LoopSimplify.cpp 36 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs several transformations to transform natural loops into a
// simpler form, which makes subsequent analyses and transformations simpler and
// more effective.
//
// Loop pre-header insertion guarantees that there is a single, non-critical
// entry edge from outside of the loop to the loop header.  This simplifies a
// number of analyses and transformations, such as LICM.
//
// Loop exit-block insertion guarantees that all exit blocks from the loop
// (blocks which are outside of the loop that have predecessors inside of the
// loop) only have predecessors from inside of the loop (and are thus dominated
// by the loop header).  This simplifies transformations such as store-sinking
// that are built into LICM.
//
// This pass also guarantees that loops will have exactly one backedge.
//
// Indirectbr instructions introduce several complications. If the loop
// contains or is entered by an indirectbr instruction, it may not be possible
// to transform the loop and make these guarantees. Client code should check
// that these conditions are true before relying on them.
//
// Similar complications arise from callbr instructions, particularly in
// asm-goto where blockaddress expressions are used.
//
// Note that the simplifycfg pass will clean up blocks which are split out but
// end up being unnecessary, so usage of this pass should not pessimize
// generated code.
//
// This pass obviously modifies the CFG, but updates loop information and
// dominator information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;

#define DEBUG_TYPE "loop-simplify"

STATISTIC(NumNested  , "Number of nested loops split out");

// If the block isn't already, move the new block to right after some 'outside
// block' block.  This prevents the preheader from being placed inside the loop
// body, e.g. when the loop hasn't been rotated.
static void placeSplitBlockCarefully(BasicBlock *NewBB,
                                     SmallVectorImpl<BasicBlock *> &SplitPreds,
                                     Loop *L) {
  // Check to see if NewBB is already well placed.
  Function::iterator BBI = --NewBB->getIterator();
  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    if (&*BBI == SplitPreds[i])
      return;
  }

  // If it isn't already after an outside block, move it after one.  This is
  // always good as it makes the uncond branch from the outside block into a
  // fall-through.

  // Figure out *which* outside block to put this after.  Prefer an outside
  // block that neighbors a BB actually in the loop.
  BasicBlock *FoundBB = nullptr;
  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    Function::iterator BBI = SplitPreds[i]->getIterator();
    if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
      FoundBB = SplitPreds[i];
      break;
    }
  }

  // If our heuristic for a *good* bb to place this after doesn't find
  // anything, just pick something.  It's likely better than leaving it within
  // the loop.
  if (!FoundBB)
    FoundBB = SplitPreds[0];
  NewBB->moveAfter(FoundBB);
}

/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
/// preheader, this method is called to insert one.  This method has two phases:
/// preheader insertion and analysis updating.
///
BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
                                         bool PreserveLCSSA) {
  BasicBlock *Header = L->getHeader();

  // Compute the set of predecessors of the loop that are not in the loop.
  SmallVector<BasicBlock*, 8> OutsideBlocks;
  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
       PI != PE; ++PI) {
    BasicBlock *P = *PI;
    if (!L->contains(P)) {         // Coming in from outside the loop?
      // If the loop is branched to from an indirect terminator, we won't
      // be able to fully transform the loop, because it prohibits
      // edge splitting.
      if (P->getTerminator()->isIndirectTerminator())
        return nullptr;

      // Keep track of it.
      OutsideBlocks.push_back(P);
    }
  }

  // Split out the loop pre-header.
  BasicBlock *PreheaderBB;
  PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
                                       LI, MSSAU, PreserveLCSSA);
  if (!PreheaderBB)
    return nullptr;

  LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
                    << PreheaderBB->getName() << "\n");

  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
  // code layout too horribly.
  placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);

  return PreheaderBB;
}

/// Add the specified block, and all of its predecessors, to the specified set,
/// if it's not already in there.  Stop predecessor traversal when we reach
/// StopBlock.
static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
                                  SmallPtrSetImpl<BasicBlock *> &Blocks) {
  SmallVector<BasicBlock *, 8> Worklist;
  Worklist.push_back(InputBB);
  do {
    BasicBlock *BB = Worklist.pop_back_val();
    if (Blocks.insert(BB).second && BB != StopBlock)
      // If BB is not already processed and it is not a stop block then
      // insert its predecessor in the work list
      for (BasicBlock *WBB : predecessors(BB)) {
        Worklist.push_back(WBB);
      }
  } while (!Worklist.empty());
}

