PromoteMemoryToRegister.cpp 37.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file promotes memory references to be register references.  It promotes
// alloca instructions which only have loads and stores as uses.  An alloca is
// transformed by using iterated dominator frontiers to place PHI nodes, then
// traversing the function in depth-first order to rewrite loads and stores as
// appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Casting.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mem2reg"

STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");

bool llvm::isAllocaPromotable(const AllocaInst *AI) {
  // Only allow direct and non-volatile loads and stores...
  for (const User *U : AI->users()) {
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      // Note that atomic loads can be transformed; atomic semantics do
      // not have any meaning for a local alloca.
      if (LI->isVolatile())
        return false;
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
      if (SI->getOperand(0) == AI)
        return false; // Don't allow a store OF the AI, only INTO the AI.
      // Note that atomic stores can be transformed; atomic semantics do
      // not have any meaning for a local alloca.
      if (SI->isVolatile())
        return false;
    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
      if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
        return false;
    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
      if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
        return false;
    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      if (!GEPI->hasAllZeroIndices())
        return false;
      if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
        return false;
    } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
      if (!onlyUsedByLifetimeMarkers(ASCI))
        return false;
    } else {
      return false;
    }
  }

  return true;
}

namespace {

struct AllocaInfo {
  SmallVector<BasicBlock *, 32> DefiningBlocks;
  SmallVector<BasicBlock *, 32> UsingBlocks;

  StoreInst *OnlyStore;
  BasicBlock *OnlyBlock;
  bool OnlyUsedInOneBlock;

  TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;

  void clear() {
    DefiningBlocks.clear();
    UsingBlocks.clear();
    OnlyStore = nullptr;
    OnlyBlock = nullptr;
    OnlyUsedInOneBlock = true;
    DbgDeclares.clear();
  }

  /// Scan the uses of the specified alloca, filling in the AllocaInfo used
  /// by the rest of the pass to reason about the uses of this alloca.
  void AnalyzeAlloca(AllocaInst *AI) {
    clear();

    // As we scan the uses of the alloca instruction, keep track of stores,
    // and decide whether all of the loads and stores to the alloca are within
    // the same basic block.
    for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
      Instruction *User = cast<Instruction>(*UI++);

      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
        // Remember the basic blocks which define new values for the alloca
        DefiningBlocks.push_back(SI->getParent());
        OnlyStore = SI;
      } else {
        LoadInst *LI = cast<LoadInst>(User);
        // Otherwise it must be a load instruction, keep track of variable
        // reads.
        UsingBlocks.push_back(LI->getParent());
      }

      if (OnlyUsedInOneBlock) {
        if (!OnlyBlock)
          OnlyBlock = User->getParent();
        else if (OnlyBlock != User->getParent())
          OnlyUsedInOneBlock = false;
      }
    }

    DbgDeclares = FindDbgAddrUses(AI);
  }
};

/// Data package used by RenamePass().
struct RenamePassData {
  using ValVector = std::vector<Value *>;
  using LocationVector = std::vector<DebugLoc>;

  RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
      : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}

  BasicBlock *BB;
  BasicBlock *Pred;
  ValVector Values;
  LocationVector Locations;
};

/// This assigns and keeps a per-bb relative ordering of load/store
/// instructions in the block that directly load or store an alloca.
///
/// This functionality is important because it avoids scanning large basic
/// blocks multiple times when promoting many allocas in the same block.
class LargeBlockInfo {
  /// For each instruction that we track, keep the index of the
  /// instruction.
  ///
  /// The index starts out as the number of the instruction from the start of
  /// the block.
  DenseMap<const Instruction *, unsigned> InstNumbers;

public:

  /// This code only looks at accesses to allocas.
  static bool isInterestingInstruction(const Instruction *I) {
    return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
           (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
  }

  /// Get or calculate the index of the specified instruction.
  unsigned getInstructionIndex(const Instruction *I) {
    assert(isInterestingInstruction(I) &&
           "Not a load/store to/from an alloca?");

    // If we already have this instruction number, return it.
    DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    if (It != InstNumbers.end())
      return It->second;

