CodeExtractor.cpp 65.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to tear out a code region, such as an
// individual loop or a parallel section, into a new function, replacing it with
// a call to the new function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CodeExtractor.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;
using ProfileCount = Function::ProfileCount;

#define DEBUG_TYPE "code-extractor"

// Provide a command-line option to aggregate function arguments into a struct
// for functions produced by the code extractor. This is useful when converting
// extracted functions to pthread-based code, as only one argument (void*) can
// be passed in to pthread_create().
static cl::opt<bool>
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
                 cl::desc("Aggregate arguments to code-extracted functions"));

/// Test whether a block is valid for extraction.
static bool isBlockValidForExtraction(const BasicBlock &BB,
                                      const SetVector<BasicBlock *> &Result,
                                      bool AllowVarArgs, bool AllowAlloca) {
  // taking the address of a basic block moved to another function is illegal
  if (BB.hasAddressTaken())
    return false;

  // don't hoist code that uses another basicblock address, as it's likely to
  // lead to unexpected behavior, like cross-function jumps
  SmallPtrSet<User const *, 16> Visited;
  SmallVector<User const *, 16> ToVisit;

  for (Instruction const &Inst : BB)
    ToVisit.push_back(&Inst);

  while (!ToVisit.empty()) {
    User const *Curr = ToVisit.pop_back_val();
    if (!Visited.insert(Curr).second)
      continue;
    if (isa<BlockAddress const>(Curr))
      return false; // even a reference to self is likely to be not compatible

    if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
      continue;

    for (auto const &U : Curr->operands()) {
      if (auto *UU = dyn_cast<User>(U))
        ToVisit.push_back(UU);
    }
  }

  // If explicitly requested, allow vastart and alloca. For invoke instructions
  // verify that extraction is valid.
  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
    if (isa<AllocaInst>(I)) {
       if (!AllowAlloca)
         return false;
       continue;
    }

    if (const auto *II = dyn_cast<InvokeInst>(I)) {
      // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
      // must be a part of the subgraph which is being extracted.
      if (auto *UBB = II->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      continue;
    }

    // All catch handlers of a catchswitch instruction as well as the unwind
    // destination must be in the subgraph.
    if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
      if (auto *UBB = CSI->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      for (auto *HBB : CSI->handlers())
        if (!Result.count(const_cast<BasicBlock*>(HBB)))
          return false;
      continue;
    }

    // Make sure that entire catch handler is within subgraph. It is sufficient
    // to check that catch return's block is in the list.
    if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
      for (const auto *U : CPI->users())
        if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
            return false;
      continue;
    }

    // And do similar checks for cleanup handler - the entire handler must be
    // in subgraph which is going to be extracted. For cleanup return should
    // additionally check that the unwind destination is also in the subgraph.
    if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
      for (const auto *U : CPI->users())
        if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
            return false;
      continue;
    }
    if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
      if (auto *UBB = CRI->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      continue;
    }

    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (const Function *F = CI->getCalledFunction()) {
        auto IID = F->getIntrinsicID();
        if (IID == Intrinsic::vastart) {
          if (AllowVarArgs)
            continue;
          else
            return false;
        }

        // Currently, we miscompile outlined copies of eh_typid_for. There are
        // proposals for fixing this in llvm.org/PR39545.
        if (IID == Intrinsic::eh_typeid_for)
          return false;
      }
    }
  }

  return true;
}

/// Build a set of blocks to extract if the input blocks are viable.
static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
                        bool AllowVarArgs, bool AllowAlloca) {
  assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
  SetVector<BasicBlock *> Result;

  // Loop over the blocks, adding them to our set-vector, and aborting with an
  // empty set if we encounter invalid blocks.
  for (BasicBlock *BB : BBs) {
    // If this block is dead, don't process it.
    if (DT && !DT->isReachableFromEntry(BB))
      continue;

    if (!Result.insert(BB))
      llvm_unreachable("Repeated basic blocks in extraction input");
  }

  LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
                    << '\n');

  for (auto *BB : Result) {
    if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
      return {};

    // Make sure that the first block is not a landing pad.
    if (BB == Result.front()) {
      if (BB->isEHPad()) {
        LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
        return {};
      }
      continue;
    }

    // All blocks other than the first must not have predecessors outside of
    // the subgraph which is being extracted.
    for (auto *PBB : predecessors(BB))
      if (!Result.count(PBB)) {
        LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
                             "outside the region except for the first block!\n"
                          << "Problematic source BB: " << BB->getName() << "\n"
                          << "Problematic destination BB: " << PBB->getName()
                          << "\n");
        return {};
      }
  }

  return Result;
}

CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
                             bool AggregateArgs, BlockFrequencyInfo *BFI,
                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
                             bool AllowVarArgs, bool AllowAlloca,
                             std::string Suffix)
    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
      BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
      Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
      Suffix(Suffix) {}

CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
                             BlockFrequencyInfo *BFI,
                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
                             std::string Suffix)
    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
      BPI(BPI), AC(AC), AllowVarArgs(false),
      Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
                                     /* AllowVarArgs */ false,
                                     /* AllowAlloca */ false)),
      Suffix(Suffix) {}

/// definedInRegion - Return true if the specified value is defined in the
/// extracted region.
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (Blocks.count(I->getParent()))
      return true;
  return false;
}

