LoopUnroll.cpp 38.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities. It does not define any
// actual pass or policy, but provides a single function to perform loop
// unrolling.
//
// The process of unrolling can produce extraneous basic blocks linked with
// unconditional branches.  This will be corrected in the future.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist_iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <assert.h>
#include <type_traits>
#include <vector>

namespace llvm {
class DataLayout;
class Value;
} // namespace llvm

using namespace llvm;

#define DEBUG_TYPE "loop-unroll"

// TODO: Should these be here or in LoopUnroll?
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
                               "latch (completely or otherwise)");

static cl::opt<bool>
UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
                    cl::desc("Allow runtime unrolled loops to be unrolled "
                             "with epilog instead of prolog."));

static cl::opt<bool>
UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
                    cl::desc("Verify domtree after unrolling"),
#ifdef EXPENSIVE_CHECKS
    cl::init(true)
#else
    cl::init(false)
#endif
                    );

/// Check if unrolling created a situation where we need to insert phi nodes to
/// preserve LCSSA form.
/// \param Blocks is a vector of basic blocks representing unrolled loop.
/// \param L is the outer loop.
/// It's possible that some of the blocks are in L, and some are not. In this
/// case, if there is a use is outside L, and definition is inside L, we need to
/// insert a phi-node, otherwise LCSSA will be broken.
/// The function is just a helper function for llvm::UnrollLoop that returns
/// true if this situation occurs, indicating that LCSSA needs to be fixed.
static bool needToInsertPhisForLCSSA(Loop *L,
                                     const std::vector<BasicBlock *> &Blocks,
                                     LoopInfo *LI) {
  for (BasicBlock *BB : Blocks) {
    if (LI->getLoopFor(BB) == L)
      continue;
    for (Instruction &I : *BB) {
      for (Use &U : I.operands()) {
        if (const auto *Def = dyn_cast<Instruction>(U)) {
          Loop *DefLoop = LI->getLoopFor(Def->getParent());
          if (!DefLoop)
            continue;
          if (DefLoop->contains(L))
            return true;
        }
      }
    }
  }
  return false;
}

/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
/// and adds a mapping from the original loop to the new loop to NewLoops.
/// Returns nullptr if no new loop was created and a pointer to the
/// original loop OriginalBB was part of otherwise.
const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
                                           BasicBlock *ClonedBB, LoopInfo *LI,
                                           NewLoopsMap &NewLoops) {
  // Figure out which loop New is in.
  const Loop *OldLoop = LI->getLoopFor(OriginalBB);
  assert(OldLoop && "Should (at least) be in the loop being unrolled!");

  Loop *&NewLoop = NewLoops[OldLoop];
  if (!NewLoop) {
    // Found a new sub-loop.
    assert(OriginalBB == OldLoop->getHeader() &&
           "Header should be first in RPO");

    NewLoop = LI->AllocateLoop();
    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());

    if (NewLoopParent)
      NewLoopParent->addChildLoop(NewLoop);
    else
      LI->addTopLevelLoop(NewLoop);

    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
    return OldLoop;
  } else {
    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
    return nullptr;
  }
}

/// The function chooses which type of unroll (epilog or prolog) is more
/// profitabale.
/// Epilog unroll is more profitable when there is PHI that starts from
/// constant.  In this case epilog will leave PHI start from constant,
/// but prolog will convert it to non-constant.
///
/// loop:
///   PN = PHI [I, Latch], [CI, PreHeader]
///   I = foo(PN)
///   ...
///
/// Epilog unroll case.
/// loop:
///   PN = PHI [I2, Latch], [CI, PreHeader]
///   I1 = foo(PN)
///   I2 = foo(I1)
///   ...
/// Prolog unroll case.
///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
/// loop:
///   PN = PHI [I2, Latch], [NewPN, PreHeader]
///   I1 = foo(PN)
///   I2 = foo(I1)
///   ...
///
static bool isEpilogProfitable(Loop *L) {
  BasicBlock *PreHeader = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  assert(PreHeader && Header);
  for (const PHINode &PN : Header->phis()) {
    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
      return true;
  }
  return false;
}

