LowerSwitch.cpp 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LowerSwitch transformation rewrites switch instructions with a sequence
// of branches, which allows targets to get away with not implementing the
// switch instruction until it is convenient.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LowerSwitch.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "lower-switch"

namespace {

  struct IntRange {
    int64_t Low, High;
  };

} // end anonymous namespace

namespace {
// Return true iff R is covered by Ranges.
bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
  // Note: Ranges must be sorted, non-overlapping and non-adjacent.

  // Find the first range whose High field is >= R.High,
  // then check if the Low field is <= R.Low. If so, we
  // have a Range that covers R.
  auto I = llvm::lower_bound(
      Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
  return I != Ranges.end() && I->Low <= R.Low;
}

struct CaseRange {
  ConstantInt *Low;
  ConstantInt *High;
  BasicBlock *BB;

  CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
      : Low(low), High(high), BB(bb) {}
};

using CaseVector = std::vector<CaseRange>;
using CaseItr = std::vector<CaseRange>::iterator;

/// The comparison function for sorting the switch case values in the vector.
/// WARNING: Case ranges should be disjoint!
struct CaseCmp {
  bool operator()(const CaseRange &C1, const CaseRange &C2) {
    const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
    const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
    return CI1->getValue().slt(CI2->getValue());
  }
};

/// Used for debugging purposes.
LLVM_ATTRIBUTE_USED
raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
  O << "[";

  for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
    O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
    if (++B != E)
      O << ", ";
  }

  return O << "]";
}

/// Update the first occurrence of the "switch statement" BB in the PHI
/// node with the "new" BB. The other occurrences will:
///
/// 1) Be updated by subsequent calls to this function.  Switch statements may
/// have more than one outcoming edge into the same BB if they all have the same
/// value. When the switch statement is converted these incoming edges are now
/// coming from multiple BBs.
/// 2) Removed if subsequent incoming values now share the same case, i.e.,
/// multiple outcome edges are condensed into one. This is necessary to keep the
/// number of phi values equal to the number of branches to SuccBB.
void FixPhis(
    BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
    const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
  for (BasicBlock::iterator I = SuccBB->begin(),
                            IE = SuccBB->getFirstNonPHI()->getIterator();
       I != IE; ++I) {
    PHINode *PN = cast<PHINode>(I);

    // Only update the first occurrence.
    unsigned Idx = 0, E = PN->getNumIncomingValues();
    unsigned LocalNumMergedCases = NumMergedCases;
    for (; Idx != E; ++Idx) {
      if (PN->getIncomingBlock(Idx) == OrigBB) {
        PN->setIncomingBlock(Idx, NewBB);
        break;
      }
    }

    // Remove additional occurrences coming from condensed cases and keep the
    // number of incoming values equal to the number of branches to SuccBB.
    SmallVector<unsigned, 8> Indices;
    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
      if (PN->getIncomingBlock(Idx) == OrigBB) {
        Indices.push_back(Idx);
        LocalNumMergedCases--;
      }
    // Remove incoming values in the reverse order to prevent invalidating
    // *successive* index.
    for (unsigned III : llvm::reverse(Indices))
      PN->removeIncomingValue(III);
  }
}

/// Create a new leaf block for the binary lookup tree. It checks if the
/// switch's value == the case's value. If not, then it jumps to the default
/// branch. At this point in the tree, the value can't be another valid case
/// value, so the jump to the "default" branch is warranted.
BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
                         ConstantInt *UpperBound, BasicBlock *OrigBlock,
                         BasicBlock *Default) {
  Function *F = OrigBlock->getParent();
  BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);

  // Emit comparison
  ICmpInst *Comp = nullptr;
  if (Leaf.Low == Leaf.High) {
    // Make the seteq instruction...
    Comp =
        new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
  } else {
    // Make range comparison
    if (Leaf.Low == LowerBound) {
      // Val >= Min && Val <= Hi --> Val <= Hi
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
                          "SwitchLeaf");
    } else if (Leaf.High == UpperBound) {
      // Val <= Max && Val >= Lo --> Val >= Lo
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
                          "SwitchLeaf");
    } else if (Leaf.Low->isZero()) {
      // Val >= 0 && Val <= Hi --> Val <=u Hi
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
                          "SwitchLeaf");
    } else {
      // Emit V-Lo <=u Hi-Lo
      Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
      Instruction *Add = BinaryOperator::CreateAdd(
          Val, NegLo, Val->getName() + ".off", NewLeaf);
      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
                          "SwitchLeaf");
    }
  }