/// definedInCaller - Return true if the specified value is defined in the
/// function being code extracted, but not in the region being extracted.
/// These values must be passed in as live-ins to the function.
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
  if (isa<Argument>(V)) return true;
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (!Blocks.count(I->getParent()))
      return true;
  return false;
}

static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
  BasicBlock *CommonExitBlock = nullptr;
  auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
    for (auto *Succ : successors(Block)) {
      // Internal edges, ok.
      if (Blocks.count(Succ))
        continue;
      if (!CommonExitBlock) {
        CommonExitBlock = Succ;
        continue;
      }
      if (CommonExitBlock != Succ)
        return true;
    }
    return false;
  };

  if (any_of(Blocks, hasNonCommonExitSucc))
    return nullptr;

  return CommonExitBlock;
}

CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
  for (BasicBlock &BB : F) {
    for (Instruction &II : BB.instructionsWithoutDebug())
      if (auto *AI = dyn_cast<AllocaInst>(&II))
        Allocas.push_back(AI);

    findSideEffectInfoForBlock(BB);
  }
}

void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
  for (Instruction &II : BB.instructionsWithoutDebug()) {
    unsigned Opcode = II.getOpcode();
    Value *MemAddr = nullptr;
    switch (Opcode) {
    case Instruction::Store:
    case Instruction::Load: {
      if (Opcode == Instruction::Store) {
        StoreInst *SI = cast<StoreInst>(&II);
        MemAddr = SI->getPointerOperand();
      } else {
        LoadInst *LI = cast<LoadInst>(&II);
        MemAddr = LI->getPointerOperand();
      }
      // Global variable can not be aliased with locals.
      if (dyn_cast<Constant>(MemAddr))
        break;
      Value *Base = MemAddr->stripInBoundsConstantOffsets();
      if (!isa<AllocaInst>(Base)) {
        SideEffectingBlocks.insert(&BB);
        return;
      }
      BaseMemAddrs[&BB].insert(Base);
      break;
    }
    default: {
      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
      if (IntrInst) {
        if (IntrInst->isLifetimeStartOrEnd())
          break;
        SideEffectingBlocks.insert(&BB);
        return;
      }
      // Treat all the other cases conservatively if it has side effects.
      if (II.mayHaveSideEffects()) {
        SideEffectingBlocks.insert(&BB);
        return;
      }
    }
    }
  }
}

bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
    BasicBlock &BB, AllocaInst *Addr) const {
  if (SideEffectingBlocks.count(&BB))
    return true;
  auto It = BaseMemAddrs.find(&BB);
  if (It != BaseMemAddrs.end())
    return It->second.count(Addr);
  return false;
}

bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
    const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
  AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
  Function *Func = (*Blocks.begin())->getParent();
  for (BasicBlock &BB : *Func) {
    if (Blocks.count(&BB))
      continue;
    if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
      return false;
  }
  return true;
}

BasicBlock *
CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
  BasicBlock *SinglePredFromOutlineRegion = nullptr;
  assert(!Blocks.count(CommonExitBlock) &&
         "Expect a block outside the region!");
  for (auto *Pred : predecessors(CommonExitBlock)) {
    if (!Blocks.count(Pred))
      continue;
    if (!SinglePredFromOutlineRegion) {
      SinglePredFromOutlineRegion = Pred;
    } else if (SinglePredFromOutlineRegion != Pred) {
      SinglePredFromOutlineRegion = nullptr;
      break;
    }
  }

  if (SinglePredFromOutlineRegion)
    return SinglePredFromOutlineRegion;

#ifndef NDEBUG
  auto getFirstPHI = [](BasicBlock *BB) {
    BasicBlock::iterator I = BB->begin();
    PHINode *FirstPhi = nullptr;
    while (I != BB->end()) {
      PHINode *Phi = dyn_cast<PHINode>(I);
      if (!Phi)
        break;
      if (!FirstPhi) {
        FirstPhi = Phi;
        break;
      }
    }
    return FirstPhi;
  };
  // If there are any phi nodes, the single pred either exists or has already
  // be created before code extraction.
  assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
#endif

  BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
      CommonExitBlock->getFirstNonPHI()->getIterator());

  for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
       PI != PE;) {
    BasicBlock *Pred = *PI++;
    if (Blocks.count(Pred))
      continue;
    Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
  }
  // Now add the old exit block to the outline region.
  Blocks.insert(CommonExitBlock);
  return CommonExitBlock;
}

// Find the pair of life time markers for address 'Addr' that are either
// defined inside the outline region or can legally be shrinkwrapped into the
// outline region. If there are not other untracked uses of the address, return
// the pair of markers if found; otherwise return a pair of nullptr.
CodeExtractor::LifetimeMarkerInfo
CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
                                  Instruction *Addr,
                                  BasicBlock *ExitBlock) const {
  LifetimeMarkerInfo Info;

  for (User *U : Addr->users()) {
    IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
    if (IntrInst) {
      // We don't model addresses with multiple start/end markers, but the
      // markers do not need to be in the region.
      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
        if (Info.LifeStart)
          return {};
        Info.LifeStart = IntrInst;
        continue;
      }
      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
        if (Info.LifeEnd)
          return {};
        Info.LifeEnd = IntrInst;
        continue;
      }
      // At this point, permit debug uses outside of the region.
      // This is fixed in a later call to fixupDebugInfoPostExtraction().
      if (isa<DbgInfoIntrinsic>(IntrInst))
        continue;
    }
    // Find untracked uses of the address, bail.
    if (!definedInRegion(Blocks, U))
      return {};
  }

  if (!Info.LifeStart || !Info.LifeEnd)
    return {};

  Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
  Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
  // Do legality check.
  if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
      !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
    return {};

  // Check to see if we have a place to do hoisting, if not, bail.
  if (Info.HoistLifeEnd && !ExitBlock)
    return {};

  return Info;
}

void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
                                ValueSet &SinkCands, ValueSet &HoistCands,
                                BasicBlock *&ExitBlock) const {
  Function *Func = (*Blocks.begin())->getParent();
  ExitBlock = getCommonExitBlock(Blocks);

  auto moveOrIgnoreLifetimeMarkers =
      [&](const LifetimeMarkerInfo &LMI) -> bool {
    if (!LMI.LifeStart)
      return false;
    if (LMI.SinkLifeStart) {
      LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
                        << "\n");
      SinkCands.insert(LMI.LifeStart);
    }
    if (LMI.HoistLifeEnd) {
      LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
      HoistCands.insert(LMI.LifeEnd);
    }
    return true;
  };

  // Look up allocas in the original function in CodeExtractorAnalysisCache, as
  // this is much faster than walking all the instructions.
  for (AllocaInst *AI : CEAC.getAllocas()) {
    BasicBlock *BB = AI->getParent();
    if (Blocks.count(BB))
      continue;

    // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
    // check whether it is actually still in the original function.
    Function *AIFunc = BB->getParent();
    if (AIFunc != Func)
      continue;

    LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
    bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
    if (Moved) {
      LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
      SinkCands.insert(AI);
      continue;
    }