/// Perform some cleanup and simplifications on loops after unrolling. It is
/// useful to simplify the IV's in the new loop, as well as do a quick
/// simplify/dce pass of the instructions.
void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
                                   ScalarEvolution *SE, DominatorTree *DT,
                                   AssumptionCache *AC,
                                   const TargetTransformInfo *TTI) {
  // Simplify any new induction variables in the partially unrolled loop.
  if (SE && SimplifyIVs) {
    SmallVector<WeakTrackingVH, 16> DeadInsts;
    simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);

    // Aggressively clean up dead instructions that simplifyLoopIVs already
    // identified. Any remaining should be cleaned up below.
    while (!DeadInsts.empty()) {
      Value *V = DeadInsts.pop_back_val();
      if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
    }
  }

  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  for (BasicBlock *BB : L->getBlocks()) {
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
      Instruction *Inst = &*I++;

      if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
        if (LI->replacementPreservesLCSSAForm(Inst, V))
          Inst->replaceAllUsesWith(V);
      if (isInstructionTriviallyDead(Inst))
        BB->getInstList().erase(Inst);
    }
  }

  // TODO: after peeling or unrolling, previously loop variant conditions are
  // likely to fold to constants, eagerly propagating those here will require
  // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
  // appropriate.
}

/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
/// can only fail when the loop's latch block is not terminated by a conditional
/// branch instruction. However, if the trip count (and multiple) are not known,
/// loop unrolling will mostly produce more code that is no faster.
///
/// TripCount is the upper bound of the iteration on which control exits
/// LatchBlock. Control may exit the loop prior to TripCount iterations either
/// via an early branch in other loop block or via LatchBlock terminator. This
/// is relaxed from the general definition of trip count which is the number of
/// times the loop header executes. Note that UnrollLoop assumes that the loop
/// counter test is in LatchBlock in order to remove unnecesssary instances of
/// the test.  If control can exit the loop from the LatchBlock's terminator
/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
///
/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
/// needs to be preserved.  It is needed when we use trip count upper bound to
/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
/// conditional branch needs to be preserved.
///
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
/// execute without exiting the loop.
///
/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
/// iterations before branching into the unrolled loop.  UnrollLoop will not
/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
/// AllowExpensiveTripCount is false.
///
/// If we want to perform PGO-based loop peeling, PeelCount is set to the
/// number of iterations we want to peel off.
///
/// The LoopInfo Analysis that is passed will be kept consistent.
///
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
/// DominatorTree if they are non-null.
///
/// If RemainderLoop is non-null, it will receive the remainder loop (if
/// required and not fully unrolled).
LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
                                  ScalarEvolution *SE, DominatorTree *DT,
                                  AssumptionCache *AC,
                                  const TargetTransformInfo *TTI,
                                  OptimizationRemarkEmitter *ORE,
                                  bool PreserveLCSSA, Loop **RemainderLoop) {

  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    return LoopUnrollResult::Unmodified;
  }

  BasicBlock *LatchBlock = L->getLoopLatch();
  if (!LatchBlock) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    return LoopUnrollResult::Unmodified;
  }

  // Loops with indirectbr cannot be cloned.
  if (!L->isSafeToClone()) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
    return LoopUnrollResult::Unmodified;
  }

  // The current loop unroll pass can unroll loops that have
  // (1) single latch; and
  // (2a) latch is unconditional; or
  // (2b) latch is conditional and is an exiting block
  // FIXME: The implementation can be extended to work with more complicated
  // cases, e.g. loops with multiple latches.
  BasicBlock *Header = L->getHeader();
  BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());

