BreakCriticalEdges.cpp
19 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, the structure type is
// forward declared. This pass obviously invalidates the CFG, but can update
// dominator trees.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
#define DEBUG_TYPE "break-crit-edges"
STATISTIC(NumBroken, "Number of blocks inserted");
namespace {
struct BreakCriticalEdges : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges() : FunctionPass(ID) {
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
unsigned N =
SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
NumBroken += N;
return N > 0;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// No loop canonicalization guarantees are broken by this pass.
AU.addPreservedID(LoopSimplifyID);
}
};
}
char BreakCriticalEdges::ID = 0;
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
"Break critical edges in CFG", false, false)
// Publicly exposed interface to pass...
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
FunctionPass *llvm::createBreakCriticalEdgesPass() {
return new BreakCriticalEdges();
}
PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
NumBroken += N;
if (N == 0)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
return PA;
}
//===----------------------------------------------------------------------===//
// Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//
/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
/// exit block. This function inserts the new PHIs, as needed. Preds is a list
/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
/// the old loop exit, now the successor of SplitBB.
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
BasicBlock *SplitBB,
BasicBlock *DestBB) {
// SplitBB shouldn't have anything non-trivial in it yet.
assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
// For each PHI in the destination block.
for (PHINode &PN : DestBB->phis()) {
unsigned Idx = PN.getBasicBlockIndex(SplitBB);
Value *V = PN.getIncomingValue(Idx);
// If the input is a PHI which already satisfies LCSSA, don't create
// a new one.
if (const PHINode *VP = dyn_cast<PHINode>(V))
if (VP->getParent() == SplitBB)
continue;
// Otherwise a new PHI is needed. Create one and populate it.
PHINode *NewPN = PHINode::Create(
PN.getType(), Preds.size(), "split",
SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
NewPN->addIncoming(V, Preds[i]);
// Update the original PHI.
PN.setIncomingValue(Idx, NewPN);
}
}
BasicBlock *
llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
const CriticalEdgeSplittingOptions &Options) {
if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
return nullptr;
assert(!isa<IndirectBrInst>(TI) &&
"Cannot split critical edge from IndirectBrInst");
BasicBlock *TIBB = TI->getParent();
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
// Splitting the critical edge to a pad block is non-trivial. Don't do
// it in this generic function.
if (DestBB->isEHPad()) return nullptr;
if (Options.IgnoreUnreachableDests &&
isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
return nullptr;
auto *LI = Options.LI;
SmallVector<BasicBlock *, 4> LoopPreds;
// Check if extra modifications will be required to preserve loop-simplify
// form after splitting. If it would require splitting blocks with IndirectBr
// terminators, bail out if preserving loop-simplify form is requested.
if (LI) {
if (Loop *TIL = LI->getLoopFor(TIBB)) {
// The only that we can break LoopSimplify form by splitting a critical
// edge is if after the split there exists some edge from TIL to DestBB
// *and* the only edge into DestBB from outside of TIL is that of
// NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
// is the new exit block and it has no non-loop predecessors. If the
// second isn't true, then DestBB was not in LoopSimplify form prior to
// the split as it had a non-loop predecessor. In both of these cases,
// the predecessor must be directly in TIL, not in a subloop, or again
// LoopSimplify doesn't hold.
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
++I) {
BasicBlock *P = *I;
if (P == TIBB)
continue; // The new block is known.
if (LI->getLoopFor(P) != TIL) {
// No need to re-simplify, it wasn't to start with.
LoopPreds.clear();
break;
}
LoopPreds.push_back(P);
}
// Loop-simplify form can be preserved, if we can split all in-loop
// predecessors.
if (any_of(LoopPreds, [](BasicBlock *Pred) {
return isa<IndirectBrInst>(Pred->getTerminator());
})) {
if (Options.PreserveLoopSimplify)
return nullptr;
LoopPreds.clear();
}
}
}
// Create a new basic block, linking it into the CFG.
BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
// Create our unconditional branch.
BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
NewBI->setDebugLoc(TI->getDebugLoc());
// Insert the block into the function... right after the block TI lives in.
