BreakCriticalEdges.cpp 19 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block.  This pass may be "required" by passes that
// cannot deal with critical edges.  For this usage, the structure type is
// forward declared.  This pass obviously invalidates the CFG, but can update
// dominator trees.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;

#define DEBUG_TYPE "break-crit-edges"

STATISTIC(NumBroken, "Number of blocks inserted");

namespace {
  struct BreakCriticalEdges : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    BreakCriticalEdges() : FunctionPass(ID) {
      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override {
      auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
      auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;

      auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
      auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;

      auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
      auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
      unsigned N =
          SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
      NumBroken += N;
      return N > 0;
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<LoopInfoWrapperPass>();

      // No loop canonicalization guarantees are broken by this pass.
      AU.addPreservedID(LoopSimplifyID);
    }
  };
}

char BreakCriticalEdges::ID = 0;
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
                "Break critical edges in CFG", false, false)

// Publicly exposed interface to pass...
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
FunctionPass *llvm::createBreakCriticalEdgesPass() {
  return new BreakCriticalEdges();
}

PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
                                              FunctionAnalysisManager &AM) {
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
  unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
  NumBroken += N;
  if (N == 0)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LoopAnalysis>();
  return PA;
}

//===----------------------------------------------------------------------===//
//    Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//

/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
/// exit block. This function inserts the new PHIs, as needed. Preds is a list
/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
/// the old loop exit, now the successor of SplitBB.
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
                                       BasicBlock *SplitBB,
                                       BasicBlock *DestBB) {
  // SplitBB shouldn't have anything non-trivial in it yet.
  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");

  // For each PHI in the destination block.
  for (PHINode &PN : DestBB->phis()) {
    unsigned Idx = PN.getBasicBlockIndex(SplitBB);
    Value *V = PN.getIncomingValue(Idx);

    // If the input is a PHI which already satisfies LCSSA, don't create
    // a new one.
    if (const PHINode *VP = dyn_cast<PHINode>(V))
      if (VP->getParent() == SplitBB)
        continue;

    // Otherwise a new PHI is needed. Create one and populate it.
    PHINode *NewPN = PHINode::Create(
        PN.getType(), Preds.size(), "split",
        SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
      NewPN->addIncoming(V, Preds[i]);

    // Update the original PHI.
    PN.setIncomingValue(Idx, NewPN);
  }
}

BasicBlock *
llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
                        const CriticalEdgeSplittingOptions &Options) {
  if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
    return nullptr;

  assert(!isa<IndirectBrInst>(TI) &&
         "Cannot split critical edge from IndirectBrInst");

  BasicBlock *TIBB = TI->getParent();
  BasicBlock *DestBB = TI->getSuccessor(SuccNum);

  // Splitting the critical edge to a pad block is non-trivial. Don't do
  // it in this generic function.
  if (DestBB->isEHPad()) return nullptr;

  if (Options.IgnoreUnreachableDests &&
      isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
    return nullptr;

  auto *LI = Options.LI;
  SmallVector<BasicBlock *, 4> LoopPreds;
  // Check if extra modifications will be required to preserve loop-simplify
  // form after splitting. If it would require splitting blocks with IndirectBr
  // terminators, bail out if preserving loop-simplify form is requested.
  if (LI) {
    if (Loop *TIL = LI->getLoopFor(TIBB)) {

      // The only that we can break LoopSimplify form by splitting a critical
      // edge is if after the split there exists some edge from TIL to DestBB
      // *and* the only edge into DestBB from outside of TIL is that of
      // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
      // is the new exit block and it has no non-loop predecessors. If the
      // second isn't true, then DestBB was not in LoopSimplify form prior to
      // the split as it had a non-loop predecessor. In both of these cases,
      // the predecessor must be directly in TIL, not in a subloop, or again
      // LoopSimplify doesn't hold.
      for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
           ++I) {
        BasicBlock *P = *I;
        if (P == TIBB)
          continue; // The new block is known.
        if (LI->getLoopFor(P) != TIL) {
          // No need to re-simplify, it wasn't to start with.
          LoopPreds.clear();
          break;
        }
        LoopPreds.push_back(P);
      }
      // Loop-simplify form can be preserved, if we can split all in-loop
      // predecessors.
      if (any_of(LoopPreds, [](BasicBlock *Pred) {
            return isa<IndirectBrInst>(Pred->getTerminator());
          })) {
        if (Options.PreserveLoopSimplify)
          return nullptr;
        LoopPreds.clear();
      }
    }
  }

