SLPVectorizer.cpp 293 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
// stores that can be put together into vector-stores. Next, it attempts to
// construct vectorizable tree using the use-def chains. If a profitable tree
// was found, the SLP vectorizer performs vectorization on the tree.
//
// The pass is inspired by the work described in the paper:
//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;
using namespace slpvectorizer;

#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"

STATISTIC(NumVectorInstructions, "Number of vector instructions generated");

cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
                                  cl::desc("Run the SLP vectorization passes"));

static cl::opt<int>
    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
                     cl::desc("Only vectorize if you gain more than this "
                              "number "));

static cl::opt<bool>
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
                   cl::desc("Attempt to vectorize horizontal reductions"));

static cl::opt<bool> ShouldStartVectorizeHorAtStore(
    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
    cl::desc(
        "Attempt to vectorize horizontal reductions feeding into a store"));

static cl::opt<int>
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
    cl::desc("Attempt to vectorize for this register size in bits"));

static cl::opt<int>
MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
    cl::desc("Maximum depth of the lookup for consecutive stores."));

/// Limits the size of scheduling regions in a block.
/// It avoid long compile times for _very_ large blocks where vector
/// instructions are spread over a wide range.
/// This limit is way higher than needed by real-world functions.
static cl::opt<int>
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
    cl::desc("Limit the size of the SLP scheduling region per block"));

static cl::opt<int> MinVectorRegSizeOption(
    "slp-min-reg-size", cl::init(128), cl::Hidden,
    cl::desc("Attempt to vectorize for this register size in bits"));

static cl::opt<unsigned> RecursionMaxDepth(
    "slp-recursion-max-depth", cl::init(12), cl::Hidden,
    cl::desc("Limit the recursion depth when building a vectorizable tree"));

static cl::opt<unsigned> MinTreeSize(
    "slp-min-tree-size", cl::init(3), cl::Hidden,
    cl::desc("Only vectorize small trees if they are fully vectorizable"));

// The maximum depth that the look-ahead score heuristic will explore.
// The higher this value, the higher the compilation time overhead.
static cl::opt<int> LookAheadMaxDepth(
    "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
    cl::desc("The maximum look-ahead depth for operand reordering scores"));

// The Look-ahead heuristic goes through the users of the bundle to calculate
// the users cost in getExternalUsesCost(). To avoid compilation time increase
// we limit the number of users visited to this value.
static cl::opt<unsigned> LookAheadUsersBudget(
    "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
    cl::desc("The maximum number of users to visit while visiting the "
             "predecessors. This prevents compilation time increase."));

static cl::opt<bool>
    ViewSLPTree("view-slp-tree", cl::Hidden,
                cl::desc("Display the SLP trees with Graphviz"));

// Limit the number of alias checks. The limit is chosen so that
// it has no negative effect on the llvm benchmarks.
static const unsigned AliasedCheckLimit = 10;

// Another limit for the alias checks: The maximum distance between load/store
// instructions where alias checks are done.
// This limit is useful for very large basic blocks.
static const unsigned MaxMemDepDistance = 160;

/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
/// regions to be handled.
static const int MinScheduleRegionSize = 16;

/// Predicate for the element types that the SLP vectorizer supports.
///
/// The most important thing to filter here are types which are invalid in LLVM
/// vectors. We also filter target specific types which have absolutely no
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
/// avoids spending time checking the cost model and realizing that they will
/// be inevitably scalarized.
static bool isValidElementType(Type *Ty) {
  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
         !Ty->isPPC_FP128Ty();
}

/// \returns true if all of the instructions in \p VL are in the same block or
/// false otherwise.
static bool allSameBlock(ArrayRef<Value *> VL) {
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
  if (!I0)
    return false;
  BasicBlock *BB = I0->getParent();
  for (int I = 1, E = VL.size(); I < E; I++) {
    auto *II = dyn_cast<Instruction>(VL[I]);
    if (!II)
      return false;

    if (BB != II->getParent())
      return false;
  }
  return true;
}

/// \returns True if all of the values in \p VL are constants (but not
/// globals/constant expressions).
static bool allConstant(ArrayRef<Value *> VL) {
  // Constant expressions and globals can't be vectorized like normal integer/FP
  // constants.
  for (Value *i : VL)
    if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
      return false;
  return true;
}

/// \returns True if all of the values in \p VL are identical.
static bool isSplat(ArrayRef<Value *> VL) {
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
    if (VL[i] != VL[0])
      return false;
  return true;
}

/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
static bool isCommutative(Instruction *I) {
  if (auto *Cmp = dyn_cast<CmpInst>(I))
    return Cmp->isCommutative();
  if (auto *BO = dyn_cast<BinaryOperator>(I))
    return BO->isCommutative();
  // TODO: This should check for generic Instruction::isCommutative(), but
  //       we need to confirm that the caller code correctly handles Intrinsics
  //       for example (does not have 2 operands).
  return false;
}