  // A conditional branch which exits the loop, which can be optimized to an
  // unconditional branch in the unrolled loop in some cases.
  BranchInst *ExitingBI = nullptr;
  bool LatchIsExiting = L->isLoopExiting(LatchBlock);
  if (LatchIsExiting)
    ExitingBI = LatchBI;
  else if (BasicBlock *ExitingBlock = L->getExitingBlock())
    ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
  if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
    LLVM_DEBUG(
        dbgs() << "Can't unroll; a conditional latch must exit the loop");
    return LoopUnrollResult::Unmodified;
  }
  LLVM_DEBUG({
    if (ExitingBI)
      dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
             << "\n";
    else
      dbgs() << "  No single exiting block\n";
  });

  if (Header->hasAddressTaken()) {
    // The loop-rotate pass can be helpful to avoid this in many cases.
    LLVM_DEBUG(
        dbgs() << "  Won't unroll loop: address of header block is taken.\n");
    return LoopUnrollResult::Unmodified;
  }

  if (ULO.TripCount != 0)
    LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
  if (ULO.TripMultiple != 1)
    LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");

  // Effectively "DCE" unrolled iterations that are beyond the tripcount
  // and will never be executed.
  if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
    ULO.Count = ULO.TripCount;

  // Don't enter the unroll code if there is nothing to do.
  if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
    LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
    return LoopUnrollResult::Unmodified;
  }

  assert(ULO.Count > 0);
  assert(ULO.TripMultiple > 0);
  assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);

  // Are we eliminating the loop control altogether?
  bool CompletelyUnroll = ULO.Count == ULO.TripCount;
  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();

  // Go through all exits of L and see if there are any phi-nodes there. We just
  // conservatively assume that they're inserted to preserve LCSSA form, which
  // means that complete unrolling might break this form. We need to either fix
  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
  // now we just recompute LCSSA for the outer loop, but it should be possible
  // to fix it in-place.
  bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
                        any_of(ExitBlocks, [](const BasicBlock *BB) {
                          return isa<PHINode>(BB->begin());
                        });

  // We assume a run-time trip count if the compiler cannot
  // figure out the loop trip count and the unroll-runtime
  // flag is specified.
  bool RuntimeTripCount =
      (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);

  assert((!RuntimeTripCount || !ULO.PeelCount) &&
         "Did not expect runtime trip-count unrolling "
         "and peeling for the same loop");

  bool Peeled = false;
  if (ULO.PeelCount) {
    Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);

    // Successful peeling may result in a change in the loop preheader/trip
    // counts. If we later unroll the loop, we want these to be updated.
    if (Peeled) {
      // According to our guards and profitability checks the only
      // meaningful exit should be latch block. Other exits go to deopt,
      // so we do not worry about them.
      BasicBlock *ExitingBlock = L->getLoopLatch();
      assert(ExitingBlock && "Loop without exiting block?");
      assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
      Preheader = L->getLoopPreheader();
      ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
      ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
    }
  }

  // Loops containing convergent instructions must have a count that divides
  // their TripMultiple.
  LLVM_DEBUG(
      {
        bool HasConvergent = false;
        for (auto &BB : L->blocks())
          for (auto &I : *BB)
            if (auto *CB = dyn_cast<CallBase>(&I))
              HasConvergent |= CB->isConvergent();
        assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
               "Unroll count must divide trip multiple if loop contains a "
               "convergent operation.");
      });

  bool EpilogProfitability =
      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
                                              : isEpilogProfitable(L);

  if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
                                  EpilogProfitability, ULO.UnrollRemainder,
                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
                                  PreserveLCSSA, RemainderLoop)) {
    if (ULO.Force)
      RuntimeTripCount = false;
    else {
      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
                           "generated when assuming runtime trip count\n");
      return LoopUnrollResult::Unmodified;
    }
  }

  // If we know the trip count, we know the multiple...
  unsigned BreakoutTrip = 0;
  if (ULO.TripCount != 0) {
    BreakoutTrip = ULO.TripCount % ULO.Count;
    ULO.TripMultiple = 0;
  } else {
    // Figure out what multiple to use.
    BreakoutTrip = ULO.TripMultiple =
        (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
  }

  using namespace ore;
  // Report the unrolling decision.
  if (CompletelyUnroll) {
    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
                      << " with trip count " << ULO.TripCount << "!\n");
    if (ORE)
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
                                  L->getHeader())
               << "completely unrolled loop with "
               << NV("UnrollCount", ULO.TripCount) << " iterations";
      });
  } else if (ULO.PeelCount) {
    LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
                      << " with iteration count " << ULO.PeelCount << "!\n");
    if (ORE)
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
                                  L->getHeader())
               << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
               << " iterations";
      });
  } else {
    auto DiagBuilder = [&]() {
      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
                              L->getHeader());
      return Diag << "unrolled loop by a factor of "
                  << NV("UnrollCount", ULO.Count);
    };