/// The first part of loop-nestification is to find a PHI node that tells
/// us how to partition the loops.
static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
                                        AssumptionCache *AC) {
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    PHINode *PN = cast<PHINode>(I);
    ++I;
    if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
      // This is a degenerate PHI already, don't modify it!
      PN->replaceAllUsesWith(V);
      PN->eraseFromParent();
      continue;
    }

    // Scan this PHI node looking for a use of the PHI node by itself.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingValue(i) == PN &&
          L->contains(PN->getIncomingBlock(i)))
        // We found something tasty to remove.
        return PN;
  }
  return nullptr;
}

/// If this loop has multiple backedges, try to pull one of them out into
/// a nested loop.
///
/// This is important for code that looks like
/// this:
///
///  Loop:
///     ...
///     br cond, Loop, Next
///     ...
///     br cond2, Loop, Out
///
/// To identify this common case, we look at the PHI nodes in the header of the
/// loop.  PHI nodes with unchanging values on one backedge correspond to values
/// that change in the "outer" loop, but not in the "inner" loop.
///
/// If we are able to separate out a loop, return the new outer loop that was
/// created.
///
static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
                                DominatorTree *DT, LoopInfo *LI,
                                ScalarEvolution *SE, bool PreserveLCSSA,
                                AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
  // Don't try to separate loops without a preheader.
  if (!Preheader)
    return nullptr;

  // Treat the presence of convergent functions conservatively. The
  // transformation is invalid if calls to certain convergent
  // functions (like an AMDGPU barrier) get included in the resulting
  // inner loop. But blocks meant for the inner loop will be
  // identified later at a point where it's too late to abort the
  // transformation. Also, the convergent attribute is not really
  // sufficient to express the semantics of functions that are
  // affected by this transformation. So we choose to back off if such
  // a function call is present until a better alternative becomes
  // available. This is similar to the conservative treatment of
  // convergent function calls in GVNHoist and JumpThreading.
  for (auto BB : L->blocks()) {
    for (auto &II : *BB) {
      if (auto CI = dyn_cast<CallBase>(&II)) {
        if (CI->isConvergent()) {
          return nullptr;
        }
      }
    }
  }

  // The header is not a landing pad; preheader insertion should ensure this.
  BasicBlock *Header = L->getHeader();
  assert(!Header->isEHPad() && "Can't insert backedge to EH pad");

  PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
  if (!PN) return nullptr;  // No known way to partition.

  // Pull out all predecessors that have varying values in the loop.  This
  // handles the case when a PHI node has multiple instances of itself as
  // arguments.
  SmallVector<BasicBlock*, 8> OuterLoopPreds;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    if (PN->getIncomingValue(i) != PN ||
        !L->contains(PN->getIncomingBlock(i))) {
      // We can't split indirect control flow edges.
      if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
        return nullptr;
      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    }
  }
  LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");

  // If ScalarEvolution is around and knows anything about values in
  // this loop, tell it to forget them, because we're about to
  // substantially change it.
  if (SE)
    SE->forgetLoop(L);

  BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
                                             DT, LI, MSSAU, PreserveLCSSA);

  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
  // code layout too horribly.
  placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);

  // Create the new outer loop.
  Loop *NewOuter = LI->AllocateLoop();

  // Change the parent loop to use the outer loop as its child now.
  if (Loop *Parent = L->getParentLoop())
    Parent->replaceChildLoopWith(L, NewOuter);
  else
    LI->changeTopLevelLoop(L, NewOuter);

  // L is now a subloop of our outer loop.
  NewOuter->addChildLoop(L);

  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    NewOuter->addBlockEntry(*I);

  // Now reset the header in L, which had been moved by
  // SplitBlockPredecessors for the outer loop.
  L->moveToHeader(Header);

  // Determine which blocks should stay in L and which should be moved out to
  // the Outer loop now.
  SmallPtrSet<BasicBlock *, 4> BlocksInL;
  for (BasicBlock *P : predecessors(Header)) {
    if (DT->dominates(Header, P))
      addBlockAndPredsToSet(P, Header, BlocksInL);
  }

  // Scan all of the loop children of L, moving them to OuterLoop if they are
  // not part of the inner loop.
  const std::vector<Loop*> &SubLoops = L->getSubLoops();
  for (size_t I = 0; I != SubLoops.size(); )
    if (BlocksInL.count(SubLoops[I]->getHeader()))
      ++I;   // Loop remains in L
    else
      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));