/// Checks if the vector of instructions can be represented as a shuffle, like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %x0x0 = mul i8 %x0, %x0
/// %x3x3 = mul i8 %x3, %x3
/// %y1y1 = mul i8 %y1, %y1
/// %y2y2 = mul i8 %y2, %y2
/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
/// ret <4 x i8> %ins4
/// can be transformed into:
/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
///                                                         i32 6>
/// %2 = mul <4 x i8> %1, %1
/// ret <4 x i8> %2
/// We convert this initially to something like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
/// %5 = mul <4 x i8> %4, %4
/// %6 = extractelement <4 x i8> %5, i32 0
/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
/// %7 = extractelement <4 x i8> %5, i32 1
/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
/// %8 = extractelement <4 x i8> %5, i32 2
/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
/// %9 = extractelement <4 x i8> %5, i32 3
/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
/// ret <4 x i8> %ins4
/// InstCombiner transforms this into a shuffle and vector mul
/// TODO: Can we split off and reuse the shuffle mask detection from
/// TargetTransformInfo::getInstructionThroughput?
static Optional<TargetTransformInfo::ShuffleKind>
isShuffle(ArrayRef<Value *> VL) {
  auto *EI0 = cast<ExtractElementInst>(VL[0]);
  unsigned Size =
      cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
  Value *Vec1 = nullptr;
  Value *Vec2 = nullptr;
  enum ShuffleMode { Unknown, Select, Permute };
  ShuffleMode CommonShuffleMode = Unknown;
  for (unsigned I = 0, E = VL.size(); I < E; ++I) {
    auto *EI = cast<ExtractElementInst>(VL[I]);
    auto *Vec = EI->getVectorOperand();
    // All vector operands must have the same number of vector elements.
    if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
      return None;
    auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
    if (!Idx)
      return None;
    // Undefined behavior if Idx is negative or >= Size.
    if (Idx->getValue().uge(Size))
      continue;
    unsigned IntIdx = Idx->getValue().getZExtValue();
    // We can extractelement from undef vector.
    if (isa<UndefValue>(Vec))
      continue;
    // For correct shuffling we have to have at most 2 different vector operands
    // in all extractelement instructions.
    if (!Vec1 || Vec1 == Vec)
      Vec1 = Vec;
    else if (!Vec2 || Vec2 == Vec)
      Vec2 = Vec;
    else
      return None;
    if (CommonShuffleMode == Permute)
      continue;
    // If the extract index is not the same as the operation number, it is a
    // permutation.
    if (IntIdx != I) {
      CommonShuffleMode = Permute;
      continue;
    }
    CommonShuffleMode = Select;
  }
  // If we're not crossing lanes in different vectors, consider it as blending.
  if (CommonShuffleMode == Select && Vec2)
    return TargetTransformInfo::SK_Select;
  // If Vec2 was never used, we have a permutation of a single vector, otherwise
  // we have permutation of 2 vectors.
  return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
              : TargetTransformInfo::SK_PermuteSingleSrc;
}

namespace {

/// Main data required for vectorization of instructions.
struct InstructionsState {
  /// The very first instruction in the list with the main opcode.
  Value *OpValue = nullptr;

  /// The main/alternate instruction.
  Instruction *MainOp = nullptr;
  Instruction *AltOp = nullptr;

  /// The main/alternate opcodes for the list of instructions.
  unsigned getOpcode() const {
    return MainOp ? MainOp->getOpcode() : 0;
  }

  unsigned getAltOpcode() const {
    return AltOp ? AltOp->getOpcode() : 0;
  }

  /// Some of the instructions in the list have alternate opcodes.
  bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }

  bool isOpcodeOrAlt(Instruction *I) const {
    unsigned CheckedOpcode = I->getOpcode();
    return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
  }

  InstructionsState() = delete;
  InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
      : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
};

} // end anonymous namespace

/// Chooses the correct key for scheduling data. If \p Op has the same (or
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
/// OpValue.
static Value *isOneOf(const InstructionsState &S, Value *Op) {
  auto *I = dyn_cast<Instruction>(Op);
  if (I && S.isOpcodeOrAlt(I))
    return Op;
  return S.OpValue;
}

/// \returns true if \p Opcode is allowed as part of of the main/alternate
/// instruction for SLP vectorization.
///
/// Example of unsupported opcode is SDIV that can potentially cause UB if the
/// "shuffled out" lane would result in division by zero.
static bool isValidForAlternation(unsigned Opcode) {
  if (Instruction::isIntDivRem(Opcode))
    return false;

  return true;
}

/// \returns analysis of the Instructions in \p VL described in
/// InstructionsState, the Opcode that we suppose the whole list
/// could be vectorized even if its structure is diverse.
static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
                                       unsigned BaseIndex = 0) {
  // Make sure these are all Instructions.
  if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
    return InstructionsState(VL[BaseIndex], nullptr, nullptr);

  bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
  bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
  unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
  unsigned AltOpcode = Opcode;
  unsigned AltIndex = BaseIndex;