    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
                      << ULO.Count);
    if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
      LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
      if (ORE)
        ORE->emit([&]() {
          return DiagBuilder() << " with a breakout at trip "
                               << NV("BreakoutTrip", BreakoutTrip);
        });
    } else if (ULO.TripMultiple != 1) {
      LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
      if (ORE)
        ORE->emit([&]() {
          return DiagBuilder()
                 << " with " << NV("TripMultiple", ULO.TripMultiple)
                 << " trips per branch";
        });
    } else if (RuntimeTripCount) {
      LLVM_DEBUG(dbgs() << " with run-time trip count");
      if (ORE)
        ORE->emit(
            [&]() { return DiagBuilder() << " with run-time trip count"; });
    }
    LLVM_DEBUG(dbgs() << "!\n");
  }

  // We are going to make changes to this loop. SCEV may be keeping cached info
  // about it, in particular about backedge taken count. The changes we make
  // are guaranteed to invalidate this information for our loop. It is tempting
  // to only invalidate the loop being unrolled, but it is incorrect as long as
  // all exiting branches from all inner loops have impact on the outer loops,
  // and if something changes inside them then any of outer loops may also
  // change. When we forget outermost loop, we also forget all contained loops
  // and this is what we need here.
  if (SE) {
    if (ULO.ForgetAllSCEV)
      SE->forgetAllLoops();
    else
      SE->forgetTopmostLoop(L);
  }

  if (!LatchIsExiting)
    ++NumUnrolledNotLatch;
  Optional<bool> ContinueOnTrue = None;
  BasicBlock *LoopExit = nullptr;
  if (ExitingBI) {
    ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0));
    LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue);
  }

  // For the first iteration of the loop, we should use the precloned values for
  // PHI nodes.  Insert associations now.
  ValueToValueMapTy LastValueMap;
  std::vector<PHINode*> OrigPHINode;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    OrigPHINode.push_back(cast<PHINode>(I));
  }

  std::vector<BasicBlock *> Headers;
  std::vector<BasicBlock *> ExitingBlocks;
  std::vector<BasicBlock *> ExitingSucc;
  std::vector<BasicBlock *> Latches;
  Headers.push_back(Header);
  Latches.push_back(LatchBlock);
  if (ExitingBI) {
    ExitingBlocks.push_back(ExitingBI->getParent());
    ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue)));
  }

  // The current on-the-fly SSA update requires blocks to be processed in
  // reverse postorder so that LastValueMap contains the correct value at each
  // exit.
  LoopBlocksDFS DFS(L);
  DFS.perform(LI);

  // Stash the DFS iterators before adding blocks to the loop.
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();

  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();

  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
  // might break loop-simplified form for these loops (as they, e.g., would
  // share the same exit blocks). We'll keep track of loops for which we can
  // break this so that later we can re-simplify them.
  SmallSetVector<Loop *, 4> LoopsToSimplify;
  for (Loop *SubLoop : *L)
    LoopsToSimplify.insert(SubLoop);

  if (Header->getParent()->isDebugInfoForProfiling())
    for (BasicBlock *BB : L->getBlocks())
      for (Instruction &I : *BB)
        if (!isa<DbgInfoIntrinsic>(&I))
          if (const DILocation *DIL = I.getDebugLoc()) {
            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
            if (NewDIL)
              I.setDebugLoc(NewDIL.getValue());
            else
              LLVM_DEBUG(dbgs()
                         << "Failed to create new discriminator: "
                         << DIL->getFilename() << " Line: " << DIL->getLine());
          }

  for (unsigned It = 1; It != ULO.Count; ++It) {
    SmallVector<BasicBlock *, 8> NewBlocks;
    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
    NewLoops[L] = L;