Function &F = *TIBB->getParent();
Function::iterator FBBI = TIBB->getIterator();
F.getBasicBlockList().insert(++FBBI, NewBB);
// Branch to the new block, breaking the edge.
TI->setSuccessor(SuccNum, NewBB);
// If there are any PHI nodes in DestBB, we need to update them so that they
// merge incoming values from NewBB instead of from TIBB.
{
unsigned BBIdx = 0;
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
// We no longer enter through TIBB, now we come in through NewBB.
// Revector exactly one entry in the PHI node that used to come from
// TIBB to come from NewBB.
PHINode *PN = cast<PHINode>(I);
// Reuse the previous value of BBIdx if it lines up. In cases where we
// have multiple phi nodes with *lots* of predecessors, this is a speed
// win because we don't have to scan the PHI looking for TIBB. This
// happens because the BB list of PHI nodes are usually in the same
// order.
if (PN->getIncomingBlock(BBIdx) != TIBB)
BBIdx = PN->getBasicBlockIndex(TIBB);
PN->setIncomingBlock(BBIdx, NewBB);
}
}
// If there are any other edges from TIBB to DestBB, update those to go
// through the split block, making those edges non-critical as well (and
// reducing the number of phi entries in the DestBB if relevant).
if (Options.MergeIdenticalEdges) {
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
if (TI->getSuccessor(i) != DestBB) continue;
// Remove an entry for TIBB from DestBB phi nodes.
DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
// We found another edge to DestBB, go to NewBB instead.
TI->setSuccessor(i, NewBB);
}
}
// If we have nothing to update, just return.
auto *DT = Options.DT;
auto *PDT = Options.PDT;
auto *MSSAU = Options.MSSAU;
if (MSSAU)
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
if (!DT && !PDT && !LI)
return NewBB;
if (DT || PDT) {
// Update the DominatorTree.
// ---> NewBB -----\
// / V
// TIBB -------\\------> DestBB
//
// First, inform the DT about the new path from TIBB to DestBB via NewBB,
// then delete the old edge from TIBB to DestBB. By doing this in that order
// DestBB stays reachable in the DT the whole time and its subtree doesn't
// get disconnected.
SmallVector<DominatorTree::UpdateType, 3> Updates;
Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
if (DT)
DT->applyUpdates(Updates);
if (PDT)
PDT->applyUpdates(Updates);
}
// Update LoopInfo if it is around.
if (LI) {
if (Loop *TIL = LI->getLoopFor(TIBB)) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
DestLoop->addBasicBlockToLoop(NewBB, *LI);
} else if (TIL->contains(DestLoop)) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NewBB, *LI);
} else if (DestLoop->contains(TIL)) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NewBB, *LI);
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
// header of its loop (adding a branch into a loop elsewhere would
// create an irreducible loop).
assert(DestLoop->getHeader() == DestBB &&
"Should not create irreducible loops!");
if (Loop *P = DestLoop->getParentLoop())
P->addBasicBlockToLoop(NewBB, *LI);
}
}
// If TIBB is in a loop and DestBB is outside of that loop, we may need
// to update LoopSimplify form and LCSSA form.
if (!TIL->contains(DestBB)) {
assert(!TIL->contains(NewBB) &&
"Split point for loop exit is contained in loop!");
// Update LCSSA form in the newly created exit block.
if (Options.PreserveLCSSA) {
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
}
if (!LoopPreds.empty()) {
assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
BasicBlock *NewExitBB = SplitBlockPredecessors(
DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
if (Options.PreserveLCSSA)
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
}
}
}
}
return NewBB;
}
// Return the unique indirectbr predecessor of a block. This may return null
// even if such a predecessor exists, if it's not useful for splitting.
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
// predecessors of BB.
static BasicBlock *
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
// If the block doesn't have any PHIs, we don't care about it, since there's
// no point in splitting it.
PHINode *PN = dyn_cast<PHINode>(BB->begin());
if (!PN)
return nullptr;
// Verify we have exactly one IBR predecessor.
// Conservatively bail out if one of the other predecessors is not a "regular"
// terminator (that is, not a switch or a br).