    // Scan the whole block to get the instruction.  This accumulates
    // information for every interesting instruction in the block, in order to
    // avoid gratuitus rescans.
    const BasicBlock *BB = I->getParent();
    unsigned InstNo = 0;
    for (const Instruction &BBI : *BB)
      if (isInterestingInstruction(&BBI))
        InstNumbers[&BBI] = InstNo++;
    It = InstNumbers.find(I);

    assert(It != InstNumbers.end() && "Didn't insert instruction?");
    return It->second;
  }

  void deleteValue(const Instruction *I) { InstNumbers.erase(I); }

  void clear() { InstNumbers.clear(); }
};

struct PromoteMem2Reg {
  /// The alloca instructions being promoted.
  std::vector<AllocaInst *> Allocas;

  DominatorTree &DT;
  DIBuilder DIB;

  /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
  AssumptionCache *AC;

  const SimplifyQuery SQ;

  /// Reverse mapping of Allocas.
  DenseMap<AllocaInst *, unsigned> AllocaLookup;

  /// The PhiNodes we're adding.
  ///
  /// That map is used to simplify some Phi nodes as we iterate over it, so
  /// it should have deterministic iterators.  We could use a MapVector, but
  /// since we already maintain a map from BasicBlock* to a stable numbering
  /// (BBNumbers), the DenseMap is more efficient (also supports removal).
  DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;

  /// For each PHI node, keep track of which entry in Allocas it corresponds
  /// to.
  DenseMap<PHINode *, unsigned> PhiToAllocaMap;

  /// For each alloca, we keep track of the dbg.declare intrinsic that
  /// describes it, if any, so that we can convert it to a dbg.value
  /// intrinsic if the alloca gets promoted.
  SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;

  /// The set of basic blocks the renamer has already visited.
  SmallPtrSet<BasicBlock *, 16> Visited;

  /// Contains a stable numbering of basic blocks to avoid non-determinstic
  /// behavior.
  DenseMap<BasicBlock *, unsigned> BBNumbers;

  /// Lazily compute the number of predecessors a block has.
  DenseMap<const BasicBlock *, unsigned> BBNumPreds;

public:
  PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
                 AssumptionCache *AC)
      : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
        DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
        AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
                   nullptr, &DT, AC) {}

  void run();

private:
  void RemoveFromAllocasList(unsigned &AllocaIdx) {
    Allocas[AllocaIdx] = Allocas.back();
    Allocas.pop_back();
    --AllocaIdx;
  }

  unsigned getNumPreds(const BasicBlock *BB) {
    unsigned &NP = BBNumPreds[BB];
    if (NP == 0)
      NP = pred_size(BB) + 1;
    return NP - 1;
  }

  void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
                           const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
                           SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
  void RenamePass(BasicBlock *BB, BasicBlock *Pred,
                  RenamePassData::ValVector &IncVals,
                  RenamePassData::LocationVector &IncLocs,
                  std::vector<RenamePassData> &Worklist);
  bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
};

} // end anonymous namespace

/// Given a LoadInst LI this adds assume(LI != null) after it.
static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
  Function *AssumeIntrinsic =
      Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
  ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
                                       Constant::getNullValue(LI->getType()));
  LoadNotNull->insertAfter(LI);
  CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
  CI->insertAfter(LoadNotNull);
  AC->registerAssumption(CI);
}

static void removeIntrinsicUsers(AllocaInst *AI) {
  // Knowing that this alloca is promotable, we know that it's safe to kill all
  // instructions except for load and store.

  for (auto UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) {
    Instruction *I = cast<Instruction>(UI->getUser());
    Use &U = *UI;
    ++UI;
    if (isa<LoadInst>(I) || isa<StoreInst>(I))
      continue;

    // Drop the use of AI in droppable instructions.
    if (I->isDroppable()) {
      I->dropDroppableUse(U);
      continue;
    }

    if (!I->getType()->isVoidTy()) {
      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
      // Follow the use/def chain to erase them now instead of leaving it for
      // dead code elimination later.
      for (auto UUI = I->use_begin(), UUE = I->use_end(); UUI != UUE;) {
        Instruction *Inst = cast<Instruction>(UUI->getUser());
        Use &UU = *UUI;
        ++UUI;