  SmallVector<BasicBlock *, 8> OuterLoopBlocks;
  OuterLoopBlocks.push_back(NewBB);
  // Now that we know which blocks are in L and which need to be moved to
  // OuterLoop, move any blocks that need it.
  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    BasicBlock *BB = L->getBlocks()[i];
    if (!BlocksInL.count(BB)) {
      // Move this block to the parent, updating the exit blocks sets
      L->removeBlockFromLoop(BB);
      if ((*LI)[BB] == L) {
        LI->changeLoopFor(BB, NewOuter);
        OuterLoopBlocks.push_back(BB);
      }
      --i;
    }
  }

  // Split edges to exit blocks from the inner loop, if they emerged in the
  // process of separating the outer one.
  formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);

  if (PreserveLCSSA) {
    // Fix LCSSA form for L. Some values, which previously were only used inside
    // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
    // in corresponding exit blocks.
    // We don't need to form LCSSA recursively, because there cannot be uses
    // inside a newly created loop of defs from inner loops as those would
    // already be a use of an LCSSA phi node.
    formLCSSA(*L, *DT, LI, SE);

    assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
           "LCSSA is broken after separating nested loops!");
  }

  return NewOuter;
}

/// This method is called when the specified loop has more than one
/// backedge in it.
///
/// If this occurs, revector all of these backedges to target a new basic block
/// and have that block branch to the loop header.  This ensures that loops
/// have exactly one backedge.
static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
                                             DominatorTree *DT, LoopInfo *LI,
                                             MemorySSAUpdater *MSSAU) {
  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");

  // Get information about the loop
  BasicBlock *Header = L->getHeader();
  Function *F = Header->getParent();

  // Unique backedge insertion currently depends on having a preheader.
  if (!Preheader)
    return nullptr;

  // The header is not an EH pad; preheader insertion should ensure this.
  assert(!Header->isEHPad() && "Can't insert backedge to EH pad");

  // Figure out which basic blocks contain back-edges to the loop header.
  std::vector<BasicBlock*> BackedgeBlocks;
  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    BasicBlock *P = *I;

    // Indirect edges cannot be split, so we must fail if we find one.
    if (P->getTerminator()->isIndirectTerminator())
      return nullptr;

    if (P != Preheader) BackedgeBlocks.push_back(P);
  }

  // Create and insert the new backedge block...
  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
                                           Header->getName() + ".backedge", F);
  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
  BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());

  LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
                    << BEBlock->getName() << "\n");

  // Move the new backedge block to right after the last backedge block.
  Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);

  // Now that the block has been inserted into the function, create PHI nodes in
  // the backedge block which correspond to any PHI nodes in the header block.
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
                                     PN->getName()+".be", BETerminator);

    // Loop over the PHI node, moving all entries except the one for the
    // preheader over to the new PHI node.
    unsigned PreheaderIdx = ~0U;
    bool HasUniqueIncomingValue = true;
    Value *UniqueValue = nullptr;
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *IBB = PN->getIncomingBlock(i);
      Value *IV = PN->getIncomingValue(i);
      if (IBB == Preheader) {
        PreheaderIdx = i;
      } else {
        NewPN->addIncoming(IV, IBB);
        if (HasUniqueIncomingValue) {
          if (!UniqueValue)
            UniqueValue = IV;
          else if (UniqueValue != IV)
            HasUniqueIncomingValue = false;
        }
      }
    }

    // Delete all of the incoming values from the old PN except the preheader's
    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    if (PreheaderIdx != 0) {
      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    }
    // Nuke all entries except the zero'th.
    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
      PN->removeIncomingValue(e-i, false);

    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    PN->addIncoming(NewPN, BEBlock);

    // As an optimization, if all incoming values in the new PhiNode (which is a
    // subset of the incoming values of the old PHI node) have the same value,
    // eliminate the PHI Node.
    if (HasUniqueIncomingValue) {
      NewPN->replaceAllUsesWith(UniqueValue);
      BEBlock->getInstList().erase(NewPN);
    }
  }

  // Now that all of the PHI nodes have been inserted and adjusted, modify the
  // backedge blocks to jump to the BEBlock instead of the header.
  // If one of the backedges has llvm.loop metadata attached, we remove
  // it from the backedge and add it to BEBlock.
  unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
  MDNode *LoopMD = nullptr;
  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    Instruction *TI = BackedgeBlocks[i]->getTerminator();
    if (!LoopMD)
      LoopMD = TI->getMetadata(LoopMDKind);
    TI->setMetadata(LoopMDKind, nullptr);
    TI->replaceSuccessorWith(Header, BEBlock);
  }
  BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);