    // Follow any bitcasts.
    SmallVector<Instruction *, 2> Bitcasts;
    SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
    for (User *U : AI->users()) {
      if (U->stripInBoundsConstantOffsets() == AI) {
        Instruction *Bitcast = cast<Instruction>(U);
        LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
        if (LMI.LifeStart) {
          Bitcasts.push_back(Bitcast);
          BitcastLifetimeInfo.push_back(LMI);
          continue;
        }
      }

      // Found unknown use of AI.
      if (!definedInRegion(Blocks, U)) {
        Bitcasts.clear();
        break;
      }
    }

    // Either no bitcasts reference the alloca or there are unknown uses.
    if (Bitcasts.empty())
      continue;

    LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
    SinkCands.insert(AI);
    for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
      Instruction *BitcastAddr = Bitcasts[I];
      const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
      assert(LMI.LifeStart &&
             "Unsafe to sink bitcast without lifetime markers");
      moveOrIgnoreLifetimeMarkers(LMI);
      if (!definedInRegion(Blocks, BitcastAddr)) {
        LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
                          << "\n");
        SinkCands.insert(BitcastAddr);
      }
    }
  }
}

bool CodeExtractor::isEligible() const {
  if (Blocks.empty())
    return false;
  BasicBlock *Header = *Blocks.begin();
  Function *F = Header->getParent();

  // For functions with varargs, check that varargs handling is only done in the
  // outlined function, i.e vastart and vaend are only used in outlined blocks.
  if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
    auto containsVarArgIntrinsic = [](const Instruction &I) {
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
        if (const Function *Callee = CI->getCalledFunction())
          return Callee->getIntrinsicID() == Intrinsic::vastart ||
                 Callee->getIntrinsicID() == Intrinsic::vaend;
      return false;
    };

    for (auto &BB : *F) {
      if (Blocks.count(&BB))
        continue;
      if (llvm::any_of(BB, containsVarArgIntrinsic))
        return false;
    }
  }
  return true;
}

void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
                                      const ValueSet &SinkCands) const {
  for (BasicBlock *BB : Blocks) {
    // If a used value is defined outside the region, it's an input.  If an
    // instruction is used outside the region, it's an output.
    for (Instruction &II : *BB) {
      for (auto &OI : II.operands()) {
        Value *V = OI;
        if (!SinkCands.count(V) && definedInCaller(Blocks, V))
          Inputs.insert(V);
      }

      for (User *U : II.users())
        if (!definedInRegion(Blocks, U)) {
          Outputs.insert(&II);
          break;
        }
    }
  }
}

/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
/// of the region, we need to split the entry block of the region so that the
/// PHI node is easier to deal with.
void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
  unsigned NumPredsFromRegion = 0;
  unsigned NumPredsOutsideRegion = 0;

  if (Header != &Header->getParent()->getEntryBlock()) {
    PHINode *PN = dyn_cast<PHINode>(Header->begin());
    if (!PN) return;  // No PHI nodes.

    // If the header node contains any PHI nodes, check to see if there is more
    // than one entry from outside the region.  If so, we need to sever the
    // header block into two.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (Blocks.count(PN->getIncomingBlock(i)))
        ++NumPredsFromRegion;
      else
        ++NumPredsOutsideRegion;

    // If there is one (or fewer) predecessor from outside the region, we don't
    // need to do anything special.
    if (NumPredsOutsideRegion <= 1) return;
  }

  // Otherwise, we need to split the header block into two pieces: one
  // containing PHI nodes merging values from outside of the region, and a
  // second that contains all of the code for the block and merges back any
  // incoming values from inside of the region.
  BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);

  // We only want to code extract the second block now, and it becomes the new
  // header of the region.
  BasicBlock *OldPred = Header;
  Blocks.remove(OldPred);
  Blocks.insert(NewBB);
  Header = NewBB;

  // Okay, now we need to adjust the PHI nodes and any branches from within the
  // region to go to the new header block instead of the old header block.
  if (NumPredsFromRegion) {
    PHINode *PN = cast<PHINode>(OldPred->begin());
    // Loop over all of the predecessors of OldPred that are in the region,
    // changing them to branch to NewBB instead.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (Blocks.count(PN->getIncomingBlock(i))) {
        Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
        TI->replaceUsesOfWith(OldPred, NewBB);
      }

    // Okay, everything within the region is now branching to the right block, we
    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    BasicBlock::iterator AfterPHIs;
    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
      PHINode *PN = cast<PHINode>(AfterPHIs);
      // Create a new PHI node in the new region, which has an incoming value
      // from OldPred of PN.
      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
                                       PN->getName() + ".ce", &NewBB->front());
      PN->replaceAllUsesWith(NewPN);
      NewPN->addIncoming(PN, OldPred);

      // Loop over all of the incoming value in PN, moving them to NewPN if they
      // are from the extracted region.
      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
        if (Blocks.count(PN->getIncomingBlock(i))) {
          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
          PN->removeIncomingValue(i);
          --i;
        }
      }
    }
  }
}

/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
/// outlined region, we split these PHIs on two: one with inputs from region
/// and other with remaining incoming blocks; then first PHIs are placed in
/// outlined region.
void CodeExtractor::severSplitPHINodesOfExits(
    const SmallPtrSetImpl<BasicBlock *> &Exits) {
  for (BasicBlock *ExitBB : Exits) {
    BasicBlock *NewBB = nullptr;

    for (PHINode &PN : ExitBB->phis()) {
      // Find all incoming values from the outlining region.
      SmallVector<unsigned, 2> IncomingVals;
      for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
        if (Blocks.count(PN.getIncomingBlock(i)))
          IncomingVals.push_back(i);

      // Do not process PHI if there is one (or fewer) predecessor from region.
      // If PHI has exactly one predecessor from region, only this one incoming
      // will be replaced on codeRepl block, so it should be safe to skip PHI.
      if (IncomingVals.size() <= 1)
        continue;

      // Create block for new PHIs and add it to the list of outlined if it
      // wasn't done before.
      if (!NewBB) {
        NewBB = BasicBlock::Create(ExitBB->getContext(),
                                   ExitBB->getName() + ".split",
                                   ExitBB->getParent(), ExitBB);
        SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
                                           pred_end(ExitBB));
        for (BasicBlock *PredBB : Preds)
          if (Blocks.count(PredBB))
            PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
        BranchInst::Create(ExitBB, NewBB);
        Blocks.insert(NewBB);
      }