        // Drop the use of I in droppable instructions.
        if (Inst->isDroppable()) {
          Inst->dropDroppableUse(UU);
          continue;
        }
        Inst->eraseFromParent();
      }
    }
    I->eraseFromParent();
  }
}

/// Rewrite as many loads as possible given a single store.
///
/// When there is only a single store, we can use the domtree to trivially
/// replace all of the dominated loads with the stored value. Do so, and return
/// true if this has successfully promoted the alloca entirely. If this returns
/// false there were some loads which were not dominated by the single store
/// and thus must be phi-ed with undef. We fall back to the standard alloca
/// promotion algorithm in that case.
static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
                                     LargeBlockInfo &LBI, const DataLayout &DL,
                                     DominatorTree &DT, AssumptionCache *AC) {
  StoreInst *OnlyStore = Info.OnlyStore;
  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
  BasicBlock *StoreBB = OnlyStore->getParent();
  int StoreIndex = -1;

  // Clear out UsingBlocks.  We will reconstruct it here if needed.
  Info.UsingBlocks.clear();

  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    Instruction *UserInst = cast<Instruction>(*UI++);
    if (UserInst == OnlyStore)
      continue;
    LoadInst *LI = cast<LoadInst>(UserInst);

    // Okay, if we have a load from the alloca, we want to replace it with the
    // only value stored to the alloca.  We can do this if the value is
    // dominated by the store.  If not, we use the rest of the mem2reg machinery
    // to insert the phi nodes as needed.
    if (!StoringGlobalVal) { // Non-instructions are always dominated.
      if (LI->getParent() == StoreBB) {
        // If we have a use that is in the same block as the store, compare the
        // indices of the two instructions to see which one came first.  If the
        // load came before the store, we can't handle it.
        if (StoreIndex == -1)
          StoreIndex = LBI.getInstructionIndex(OnlyStore);

        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
          // Can't handle this load, bail out.
          Info.UsingBlocks.push_back(StoreBB);
          continue;
        }
      } else if (!DT.dominates(StoreBB, LI->getParent())) {
        // If the load and store are in different blocks, use BB dominance to
        // check their relationships.  If the store doesn't dom the use, bail
        // out.
        Info.UsingBlocks.push_back(LI->getParent());
        continue;
      }
    }

    // Otherwise, we *can* safely rewrite this load.
    Value *ReplVal = OnlyStore->getOperand(0);
    // If the replacement value is the load, this must occur in unreachable
    // code.
    if (ReplVal == LI)
      ReplVal = UndefValue::get(LI->getType());

    // If the load was marked as nonnull we don't want to lose
    // that information when we erase this Load. So we preserve
    // it with an assume.
    if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
        !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
      addAssumeNonNull(AC, LI);

    LI->replaceAllUsesWith(ReplVal);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Finally, after the scan, check to see if the store is all that is left.
  if (!Info.UsingBlocks.empty())
    return false; // If not, we'll have to fall back for the remainder.

  // Record debuginfo for the store and remove the declaration's
  // debuginfo.
  for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
    DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
    ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
    DII->eraseFromParent();
  }
  // Remove the (now dead) store and alloca.
  Info.OnlyStore->eraseFromParent();
  LBI.deleteValue(Info.OnlyStore);

  AI->eraseFromParent();
  return true;
}

/// Many allocas are only used within a single basic block.  If this is the
/// case, avoid traversing the CFG and inserting a lot of potentially useless
/// PHI nodes by just performing a single linear pass over the basic block
/// using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return false.  This is necessary in cases where, due to control flow, the
/// alloca is undefined only on some control flow paths.  e.g. code like
/// this is correct in LLVM IR:
///  // A is an alloca with no stores so far
///  for (...) {
///    int t = *A;
///    if (!first_iteration)
///      use(t);
///    *A = 42;
///  }
static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
                                     LargeBlockInfo &LBI,
                                     const DataLayout &DL,
                                     DominatorTree &DT,
                                     AssumptionCache *AC) {
  // The trickiest case to handle is when we have large blocks. Because of this,
  // this code is optimized assuming that large blocks happen.  This does not
  // significantly pessimize the small block case.  This uses LargeBlockInfo to
  // make it efficient to get the index of various operations in the block.