  //===--- Update all analyses which we must preserve now -----------------===//

  // Update Loop Information - we know that this block is now in the current
  // loop and all parent loops.
  L->addBasicBlockToLoop(BEBlock, *LI);

  // Update dominator information
  DT->splitBlock(BEBlock);

  if (MSSAU)
    MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
                                                      BEBlock);

  return BEBlock;
}

/// Simplify one loop and queue further loops for simplification.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
                            DominatorTree *DT, LoopInfo *LI,
                            ScalarEvolution *SE, AssumptionCache *AC,
                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
  bool Changed = false;
  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

ReprocessLoop:

  // Check to see that no blocks (other than the header) in this loop have
  // predecessors that are not in the loop.  This is not valid for natural
  // loops, but can occur if the blocks are unreachable.  Since they are
  // unreachable we can just shamelessly delete those CFG edges!
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
       BB != E; ++BB) {
    if (*BB == L->getHeader()) continue;

    SmallPtrSet<BasicBlock*, 4> BadPreds;
    for (pred_iterator PI = pred_begin(*BB),
         PE = pred_end(*BB); PI != PE; ++PI) {
      BasicBlock *P = *PI;
      if (!L->contains(P))
        BadPreds.insert(P);
    }

    // Delete each unique out-of-loop (and thus dead) predecessor.
    for (BasicBlock *P : BadPreds) {

      LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
                        << P->getName() << "\n");

      // Zap the dead pred's terminator and replace it with unreachable.
      Instruction *TI = P->getTerminator();
      changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
                          /*DTU=*/nullptr, MSSAU);
      Changed = true;
    }
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // If there are exiting blocks with branches on undef, resolve the undef in
  // the direction which will exit the loop. This will help simplify loop
  // trip count computations.
  SmallVector<BasicBlock*, 8> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  for (BasicBlock *ExitingBlock : ExitingBlocks)
    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
      if (BI->isConditional()) {
        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {

          LLVM_DEBUG(dbgs()
                     << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
                     << ExitingBlock->getName() << "\n");

          BI->setCondition(ConstantInt::get(Cond->getType(),
                                            !L->contains(BI->getSuccessor(0))));

          Changed = true;
        }
      }

  // Does the loop already have a preheader?  If so, don't insert one.
  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader) {
    Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
    if (Preheader)
      Changed = true;
  }

  // Next, check to make sure that all exit nodes of the loop only have
  // predecessors that are inside of the loop.  This check guarantees that the
  // loop preheader/header will dominate the exit blocks.  If the exit block has
  // predecessors from outside of the loop, split the edge now.
  if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
    Changed = true;

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // If the header has more than two predecessors at this point (from the
  // preheader and from multiple backedges), we must adjust the loop.
  BasicBlock *LoopLatch = L->getLoopLatch();
  if (!LoopLatch) {
    // If this is really a nested loop, rip it out into a child loop.  Don't do
    // this for loops with a giant number of backedges, just factor them into a
    // common backedge instead.
    if (L->getNumBackEdges() < 8) {
      if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
                                            PreserveLCSSA, AC, MSSAU)) {
        ++NumNested;
        // Enqueue the outer loop as it should be processed next in our
        // depth-first nest walk.
        Worklist.push_back(OuterL);

        // This is a big restructuring change, reprocess the whole loop.
        Changed = true;
        // GCC doesn't tail recursion eliminate this.
        // FIXME: It isn't clear we can't rely on LLVM to TRE this.
        goto ReprocessLoop;
      }
    }

    // If we either couldn't, or didn't want to, identify nesting of the loops,
    // insert a new block that all backedges target, then make it jump to the
    // loop header.
    LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
    if (LoopLatch)
      Changed = true;
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();

  // Scan over the PHI nodes in the loop header.  Since they now have only two
  // incoming values (the loop is canonicalized), we may have simplified the PHI
  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
  PHINode *PN;
  for (BasicBlock::iterator I = L->getHeader()->begin();
       (PN = dyn_cast<PHINode>(I++)); )
    if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
      if (SE) SE->forgetValue(PN);
      if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
        PN->replaceAllUsesWith(V);
        PN->eraseFromParent();
        Changed = true;
      }
    }

