BypassSlowDivision.cpp 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
//===- BypassSlowDivision.cpp - Bypass slow division ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains an optimization for div and rem on architectures that
// execute short instructions significantly faster than longer instructions.
// For example, on Intel Atom 32-bit divides are slow enough that during
// runtime it is profitable to check the value of the operands, and if they are
// positive and less than 256 use an unsigned 8-bit divide.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/KnownBits.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "bypass-slow-division"

namespace {

  struct QuotRemPair {
    Value *Quotient;
    Value *Remainder;

    QuotRemPair(Value *InQuotient, Value *InRemainder)
        : Quotient(InQuotient), Remainder(InRemainder) {}
  };

  /// A quotient and remainder, plus a BB from which they logically "originate".
  /// If you use Quotient or Remainder in a Phi node, you should use BB as its
  /// corresponding predecessor.
  struct QuotRemWithBB {
    BasicBlock *BB = nullptr;
    Value *Quotient = nullptr;
    Value *Remainder = nullptr;
  };

using DivCacheTy = DenseMap<DivRemMapKey, QuotRemPair>;
using BypassWidthsTy = DenseMap<unsigned, unsigned>;
using VisitedSetTy = SmallPtrSet<Instruction *, 4>;

enum ValueRange {
  /// Operand definitely fits into BypassType. No runtime checks are needed.
  VALRNG_KNOWN_SHORT,
  /// A runtime check is required, as value range is unknown.
  VALRNG_UNKNOWN,
  /// Operand is unlikely to fit into BypassType. The bypassing should be
  /// disabled.
  VALRNG_LIKELY_LONG
};

class FastDivInsertionTask {
  bool IsValidTask = false;
  Instruction *SlowDivOrRem = nullptr;
  IntegerType *BypassType = nullptr;
  BasicBlock *MainBB = nullptr;

  bool isHashLikeValue(Value *V, VisitedSetTy &Visited);
  ValueRange getValueRange(Value *Op, VisitedSetTy &Visited);
  QuotRemWithBB createSlowBB(BasicBlock *Successor);
  QuotRemWithBB createFastBB(BasicBlock *Successor);
  QuotRemPair createDivRemPhiNodes(QuotRemWithBB &LHS, QuotRemWithBB &RHS,
                                   BasicBlock *PhiBB);
  Value *insertOperandRuntimeCheck(Value *Op1, Value *Op2);
  Optional<QuotRemPair> insertFastDivAndRem();

  bool isSignedOp() {
    return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
           SlowDivOrRem->getOpcode() == Instruction::SRem;
  }

  bool isDivisionOp() {
    return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
           SlowDivOrRem->getOpcode() == Instruction::UDiv;
  }

  Type *getSlowType() { return SlowDivOrRem->getType(); }

public:
  FastDivInsertionTask(Instruction *I, const BypassWidthsTy &BypassWidths);

  Value *getReplacement(DivCacheTy &Cache);
};

} // end anonymous namespace

FastDivInsertionTask::FastDivInsertionTask(Instruction *I,
                                           const BypassWidthsTy &BypassWidths) {
  switch (I->getOpcode()) {
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
    SlowDivOrRem = I;
    break;
  default:
    // I is not a div/rem operation.
    return;
  }

  // Skip division on vector types. Only optimize integer instructions.
  IntegerType *SlowType = dyn_cast<IntegerType>(SlowDivOrRem->getType());
  if (!SlowType)
    return;

  // Skip if this bitwidth is not bypassed.
  auto BI = BypassWidths.find(SlowType->getBitWidth());
  if (BI == BypassWidths.end())
    return;

  // Get type for div/rem instruction with bypass bitwidth.
  IntegerType *BT = IntegerType::get(I->getContext(), BI->second);
  BypassType = BT;

  // The original basic block.
  MainBB = I->getParent();

  // The instruction is indeed a slow div or rem operation.
  IsValidTask = true;
}

/// Reuses previously-computed dividend or remainder from the current BB if
/// operands and operation are identical. Otherwise calls insertFastDivAndRem to
/// perform the optimization and caches the resulting dividend and remainder.
/// If no replacement can be generated, nullptr is returned.
Value *FastDivInsertionTask::getReplacement(DivCacheTy &Cache) {
  // First, make sure that the task is valid.
  if (!IsValidTask)
    return nullptr;

  // Then, look for a value in Cache.
  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);
  DivRemMapKey Key(isSignedOp(), Dividend, Divisor);
  auto CacheI = Cache.find(Key);

  if (CacheI == Cache.end()) {
    // If previous instance does not exist, try to insert fast div.
    Optional<QuotRemPair> OptResult = insertFastDivAndRem();
    // Bail out if insertFastDivAndRem has failed.
    if (!OptResult)
      return nullptr;
    CacheI = Cache.insert({Key, *OptResult}).first;
  }