  // Walk the use-def list of the alloca, getting the locations of all stores.
  using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
  StoresByIndexTy StoresByIndex;

  for (User *U : AI->users())
    if (StoreInst *SI = dyn_cast<StoreInst>(U))
      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));

  // Sort the stores by their index, making it efficient to do a lookup with a
  // binary search.
  llvm::sort(StoresByIndex, less_first());

  // Walk all of the loads from this alloca, replacing them with the nearest
  // store above them, if any.
  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    if (!LI)
      continue;

    unsigned LoadIdx = LBI.getInstructionIndex(LI);

    // Find the nearest store that has a lower index than this load.
    StoresByIndexTy::iterator I = llvm::lower_bound(
        StoresByIndex,
        std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
        less_first());
    if (I == StoresByIndex.begin()) {
      if (StoresByIndex.empty())
        // If there are no stores, the load takes the undef value.
        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
      else
        // There is no store before this load, bail out (load may be affected
        // by the following stores - see main comment).
        return false;
    } else {
      // Otherwise, there was a store before this load, the load takes its value.
      // Note, if the load was marked as nonnull we don't want to lose that
      // information when we erase it. So we preserve it with an assume.
      Value *ReplVal = std::prev(I)->second->getOperand(0);
      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
          !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
        addAssumeNonNull(AC, LI);

      // If the replacement value is the load, this must occur in unreachable
      // code.
      if (ReplVal == LI)
        ReplVal = UndefValue::get(LI->getType());

      LI->replaceAllUsesWith(ReplVal);
    }

    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Remove the (now dead) stores and alloca.
  while (!AI->use_empty()) {
    StoreInst *SI = cast<StoreInst>(AI->user_back());
    // Record debuginfo for the store before removing it.
    for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
      DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
      ConvertDebugDeclareToDebugValue(DII, SI, DIB);
    }
    SI->eraseFromParent();
    LBI.deleteValue(SI);
  }

  AI->eraseFromParent();

  // The alloca's debuginfo can be removed as well.
  for (DbgVariableIntrinsic *DII : Info.DbgDeclares)
    DII->eraseFromParent();

  ++NumLocalPromoted;
  return true;
}

void PromoteMem2Reg::run() {
  Function &F = *DT.getRoot()->getParent();

  AllocaDbgDeclares.resize(Allocas.size());

  AllocaInfo Info;
  LargeBlockInfo LBI;
  ForwardIDFCalculator IDF(DT);

  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    AllocaInst *AI = Allocas[AllocaNum];

    assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
    assert(AI->getParent()->getParent() == &F &&
           "All allocas should be in the same function, which is same as DF!");

    removeIntrinsicUsers(AI);

    if (AI->use_empty()) {
      // If there are no uses of the alloca, just delete it now.
      AI->eraseFromParent();

      // Remove the alloca from the Allocas list, since it has been processed
      RemoveFromAllocasList(AllocaNum);
      ++NumDeadAlloca;
      continue;
    }

    // Calculate the set of read and write-locations for each alloca.  This is
    // analogous to finding the 'uses' and 'definitions' of each variable.
    Info.AnalyzeAlloca(AI);

    // If there is only a single store to this value, replace any loads of
    // it that are directly dominated by the definition with the value stored.
    if (Info.DefiningBlocks.size() == 1) {
      if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
        // The alloca has been processed, move on.
        RemoveFromAllocasList(AllocaNum);
        ++NumSingleStore;
        continue;
      }
    }

    // If the alloca is only read and written in one basic block, just perform a
    // linear sweep over the block to eliminate it.
    if (Info.OnlyUsedInOneBlock &&
        promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
      // The alloca has been processed, move on.
      RemoveFromAllocasList(AllocaNum);
      continue;
    }

    // If we haven't computed a numbering for the BB's in the function, do so
    // now.
    if (BBNumbers.empty()) {
      unsigned ID = 0;
      for (auto &BB : F)
        BBNumbers[&BB] = ID++;
    }

    // Remember the dbg.declare intrinsic describing this alloca, if any.
    if (!Info.DbgDeclares.empty())
      AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;

    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;

    // Unique the set of defining blocks for efficient lookup.
    SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
                                            Info.DefiningBlocks.end());