      // Split this PHI.
      PHINode *NewPN =
          PHINode::Create(PN.getType(), IncomingVals.size(),
                          PN.getName() + ".ce", NewBB->getFirstNonPHI());
      for (unsigned i : IncomingVals)
        NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
      for (unsigned i : reverse(IncomingVals))
        PN.removeIncomingValue(i, false);
      PN.addIncoming(NewPN, NewBB);
    }
  }
}

void CodeExtractor::splitReturnBlocks() {
  for (BasicBlock *Block : Blocks)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
      BasicBlock *New =
          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
      if (DT) {
        // Old dominates New. New node dominates all other nodes dominated
        // by Old.
        DomTreeNode *OldNode = DT->getNode(Block);
        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
                                               OldNode->end());

        DomTreeNode *NewNode = DT->addNewBlock(New, Block);

        for (DomTreeNode *I : Children)
          DT->changeImmediateDominator(I, NewNode);
      }
    }
}

/// constructFunction - make a function based on inputs and outputs, as follows:
/// f(in0, ..., inN, out0, ..., outN)
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
                                           const ValueSet &outputs,
                                           BasicBlock *header,
                                           BasicBlock *newRootNode,
                                           BasicBlock *newHeader,
                                           Function *oldFunction,
                                           Module *M) {
  LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
  LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");

  // This function returns unsigned, outputs will go back by reference.
  switch (NumExitBlocks) {
  case 0:
  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
  default: RetTy = Type::getInt16Ty(header->getContext()); break;
  }

  std::vector<Type *> paramTy;

  // Add the types of the input values to the function's argument list
  for (Value *value : inputs) {
    LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
    paramTy.push_back(value->getType());
  }

  // Add the types of the output values to the function's argument list.
  for (Value *output : outputs) {
    LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
    if (AggregateArgs)
      paramTy.push_back(output->getType());
    else
      paramTy.push_back(PointerType::getUnqual(output->getType()));
  }

  LLVM_DEBUG({
    dbgs() << "Function type: " << *RetTy << " f(";
    for (Type *i : paramTy)
      dbgs() << *i << ", ";
    dbgs() << ")\n";
  });

  StructType *StructTy = nullptr;
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    StructTy = StructType::get(M->getContext(), paramTy);
    paramTy.clear();
    paramTy.push_back(PointerType::getUnqual(StructTy));
  }
  FunctionType *funcType =
                  FunctionType::get(RetTy, paramTy,
                                    AllowVarArgs && oldFunction->isVarArg());

  std::string SuffixToUse =
      Suffix.empty()
          ? (header->getName().empty() ? "extracted" : header->getName().str())
          : Suffix;
  // Create the new function
  Function *newFunction = Function::Create(
      funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
      oldFunction->getName() + "." + SuffixToUse, M);
  // If the old function is no-throw, so is the new one.
  if (oldFunction->doesNotThrow())
    newFunction->setDoesNotThrow();

  // Inherit the uwtable attribute if we need to.
  if (oldFunction->hasUWTable())
    newFunction->setHasUWTable();

  // Inherit all of the target dependent attributes and white-listed
  // target independent attributes.
  //  (e.g. If the extracted region contains a call to an x86.sse
  //  instruction we need to make sure that the extracted region has the
  //  "target-features" attribute allowing it to be lowered.
  // FIXME: This should be changed to check to see if a specific
  //           attribute can not be inherited.
  for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
    if (Attr.isStringAttribute()) {
      if (Attr.getKindAsString() == "thunk")
        continue;
    } else
      switch (Attr.getKindAsEnum()) {
      // Those attributes cannot be propagated safely. Explicitly list them
      // here so we get a warning if new attributes are added. This list also
      // includes non-function attributes.
      case Attribute::Alignment:
      case Attribute::AllocSize:
      case Attribute::ArgMemOnly:
      case Attribute::Builtin:
      case Attribute::ByVal:
      case Attribute::Convergent:
      case Attribute::Dereferenceable:
      case Attribute::DereferenceableOrNull:
      case Attribute::InAlloca:
      case Attribute::InReg:
      case Attribute::InaccessibleMemOnly:
      case Attribute::InaccessibleMemOrArgMemOnly:
      case Attribute::JumpTable:
      case Attribute::Naked:
      case Attribute::Nest:
      case Attribute::NoAlias:
      case Attribute::NoBuiltin:
      case Attribute::NoCapture:
      case Attribute::NoMerge:
      case Attribute::NoReturn:
      case Attribute::NoSync:
      case Attribute::NoUndef:
      case Attribute::None:
      case Attribute::NonNull:
      case Attribute::Preallocated:
      case Attribute::ReadNone:
      case Attribute::ReadOnly:
      case Attribute::Returned:
      case Attribute::ReturnsTwice:
      case Attribute::SExt:
      case Attribute::Speculatable:
      case Attribute::StackAlignment:
      case Attribute::StructRet:
      case Attribute::SwiftError:
      case Attribute::SwiftSelf:
      case Attribute::WillReturn:
      case Attribute::WriteOnly:
      case Attribute::ZExt:
      case Attribute::ImmArg:
      case Attribute::ByRef:
      case Attribute::EndAttrKinds:
      case Attribute::EmptyKey:
      case Attribute::TombstoneKey:
        continue;
      // Those attributes should be safe to propagate to the extracted function.
      case Attribute::AlwaysInline:
      case Attribute::Cold:
      case Attribute::NoRecurse:
      case Attribute::InlineHint:
      case Attribute::MinSize:
      case Attribute::NoDuplicate:
      case Attribute::NoFree:
      case Attribute::NoImplicitFloat:
      case Attribute::NoInline:
      case Attribute::NonLazyBind:
      case Attribute::NoRedZone:
      case Attribute::NoUnwind:
      case Attribute::NullPointerIsValid:
      case Attribute::OptForFuzzing:
      case Attribute::OptimizeNone:
      case Attribute::OptimizeForSize:
      case Attribute::SafeStack:
      case Attribute::ShadowCallStack:
      case Attribute::SanitizeAddress:
      case Attribute::SanitizeMemory:
      case Attribute::SanitizeThread:
      case Attribute::SanitizeHWAddress:
      case Attribute::SanitizeMemTag:
      case Attribute::SpeculativeLoadHardening:
      case Attribute::StackProtect:
      case Attribute::StackProtectReq:
      case Attribute::StackProtectStrong:
      case Attribute::StrictFP:
      case Attribute::UWTable:
      case Attribute::NoCfCheck:
        break;
      }

    newFunction->addFnAttr(Attr);
  }
  newFunction->getBasicBlockList().push_back(newRootNode);