  // Check for one alternate opcode from another BinaryOperator.
  // TODO - generalize to support all operators (types, calls etc.).
  for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
    unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
    if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
      if (InstOpcode == Opcode || InstOpcode == AltOpcode)
        continue;
      if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
          isValidForAlternation(Opcode)) {
        AltOpcode = InstOpcode;
        AltIndex = Cnt;
        continue;
      }
    } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
      Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
      Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
      if (Ty0 == Ty1) {
        if (InstOpcode == Opcode || InstOpcode == AltOpcode)
          continue;
        if (Opcode == AltOpcode) {
          assert(isValidForAlternation(Opcode) &&
                 isValidForAlternation(InstOpcode) &&
                 "Cast isn't safe for alternation, logic needs to be updated!");
          AltOpcode = InstOpcode;
          AltIndex = Cnt;
          continue;
        }
      }
    } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
      continue;
    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
  }

  return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
                           cast<Instruction>(VL[AltIndex]));
}

/// \returns true if all of the values in \p VL have the same type or false
/// otherwise.
static bool allSameType(ArrayRef<Value *> VL) {
  Type *Ty = VL[0]->getType();
  for (int i = 1, e = VL.size(); i < e; i++)
    if (VL[i]->getType() != Ty)
      return false;

  return true;
}

/// \returns True if Extract{Value,Element} instruction extracts element Idx.
static Optional<unsigned> getExtractIndex(Instruction *E) {
  unsigned Opcode = E->getOpcode();
  assert((Opcode == Instruction::ExtractElement ||
          Opcode == Instruction::ExtractValue) &&
         "Expected extractelement or extractvalue instruction.");
  if (Opcode == Instruction::ExtractElement) {
    auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
    if (!CI)
      return None;
    return CI->getZExtValue();
  }
  ExtractValueInst *EI = cast<ExtractValueInst>(E);
  if (EI->getNumIndices() != 1)
    return None;
  return *EI->idx_begin();
}

/// \returns True if in-tree use also needs extract. This refers to
/// possible scalar operand in vectorized instruction.
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
                                    TargetLibraryInfo *TLI) {
  unsigned Opcode = UserInst->getOpcode();
  switch (Opcode) {
  case Instruction::Load: {
    LoadInst *LI = cast<LoadInst>(UserInst);
    return (LI->getPointerOperand() == Scalar);
  }
  case Instruction::Store: {
    StoreInst *SI = cast<StoreInst>(UserInst);
    return (SI->getPointerOperand() == Scalar);
  }
  case Instruction::Call: {
    CallInst *CI = cast<CallInst>(UserInst);
    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
    for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
      if (hasVectorInstrinsicScalarOpd(ID, i))
        return (CI->getArgOperand(i) == Scalar);
    }
    LLVM_FALLTHROUGH;
  }
  default:
    return false;
  }
}

/// \returns the AA location that is being access by the instruction.
static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return MemoryLocation::get(SI);
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return MemoryLocation::get(LI);
  return MemoryLocation();
}

/// \returns True if the instruction is not a volatile or atomic load/store.
static bool isSimple(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isSimple();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isSimple();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return !MI->isVolatile();
  return true;
}

namespace llvm {

static void inversePermutation(ArrayRef<unsigned> Indices,
                               SmallVectorImpl<int> &Mask) {
  Mask.clear();
  const unsigned E = Indices.size();
  Mask.resize(E, E + 1);
  for (unsigned I = 0; I < E; ++I)
    Mask[Indices[I]] = I;
}

namespace slpvectorizer {

/// Bottom Up SLP Vectorizer.
class BoUpSLP {
  struct TreeEntry;
  struct ScheduleData;

public:
  using ValueList = SmallVector<Value *, 8>;
  using InstrList = SmallVector<Instruction *, 16>;
  using ValueSet = SmallPtrSet<Value *, 16>;
  using StoreList = SmallVector<StoreInst *, 8>;
  using ExtraValueToDebugLocsMap =
      MapVector<Value *, SmallVector<Instruction *, 2>>;
  using OrdersType = SmallVector<unsigned, 4>;

  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
          TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
          const DataLayout *DL, OptimizationRemarkEmitter *ORE)
      : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
        DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
    // Use the vector register size specified by the target unless overridden
    // by a command-line option.
    // TODO: It would be better to limit the vectorization factor based on
    //       data type rather than just register size. For example, x86 AVX has
    //       256-bit registers, but it does not support integer operations
    //       at that width (that requires AVX2).
    if (MaxVectorRegSizeOption.getNumOccurrences())
      MaxVecRegSize = MaxVectorRegSizeOption;
    else
      MaxVecRegSize = TTI->getRegisterBitWidth(true);

    if (MinVectorRegSizeOption.getNumOccurrences())
      MinVecRegSize = MinVectorRegSizeOption;
    else
      MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
  }

  /// Vectorize the tree that starts with the elements in \p VL.
  /// Returns the vectorized root.
  Value *vectorizeTree();

  /// Vectorize the tree but with the list of externally used values \p
  /// ExternallyUsedValues. Values in this MapVector can be replaced but the
  /// generated extractvalue instructions.
  Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);

  /// \returns the cost incurred by unwanted spills and fills, caused by
  /// holding live values over call sites.
  int getSpillCost() const;

  /// \returns the vectorization cost of the subtree that starts at \p VL.
  /// A negative number means that this is profitable.
  int getTreeCost();