    // Determine which blocks the value is live in.  These are blocks which lead
    // to uses.
    SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
    ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);

    // At this point, we're committed to promoting the alloca using IDF's, and
    // the standard SSA construction algorithm.  Determine which blocks need phi
    // nodes and see if we can optimize out some work by avoiding insertion of
    // dead phi nodes.
    IDF.setLiveInBlocks(LiveInBlocks);
    IDF.setDefiningBlocks(DefBlocks);
    SmallVector<BasicBlock *, 32> PHIBlocks;
    IDF.calculate(PHIBlocks);
    llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
      return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
    });

    unsigned CurrentVersion = 0;
    for (BasicBlock *BB : PHIBlocks)
      QueuePhiNode(BB, AllocaNum, CurrentVersion);
  }

  if (Allocas.empty())
    return; // All of the allocas must have been trivial!

  LBI.clear();

  // Set the incoming values for the basic block to be null values for all of
  // the alloca's.  We do this in case there is a load of a value that has not
  // been stored yet.  In this case, it will get this null value.
  RenamePassData::ValVector Values(Allocas.size());
  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());

  // When handling debug info, treat all incoming values as if they have unknown
  // locations until proven otherwise.
  RenamePassData::LocationVector Locations(Allocas.size());

  // Walks all basic blocks in the function performing the SSA rename algorithm
  // and inserting the phi nodes we marked as necessary
  std::vector<RenamePassData> RenamePassWorkList;
  RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
                                  std::move(Locations));
  do {
    RenamePassData RPD = std::move(RenamePassWorkList.back());
    RenamePassWorkList.pop_back();
    // RenamePass may add new worklist entries.
    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
  } while (!RenamePassWorkList.empty());

  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
  Visited.clear();

  // Remove the allocas themselves from the function.
  for (Instruction *A : Allocas) {
    // If there are any uses of the alloca instructions left, they must be in
    // unreachable basic blocks that were not processed by walking the dominator
    // tree. Just delete the users now.
    if (!A->use_empty())
      A->replaceAllUsesWith(UndefValue::get(A->getType()));
    A->eraseFromParent();
  }

  // Remove alloca's dbg.declare instrinsics from the function.
  for (auto &Declares : AllocaDbgDeclares)
    for (auto *DII : Declares)
      DII->eraseFromParent();

  // Loop over all of the PHI nodes and see if there are any that we can get
  // rid of because they merge all of the same incoming values.  This can
  // happen due to undef values coming into the PHI nodes.  This process is
  // iterative, because eliminating one PHI node can cause others to be removed.
  bool EliminatedAPHI = true;
  while (EliminatedAPHI) {
    EliminatedAPHI = false;

    // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    // simplify and RAUW them as we go.  If it was not, we could add uses to
    // the values we replace with in a non-deterministic order, thus creating
    // non-deterministic def->use chains.
    for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
             I = NewPhiNodes.begin(),
             E = NewPhiNodes.end();
         I != E;) {
      PHINode *PN = I->second;

      // If this PHI node merges one value and/or undefs, get the value.
      if (Value *V = SimplifyInstruction(PN, SQ)) {
        PN->replaceAllUsesWith(V);
        PN->eraseFromParent();
        NewPhiNodes.erase(I++);
        EliminatedAPHI = true;
        continue;
      }
      ++I;
    }
  }

  // At this point, the renamer has added entries to PHI nodes for all reachable
  // code.  Unfortunately, there may be unreachable blocks which the renamer
  // hasn't traversed.  If this is the case, the PHI nodes may not
  // have incoming values for all predecessors.  Loop over all PHI nodes we have
  // created, inserting undef values if they are missing any incoming values.
  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
           I = NewPhiNodes.begin(),
           E = NewPhiNodes.end();
       I != E; ++I) {
    // We want to do this once per basic block.  As such, only process a block
    // when we find the PHI that is the first entry in the block.
    PHINode *SomePHI = I->second;
    BasicBlock *BB = SomePHI->getParent();
    if (&BB->front() != SomePHI)
      continue;

    // Only do work here if there the PHI nodes are missing incoming values.  We
    // know that all PHI nodes that were inserted in a block will have the same
    // number of incoming values, so we can just check any of them.
    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
      continue;