  // Make the conditional branch...
  BasicBlock *Succ = Leaf.BB;
  BranchInst::Create(Succ, Default, Comp, NewLeaf);

  // If there were any PHI nodes in this successor, rewrite one entry
  // from OrigBlock to come from NewLeaf.
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    // Remove all but one incoming entries from the cluster
    uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
    for (uint64_t j = 0; j < Range; ++j) {
      PN->removeIncomingValue(OrigBlock);
    }

    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
  }

  return NewLeaf;
}

/// Convert the switch statement into a binary lookup of the case values.
/// The function recursively builds this tree. LowerBound and UpperBound are
/// used to keep track of the bounds for Val that have already been checked by
/// a block emitted by one of the previous calls to switchConvert in the call
/// stack.
BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
                          ConstantInt *UpperBound, Value *Val,
                          BasicBlock *Predecessor, BasicBlock *OrigBlock,
                          BasicBlock *Default,
                          const std::vector<IntRange> &UnreachableRanges) {
  assert(LowerBound && UpperBound && "Bounds must be initialized");
  unsigned Size = End - Begin;

  if (Size == 1) {
    // Check if the Case Range is perfectly squeezed in between
    // already checked Upper and Lower bounds. If it is then we can avoid
    // emitting the code that checks if the value actually falls in the range
    // because the bounds already tell us so.
    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
      unsigned NumMergedCases = 0;
      NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
      FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
      return Begin->BB;
    }
    return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
                        Default);
  }

  unsigned Mid = Size / 2;
  std::vector<CaseRange> LHS(Begin, Begin + Mid);
  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
  std::vector<CaseRange> RHS(Begin + Mid, End);
  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");

  CaseRange &Pivot = *(Begin + Mid);
  LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
                    << Pivot.High->getValue() << "]\n");

  // NewLowerBound here should never be the integer minimal value.
  // This is because it is computed from a case range that is never
  // the smallest, so there is always a case range that has at least
  // a smaller value.
  ConstantInt *NewLowerBound = Pivot.Low;

  // Because NewLowerBound is never the smallest representable integer
  // it is safe here to subtract one.
  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
                                                NewLowerBound->getValue() - 1);

  if (!UnreachableRanges.empty()) {
    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
    IntRange Gap = { GapLow, GapHigh };
    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
      NewUpperBound = LHS.back().High;
  }

  LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
                    << NewUpperBound->getSExtValue() << "]\n"
                    << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
                    << ", " << UpperBound->getSExtValue() << "]\n");

  // Create a new node that checks if the value is < pivot. Go to the
  // left branch if it is and right branch if not.
  Function* F = OrigBlock->getParent();
  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");

  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
                                Val, Pivot.Low, "Pivot");

  BasicBlock *LBranch =
      SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
                    NewNode, OrigBlock, Default, UnreachableRanges);
  BasicBlock *RBranch =
      SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
                    NewNode, OrigBlock, Default, UnreachableRanges);

  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
  NewNode->getInstList().push_back(Comp);

  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
  return NewNode;
}

/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
/// \post \p Cases wouldn't contain references to \p SI's default BB.
/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
  unsigned NumSimpleCases = 0;

  // Start with "simple" cases
  for (auto Case : SI->cases()) {
    if (Case.getCaseSuccessor() == SI->getDefaultDest())
      continue;
    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
                              Case.getCaseSuccessor()));
    ++NumSimpleCases;
  }

  llvm::sort(Cases, CaseCmp());

  // Merge case into clusters
  if (Cases.size() >= 2) {
    CaseItr I = Cases.begin();
    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
      int64_t nextValue = J->Low->getSExtValue();
      int64_t currentValue = I->High->getSExtValue();
      BasicBlock* nextBB = J->BB;
      BasicBlock* currentBB = I->BB;