  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
  void buildTree(ArrayRef<Value *> Roots,
                 ArrayRef<Value *> UserIgnoreLst = None);

  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
  /// into account (and updating it, if required) list of externally used
  /// values stored in \p ExternallyUsedValues.
  void buildTree(ArrayRef<Value *> Roots,
                 ExtraValueToDebugLocsMap &ExternallyUsedValues,
                 ArrayRef<Value *> UserIgnoreLst = None);

  /// Clear the internal data structures that are created by 'buildTree'.
  void deleteTree() {
    VectorizableTree.clear();
    ScalarToTreeEntry.clear();
    MustGather.clear();
    ExternalUses.clear();
    NumOpsWantToKeepOrder.clear();
    NumOpsWantToKeepOriginalOrder = 0;
    for (auto &Iter : BlocksSchedules) {
      BlockScheduling *BS = Iter.second.get();
      BS->clear();
    }
    MinBWs.clear();
  }

  unsigned getTreeSize() const { return VectorizableTree.size(); }

  /// Perform LICM and CSE on the newly generated gather sequences.
  void optimizeGatherSequence();

  /// \returns The best order of instructions for vectorization.
  Optional<ArrayRef<unsigned>> bestOrder() const {
    assert(llvm::all_of(
               NumOpsWantToKeepOrder,
               [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
                 return D.getFirst().size() ==
                        VectorizableTree[0]->Scalars.size();
               }) &&
           "All orders must have the same size as number of instructions in "
           "tree node.");
    auto I = std::max_element(
        NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
        [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
           const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
          return D1.second < D2.second;
        });
    if (I == NumOpsWantToKeepOrder.end() ||
        I->getSecond() <= NumOpsWantToKeepOriginalOrder)
      return None;

    return makeArrayRef(I->getFirst());
  }

  /// Builds the correct order for root instructions.
  /// If some leaves have the same instructions to be vectorized, we may
  /// incorrectly evaluate the best order for the root node (it is built for the
  /// vector of instructions without repeated instructions and, thus, has less
  /// elements than the root node). This function builds the correct order for
  /// the root node.
  /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
  /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
  /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
  /// be reordered, the best order will be \<1, 0\>. We need to extend this
  /// order for the root node. For the root node this order should look like
  /// \<3, 0, 1, 2\>. This function extends the order for the reused
  /// instructions.
  void findRootOrder(OrdersType &Order) {
    // If the leaf has the same number of instructions to vectorize as the root
    // - order must be set already.
    unsigned RootSize = VectorizableTree[0]->Scalars.size();
    if (Order.size() == RootSize)
      return;
    SmallVector<unsigned, 4> RealOrder(Order.size());
    std::swap(Order, RealOrder);
    SmallVector<int, 4> Mask;
    inversePermutation(RealOrder, Mask);
    Order.assign(Mask.begin(), Mask.end());
    // The leaf has less number of instructions - need to find the true order of
    // the root.
    // Scan the nodes starting from the leaf back to the root.
    const TreeEntry *PNode = VectorizableTree.back().get();
    SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
    SmallPtrSet<const TreeEntry *, 4> Visited;
    while (!Nodes.empty() && Order.size() != RootSize) {
      const TreeEntry *PNode = Nodes.pop_back_val();
      if (!Visited.insert(PNode).second)
        continue;
      const TreeEntry &Node = *PNode;
      for (const EdgeInfo &EI : Node.UserTreeIndices)
        if (EI.UserTE)
          Nodes.push_back(EI.UserTE);
      if (Node.ReuseShuffleIndices.empty())
        continue;
      // Build the order for the parent node.
      OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
      SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
      // The algorithm of the order extension is:
      // 1. Calculate the number of the same instructions for the order.
      // 2. Calculate the index of the new order: total number of instructions
      // with order less than the order of the current instruction + reuse
      // number of the current instruction.
      // 3. The new order is just the index of the instruction in the original
      // vector of the instructions.
      for (unsigned I : Node.ReuseShuffleIndices)
        ++OrderCounter[Order[I]];
      SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
      for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
        unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
        unsigned OrderIdx = Order[ReusedIdx];
        unsigned NewIdx = 0;
        for (unsigned J = 0; J < OrderIdx; ++J)
          NewIdx += OrderCounter[J];
        NewIdx += CurrentCounter[OrderIdx];
        ++CurrentCounter[OrderIdx];
        assert(NewOrder[NewIdx] == RootSize &&
               "The order index should not be written already.");
        NewOrder[NewIdx] = I;
      }
      std::swap(Order, NewOrder);
    }
    assert(Order.size() == RootSize &&
           "Root node is expected or the size of the order must be the same as "
           "the number of elements in the root node.");
    assert(llvm::all_of(Order,
                        [RootSize](unsigned Val) { return Val != RootSize; }) &&
           "All indices must be initialized");
  }

  /// \return The vector element size in bits to use when vectorizing the
  /// expression tree ending at \p V. If V is a store, the size is the width of
  /// the stored value. Otherwise, the size is the width of the largest loaded
  /// value reaching V. This method is used by the vectorizer to calculate
  /// vectorization factors.
  unsigned getVectorElementSize(Value *V);