BasicBlock *IBB = nullptr;
for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
BasicBlock *PredBB = PN->getIncomingBlock(Pred);
Instruction *PredTerm = PredBB->getTerminator();
switch (PredTerm->getOpcode()) {
case Instruction::IndirectBr:
if (IBB)
return nullptr;
IBB = PredBB;
break;
case Instruction::Br:
case Instruction::Switch:
OtherPreds.push_back(PredBB);
continue;
default:
return nullptr;
}
}
return IBB;
}
bool llvm::SplitIndirectBrCriticalEdges(Function &F,
BranchProbabilityInfo *BPI,
BlockFrequencyInfo *BFI) {
// Check whether the function has any indirectbrs, and collect which blocks
// they may jump to. Since most functions don't have indirect branches,
// this lowers the common case's overhead to O(Blocks) instead of O(Edges).
SmallSetVector<BasicBlock *, 16> Targets;
for (auto &BB : F) {
auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
if (!IBI)
continue;
for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
Targets.insert(IBI->getSuccessor(Succ));
}
if (Targets.empty())
return false;
bool ShouldUpdateAnalysis = BPI && BFI;
bool Changed = false;
for (BasicBlock *Target : Targets) {
SmallVector<BasicBlock *, 16> OtherPreds;
BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
// If we did not found an indirectbr, or the indirectbr is the only
// incoming edge, this isn't the kind of edge we're looking for.
if (!IBRPred || OtherPreds.empty())
continue;
// Don't even think about ehpads/landingpads.
Instruction *FirstNonPHI = Target->getFirstNonPHI();
if (FirstNonPHI->isEHPad() || Target->isLandingPad())
continue;
// Remember edge probabilities if needed.
SmallVector<BranchProbability, 4> EdgeProbabilities;
if (ShouldUpdateAnalysis) {
EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
I < E; ++I)
EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
BPI->eraseBlock(Target);
}
BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
if (ShouldUpdateAnalysis) {
// Copy the BFI/BPI from Target to BodyBlock.
BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
}
// It's possible Target was its own successor through an indirectbr.
// In this case, the indirectbr now comes from BodyBlock.
if (IBRPred == Target)
IBRPred = BodyBlock;
// At this point Target only has PHIs, and BodyBlock has the rest of the
// block's body. Create a copy of Target that will be used by the "direct"
// preds.
ValueToValueMapTy VMap;
BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
BlockFrequency BlockFreqForDirectSucc;
for (BasicBlock *Pred : OtherPreds) {
// If the target is a loop to itself, then the terminator of the split
// block (BodyBlock) needs to be updated.
BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
if (ShouldUpdateAnalysis)
BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
BPI->getEdgeProbability(Src, DirectSucc);
}
if (ShouldUpdateAnalysis) {
BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
BlockFrequency NewBlockFreqForTarget =
BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
}
// Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
// they are clones, so the number of PHIs are the same.
// (a) Remove the edge coming from IBRPred from the "Direct" PHI
// (b) Leave that as the only edge in the "Indirect" PHI.
// (c) Merge the two in the body block.
BasicBlock::iterator Indirect = Target->begin(),
End = Target->getFirstNonPHI()->getIterator();
BasicBlock::iterator Direct = DirectSucc->begin();
BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
assert(&*End == Target->getTerminator() &&
"Block was expected to only contain PHIs");
while (Indirect != End) {
PHINode *DirPHI = cast<PHINode>(Direct);
PHINode *IndPHI = cast<PHINode>(Indirect);
// Now, clean up - the direct block shouldn't get the indirect value,
// and vice versa.
DirPHI->removeIncomingValue(IBRPred);
Direct++;
// Advance the pointer here, to avoid invalidation issues when the old
// PHI is erased.
Indirect++;
PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
IBRPred);
// Create a PHI in the body block, to merge the direct and indirect
// predecessors.
PHINode *MergePHI =
PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
MergePHI->addIncoming(NewIndPHI, Target);
MergePHI->addIncoming(DirPHI, DirectSucc);
IndPHI->replaceAllUsesWith(MergePHI);
IndPHI->eraseFromParent();
}
Changed = true;
}
return Changed;
}