  // Create a new basic block, linking it into the CFG.
  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
  // Create our unconditional branch.
  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
  NewBI->setDebugLoc(TI->getDebugLoc());

  // Insert the block into the function... right after the block TI lives in.
  Function &F = *TIBB->getParent();
  Function::iterator FBBI = TIBB->getIterator();
  F.getBasicBlockList().insert(++FBBI, NewBB);

  // Branch to the new block, breaking the edge.
  TI->setSuccessor(SuccNum, NewBB);

  // If there are any PHI nodes in DestBB, we need to update them so that they
  // merge incoming values from NewBB instead of from TIBB.
  {
    unsigned BBIdx = 0;
    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
      // We no longer enter through TIBB, now we come in through NewBB.
      // Revector exactly one entry in the PHI node that used to come from
      // TIBB to come from NewBB.
      PHINode *PN = cast<PHINode>(I);

      // Reuse the previous value of BBIdx if it lines up.  In cases where we
      // have multiple phi nodes with *lots* of predecessors, this is a speed
      // win because we don't have to scan the PHI looking for TIBB.  This
      // happens because the BB list of PHI nodes are usually in the same
      // order.
      if (PN->getIncomingBlock(BBIdx) != TIBB)
        BBIdx = PN->getBasicBlockIndex(TIBB);
      PN->setIncomingBlock(BBIdx, NewBB);
    }
  }

  // If there are any other edges from TIBB to DestBB, update those to go
  // through the split block, making those edges non-critical as well (and
  // reducing the number of phi entries in the DestBB if relevant).
  if (Options.MergeIdenticalEdges) {
    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
      if (TI->getSuccessor(i) != DestBB) continue;

      // Remove an entry for TIBB from DestBB phi nodes.
      DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);

      // We found another edge to DestBB, go to NewBB instead.
      TI->setSuccessor(i, NewBB);
    }
  }

  // If we have nothing to update, just return.
  auto *DT = Options.DT;
  auto *PDT = Options.PDT;
  auto *MSSAU = Options.MSSAU;
  if (MSSAU)
    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
        DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);

  if (!DT && !PDT && !LI)
    return NewBB;

  if (DT || PDT) {
    // Update the DominatorTree.
    //       ---> NewBB -----\
    //      /                 V
    //  TIBB -------\\------> DestBB
    //
    // First, inform the DT about the new path from TIBB to DestBB via NewBB,
    // then delete the old edge from TIBB to DestBB. By doing this in that order
    // DestBB stays reachable in the DT the whole time and its subtree doesn't
    // get disconnected.
    SmallVector<DominatorTree::UpdateType, 3> Updates;
    Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
    Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
    if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
      Updates.push_back({DominatorTree::Delete, TIBB, DestBB});

    if (DT)
      DT->applyUpdates(Updates);
    if (PDT)
      PDT->applyUpdates(Updates);
  }

  // Update LoopInfo if it is around.
  if (LI) {
    if (Loop *TIL = LI->getLoopFor(TIBB)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NewBB joins loop.
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NewBB, *LI);
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == DestBB &&
                 "Should not create irreducible loops!");
          if (Loop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NewBB, *LI);
        }
      }

      // If TIBB is in a loop and DestBB is outside of that loop, we may need
      // to update LoopSimplify form and LCSSA form.
      if (!TIL->contains(DestBB)) {
        assert(!TIL->contains(NewBB) &&
               "Split point for loop exit is contained in loop!");

        // Update LCSSA form in the newly created exit block.
        if (Options.PreserveLCSSA) {
          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
        }

        if (!LoopPreds.empty()) {
          assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
          BasicBlock *NewExitBB = SplitBlockPredecessors(
              DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
          if (Options.PreserveLCSSA)
            createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
        }
      }
    }
  }

  return NewBB;
}

// Return the unique indirectbr predecessor of a block. This may return null
// even if such a predecessor exists, if it's not useful for splitting.
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
// predecessors of BB.
static BasicBlock *
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
  // If the block doesn't have any PHIs, we don't care about it, since there's
  // no point in splitting it.
  PHINode *PN = dyn_cast<PHINode>(BB->begin());
  if (!PN)
    return nullptr;