  QuotRemPair &Value = CacheI->second;
  return isDivisionOp() ? Value.Quotient : Value.Remainder;
}

/// Check if a value looks like a hash.
///
/// The routine is expected to detect values computed using the most common hash
/// algorithms. Typically, hash computations end with one of the following
/// instructions:
///
/// 1) MUL with a constant wider than BypassType
/// 2) XOR instruction
///
/// And even if we are wrong and the value is not a hash, it is still quite
/// unlikely that such values will fit into BypassType.
///
/// To detect string hash algorithms like FNV we have to look through PHI-nodes.
/// It is implemented as a depth-first search for values that look neither long
/// nor hash-like.
bool FastDivInsertionTask::isHashLikeValue(Value *V, VisitedSetTy &Visited) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  switch (I->getOpcode()) {
  case Instruction::Xor:
    return true;
  case Instruction::Mul: {
    // After Constant Hoisting pass, long constants may be represented as
    // bitcast instructions. As a result, some constants may look like an
    // instruction at first, and an additional check is necessary to find out if
    // an operand is actually a constant.
    Value *Op1 = I->getOperand(1);
    ConstantInt *C = dyn_cast<ConstantInt>(Op1);
    if (!C && isa<BitCastInst>(Op1))
      C = dyn_cast<ConstantInt>(cast<BitCastInst>(Op1)->getOperand(0));
    return C && C->getValue().getMinSignedBits() > BypassType->getBitWidth();
  }
  case Instruction::PHI:
    // Stop IR traversal in case of a crazy input code. This limits recursion
    // depth.
    if (Visited.size() >= 16)
      return false;
    // Do not visit nodes that have been visited already. We return true because
    // it means that we couldn't find any value that doesn't look hash-like.
    if (!Visited.insert(I).second)
      return true;
    return llvm::all_of(cast<PHINode>(I)->incoming_values(), [&](Value *V) {
      // Ignore undef values as they probably don't affect the division
      // operands.
      return getValueRange(V, Visited) == VALRNG_LIKELY_LONG ||
             isa<UndefValue>(V);
    });
  default:
    return false;
  }
}

/// Check if an integer value fits into our bypass type.
ValueRange FastDivInsertionTask::getValueRange(Value *V,
                                               VisitedSetTy &Visited) {
  unsigned ShortLen = BypassType->getBitWidth();
  unsigned LongLen = V->getType()->getIntegerBitWidth();

  assert(LongLen > ShortLen && "Value type must be wider than BypassType");
  unsigned HiBits = LongLen - ShortLen;

  const DataLayout &DL = SlowDivOrRem->getModule()->getDataLayout();
  KnownBits Known(LongLen);

  computeKnownBits(V, Known, DL);

  if (Known.countMinLeadingZeros() >= HiBits)
    return VALRNG_KNOWN_SHORT;

  if (Known.countMaxLeadingZeros() < HiBits)
    return VALRNG_LIKELY_LONG;

  // Long integer divisions are often used in hashtable implementations. It's
  // not worth bypassing such divisions because hash values are extremely
  // unlikely to have enough leading zeros. The call below tries to detect
  // values that are unlikely to fit BypassType (including hashes).
  if (isHashLikeValue(V, Visited))
    return VALRNG_LIKELY_LONG;

  return VALRNG_UNKNOWN;
}

/// Add new basic block for slow div and rem operations and put it before
/// SuccessorBB.
QuotRemWithBB FastDivInsertionTask::createSlowBB(BasicBlock *SuccessorBB) {
  QuotRemWithBB DivRemPair;
  DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
                                     MainBB->getParent(), SuccessorBB);
  IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());
  Builder.SetCurrentDebugLocation(SlowDivOrRem->getDebugLoc());

  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);

  if (isSignedOp()) {
    DivRemPair.Quotient = Builder.CreateSDiv(Dividend, Divisor);
    DivRemPair.Remainder = Builder.CreateSRem(Dividend, Divisor);
  } else {
    DivRemPair.Quotient = Builder.CreateUDiv(Dividend, Divisor);
    DivRemPair.Remainder = Builder.CreateURem(Dividend, Divisor);
  }