    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
      ValueToValueMapTy VMap;
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
      Header->getParent()->getBasicBlockList().push_back(New);

      assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
             "Header should not be in a sub-loop");
      // Tell LI about New.
      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
      if (OldLoop)
        LoopsToSimplify.insert(NewLoops[OldLoop]);

      if (*BB == Header)
        // Loop over all of the PHI nodes in the block, changing them to use
        // the incoming values from the previous block.
        for (PHINode *OrigPHI : OrigPHINode) {
          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
            if (It > 1 && L->contains(InValI))
              InVal = LastValueMap[InValI];
          VMap[OrigPHI] = InVal;
          New->getInstList().erase(NewPHI);
        }

      // Update our running map of newest clones
      LastValueMap[*BB] = New;
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
           VI != VE; ++VI)
        LastValueMap[VI->first] = VI->second;

      // Add phi entries for newly created values to all exit blocks.
      for (BasicBlock *Succ : successors(*BB)) {
        if (L->contains(Succ))
          continue;
        for (PHINode &PHI : Succ->phis()) {
          Value *Incoming = PHI.getIncomingValueForBlock(*BB);
          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
          if (It != LastValueMap.end())
            Incoming = It->second;
          PHI.addIncoming(Incoming, New);
        }
      }
      // Keep track of new headers and latches as we create them, so that
      // we can insert the proper branches later.
      if (*BB == Header)
        Headers.push_back(New);
      if (*BB == LatchBlock)
        Latches.push_back(New);

      // Keep track of the exiting block and its successor block contained in
      // the loop for the current iteration.
      if (ExitingBI) {
        if (*BB == ExitingBlocks[0])
          ExitingBlocks.push_back(New);
        if (*BB == ExitingSucc[0])
          ExitingSucc.push_back(New);
      }

      NewBlocks.push_back(New);
      UnrolledLoopBlocks.push_back(New);

      // Update DomTree: since we just copy the loop body, and each copy has a
      // dedicated entry block (copy of the header block), this header's copy
      // dominates all copied blocks. That means, dominance relations in the
      // copied body are the same as in the original body.
      if (DT) {
        if (*BB == Header)
          DT->addNewBlock(New, Latches[It - 1]);
        else {
          auto BBDomNode = DT->getNode(*BB);
          auto BBIDom = BBDomNode->getIDom();
          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
          DT->addNewBlock(
              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
        }
      }
    }

    // Remap all instructions in the most recent iteration
    remapInstructionsInBlocks(NewBlocks, LastValueMap);
    for (BasicBlock *NewBlock : NewBlocks) {
      for (Instruction &I : *NewBlock) {
        if (auto *II = dyn_cast<IntrinsicInst>(&I))
          if (II->getIntrinsicID() == Intrinsic::assume)
            AC->registerAssumption(II);
      }
    }
  }

  // Loop over the PHI nodes in the original block, setting incoming values.
  for (PHINode *PN : OrigPHINode) {
    if (CompletelyUnroll) {
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
      Header->getInstList().erase(PN);
    } else if (ULO.Count > 1) {
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
      // If this value was defined in the loop, take the value defined by the
      // last iteration of the loop.
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
        if (L->contains(InValI))
          InVal = LastValueMap[InVal];
      }
      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
      PN->addIncoming(InVal, Latches.back());
    }
  }

  auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop,
                    bool NeedConditional, Optional<bool> ContinueOnTrue,
                    bool IsDestLoopExit) {
    auto *Term = cast<BranchInst>(Src->getTerminator());
    if (NeedConditional) {
      // Update the conditional branch's successor for the following
      // iteration.
      assert(ContinueOnTrue.hasValue() &&
             "Expecting valid ContinueOnTrue when NeedConditional is true");
      Term->setSuccessor(!(*ContinueOnTrue), Dest);
    } else {
      // Remove phi operands at this loop exit
      if (!IsDestLoopExit) {
        BasicBlock *BB = Src;
        for (BasicBlock *Succ : successors(BB)) {
          // Preserve the incoming value from BB if we are jumping to the block
          // in the current loop.
          if (Succ == BlockInLoop)
            continue;
          for (PHINode &Phi : Succ->phis())
            Phi.removeIncomingValue(BB, false);
        }
      }
      // Replace the conditional branch with an unconditional one.
      BranchInst::Create(Dest, Term);
      Term->eraseFromParent();
    }
  };