  // Create an iterator to name all of the arguments we inserted.
  Function::arg_iterator AI = newFunction->arg_begin();

  // Rewrite all users of the inputs in the extracted region to use the
  // arguments (or appropriate addressing into struct) instead.
  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    Value *RewriteVal;
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
      Instruction *TI = newFunction->begin()->getTerminator();
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
      RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
                                "loadgep_" + inputs[i]->getName(), TI);
    } else
      RewriteVal = &*AI++;

    std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
    for (User *use : Users)
      if (Instruction *inst = dyn_cast<Instruction>(use))
        if (Blocks.count(inst->getParent()))
          inst->replaceUsesOfWith(inputs[i], RewriteVal);
  }

  // Set names for input and output arguments.
  if (!AggregateArgs) {
    AI = newFunction->arg_begin();
    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
      AI->setName(inputs[i]->getName());
    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
      AI->setName(outputs[i]->getName()+".out");
  }

  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
  // within the new function. This must be done before we lose track of which
  // blocks were originally in the code region.
  std::vector<User *> Users(header->user_begin(), header->user_end());
  for (auto &U : Users)
    // The BasicBlock which contains the branch is not in the region
    // modify the branch target to a new block
    if (Instruction *I = dyn_cast<Instruction>(U))
      if (I->isTerminator() && I->getFunction() == oldFunction &&
          !Blocks.count(I->getParent()))
        I->replaceUsesOfWith(header, newHeader);

  return newFunction;
}

/// Erase lifetime.start markers which reference inputs to the extraction
/// region, and insert the referenced memory into \p LifetimesStart.
///
/// The extraction region is defined by a set of blocks (\p Blocks), and a set
/// of allocas which will be moved from the caller function into the extracted
/// function (\p SunkAllocas).
static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
                                         const SetVector<Value *> &SunkAllocas,
                                         SetVector<Value *> &LifetimesStart) {
  for (BasicBlock *BB : Blocks) {
    for (auto It = BB->begin(), End = BB->end(); It != End;) {
      auto *II = dyn_cast<IntrinsicInst>(&*It);
      ++It;
      if (!II || !II->isLifetimeStartOrEnd())
        continue;

      // Get the memory operand of the lifetime marker. If the underlying
      // object is a sunk alloca, or is otherwise defined in the extraction
      // region, the lifetime marker must not be erased.
      Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
      if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
        continue;

      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
        LifetimesStart.insert(Mem);
      II->eraseFromParent();
    }
  }
}

/// Insert lifetime start/end markers surrounding the call to the new function
/// for objects defined in the caller.
static void insertLifetimeMarkersSurroundingCall(
    Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
    CallInst *TheCall) {
  LLVMContext &Ctx = M->getContext();
  auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
  Instruction *Term = TheCall->getParent()->getTerminator();

  // Emit lifetime markers for the pointers given in \p Objects. Insert the
  // markers before the call if \p InsertBefore, and after the call otherwise.
  auto insertMarkers = [&](Intrinsic::ID IID, ArrayRef<Value *> Objects,
                           bool InsertBefore) {
    for (Value *Mem : Objects) {
      assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
                                            TheCall->getFunction()) &&
             "Input memory not defined in original function");
      assert(Mem->getType()->isPointerTy() && "Expected pointer to memory");
      Function *MarkerFunc =
          llvm::Intrinsic::getDeclaration(M, IID, Mem->getType());
      auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, Mem});
      if (InsertBefore)
        Marker->insertBefore(TheCall);
      else
        Marker->insertBefore(Term);
    }
  };

  insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
                /*InsertBefore=*/true);
  insertMarkers(Intrinsic::lifetime_end, LifetimesEnd, /*InsertBefore=*/false);
}

/// emitCallAndSwitchStatement - This method sets up the caller side by adding
/// the call instruction, splitting any PHI nodes in the header block as
/// necessary.
CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
                                                    BasicBlock *codeReplacer,
                                                    ValueSet &inputs,
                                                    ValueSet &outputs) {
  // Emit a call to the new function, passing in: *pointer to struct (if
  // aggregating parameters), or plan inputs and allocated memory for outputs
  std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;

  Module *M = newFunction->getParent();
  LLVMContext &Context = M->getContext();
  const DataLayout &DL = M->getDataLayout();
  CallInst *call = nullptr;

  // Add inputs as params, or to be filled into the struct
  unsigned ArgNo = 0;
  SmallVector<unsigned, 1> SwiftErrorArgs;
  for (Value *input : inputs) {
    if (AggregateArgs)
      StructValues.push_back(input);
    else {
      params.push_back(input);
      if (input->isSwiftError())
        SwiftErrorArgs.push_back(ArgNo);
    }
    ++ArgNo;
  }

  // Create allocas for the outputs
  for (Value *output : outputs) {
    if (AggregateArgs) {
      StructValues.push_back(output);
    } else {
      AllocaInst *alloca =
        new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
                       nullptr, output->getName() + ".loc",
                       &codeReplacer->getParent()->front().front());
      ReloadOutputs.push_back(alloca);
      params.push_back(alloca);
    }
  }

  StructType *StructArgTy = nullptr;
  AllocaInst *Struct = nullptr;
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    std::vector<Type *> ArgTypes;
    for (ValueSet::iterator v = StructValues.begin(),
           ve = StructValues.end(); v != ve; ++v)
      ArgTypes.push_back((*v)->getType());

    // Allocate a struct at the beginning of this function
    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
                            "structArg",
                            &codeReplacer->getParent()->front().front());
    params.push_back(Struct);