  Builder.CreateBr(SuccessorBB);
  return DivRemPair;
}

/// Add new basic block for fast div and rem operations and put it before
/// SuccessorBB.
QuotRemWithBB FastDivInsertionTask::createFastBB(BasicBlock *SuccessorBB) {
  QuotRemWithBB DivRemPair;
  DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
                                     MainBB->getParent(), SuccessorBB);
  IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());
  Builder.SetCurrentDebugLocation(SlowDivOrRem->getDebugLoc());

  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);
  Value *ShortDivisorV =
      Builder.CreateCast(Instruction::Trunc, Divisor, BypassType);
  Value *ShortDividendV =
      Builder.CreateCast(Instruction::Trunc, Dividend, BypassType);

  // udiv/urem because this optimization only handles positive numbers.
  Value *ShortQV = Builder.CreateUDiv(ShortDividendV, ShortDivisorV);
  Value *ShortRV = Builder.CreateURem(ShortDividendV, ShortDivisorV);
  DivRemPair.Quotient =
      Builder.CreateCast(Instruction::ZExt, ShortQV, getSlowType());
  DivRemPair.Remainder =
      Builder.CreateCast(Instruction::ZExt, ShortRV, getSlowType());
  Builder.CreateBr(SuccessorBB);

  return DivRemPair;
}

/// Creates Phi nodes for result of Div and Rem.
QuotRemPair FastDivInsertionTask::createDivRemPhiNodes(QuotRemWithBB &LHS,
                                                       QuotRemWithBB &RHS,
                                                       BasicBlock *PhiBB) {
  IRBuilder<> Builder(PhiBB, PhiBB->begin());
  Builder.SetCurrentDebugLocation(SlowDivOrRem->getDebugLoc());
  PHINode *QuoPhi = Builder.CreatePHI(getSlowType(), 2);
  QuoPhi->addIncoming(LHS.Quotient, LHS.BB);
  QuoPhi->addIncoming(RHS.Quotient, RHS.BB);
  PHINode *RemPhi = Builder.CreatePHI(getSlowType(), 2);
  RemPhi->addIncoming(LHS.Remainder, LHS.BB);
  RemPhi->addIncoming(RHS.Remainder, RHS.BB);
  return QuotRemPair(QuoPhi, RemPhi);
}

/// Creates a runtime check to test whether both the divisor and dividend fit
/// into BypassType. The check is inserted at the end of MainBB. True return
/// value means that the operands fit. Either of the operands may be NULL if it
/// doesn't need a runtime check.
Value *FastDivInsertionTask::insertOperandRuntimeCheck(Value *Op1, Value *Op2) {
  assert((Op1 || Op2) && "Nothing to check");
  IRBuilder<> Builder(MainBB, MainBB->end());
  Builder.SetCurrentDebugLocation(SlowDivOrRem->getDebugLoc());

  Value *OrV;
  if (Op1 && Op2)
    OrV = Builder.CreateOr(Op1, Op2);
  else
    OrV = Op1 ? Op1 : Op2;

  // BitMask is inverted to check if the operands are
  // larger than the bypass type
  uint64_t BitMask = ~BypassType->getBitMask();
  Value *AndV = Builder.CreateAnd(OrV, BitMask);

  // Compare operand values
  Value *ZeroV = ConstantInt::getSigned(getSlowType(), 0);
  return Builder.CreateICmpEQ(AndV, ZeroV);
}

/// Substitutes the div/rem instruction with code that checks the value of the
/// operands and uses a shorter-faster div/rem instruction when possible.
Optional<QuotRemPair> FastDivInsertionTask::insertFastDivAndRem() {
  Value *Dividend = SlowDivOrRem->getOperand(0);
  Value *Divisor = SlowDivOrRem->getOperand(1);

  VisitedSetTy SetL;
  ValueRange DividendRange = getValueRange(Dividend, SetL);
  if (DividendRange == VALRNG_LIKELY_LONG)
    return None;

  VisitedSetTy SetR;
  ValueRange DivisorRange = getValueRange(Divisor, SetR);
  if (DivisorRange == VALRNG_LIKELY_LONG)
    return None;

  bool DividendShort = (DividendRange == VALRNG_KNOWN_SHORT);
  bool DivisorShort = (DivisorRange == VALRNG_KNOWN_SHORT);

  if (DividendShort && DivisorShort) {
    // If both operands are known to be short then just replace the long
    // division with a short one in-place.  Since we're not introducing control
    // flow in this case, narrowing the division is always a win, even if the
    // divisor is a constant (and will later get replaced by a multiplication).