  // Connect latches of the unrolled iterations to the headers of the next
  // iteration. If the latch is also the exiting block, the conditional branch
  // may have to be preserved.
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    // The branch destination.
    unsigned j = (i + 1) % e;
    BasicBlock *Dest = Headers[j];
    bool NeedConditional = LatchIsExiting;

    if (LatchIsExiting) {
      if (RuntimeTripCount && j != 0)
        NeedConditional = false;

      // For a complete unroll, make the last iteration end with a branch
      // to the exit block.
      if (CompletelyUnroll) {
        if (j == 0)
          Dest = LoopExit;
        // If using trip count upper bound to completely unroll, we need to
        // keep the conditional branch except the last one because the loop
        // may exit after any iteration.
        assert(NeedConditional &&
               "NeedCondition cannot be modified by both complete "
               "unrolling and runtime unrolling");
        NeedConditional =
            (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
      } else if (j != BreakoutTrip &&
                 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
        // If we know the trip count or a multiple of it, we can safely use an
        // unconditional branch for some iterations.
        NeedConditional = false;
      }
    }

    setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue,
            Dest == LoopExit);
  }

  if (!LatchIsExiting) {
    // If the latch is not exiting, we may be able to simplify the conditional
    // branches in the unrolled exiting blocks.
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
      // The branch destination.
      unsigned j = (i + 1) % e;
      bool NeedConditional = true;

      if (RuntimeTripCount && j != 0)
        NeedConditional = false;

      if (CompletelyUnroll)
        // We cannot drop the conditional branch for the last condition, as we
        // may have to execute the loop body depending on the condition.
        NeedConditional = j == 0 || ULO.PreserveCondBr;
      else if (j != BreakoutTrip &&
               (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
        // If we know the trip count or a multiple of it, we can safely use an
        // unconditional branch for some iterations.
        NeedConditional = false;

      // Conditional branches from non-latch exiting block have successors
      // either in the same loop iteration or outside the loop. The branches are
      // already correct.
      if (NeedConditional)
        continue;
      setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional,
              None, false);
    }

    // When completely unrolling, the last latch becomes unreachable.
    if (CompletelyUnroll) {
      BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
      new UnreachableInst(Term->getContext(), Term);
      Term->eraseFromParent();
    }
  }

  // Update dominators of blocks we might reach through exits.
  // Immediate dominator of such block might change, because we add more
  // routes which can lead to the exit: we can now reach it from the copied
  // iterations too.
  if (DT && ULO.Count > 1) {
    for (auto *BB : OriginalLoopBlocks) {
      auto *BBDomNode = DT->getNode(BB);
      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
      for (auto *ChildDomNode : BBDomNode->children()) {
        auto *ChildBB = ChildDomNode->getBlock();
        if (!L->contains(ChildBB))
          ChildrenToUpdate.push_back(ChildBB);
      }
      BasicBlock *NewIDom;
      if (ExitingBI && BB == ExitingBlocks[0]) {
        // The latch is special because we emit unconditional branches in
        // some cases where the original loop contained a conditional branch.
        // Since the latch is always at the bottom of the loop, if the latch
        // dominated an exit before unrolling, the new dominator of that exit
        // must also be a latch.  Specifically, the dominator is the first
        // latch which ends in a conditional branch, or the last latch if
        // there is no such latch.
        // For loops exiting from non latch exiting block, we limit the
        // branch simplification to single exiting block loops.
        NewIDom = ExitingBlocks.back();
        for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
          Instruction *Term = ExitingBlocks[i]->getTerminator();
          if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
            NewIDom =
                DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
            break;
          }
        }
      } else {
        // The new idom of the block will be the nearest common dominator
        // of all copies of the previous idom. This is equivalent to the
        // nearest common dominator of the previous idom and the first latch,
        // which dominates all copies of the previous idom.
        NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
      }
      for (auto *ChildBB : ChildrenToUpdate)
        DT->changeImmediateDominator(ChildBB, NewIDom);
    }
  }