    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
      codeReplacer->getInstList().push_back(GEP);
      new StoreInst(StructValues[i], GEP, codeReplacer);
    }
  }

  // Emit the call to the function
  call = CallInst::Create(newFunction, params,
                          NumExitBlocks > 1 ? "targetBlock" : "");
  // Add debug location to the new call, if the original function has debug
  // info. In that case, the terminator of the entry block of the extracted
  // function contains the first debug location of the extracted function,
  // set in extractCodeRegion.
  if (codeReplacer->getParent()->getSubprogram()) {
    if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
      call->setDebugLoc(DL);
  }
  codeReplacer->getInstList().push_back(call);

  // Set swifterror parameter attributes.
  for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
    call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
    newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
  }

  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
  unsigned FirstOut = inputs.size();
  if (!AggregateArgs)
    std::advance(OutputArgBegin, inputs.size());

  // Reload the outputs passed in by reference.
  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    Value *Output = nullptr;
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
      codeReplacer->getInstList().push_back(GEP);
      Output = GEP;
    } else {
      Output = ReloadOutputs[i];
    }
    LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
                                  outputs[i]->getName() + ".reload",
                                  codeReplacer);
    Reloads.push_back(load);
    std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
      Instruction *inst = cast<Instruction>(Users[u]);
      if (!Blocks.count(inst->getParent()))
        inst->replaceUsesOfWith(outputs[i], load);
    }
  }

  // Now we can emit a switch statement using the call as a value.
  SwitchInst *TheSwitch =
      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
                         codeReplacer, 0, codeReplacer);

  // Since there may be multiple exits from the original region, make the new
  // function return an unsigned, switch on that number.  This loop iterates
  // over all of the blocks in the extracted region, updating any terminator
  // instructions in the to-be-extracted region that branch to blocks that are
  // not in the region to be extracted.
  std::map<BasicBlock *, BasicBlock *> ExitBlockMap;

  unsigned switchVal = 0;
  for (BasicBlock *Block : Blocks) {
    Instruction *TI = Block->getTerminator();
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      if (!Blocks.count(TI->getSuccessor(i))) {
        BasicBlock *OldTarget = TI->getSuccessor(i);
        // add a new basic block which returns the appropriate value
        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
        if (!NewTarget) {
          // If we don't already have an exit stub for this non-extracted
          // destination, create one now!
          NewTarget = BasicBlock::Create(Context,
                                         OldTarget->getName() + ".exitStub",
                                         newFunction);
          unsigned SuccNum = switchVal++;

          Value *brVal = nullptr;
          switch (NumExitBlocks) {
          case 0:
          case 1: break;  // No value needed.
          case 2:         // Conditional branch, return a bool
            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
            break;
          default:
            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
            break;
          }

          ReturnInst::Create(Context, brVal, NewTarget);

          // Update the switch instruction.
          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
                                              SuccNum),
                             OldTarget);
        }

        // rewrite the original branch instruction with this new target
        TI->setSuccessor(i, NewTarget);
      }
  }

  // Store the arguments right after the definition of output value.
  // This should be proceeded after creating exit stubs to be ensure that invoke
  // result restore will be placed in the outlined function.
  Function::arg_iterator OAI = OutputArgBegin;
  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    auto *OutI = dyn_cast<Instruction>(outputs[i]);
    if (!OutI)
      continue;

    // Find proper insertion point.
    BasicBlock::iterator InsertPt;
    // In case OutI is an invoke, we insert the store at the beginning in the
    // 'normal destination' BB. Otherwise we insert the store right after OutI.
    if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
      InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
    else if (auto *Phi = dyn_cast<PHINode>(OutI))
      InsertPt = Phi->getParent()->getFirstInsertionPt();
    else
      InsertPt = std::next(OutI->getIterator());

    Instruction *InsertBefore = &*InsertPt;
    assert((InsertBefore->getFunction() == newFunction ||
            Blocks.count(InsertBefore->getParent())) &&
           "InsertPt should be in new function");
    assert(OAI != newFunction->arg_end() &&
           "Number of output arguments should match "
           "the amount of defined values");
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
          InsertBefore);
      new StoreInst(outputs[i], GEP, InsertBefore);
      // Since there should be only one struct argument aggregating
      // all the output values, we shouldn't increment OAI, which always
      // points to the struct argument, in this case.
    } else {
      new StoreInst(outputs[i], &*OAI, InsertBefore);
      ++OAI;
    }
  }

  // Now that we've done the deed, simplify the switch instruction.
  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
  switch (NumExitBlocks) {
  case 0:
    // There are no successors (the block containing the switch itself), which
    // means that previously this was the last part of the function, and hence
    // this should be rewritten as a `ret'

    // Check if the function should return a value
    if (OldFnRetTy->isVoidTy()) {
      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
      // return what we have
      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
    } else {
      // Otherwise we must have code extracted an unwind or something, just
      // return whatever we want.
      ReturnInst::Create(Context,
                         Constant::getNullValue(OldFnRetTy), TheSwitch);
    }

    TheSwitch->eraseFromParent();
    break;
  case 1:
    // Only a single destination, change the switch into an unconditional
    // branch.
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    TheSwitch->eraseFromParent();
    break;
  case 2:
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
                       call, TheSwitch);
    TheSwitch->eraseFromParent();
    break;
  default:
    // Otherwise, make the default destination of the switch instruction be one
    // of the other successors.
    TheSwitch->setCondition(call);
    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
    // Remove redundant case
    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
    break;
  }

  // Insert lifetime markers around the reloads of any output values. The
  // allocas output values are stored in are only in-use in the codeRepl block.
  insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);

  return call;
}

void CodeExtractor::moveCodeToFunction(Function *newFunction) {
  Function *oldFunc = (*Blocks.begin())->getParent();
  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();

  for (BasicBlock *Block : Blocks) {
    // Delete the basic block from the old function, and the list of blocks
    oldBlocks.remove(Block);

    // Insert this basic block into the new function
    newBlocks.push_back(Block);
  }
}

void CodeExtractor::calculateNewCallTerminatorWeights(
    BasicBlock *CodeReplacer,
    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
    BranchProbabilityInfo *BPI) {
  using Distribution = BlockFrequencyInfoImplBase::Distribution;
  using BlockNode = BlockFrequencyInfoImplBase::BlockNode;