  /// Compute the minimum type sizes required to represent the entries in a
  /// vectorizable tree.
  void computeMinimumValueSizes();

  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
  unsigned getMaxVecRegSize() const {
    return MaxVecRegSize;
  }

  // \returns minimum vector register size as set by cl::opt.
  unsigned getMinVecRegSize() const {
    return MinVecRegSize;
  }

  /// Check if homogeneous aggregate is isomorphic to some VectorType.
  /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
  /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
  /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
  ///
  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
  unsigned canMapToVector(Type *T, const DataLayout &DL) const;

  /// \returns True if the VectorizableTree is both tiny and not fully
  /// vectorizable. We do not vectorize such trees.
  bool isTreeTinyAndNotFullyVectorizable() const;

  /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
  /// can be load combined in the backend. Load combining may not be allowed in
  /// the IR optimizer, so we do not want to alter the pattern. For example,
  /// partially transforming a scalar bswap() pattern into vector code is
  /// effectively impossible for the backend to undo.
  /// TODO: If load combining is allowed in the IR optimizer, this analysis
  ///       may not be necessary.
  bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;

  /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
  /// can be load combined in the backend. Load combining may not be allowed in
  /// the IR optimizer, so we do not want to alter the pattern. For example,
  /// partially transforming a scalar bswap() pattern into vector code is
  /// effectively impossible for the backend to undo.
  /// TODO: If load combining is allowed in the IR optimizer, this analysis
  ///       may not be necessary.
  bool isLoadCombineCandidate() const;

  OptimizationRemarkEmitter *getORE() { return ORE; }

  /// This structure holds any data we need about the edges being traversed
  /// during buildTree_rec(). We keep track of:
  /// (i) the user TreeEntry index, and
  /// (ii) the index of the edge.
  struct EdgeInfo {
    EdgeInfo() = default;
    EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
        : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
    /// The user TreeEntry.
    TreeEntry *UserTE = nullptr;
    /// The operand index of the use.
    unsigned EdgeIdx = UINT_MAX;
#ifndef NDEBUG
    friend inline raw_ostream &operator<<(raw_ostream &OS,
                                          const BoUpSLP::EdgeInfo &EI) {
      EI.dump(OS);
      return OS;
    }
    /// Debug print.
    void dump(raw_ostream &OS) const {
      OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
         << " EdgeIdx:" << EdgeIdx << "}";
    }
    LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
#endif
  };

  /// A helper data structure to hold the operands of a vector of instructions.
  /// This supports a fixed vector length for all operand vectors.
  class VLOperands {
    /// For each operand we need (i) the value, and (ii) the opcode that it
    /// would be attached to if the expression was in a left-linearized form.
    /// This is required to avoid illegal operand reordering.
    /// For example:
    /// \verbatim
    ///                         0 Op1
    ///                         |/
    /// Op1 Op2   Linearized    + Op2
    ///   \ /     ---------->   |/
    ///    -                    -
    ///
    /// Op1 - Op2            (0 + Op1) - Op2
    /// \endverbatim
    ///
    /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
    ///
    /// Another way to think of this is to track all the operations across the
    /// path from the operand all the way to the root of the tree and to
    /// calculate the operation that corresponds to this path. For example, the
    /// path from Op2 to the root crosses the RHS of the '-', therefore the
    /// corresponding operation is a '-' (which matches the one in the
    /// linearized tree, as shown above).
    ///
    /// For lack of a better term, we refer to this operation as Accumulated
    /// Path Operation (APO).
    struct OperandData {
      OperandData() = default;
      OperandData(Value *V, bool APO, bool IsUsed)
          : V(V), APO(APO), IsUsed(IsUsed) {}
      /// The operand value.
      Value *V = nullptr;
      /// TreeEntries only allow a single opcode, or an alternate sequence of
      /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
      /// APO. It is set to 'true' if 'V' is attached to an inverse operation
      /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
      /// (e.g., Add/Mul)
      bool APO = false;
      /// Helper data for the reordering function.
      bool IsUsed = false;
    };

    /// During operand reordering, we are trying to select the operand at lane
    /// that matches best with the operand at the neighboring lane. Our
    /// selection is based on the type of value we are looking for. For example,
    /// if the neighboring lane has a load, we need to look for a load that is
    /// accessing a consecutive address. These strategies are summarized in the
    /// 'ReorderingMode' enumerator.
    enum class ReorderingMode {
      Load,     ///< Matching loads to consecutive memory addresses
      Opcode,   ///< Matching instructions based on opcode (same or alternate)
      Constant, ///< Matching constants
      Splat,    ///< Matching the same instruction multiple times (broadcast)
      Failed,   ///< We failed to create a vectorizable group
    };

    using OperandDataVec = SmallVector<OperandData, 2>;

    /// A vector of operand vectors.
    SmallVector<OperandDataVec, 4> OpsVec;

    const DataLayout &DL;
    ScalarEvolution &SE;
    const BoUpSLP &R;

    /// \returns the operand data at \p OpIdx and \p Lane.
    OperandData &getData(unsigned OpIdx, unsigned Lane) {
      return OpsVec[OpIdx][Lane];
    }