  // Verify we have exactly one IBR predecessor.
  // Conservatively bail out if one of the other predecessors is not a "regular"
  // terminator (that is, not a switch or a br).
  BasicBlock *IBB = nullptr;
  for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
    BasicBlock *PredBB = PN->getIncomingBlock(Pred);
    Instruction *PredTerm = PredBB->getTerminator();
    switch (PredTerm->getOpcode()) {
    case Instruction::IndirectBr:
      if (IBB)
        return nullptr;
      IBB = PredBB;
      break;
    case Instruction::Br:
    case Instruction::Switch:
      OtherPreds.push_back(PredBB);
      continue;
    default:
      return nullptr;
    }
  }

  return IBB;
}

bool llvm::SplitIndirectBrCriticalEdges(Function &F,
                                        BranchProbabilityInfo *BPI,
                                        BlockFrequencyInfo *BFI) {
  // Check whether the function has any indirectbrs, and collect which blocks
  // they may jump to. Since most functions don't have indirect branches,
  // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
  SmallSetVector<BasicBlock *, 16> Targets;
  for (auto &BB : F) {
    auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
    if (!IBI)
      continue;

    for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
      Targets.insert(IBI->getSuccessor(Succ));
  }

  if (Targets.empty())
    return false;

  bool ShouldUpdateAnalysis = BPI && BFI;
  bool Changed = false;
  for (BasicBlock *Target : Targets) {
    SmallVector<BasicBlock *, 16> OtherPreds;
    BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
    // If we did not found an indirectbr, or the indirectbr is the only
    // incoming edge, this isn't the kind of edge we're looking for.
    if (!IBRPred || OtherPreds.empty())
      continue;

    // Don't even think about ehpads/landingpads.
    Instruction *FirstNonPHI = Target->getFirstNonPHI();
    if (FirstNonPHI->isEHPad() || Target->isLandingPad())
      continue;

    // Remember edge probabilities if needed.
    SmallVector<BranchProbability, 4> EdgeProbabilities;
    if (ShouldUpdateAnalysis) {
      EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
      for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
           I < E; ++I)
        EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
      BPI->eraseBlock(Target);
    }

    BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
    if (ShouldUpdateAnalysis) {
      // Copy the BFI/BPI from Target to BodyBlock.
      BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
      BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
    }
    // It's possible Target was its own successor through an indirectbr.
    // In this case, the indirectbr now comes from BodyBlock.
    if (IBRPred == Target)
      IBRPred = BodyBlock;

    // At this point Target only has PHIs, and BodyBlock has the rest of the
    // block's body. Create a copy of Target that will be used by the "direct"
    // preds.
    ValueToValueMapTy VMap;
    BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);

    BlockFrequency BlockFreqForDirectSucc;
    for (BasicBlock *Pred : OtherPreds) {
      // If the target is a loop to itself, then the terminator of the split
      // block (BodyBlock) needs to be updated.
      BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
      Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
      if (ShouldUpdateAnalysis)
        BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
            BPI->getEdgeProbability(Src, DirectSucc);
    }
    if (ShouldUpdateAnalysis) {
      BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
      BlockFrequency NewBlockFreqForTarget =
          BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
      BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
    }

    // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
    // they are clones, so the number of PHIs are the same.
    // (a) Remove the edge coming from IBRPred from the "Direct" PHI
    // (b) Leave that as the only edge in the "Indirect" PHI.
    // (c) Merge the two in the body block.
    BasicBlock::iterator Indirect = Target->begin(),
                         End = Target->getFirstNonPHI()->getIterator();
    BasicBlock::iterator Direct = DirectSucc->begin();
    BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();

    assert(&*End == Target->getTerminator() &&
           "Block was expected to only contain PHIs");

    while (Indirect != End) {
      PHINode *DirPHI = cast<PHINode>(Direct);
      PHINode *IndPHI = cast<PHINode>(Indirect);

      // Now, clean up - the direct block shouldn't get the indirect value,
      // and vice versa.
      DirPHI->removeIncomingValue(IBRPred);
      Direct++;

      // Advance the pointer here, to avoid invalidation issues when the old
      // PHI is erased.
      Indirect++;

      PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
      NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
                             IBRPred);

      // Create a PHI in the body block, to merge the direct and indirect
      // predecessors.
      PHINode *MergePHI =
          PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
      MergePHI->addIncoming(NewIndPHI, Target);
      MergePHI->addIncoming(DirPHI, DirectSucc);

      IndPHI->replaceAllUsesWith(MergePHI);
      IndPHI->eraseFromParent();
    }

    Changed = true;
  }

  return Changed;
}