      // If the two neighboring cases go to the same destination, merge them
      // into a single case.
      assert(nextValue > currentValue && "Cases should be strictly ascending");
      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
        I->High = J->High;
        // FIXME: Combine branch weights.
      } else if (++I != J) {
        *I = *J;
      }
    }
    Cases.erase(std::next(I), Cases.end());
  }

  return NumSimpleCases;
}

/// Replace the specified switch instruction with a sequence of chained if-then
/// insts in a balanced binary search.
void ProcessSwitchInst(SwitchInst *SI,
                       SmallPtrSetImpl<BasicBlock *> &DeleteList,
                       AssumptionCache *AC, LazyValueInfo *LVI) {
  BasicBlock *OrigBlock = SI->getParent();
  Function *F = OrigBlock->getParent();
  Value *Val = SI->getCondition();  // The value we are switching on...
  BasicBlock* Default = SI->getDefaultDest();

  // Don't handle unreachable blocks. If there are successors with phis, this
  // would leave them behind with missing predecessors.
  if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
      OrigBlock->getSinglePredecessor() == OrigBlock) {
    DeleteList.insert(OrigBlock);
    return;
  }

  // Prepare cases vector.
  CaseVector Cases;
  const unsigned NumSimpleCases = Clusterify(Cases, SI);
  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
                    << ". Total non-default cases: " << NumSimpleCases
                    << "\nCase clusters: " << Cases << "\n");

  // If there is only the default destination, just branch.
  if (Cases.empty()) {
    BranchInst::Create(Default, OrigBlock);
    // Remove all the references from Default's PHIs to OrigBlock, but one.
    FixPhis(Default, OrigBlock, OrigBlock);
    SI->eraseFromParent();
    return;
  }

  ConstantInt *LowerBound = nullptr;
  ConstantInt *UpperBound = nullptr;
  bool DefaultIsUnreachableFromSwitch = false;

  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
    // Make the bounds tightly fitted around the case value range, because we
    // know that the value passed to the switch must be exactly one of the case
    // values.
    LowerBound = Cases.front().Low;
    UpperBound = Cases.back().High;
    DefaultIsUnreachableFromSwitch = true;
  } else {
    // Constraining the range of the value being switched over helps eliminating
    // unreachable BBs and minimizing the number of `add` instructions
    // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
    // LowerSwitch isn't as good, and also much more expensive in terms of
    // compile time for the following reasons:
    // 1. it processes many kinds of instructions, not just switches;
    // 2. even if limited to icmp instructions only, it will have to process
    //    roughly C icmp's per switch, where C is the number of cases in the
    //    switch, while LowerSwitch only needs to call LVI once per switch.
    const DataLayout &DL = F->getParent()->getDataLayout();
    KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
    // TODO Shouldn't this create a signed range?
    ConstantRange KnownBitsRange =
        ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
    const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
    ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
    // We delegate removal of unreachable non-default cases to other passes. In
    // the unlikely event that some of them survived, we just conservatively
    // maintain the invariant that all the cases lie between the bounds. This
    // may, however, still render the default case effectively unreachable.
    APInt Low = Cases.front().Low->getValue();
    APInt High = Cases.back().High->getValue();
    APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
    APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);

    LowerBound = ConstantInt::get(SI->getContext(), Min);
    UpperBound = ConstantInt::get(SI->getContext(), Max);
    DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
  }

  std::vector<IntRange> UnreachableRanges;

  if (DefaultIsUnreachableFromSwitch) {
    DenseMap<BasicBlock *, unsigned> Popularity;
    unsigned MaxPop = 0;
    BasicBlock *PopSucc = nullptr;

    IntRange R = {std::numeric_limits<int64_t>::min(),
                  std::numeric_limits<int64_t>::max()};
    UnreachableRanges.push_back(R);
    for (const auto &I : Cases) {
      int64_t Low = I.Low->getSExtValue();
      int64_t High = I.High->getSExtValue();