    /// \returns the operand data at \p OpIdx and \p Lane. Const version.
    const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
      return OpsVec[OpIdx][Lane];
    }

    /// Clears the used flag for all entries.
    void clearUsed() {
      for (unsigned OpIdx = 0, NumOperands = getNumOperands();
           OpIdx != NumOperands; ++OpIdx)
        for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
             ++Lane)
          OpsVec[OpIdx][Lane].IsUsed = false;
    }

    /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
    void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
      std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
    }

    // The hard-coded scores listed here are not very important. When computing
    // the scores of matching one sub-tree with another, we are basically
    // counting the number of values that are matching. So even if all scores
    // are set to 1, we would still get a decent matching result.
    // However, sometimes we have to break ties. For example we may have to
    // choose between matching loads vs matching opcodes. This is what these
    // scores are helping us with: they provide the order of preference.

    /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
    static const int ScoreConsecutiveLoads = 3;
    /// ExtractElementInst from same vector and consecutive indexes.
    static const int ScoreConsecutiveExtracts = 3;
    /// Constants.
    static const int ScoreConstants = 2;
    /// Instructions with the same opcode.
    static const int ScoreSameOpcode = 2;
    /// Instructions with alt opcodes (e.g, add + sub).
    static const int ScoreAltOpcodes = 1;
    /// Identical instructions (a.k.a. splat or broadcast).
    static const int ScoreSplat = 1;
    /// Matching with an undef is preferable to failing.
    static const int ScoreUndef = 1;
    /// Score for failing to find a decent match.
    static const int ScoreFail = 0;
    /// User exteranl to the vectorized code.
    static const int ExternalUseCost = 1;
    /// The user is internal but in a different lane.
    static const int UserInDiffLaneCost = ExternalUseCost;

    /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
    static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
                               ScalarEvolution &SE) {
      auto *LI1 = dyn_cast<LoadInst>(V1);
      auto *LI2 = dyn_cast<LoadInst>(V2);
      if (LI1 && LI2)
        return isConsecutiveAccess(LI1, LI2, DL, SE)
                   ? VLOperands::ScoreConsecutiveLoads
                   : VLOperands::ScoreFail;

      auto *C1 = dyn_cast<Constant>(V1);
      auto *C2 = dyn_cast<Constant>(V2);
      if (C1 && C2)
        return VLOperands::ScoreConstants;

      // Extracts from consecutive indexes of the same vector better score as
      // the extracts could be optimized away.
      Value *EV;
      ConstantInt *Ex1Idx, *Ex2Idx;
      if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
          match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
          Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
        return VLOperands::ScoreConsecutiveExtracts;

      auto *I1 = dyn_cast<Instruction>(V1);
      auto *I2 = dyn_cast<Instruction>(V2);
      if (I1 && I2) {
        if (I1 == I2)
          return VLOperands::ScoreSplat;
        InstructionsState S = getSameOpcode({I1, I2});
        // Note: Only consider instructions with <= 2 operands to avoid
        // complexity explosion.
        if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
          return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
                                  : VLOperands::ScoreSameOpcode;
      }

      if (isa<UndefValue>(V2))
        return VLOperands::ScoreUndef;

      return VLOperands::ScoreFail;
    }

    /// Holds the values and their lane that are taking part in the look-ahead
    /// score calculation. This is used in the external uses cost calculation.
    SmallDenseMap<Value *, int> InLookAheadValues;

    /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
    /// either external to the vectorized code, or require shuffling.
    int getExternalUsesCost(const std::pair<Value *, int> &LHS,
                            const std::pair<Value *, int> &RHS) {
      int Cost = 0;
      std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
      for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
        Value *V = Values[Idx].first;
        // Calculate the absolute lane, using the minimum relative lane of LHS
        // and RHS as base and Idx as the offset.
        int Ln = std::min(LHS.second, RHS.second) + Idx;
        assert(Ln >= 0 && "Bad lane calculation");
        unsigned UsersBudget = LookAheadUsersBudget;
        for (User *U : V->users()) {
          if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
            // The user is in the VectorizableTree. Check if we need to insert.
            auto It = llvm::find(UserTE->Scalars, U);
            assert(It != UserTE->Scalars.end() && "U is in UserTE");
            int UserLn = std::distance(UserTE->Scalars.begin(), It);
            assert(UserLn >= 0 && "Bad lane");
            if (UserLn != Ln)
              Cost += UserInDiffLaneCost;
          } else {
            // Check if the user is in the look-ahead code.
            auto It2 = InLookAheadValues.find(U);
            if (It2 != InLookAheadValues.end()) {
              // The user is in the look-ahead code. Check the lane.
              if (It2->second != Ln)
                Cost += UserInDiffLaneCost;
            } else {
              // The user is neither in SLP tree nor in the look-ahead code.
              Cost += ExternalUseCost;
            }
          }
          // Limit the number of visited uses to cap compilation time.
          if (--UsersBudget == 0)
            break;
        }
      }
      return Cost;
    }