    // Get the preds for BB.
    SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));

    // Ok, now we know that all of the PHI nodes are missing entries for some
    // basic blocks.  Start by sorting the incoming predecessors for efficient
    // access.
    auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
      return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
    };
    llvm::sort(Preds, CompareBBNumbers);

    // Now we loop through all BB's which have entries in SomePHI and remove
    // them from the Preds list.
    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
      // Do a log(n) search of the Preds list for the entry we want.
      SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
          Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
             "PHI node has entry for a block which is not a predecessor!");

      // Remove the entry
      Preds.erase(EntIt);
    }

    // At this point, the blocks left in the preds list must have dummy
    // entries inserted into every PHI nodes for the block.  Update all the phi
    // nodes in this block that we are inserting (there could be phis before
    // mem2reg runs).
    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    BasicBlock::iterator BBI = BB->begin();
    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
           SomePHI->getNumIncomingValues() == NumBadPreds) {
      Value *UndefVal = UndefValue::get(SomePHI->getType());
      for (BasicBlock *Pred : Preds)
        SomePHI->addIncoming(UndefVal, Pred);
    }
  }

  NewPhiNodes.clear();
}

/// Determine which blocks the value is live in.
///
/// These are blocks which lead to uses.  Knowing this allows us to avoid
/// inserting PHI nodes into blocks which don't lead to uses (thus, the
/// inserted phi nodes would be dead).
void PromoteMem2Reg::ComputeLiveInBlocks(
    AllocaInst *AI, AllocaInfo &Info,
    const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
    SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
  // To determine liveness, we must iterate through the predecessors of blocks
  // where the def is live.  Blocks are added to the worklist if we need to
  // check their predecessors.  Start with all the using blocks.
  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
                                                    Info.UsingBlocks.end());

  // If any of the using blocks is also a definition block, check to see if the
  // definition occurs before or after the use.  If it happens before the use,
  // the value isn't really live-in.
  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    BasicBlock *BB = LiveInBlockWorklist[i];
    if (!DefBlocks.count(BB))
      continue;

    // Okay, this is a block that both uses and defines the value.  If the first
    // reference to the alloca is a def (store), then we know it isn't live-in.
    for (BasicBlock::iterator I = BB->begin();; ++I) {
      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
        if (SI->getOperand(1) != AI)
          continue;

        // We found a store to the alloca before a load.  The alloca is not
        // actually live-in here.
        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
        LiveInBlockWorklist.pop_back();
        --i;
        --e;
        break;
      }

      if (LoadInst *LI = dyn_cast<LoadInst>(I))
        // Okay, we found a load before a store to the alloca.  It is actually
        // live into this block.
        if (LI->getOperand(0) == AI)
          break;
    }
  }

  // Now that we have a set of blocks where the phi is live-in, recursively add
  // their predecessors until we find the full region the value is live.
  while (!LiveInBlockWorklist.empty()) {
    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();

    // The block really is live in here, insert it into the set.  If already in
    // the set, then it has already been processed.
    if (!LiveInBlocks.insert(BB).second)
      continue;

    // Since the value is live into BB, it is either defined in a predecessor or
    // live into it to.  Add the preds to the worklist unless they are a
    // defining block.
    for (BasicBlock *P : predecessors(BB)) {
      // The value is not live into a predecessor if it defines the value.
      if (DefBlocks.count(P))
        continue;

      // Otherwise it is, add to the worklist.
      LiveInBlockWorklist.push_back(P);
    }
  }
}

/// Queue a phi-node to be added to a basic-block for a specific Alloca.
///
/// Returns true if there wasn't already a phi-node for that variable
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
                                  unsigned &Version) {
  // Look up the basic-block in question.
  PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];

  // If the BB already has a phi node added for the i'th alloca then we're done!
  if (PN)
    return false;

  // Create a PhiNode using the dereferenced type... and add the phi-node to the
  // BasicBlock.
  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
                       &BB->front());
  ++NumPHIInsert;
  PhiToAllocaMap[PN] = AllocaNo;
  return true;
}

/// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
/// create a merged location incorporating \p DL, or to set \p DL directly.
static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
                                           bool ApplyMergedLoc) {
  if (ApplyMergedLoc)
    PN->applyMergedLocation(PN->getDebugLoc(), DL);
  else
    PN->setDebugLoc(DL);
}

/// Recursively traverse the CFG of the function, renaming loads and
/// stores to the allocas which we are promoting.
///
/// IncomingVals indicates what value each Alloca contains on exit from the
/// predecessor block Pred.
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
                                RenamePassData::ValVector &IncomingVals,
                                RenamePassData::LocationVector &IncomingLocs,
                                std::vector<RenamePassData> &Worklist) {
NextIteration:
  // If we are inserting any phi nodes into this BB, they will already be in the
  // block.
  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
    // If we have PHI nodes to update, compute the number of edges from Pred to
    // BB.
    if (PhiToAllocaMap.count(APN)) {
      // We want to be able to distinguish between PHI nodes being inserted by
      // this invocation of mem2reg from those phi nodes that already existed in
      // the IR before mem2reg was run.  We determine that APN is being inserted
      // because it is missing incoming edges.  All other PHI nodes being
      // inserted by this pass of mem2reg will have the same number of incoming
      // operands so far.  Remember this count.
      unsigned NewPHINumOperands = APN->getNumOperands();

      unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
      assert(NumEdges && "Must be at least one edge from Pred to BB!");

      // Add entries for all the phis.
      BasicBlock::iterator PNI = BB->begin();
      do {
        unsigned AllocaNo = PhiToAllocaMap[APN];

        // Update the location of the phi node.
        updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
                                       APN->getNumIncomingValues() > 0);

        // Add N incoming values to the PHI node.
        for (unsigned i = 0; i != NumEdges; ++i)
          APN->addIncoming(IncomingVals[AllocaNo], Pred);

        // The currently active variable for this block is now the PHI.
        IncomingVals[AllocaNo] = APN;
        for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
          ConvertDebugDeclareToDebugValue(DII, APN, DIB);

        // Get the next phi node.
        ++PNI;
        APN = dyn_cast<PHINode>(PNI);
        if (!APN)
          break;

        // Verify that it is missing entries.  If not, it is not being inserted
        // by this mem2reg invocation so we want to ignore it.
      } while (APN->getNumOperands() == NewPHINumOperands);
    }
  }

  // Don't revisit blocks.
  if (!Visited.insert(BB).second)
    return;

  for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
    Instruction *I = &*II++; // get the instruction, increment iterator

    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
      if (!Src)
        continue;

      DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
      if (AI == AllocaLookup.end())
        continue;

      Value *V = IncomingVals[AI->second];

      // If the load was marked as nonnull we don't want to lose
      // that information when we erase this Load. So we preserve
      // it with an assume.
      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
          !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
        addAssumeNonNull(AC, LI);

      // Anything using the load now uses the current value.
      LI->replaceAllUsesWith(V);
      BB->getInstList().erase(LI);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      // Delete this instruction and mark the name as the current holder of the
      // value
      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
      if (!Dest)
        continue;

      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
      if (ai == AllocaLookup.end())
        continue;

      // what value were we writing?
      unsigned AllocaNo = ai->second;
      IncomingVals[AllocaNo] = SI->getOperand(0);

      // Record debuginfo for the store before removing it.
      IncomingLocs[AllocaNo] = SI->getDebugLoc();
      for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
        ConvertDebugDeclareToDebugValue(DII, SI, DIB);
      BB->getInstList().erase(SI);
    }
  }

  // 'Recurse' to our successors.
  succ_iterator I = succ_begin(BB), E = succ_end(BB);
  if (I == E)
    return;

  // Keep track of the successors so we don't visit the same successor twice
  SmallPtrSet<BasicBlock *, 8> VisitedSuccs;

  // Handle the first successor without using the worklist.
  VisitedSuccs.insert(*I);
  Pred = BB;
  BB = *I;
  ++I;

  for (; I != E; ++I)
    if (VisitedSuccs.insert(*I).second)
      Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);

  goto NextIteration;
}

void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
                           AssumptionCache *AC) {
  // If there is nothing to do, bail out...
  if (Allocas.empty())
    return;

  PromoteMem2Reg(Allocas, DT, AC).run();
}