      IntRange &LastRange = UnreachableRanges.back();
      if (LastRange.Low == Low) {
        // There is nothing left of the previous range.
        UnreachableRanges.pop_back();
      } else {
        // Terminate the previous range.
        assert(Low > LastRange.Low);
        LastRange.High = Low - 1;
      }
      if (High != std::numeric_limits<int64_t>::max()) {
        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
        UnreachableRanges.push_back(R);
      }

      // Count popularity.
      int64_t N = High - Low + 1;
      unsigned &Pop = Popularity[I.BB];
      if ((Pop += N) > MaxPop) {
        MaxPop = Pop;
        PopSucc = I.BB;
      }
    }
#ifndef NDEBUG
    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
         I != E; ++I) {
      assert(I->Low <= I->High);
      auto Next = I + 1;
      if (Next != E) {
        assert(Next->Low > I->High);
      }
    }
#endif

    // As the default block in the switch is unreachable, update the PHI nodes
    // (remove all of the references to the default block) to reflect this.
    const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
    for (unsigned I = 0; I < NumDefaultEdges; ++I)
      Default->removePredecessor(OrigBlock);

    // Use the most popular block as the new default, reducing the number of
    // cases.
    assert(MaxPop > 0 && PopSucc);
    Default = PopSucc;
    Cases.erase(
        llvm::remove_if(
            Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
        Cases.end());

    // If there are no cases left, just branch.
    if (Cases.empty()) {
      BranchInst::Create(Default, OrigBlock);
      SI->eraseFromParent();
      // As all the cases have been replaced with a single branch, only keep
      // one entry in the PHI nodes.
      for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
        PopSucc->removePredecessor(OrigBlock);
      return;
    }

    // If the condition was a PHI node with the switch block as a predecessor
    // removing predecessors may have caused the condition to be erased.
    // Getting the condition value again here protects against that.
    Val = SI->getCondition();
  }

  // Create a new, empty default block so that the new hierarchy of
  // if-then statements go to this and the PHI nodes are happy.
  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
  BranchInst::Create(Default, NewDefault);

  BasicBlock *SwitchBlock =
      SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);

  // If there are entries in any PHI nodes for the default edge, make sure
  // to update them as well.
  FixPhis(Default, OrigBlock, NewDefault);

  // Branch to our shiny new if-then stuff...
  BranchInst::Create(SwitchBlock, OrigBlock);

  // We are now done with the switch instruction, delete it.
  BasicBlock *OldDefault = SI->getDefaultDest();
  OrigBlock->getInstList().erase(SI);

  // If the Default block has no more predecessors just add it to DeleteList.
  if (pred_begin(OldDefault) == pred_end(OldDefault))
    DeleteList.insert(OldDefault);
}

bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
  bool Changed = false;
  SmallPtrSet<BasicBlock *, 8> DeleteList;

  for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
    BasicBlock *Cur =
        &*I++; // Advance over block so we don't traverse new blocks

    // If the block is a dead Default block that will be deleted later, don't
    // waste time processing it.
    if (DeleteList.count(Cur))
      continue;

    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
      Changed = true;
      ProcessSwitchInst(SI, DeleteList, AC, LVI);
    }
  }

  for (BasicBlock *BB : DeleteList) {
    LVI->eraseBlock(BB);
    DeleteDeadBlock(BB);
  }

  return Changed;
}

/// Replace all SwitchInst instructions with chained branch instructions.
class LowerSwitchLegacyPass : public FunctionPass {
public:
  // Pass identification, replacement for typeid
  static char ID;

  LowerSwitchLegacyPass() : FunctionPass(ID) {
    initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LazyValueInfoWrapperPass>();
  }
};

} // end anonymous namespace

char LowerSwitchLegacyPass::ID = 0;

// Publicly exposed interface to pass...
char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;

INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
                      "Lower SwitchInst's to branches", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
                    "Lower SwitchInst's to branches", false, false)

// createLowerSwitchPass - Interface to this file...
FunctionPass *llvm::createLowerSwitchPass() {
  return new LowerSwitchLegacyPass();
}

bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
  AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
  return LowerSwitch(F, LVI, AC);
}

PreservedAnalyses LowerSwitchPass::run(Function &F,
                                       FunctionAnalysisManager &AM) {
  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
  AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
  return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
                                 : PreservedAnalyses::all();
}