  // If this loop has multiple exits and the exits all go to the same
  // block, attempt to merge the exits. This helps several passes, such
  // as LoopRotation, which do not support loops with multiple exits.
  // SimplifyCFG also does this (and this code uses the same utility
  // function), however this code is loop-aware, where SimplifyCFG is
  // not. That gives it the advantage of being able to hoist
  // loop-invariant instructions out of the way to open up more
  // opportunities, and the disadvantage of having the responsibility
  // to preserve dominator information.
  auto HasUniqueExitBlock = [&]() {
    BasicBlock *UniqueExit = nullptr;
    for (auto *ExitingBB : ExitingBlocks)
      for (auto *SuccBB : successors(ExitingBB)) {
        if (L->contains(SuccBB))
          continue;

        if (!UniqueExit)
          UniqueExit = SuccBB;
        else if (UniqueExit != SuccBB)
          return false;
      }

    return true;
  };
  if (HasUniqueExitBlock()) {
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
      BasicBlock *ExitingBlock = ExitingBlocks[i];
      if (!ExitingBlock->getSinglePredecessor()) continue;
      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
      if (!BI || !BI->isConditional()) continue;
      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
      if (!CI || CI->getParent() != ExitingBlock) continue;

      // Attempt to hoist out all instructions except for the
      // comparison and the branch.
      bool AllInvariant = true;
      bool AnyInvariant = false;
      for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
        Instruction *Inst = &*I++;
        if (Inst == CI)
          continue;
        if (!L->makeLoopInvariant(
                Inst, AnyInvariant,
                Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
          AllInvariant = false;
          break;
        }
      }
      if (AnyInvariant) {
        Changed = true;
        // The loop disposition of all SCEV expressions that depend on any
        // hoisted values have also changed.
        if (SE)
          SE->forgetLoopDispositions(L);
      }
      if (!AllInvariant) continue;

      // The block has now been cleared of all instructions except for
      // a comparison and a conditional branch. SimplifyCFG may be able
      // to fold it now.
      if (!FoldBranchToCommonDest(BI, MSSAU))
        continue;

      // Success. The block is now dead, so remove it from the loop,
      // update the dominator tree and delete it.
      LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
                        << ExitingBlock->getName() << "\n");

      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
      Changed = true;
      LI->removeBlock(ExitingBlock);

      DomTreeNode *Node = DT->getNode(ExitingBlock);
      while (!Node->isLeaf()) {
        DomTreeNode *Child = Node->back();
        DT->changeImmediateDominator(Child, Node->getIDom());
      }
      DT->eraseNode(ExitingBlock);
      if (MSSAU) {
        SmallSetVector<BasicBlock *, 8> ExitBlockSet;
        ExitBlockSet.insert(ExitingBlock);
        MSSAU->removeBlocks(ExitBlockSet);
      }

      BI->getSuccessor(0)->removePredecessor(
          ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
      BI->getSuccessor(1)->removePredecessor(
          ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
      ExitingBlock->eraseFromParent();
    }
  }

  // Changing exit conditions for blocks may affect exit counts of this loop and
  // any of its paretns, so we must invalidate the entire subtree if we've made
  // any changes.
  if (Changed && SE)
    SE->forgetTopmostLoop(L);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  return Changed;
}

bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
                        ScalarEvolution *SE, AssumptionCache *AC,
                        MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
  bool Changed = false;

#ifndef NDEBUG
  // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
  // form.
  if (PreserveLCSSA) {
    assert(DT && "DT not available.");
    assert(LI && "LI not available.");
    assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
           "Requested to preserve LCSSA, but it's already broken.");
  }
#endif

  // Worklist maintains our depth-first queue of loops in this nest to process.
  SmallVector<Loop *, 4> Worklist;
  Worklist.push_back(L);

  // Walk the worklist from front to back, pushing newly found sub loops onto
  // the back. This will let us process loops from back to front in depth-first
  // order. We can use this simple process because loops form a tree.
  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    Loop *L2 = Worklist[Idx];
    Worklist.append(L2->begin(), L2->end());
  }

  while (!Worklist.empty())
    Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
                               AC, MSSAU, PreserveLCSSA);

  return Changed;
}

namespace {
  struct LoopSimplify : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    LoopSimplify() : FunctionPass(ID) {
      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AssumptionCacheTracker>();

      // We need loop information to identify the loops...
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();

      AU.addRequired<LoopInfoWrapperPass>();
      AU.addPreserved<LoopInfoWrapperPass>();