    /// Go through the operands of \p LHS and \p RHS recursively until \p
    /// MaxLevel, and return the cummulative score. For example:
    /// \verbatim
    ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
    ///     \ /         \ /         \ /        \ /
    ///      +           +           +          +
    ///     G1          G2          G3         G4
    /// \endverbatim
    /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
    /// each level recursively, accumulating the score. It starts from matching
    /// the additions at level 0, then moves on to the loads (level 1). The
    /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
    /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
    /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
    /// Please note that the order of the operands does not matter, as we
    /// evaluate the score of all profitable combinations of operands. In
    /// other words the score of G1 and G4 is the same as G1 and G2. This
    /// heuristic is based on ideas described in:
    ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
    ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
    ///   Luís F. W. Góes
    int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
                           const std::pair<Value *, int> &RHS, int CurrLevel,
                           int MaxLevel) {

      Value *V1 = LHS.first;
      Value *V2 = RHS.first;
      // Get the shallow score of V1 and V2.
      int ShallowScoreAtThisLevel =
          std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
                                       getExternalUsesCost(LHS, RHS));
      int Lane1 = LHS.second;
      int Lane2 = RHS.second;

      // If reached MaxLevel,
      //  or if V1 and V2 are not instructions,
      //  or if they are SPLAT,
      //  or if they are not consecutive, early return the current cost.
      auto *I1 = dyn_cast<Instruction>(V1);
      auto *I2 = dyn_cast<Instruction>(V2);
      if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
          ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
          (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
        return ShallowScoreAtThisLevel;
      assert(I1 && I2 && "Should have early exited.");

      // Keep track of in-tree values for determining the external-use cost.
      InLookAheadValues[V1] = Lane1;
      InLookAheadValues[V2] = Lane2;

      // Contains the I2 operand indexes that got matched with I1 operands.
      SmallSet<unsigned, 4> Op2Used;

      // Recursion towards the operands of I1 and I2. We are trying all possbile
      // operand pairs, and keeping track of the best score.
      for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
           OpIdx1 != NumOperands1; ++OpIdx1) {
        // Try to pair op1I with the best operand of I2.
        int MaxTmpScore = 0;
        unsigned MaxOpIdx2 = 0;
        bool FoundBest = false;
        // If I2 is commutative try all combinations.
        unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
        unsigned ToIdx = isCommutative(I2)
                             ? I2->getNumOperands()
                             : std::min(I2->getNumOperands(), OpIdx1 + 1);
        assert(FromIdx <= ToIdx && "Bad index");
        for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
          // Skip operands already paired with OpIdx1.
          if (Op2Used.count(OpIdx2))
            continue;
          // Recursively calculate the cost at each level
          int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
                                            {I2->getOperand(OpIdx2), Lane2},
                                            CurrLevel + 1, MaxLevel);
          // Look for the best score.
          if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
            MaxTmpScore = TmpScore;
            MaxOpIdx2 = OpIdx2;
            FoundBest = true;
          }
        }
        if (FoundBest) {
          // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
          Op2Used.insert(MaxOpIdx2);
          ShallowScoreAtThisLevel += MaxTmpScore;
        }
      }
      return ShallowScoreAtThisLevel;
    }

    /// \Returns the look-ahead score, which tells us how much the sub-trees
    /// rooted at \p LHS and \p RHS match, the more they match the higher the
    /// score. This helps break ties in an informed way when we cannot decide on
    /// the order of the operands by just considering the immediate
    /// predecessors.
    int getLookAheadScore(const std::pair<Value *, int> &LHS,
                          const std::pair<Value *, int> &RHS) {
      InLookAheadValues.clear();
      return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
    }

    // Search all operands in Ops[*][Lane] for the one that matches best
    // Ops[OpIdx][LastLane] and return its opreand index.
    // If no good match can be found, return None.
    Optional<unsigned>
    getBestOperand(unsigned OpIdx, int Lane, int LastLane,
                   ArrayRef<ReorderingMode> ReorderingModes) {
      unsigned NumOperands = getNumOperands();

      // The operand of the previous lane at OpIdx.
      Value *OpLastLane = getData(OpIdx, LastLane).V;

      // Our strategy mode for OpIdx.
      ReorderingMode RMode = ReorderingModes[OpIdx];

      // The linearized opcode of the operand at OpIdx, Lane.
      bool OpIdxAPO = getData(OpIdx, Lane).APO;

      // The best operand index and its score.
      // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
      // are using the score to differentiate between the two.
      struct BestOpData {
        Optional<unsigned> Idx = None;
        unsigned Score = 0;
      } BestOp;

      // Iterate through all unused operands and look for the best.
      for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
        // Get the operand at Idx and Lane.
        OperandData &OpData = getData(Idx, Lane);
        Value *Op = OpData.V;
        bool OpAPO = OpData.APO;

        // Skip already selected operands.
        if (OpData.IsUsed)
          continue;

        // Skip if we are trying to move the operand to a position with a
        // different opcode in the linearized tree form. This would break the
        // semantics.
        if (OpAPO != OpIdxAPO)
          continue;