    IRBuilder<> Builder(SlowDivOrRem);
    Value *TruncDividend = Builder.CreateTrunc(Dividend, BypassType);
    Value *TruncDivisor = Builder.CreateTrunc(Divisor, BypassType);
    Value *TruncDiv = Builder.CreateUDiv(TruncDividend, TruncDivisor);
    Value *TruncRem = Builder.CreateURem(TruncDividend, TruncDivisor);
    Value *ExtDiv = Builder.CreateZExt(TruncDiv, getSlowType());
    Value *ExtRem = Builder.CreateZExt(TruncRem, getSlowType());
    return QuotRemPair(ExtDiv, ExtRem);
  }

  if (isa<ConstantInt>(Divisor)) {
    // If the divisor is not a constant, DAGCombiner will convert it to a
    // multiplication by a magic constant.  It isn't clear if it is worth
    // introducing control flow to get a narrower multiply.
    return None;
  }

  // After Constant Hoisting pass, long constants may be represented as
  // bitcast instructions. As a result, some constants may look like an
  // instruction at first, and an additional check is necessary to find out if
  // an operand is actually a constant.
  if (auto *BCI = dyn_cast<BitCastInst>(Divisor))
    if (BCI->getParent() == SlowDivOrRem->getParent() &&
        isa<ConstantInt>(BCI->getOperand(0)))
      return None;

  IRBuilder<> Builder(MainBB, MainBB->end());
  Builder.SetCurrentDebugLocation(SlowDivOrRem->getDebugLoc());

  if (DividendShort && !isSignedOp()) {
    // If the division is unsigned and Dividend is known to be short, then
    // either
    // 1) Divisor is less or equal to Dividend, and the result can be computed
    //    with a short division.
    // 2) Divisor is greater than Dividend. In this case, no division is needed
    //    at all: The quotient is 0 and the remainder is equal to Dividend.
    //
    // So instead of checking at runtime whether Divisor fits into BypassType,
    // we emit a runtime check to differentiate between these two cases. This
    // lets us entirely avoid a long div.

    // Split the basic block before the div/rem.
    BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
    // Remove the unconditional branch from MainBB to SuccessorBB.
    MainBB->getInstList().back().eraseFromParent();
    QuotRemWithBB Long;
    Long.BB = MainBB;
    Long.Quotient = ConstantInt::get(getSlowType(), 0);
    Long.Remainder = Dividend;
    QuotRemWithBB Fast = createFastBB(SuccessorBB);
    QuotRemPair Result = createDivRemPhiNodes(Fast, Long, SuccessorBB);
    Value *CmpV = Builder.CreateICmpUGE(Dividend, Divisor);
    Builder.CreateCondBr(CmpV, Fast.BB, SuccessorBB);
    return Result;
  } else {
    // General case. Create both slow and fast div/rem pairs and choose one of
    // them at runtime.

    // Split the basic block before the div/rem.
    BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
    // Remove the unconditional branch from MainBB to SuccessorBB.
    MainBB->getInstList().back().eraseFromParent();
    QuotRemWithBB Fast = createFastBB(SuccessorBB);
    QuotRemWithBB Slow = createSlowBB(SuccessorBB);
    QuotRemPair Result = createDivRemPhiNodes(Fast, Slow, SuccessorBB);
    Value *CmpV = insertOperandRuntimeCheck(DividendShort ? nullptr : Dividend,
                                            DivisorShort ? nullptr : Divisor);
    Builder.CreateCondBr(CmpV, Fast.BB, Slow.BB);
    return Result;
  }
}

/// This optimization identifies DIV/REM instructions in a BB that can be
/// profitably bypassed and carried out with a shorter, faster divide.
bool llvm::bypassSlowDivision(BasicBlock *BB,
                              const BypassWidthsTy &BypassWidths) {
  DivCacheTy PerBBDivCache;

  bool MadeChange = false;
  Instruction *Next = &*BB->begin();
  while (Next != nullptr) {
    // We may add instructions immediately after I, but we want to skip over
    // them.
    Instruction *I = Next;
    Next = Next->getNextNode();

    // Ignore dead code to save time and avoid bugs.
    if (I->hasNUses(0))
      continue;

    FastDivInsertionTask Task(I, BypassWidths);
    if (Value *Replacement = Task.getReplacement(PerBBDivCache)) {
      I->replaceAllUsesWith(Replacement);
      I->eraseFromParent();
      MadeChange = true;
    }
  }

  // Above we eagerly create divs and rems, as pairs, so that we can efficiently
  // create divrem machine instructions.  Now erase any unused divs / rems so we
  // don't leave extra instructions sitting around.
  for (auto &KV : PerBBDivCache)
    for (Value *V : {KV.second.Quotient, KV.second.Remainder})
      RecursivelyDeleteTriviallyDeadInstructions(V);

  return MadeChange;
}