      AU.addPreserved<BasicAAWrapperPass>();
      AU.addPreserved<AAResultsWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addPreserved<ScalarEvolutionWrapperPass>();
      AU.addPreserved<SCEVAAWrapperPass>();
      AU.addPreservedID(LCSSAID);
      AU.addPreserved<DependenceAnalysisWrapperPass>();
      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
      AU.addPreserved<BranchProbabilityInfoWrapperPass>();
      if (EnableMSSALoopDependency)
        AU.addPreserved<MemorySSAWrapperPass>();
    }

    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
    void verifyAnalysis() const override;
  };
}

char LoopSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
                "Canonicalize natural loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
                "Canonicalize natural loops", false, false)

// Publicly exposed interface to pass...
char &llvm::LoopSimplifyID = LoopSimplify::ID;
Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }

/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
/// it in any convenient order) inserting preheaders...
///
bool LoopSimplify::runOnFunction(Function &F) {
  bool Changed = false;
  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
  ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
  AssumptionCache *AC =
      &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  MemorySSA *MSSA = nullptr;
  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (EnableMSSALoopDependency) {
    auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
    if (MSSAAnalysis) {
      MSSA = &MSSAAnalysis->getMSSA();
      MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
    }
  }

  bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);

  // Simplify each loop nest in the function.
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);

#ifndef NDEBUG
  if (PreserveLCSSA) {
    bool InLCSSA = all_of(
        *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
    assert(InLCSSA && "LCSSA is broken after loop-simplify.");
  }
#endif
  return Changed;
}

PreservedAnalyses LoopSimplifyPass::run(Function &F,
                                        FunctionAnalysisManager &AM) {
  bool Changed = false;
  LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
  AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (MSSAAnalysis) {
    auto *MSSA = &MSSAAnalysis->getMSSA();
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
  }


  // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
  // after simplifying the loops. MemorySSA is preserved if it exists.
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    Changed |=
        simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);

  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LoopAnalysis>();
  PA.preserve<BasicAA>();
  PA.preserve<GlobalsAA>();
  PA.preserve<SCEVAA>();
  PA.preserve<ScalarEvolutionAnalysis>();
  PA.preserve<DependenceAnalysis>();
  if (MSSAAnalysis)
    PA.preserve<MemorySSAAnalysis>();
  // BPI maps conditional terminators to probabilities, LoopSimplify can insert
  // blocks, but it does so only by splitting existing blocks and edges. This
  // results in the interesting property that all new terminators inserted are
  // unconditional branches which do not appear in BPI. All deletions are
  // handled via ValueHandle callbacks w/in BPI.
  PA.preserve<BranchProbabilityAnalysis>();
  return PA;
}

// FIXME: Restore this code when we re-enable verification in verifyAnalysis
// below.
#if 0
static void verifyLoop(Loop *L) {
  // Verify subloops.
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    verifyLoop(*I);

  // It used to be possible to just assert L->isLoopSimplifyForm(), however
  // with the introduction of indirectbr, there are now cases where it's
  // not possible to transform a loop as necessary. We can at least check
  // that there is an indirectbr near any time there's trouble.

  // Indirectbr can interfere with preheader and unique backedge insertion.
  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    bool HasIndBrPred = false;
    for (pred_iterator PI = pred_begin(L->getHeader()),
         PE = pred_end(L->getHeader()); PI != PE; ++PI)
      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
        HasIndBrPred = true;
        break;
      }
    assert(HasIndBrPred &&
           "LoopSimplify has no excuse for missing loop header info!");
    (void)HasIndBrPred;
  }

  // Indirectbr can interfere with exit block canonicalization.
  if (!L->hasDedicatedExits()) {
    bool HasIndBrExiting = false;
    SmallVector<BasicBlock*, 8> ExitingBlocks;
    L->getExitingBlocks(ExitingBlocks);
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
        HasIndBrExiting = true;
        break;
      }
    }

    assert(HasIndBrExiting &&
           "LoopSimplify has no excuse for missing exit block info!");
    (void)HasIndBrExiting;
  }
}
#endif

void LoopSimplify::verifyAnalysis() const {
  // FIXME: This routine is being called mid-way through the loop pass manager
  // as loop passes destroy this analysis. That's actually fine, but we have no
  // way of expressing that here. Once all of the passes that destroy this are
  // hoisted out of the loop pass manager we can add back verification here.
#if 0
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    verifyLoop(*I);
#endif
}