  // Update the branch weights for the exit block.
  Instruction *TI = CodeReplacer->getTerminator();
  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);

  // Block Frequency distribution with dummy node.
  Distribution BranchDist;

  SmallVector<BranchProbability, 4> EdgeProbabilities(
      TI->getNumSuccessors(), BranchProbability::getUnknown());

  // Add each of the frequencies of the successors.
  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
    BlockNode ExitNode(i);
    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
    if (ExitFreq != 0)
      BranchDist.addExit(ExitNode, ExitFreq);
    else
      EdgeProbabilities[i] = BranchProbability::getZero();
  }

  // Check for no total weight.
  if (BranchDist.Total == 0) {
    BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
    return;
  }

  // Normalize the distribution so that they can fit in unsigned.
  BranchDist.normalize();

  // Create normalized branch weights and set the metadata.
  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
    const auto &Weight = BranchDist.Weights[I];

    // Get the weight and update the current BFI.
    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
    BranchProbability BP(Weight.Amount, BranchDist.Total);
    EdgeProbabilities[Weight.TargetNode.Index] = BP;
  }
  BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
  TI->setMetadata(
      LLVMContext::MD_prof,
      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
}

/// Erase debug info intrinsics which refer to values in \p F but aren't in
/// \p F.
static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
  for (Instruction &I : instructions(F)) {
    SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
    findDbgUsers(DbgUsers, &I);
    for (DbgVariableIntrinsic *DVI : DbgUsers)
      if (DVI->getFunction() != &F)
        DVI->eraseFromParent();
  }
}

/// Fix up the debug info in the old and new functions by pointing line
/// locations and debug intrinsics to the new subprogram scope, and by deleting
/// intrinsics which point to values outside of the new function.
static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
                                         CallInst &TheCall) {
  DISubprogram *OldSP = OldFunc.getSubprogram();
  LLVMContext &Ctx = OldFunc.getContext();

  if (!OldSP) {
    // Erase any debug info the new function contains.
    stripDebugInfo(NewFunc);
    // Make sure the old function doesn't contain any non-local metadata refs.
    eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
    return;
  }

  // Create a subprogram for the new function. Leave out a description of the
  // function arguments, as the parameters don't correspond to anything at the
  // source level.
  assert(OldSP->getUnit() && "Missing compile unit for subprogram");
  DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
                OldSP->getUnit());
  auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
                                    DISubprogram::SPFlagOptimized |
                                    DISubprogram::SPFlagLocalToUnit;
  auto NewSP = DIB.createFunction(
      OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
      /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
  NewFunc.setSubprogram(NewSP);

  // Debug intrinsics in the new function need to be updated in one of two
  // ways:
  //  1) They need to be deleted, because they describe a value in the old
  //     function.
  //  2) They need to point to fresh metadata, e.g. because they currently
  //     point to a variable in the wrong scope.
  SmallDenseMap<DINode *, DINode *> RemappedMetadata;
  SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
  for (Instruction &I : instructions(NewFunc)) {
    auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
    if (!DII)
      continue;

    // Point the intrinsic to a fresh label within the new function.
    if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
      DILabel *OldLabel = DLI->getLabel();
      DINode *&NewLabel = RemappedMetadata[OldLabel];
      if (!NewLabel)
        NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
                                OldLabel->getFile(), OldLabel->getLine());
      DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
      continue;
    }

    // If the location isn't a constant or an instruction, delete the
    // intrinsic.
    auto *DVI = cast<DbgVariableIntrinsic>(DII);
    Value *Location = DVI->getVariableLocation();
    if (!Location ||
        (!isa<Constant>(Location) && !isa<Instruction>(Location))) {
      DebugIntrinsicsToDelete.push_back(DVI);
      continue;
    }

    // If the variable location is an instruction but isn't in the new
    // function, delete the intrinsic.
    Instruction *LocationInst = dyn_cast<Instruction>(Location);
    if (LocationInst && LocationInst->getFunction() != &NewFunc) {
      DebugIntrinsicsToDelete.push_back(DVI);
      continue;
    }

    // Point the intrinsic to a fresh variable within the new function.
    DILocalVariable *OldVar = DVI->getVariable();
    DINode *&NewVar = RemappedMetadata[OldVar];
    if (!NewVar)
      NewVar = DIB.createAutoVariable(
          NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
          OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
          OldVar->getAlignInBits());
    DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar));
  }
  for (auto *DII : DebugIntrinsicsToDelete)
    DII->eraseFromParent();
  DIB.finalizeSubprogram(NewSP);

  // Fix up the scope information attached to the line locations in the new
  // function.
  for (Instruction &I : instructions(NewFunc)) {
    if (const DebugLoc &DL = I.getDebugLoc())
      I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP));

    // Loop info metadata may contain line locations. Fix them up.
    auto updateLoopInfoLoc = [&Ctx,
                              NewSP](const DILocation &Loc) -> DILocation * {
      return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP,
                             nullptr);
    };
    updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
  }
  if (!TheCall.getDebugLoc())
    TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP));

  eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
}

Function *
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
  if (!isEligible())
    return nullptr;

  // Assumption: this is a single-entry code region, and the header is the first
  // block in the region.
  BasicBlock *header = *Blocks.begin();
  Function *oldFunction = header->getParent();

  // Calculate the entry frequency of the new function before we change the root
  //   block.
  BlockFrequency EntryFreq;
  if (BFI) {
    assert(BPI && "Both BPI and BFI are required to preserve profile info");
    for (BasicBlock *Pred : predecessors(header)) {
      if (Blocks.count(Pred))
        continue;
      EntryFreq +=
          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
    }
  }

  // Remove @llvm.assume calls that will be moved to the new function from the
  // old function's assumption cache.
  for (BasicBlock *Block : Blocks) {
    for (auto It = Block->begin(), End = Block->end(); It != End;) {
      Instruction *I = &*It;
      ++It;

      if (match(I, m_Intrinsic<Intrinsic::assume>())) {
        if (AC)
          AC->unregisterAssumption(cast<CallInst>(I));
        I->eraseFromParent();
      }
    }
  }