  assert(!DT || !UnrollVerifyDomtree ||
         DT->verify(DominatorTree::VerificationLevel::Fast));

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  // Merge adjacent basic blocks, if possible.
  for (BasicBlock *Latch : Latches) {
    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
    assert((Term ||
            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
           "Need a branch as terminator, except when fully unrolling with "
           "unconditional latch");
    if (Term && Term->isUnconditional()) {
      BasicBlock *Dest = Term->getSuccessor(0);
      BasicBlock *Fold = Dest->getUniquePredecessor();
      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
        // Dest has been folded into Fold. Update our worklists accordingly.
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
        UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
                                             UnrolledLoopBlocks.end(), Dest),
                                 UnrolledLoopBlocks.end());
      }
    }
  }
  // Apply updates to the DomTree.
  DT = &DTU.getDomTree();

  // At this point, the code is well formed.  We now simplify the unrolled loop,
  // doing constant propagation and dead code elimination as we go.
  simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
                          SE, DT, AC, TTI);

  NumCompletelyUnrolled += CompletelyUnroll;
  ++NumUnrolled;

  Loop *OuterL = L->getParentLoop();
  // Update LoopInfo if the loop is completely removed.
  if (CompletelyUnroll)
    LI->erase(L);

  // After complete unrolling most of the blocks should be contained in OuterL.
  // However, some of them might happen to be out of OuterL (e.g. if they
  // precede a loop exit). In this case we might need to insert PHI nodes in
  // order to preserve LCSSA form.
  // We don't need to check this if we already know that we need to fix LCSSA
  // form.
  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
  // it should be possible to fix it in-place.
  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);

  // If we have a pass and a DominatorTree we should re-simplify impacted loops
  // to ensure subsequent analyses can rely on this form. We want to simplify
  // at least one layer outside of the loop that was unrolled so that any
  // changes to the parent loop exposed by the unrolling are considered.
  if (DT) {
    if (OuterL) {
      // OuterL includes all loops for which we can break loop-simplify, so
      // it's sufficient to simplify only it (it'll recursively simplify inner
      // loops too).
      if (NeedToFixLCSSA) {
        // LCSSA must be performed on the outermost affected loop. The unrolled
        // loop's last loop latch is guaranteed to be in the outermost loop
        // after LoopInfo's been updated by LoopInfo::erase.
        Loop *LatchLoop = LI->getLoopFor(Latches.back());
        Loop *FixLCSSALoop = OuterL;
        if (!FixLCSSALoop->contains(LatchLoop))
          while (FixLCSSALoop->getParentLoop() != LatchLoop)
            FixLCSSALoop = FixLCSSALoop->getParentLoop();

        formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
      } else if (PreserveLCSSA) {
        assert(OuterL->isLCSSAForm(*DT) &&
               "Loops should be in LCSSA form after loop-unroll.");
      }

      // TODO: That potentially might be compile-time expensive. We should try
      // to fix the loop-simplified form incrementally.
      simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
    } else {
      // Simplify loops for which we might've broken loop-simplify form.
      for (Loop *SubLoop : LoopsToSimplify)
        simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
    }
  }

  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
                          : LoopUnrollResult::PartiallyUnrolled;
}

/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
/// node with the given name (for example, "llvm.loop.unroll.count"). If no
/// such metadata node exists, then nullptr is returned.
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
  // First operand should refer to the loop id itself.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD)
      continue;

    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;

    if (Name.equals(S->getString()))
      return MD;
  }
  return nullptr;
}