ConstantInt::getTrue(Context);
  auto BoolFalse = ConstantInt::getFalse(Context);

  // The predicate for the last outgoing is trivially true, and so we
  // process only the first N-1 successors.
  for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
    auto Out = Outgoing[i];
    LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
    auto Phi =
        PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
                        StringRef("Guard.") + Out->getName(), FirstGuardBlock);
    GuardPredicates[Out] = Phi;
  }

  for (auto In : Incoming) {
    Value *Condition;
    BasicBlock *Succ0;
    BasicBlock *Succ1;
    std::tie(Condition, Succ0, Succ1) =
        redirectToHub(In, FirstGuardBlock, Outgoing);

    // Optimization: Consider an incoming block A with both successors
    // Succ0 and Succ1 in the set of outgoing blocks. The predicates
    // for Succ0 and Succ1 complement each other. If Succ0 is visited
    // first in the loop below, control will branch to Succ0 using the
    // corresponding predicate. But if that branch is not taken, then
    // control must reach Succ1, which means that the predicate for
    // Succ1 is always true.
    bool OneSuccessorDone = false;
    for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
      auto Out = Outgoing[i];
      auto Phi = GuardPredicates[Out];
      if (Out != Succ0 && Out != Succ1) {
        Phi->addIncoming(BoolFalse, In);
        continue;
      }
      // Optimization: When only one successor is an outgoing block,
      // the predicate is always true.
      if (!Succ0 || !Succ1 || OneSuccessorDone) {
        Phi->addIncoming(BoolTrue, In);
        continue;
      }
      assert(Succ0 && Succ1);
      OneSuccessorDone = true;
      if (Out == Succ0) {
        Phi->addIncoming(Condition, In);
        continue;
      }
      auto Inverted = invertCondition(Condition);
      DeletionCandidates.push_back(Condition);
      Phi->addIncoming(Inverted, In);
    }
  }
}

// For each outgoing block OutBB, create a guard block in the Hub. The
// first guard block was already created outside, and available as the
// first element in the vector of guard blocks.
//
// Each guard block terminates in a conditional branch that transfers
// control to the corresponding outgoing block or the next guard
// block. The last guard block has two outgoing blocks as successors
// since the condition for the final outgoing block is trivially
// true. So we create one less block (including the first guard block)
// than the number of outgoing blocks.
static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
                              Function *F, const BBSetVector &Outgoing,
                              BBPredicates &GuardPredicates, StringRef Prefix) {
  for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
    GuardBlocks.push_back(
        BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
  }
  assert(GuardBlocks.size() == GuardPredicates.size());

  // To help keep the loop simple, temporarily append the last
  // outgoing block to the list of guard blocks.
  GuardBlocks.push_back(Outgoing.back());

  for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
    auto Out = Outgoing[i];
    assert(GuardPredicates.count(Out));
    BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
                       GuardBlocks[i]);
  }

  // Remove the last block from the guard list.
  GuardBlocks.pop_back();
}

BasicBlock *llvm::CreateControlFlowHub(
    DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
    const BBSetVector &Incoming, const BBSetVector &Outgoing,
    const StringRef Prefix) {
  auto F = Incoming.front()->getParent();
  auto FirstGuardBlock =
      BasicBlock::Create(F->getContext(), Prefix + ".guard", F);

  SmallVector<DominatorTree::UpdateType, 16> Updates;
  if (DTU) {
    for (auto In : Incoming) {
      for (auto Succ : successors(In)) {
        if (Outgoing.count(Succ))
          Updates.push_back({DominatorTree::Delete, In, Succ});
      }
      Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
    }
  }

  BBPredicates GuardPredicates;
  SmallVector<WeakVH, 8> DeletionCandidates;
  convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
                           Incoming, Outgoing);

  GuardBlocks.push_back(FirstGuardBlock);
  createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);

  // Update the PHINodes in each outgoing block to match the new control flow.
  for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
    reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
  }
  reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);

  if (DTU) {
    int NumGuards = GuardBlocks.size();
    assert((int)Outgoing.size() == NumGuards + 1);
    for (int i = 0; i != NumGuards - 1; ++i) {
      Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
      Updates.push_back(
          {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
    }
    Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
                       Outgoing[NumGuards - 1]});
    Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
                       Outgoing[NumGuards]});
    DTU->applyUpdates(Updates);
  }

  for (auto I : DeletionCandidates) {
    if (I->use_empty())
      if (auto Inst = dyn_cast_or_null<Instruction>(I))
        Inst->eraseFromParent();
  }

  return FirstGuardBlock;
}