  // If we have any return instructions in the region, split those blocks so
  // that the return is not in the region.
  splitReturnBlocks();

  // Calculate the exit blocks for the extracted region and the total exit
  // weights for each of those blocks.
  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
  for (BasicBlock *Block : Blocks) {
    for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
         ++SI) {
      if (!Blocks.count(*SI)) {
        // Update the branch weight for this successor.
        if (BFI) {
          BlockFrequency &BF = ExitWeights[*SI];
          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
        }
        ExitBlocks.insert(*SI);
      }
    }
  }
  NumExitBlocks = ExitBlocks.size();

  // If we have to split PHI nodes of the entry or exit blocks, do so now.
  severSplitPHINodesOfEntry(header);
  severSplitPHINodesOfExits(ExitBlocks);

  // This takes place of the original loop
  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
                                                "codeRepl", oldFunction,
                                                header);

  // The new function needs a root node because other nodes can branch to the
  // head of the region, but the entry node of a function cannot have preds.
  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
                                               "newFuncRoot");
  auto *BranchI = BranchInst::Create(header);
  // If the original function has debug info, we have to add a debug location
  // to the new branch instruction from the artificial entry block.
  // We use the debug location of the first instruction in the extracted
  // blocks, as there is no other equivalent line in the source code.
  if (oldFunction->getSubprogram()) {
    any_of(Blocks, [&BranchI](const BasicBlock *BB) {
      return any_of(*BB, [&BranchI](const Instruction &I) {
        if (!I.getDebugLoc())
          return false;
        BranchI->setDebugLoc(I.getDebugLoc());
        return true;
      });
    });
  }
  newFuncRoot->getInstList().push_back(BranchI);

  ValueSet inputs, outputs, SinkingCands, HoistingCands;
  BasicBlock *CommonExit = nullptr;
  findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
  assert(HoistingCands.empty() || CommonExit);

  // Find inputs to, outputs from the code region.
  findInputsOutputs(inputs, outputs, SinkingCands);

  // Now sink all instructions which only have non-phi uses inside the region.
  // Group the allocas at the start of the block, so that any bitcast uses of
  // the allocas are well-defined.
  AllocaInst *FirstSunkAlloca = nullptr;
  for (auto *II : SinkingCands) {
    if (auto *AI = dyn_cast<AllocaInst>(II)) {
      AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
      if (!FirstSunkAlloca)
        FirstSunkAlloca = AI;
    }
  }
  assert((SinkingCands.empty() || FirstSunkAlloca) &&
         "Did not expect a sink candidate without any allocas");
  for (auto *II : SinkingCands) {
    if (!isa<AllocaInst>(II)) {
      cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
    }
  }

  if (!HoistingCands.empty()) {
    auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
    Instruction *TI = HoistToBlock->getTerminator();
    for (auto *II : HoistingCands)
      cast<Instruction>(II)->moveBefore(TI);
  }

  // Collect objects which are inputs to the extraction region and also
  // referenced by lifetime start markers within it. The effects of these
  // markers must be replicated in the calling function to prevent the stack
  // coloring pass from merging slots which store input objects.
  ValueSet LifetimesStart;
  eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);

  // Construct new function based on inputs/outputs & add allocas for all defs.
  Function *newFunction =
      constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
                        oldFunction, oldFunction->getParent());

  // Update the entry count of the function.
  if (BFI) {
    auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
    if (Count.hasValue())
      newFunction->setEntryCount(
          ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
    BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
  }

  CallInst *TheCall =
      emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);

  moveCodeToFunction(newFunction);

  // Replicate the effects of any lifetime start/end markers which referenced
  // input objects in the extraction region by placing markers around the call.
  insertLifetimeMarkersSurroundingCall(
      oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);

  // Propagate personality info to the new function if there is one.
  if (oldFunction->hasPersonalityFn())
    newFunction->setPersonalityFn(oldFunction->getPersonalityFn());

  // Update the branch weights for the exit block.
  if (BFI && NumExitBlocks > 1)
    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);

  // Loop over all of the PHI nodes in the header and exit blocks, and change
  // any references to the old incoming edge to be the new incoming edge.
  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!Blocks.count(PN->getIncomingBlock(i)))
        PN->setIncomingBlock(i, newFuncRoot);
  }

  for (BasicBlock *ExitBB : ExitBlocks)
    for (PHINode &PN : ExitBB->phis()) {
      Value *IncomingCodeReplacerVal = nullptr;
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
        // Ignore incoming values from outside of the extracted region.
        if (!Blocks.count(PN.getIncomingBlock(i)))
          continue;

        // Ensure that there is only one incoming value from codeReplacer.
        if (!IncomingCodeReplacerVal) {
          PN.setIncomingBlock(i, codeReplacer);
          IncomingCodeReplacerVal = PN.getIncomingValue(i);
        } else
          assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
                 "PHI has two incompatbile incoming values from codeRepl");
      }
    }

  fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);

  // Mark the new function `noreturn` if applicable. Terminators which resume
  // exception propagation are treated as returning instructions. This is to
  // avoid inserting traps after calls to outlined functions which unwind.
  bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
    const Instruction *Term = BB.getTerminator();
    return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
  });
  if (doesNotReturn)
    newFunction->setDoesNotReturn();

  LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
    newFunction->dump();
    report_fatal_error("verification of newFunction failed!");
  });
  LLVM_DEBUG(if (verifyFunction(*oldFunction))
             report_fatal_error("verification of oldFunction failed!"));
  LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
                 report_fatal_error("Stale Asumption cache for old Function!"));
  return newFunction;
}

bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
                                          const Function &NewFunc,
                                          AssumptionCache *AC) {
  for (auto AssumeVH : AC->assumptions()) {
    CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH);
    if (!I)
      continue;

    // There shouldn't be any llvm.assume intrinsics in the new function.
    if (I->getFunction() != &OldFunc)
      return true;

    // There shouldn't be any stale affected values in the assumption cache
    // that were previously in the old function, but that have now been moved
    // to the new function.
    for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
      CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
      if (!AffectedCI)
        continue;
      if (AffectedCI->getFunction() != &OldFunc)
        return true;
      auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0));
      if (AssumedInst->getFunction() != &OldFunc)
        return true;
    }
  }
  return false;
}