        // Look for an operand that matches the current mode.
        switch (RMode) {
        case ReorderingMode::Load:
        case ReorderingMode::Constant:
        case ReorderingMode::Opcode: {
          bool LeftToRight = Lane > LastLane;
          Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
          Value *OpRight = (LeftToRight) ? Op : OpLastLane;
          unsigned Score =
              getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
          if (Score > BestOp.Score) {
            BestOp.Idx = Idx;
            BestOp.Score = Score;
          }
          break;
        }
        case ReorderingMode::Splat:
          if (Op == OpLastLane)
            BestOp.Idx = Idx;
          break;
        case ReorderingMode::Failed:
          return None;
        }
      }

      if (BestOp.Idx) {
        getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
        return BestOp.Idx;
      }
      // If we could not find a good match return None.
      return None;
    }

    /// Helper for reorderOperandVecs. \Returns the lane that we should start
    /// reordering from. This is the one which has the least number of operands
    /// that can freely move about.
    unsigned getBestLaneToStartReordering() const {
      unsigned BestLane = 0;
      unsigned Min = UINT_MAX;
      for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
           ++Lane) {
        unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
        if (NumFreeOps < Min) {
          Min = NumFreeOps;
          BestLane = Lane;
        }
      }
      return BestLane;
    }

    /// \Returns the maximum number of operands that are allowed to be reordered
    /// for \p Lane. This is used as a heuristic for selecting the first lane to
    /// start operand reordering.
    unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
      unsigned CntTrue = 0;
      unsigned NumOperands = getNumOperands();
      // Operands with the same APO can be reordered. We therefore need to count
      // how many of them we have for each APO, like this: Cnt[APO] = x.
      // Since we only have two APOs, namely true and false, we can avoid using
      // a map. Instead we can simply count the number of operands that
      // correspond to one of them (in this case the 'true' APO), and calculate
      // the other by subtracting it from the total number of operands.
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
        if (getData(OpIdx, Lane).APO)
          ++CntTrue;
      unsigned CntFalse = NumOperands - CntTrue;
      return std::max(CntTrue, CntFalse);
    }

    /// Go through the instructions in VL and append their operands.
    void appendOperandsOfVL(ArrayRef<Value *> VL) {
      assert(!VL.empty() && "Bad VL");
      assert((empty() || VL.size() == getNumLanes()) &&
             "Expected same number of lanes");
      assert(isa<Instruction>(VL[0]) && "Expected instruction");
      unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
      OpsVec.resize(NumOperands);
      unsigned NumLanes = VL.size();
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
        OpsVec[OpIdx].resize(NumLanes);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
          // Our tree has just 3 nodes: the root and two operands.
          // It is therefore trivial to get the APO. We only need to check the
          // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
          // RHS operand. The LHS operand of both add and sub is never attached
          // to an inversese operation in the linearized form, therefore its APO
          // is false. The RHS is true only if VL[Lane] is an inverse operation.

          // Since operand reordering is performed on groups of commutative
          // operations or alternating sequences (e.g., +, -), we can safely
          // tell the inverse operations by checking commutativity.
          bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
          bool APO = (OpIdx == 0) ? false : IsInverseOperation;
          OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
                                 APO, false};
        }
      }
    }

    /// \returns the number of operands.
    unsigned getNumOperands() const { return OpsVec.size(); }

    /// \returns the number of lanes.
    unsigned getNumLanes() const { return OpsVec[0].size(); }

    /// \returns the operand value at \p OpIdx and \p Lane.
    Value *getValue(unsigned OpIdx, unsigned Lane) const {
      return getData(OpIdx, Lane).V;
    }

    /// \returns true if the data structure is empty.
    bool empty() const { return OpsVec.empty(); }

    /// Clears the data.
    void clear() { OpsVec.clear(); }

    /// \Returns true if there are enough operands identical to \p Op to fill
    /// the whole vector.
    /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
    bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
      bool OpAPO = getData(OpIdx, Lane).APO;
      for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
        if (Ln == Lane)
          continue;
        // This is set to true if we found a candidate for broadcast at Lane.
        bool FoundCandidate = false;
        for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
          OperandData &Data = getData(OpI, Ln);
          if (Data.APO != OpAPO || Data.IsUsed)
            continue;
          if (Data.V == Op) {
            FoundCandidate = true;
            Data.IsUsed = true;
            break;
          }
        }
        if (!FoundCandidate)
          return false;
      }
      return true;
    }

  public:
    /// Initialize with all the operands of the instruction vector \p RootVL.
    VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
               ScalarEvolution &SE, const BoUpSLP &R)
        : DL(DL), SE(SE), R(R) {
      // Append all the operands of RootVL.
      appendOperandsOfVL(RootVL);
    }

    /// \Returns a value vector with the operands across all lanes for the
    /// opearnd at \p OpIdx.
    ValueList getVL(unsigned OpIdx) const {
      ValueList OpVL(OpsVec[OpIdx].size());
      assert(OpsVec[OpIdx].size() == getNumLanes() &&
             "Expected same num of lanes across all operands");
      for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
        OpVL[Lane] = OpsVec[OpIdx][Lane].V;
      return OpVL;
    }

    // Performs operand reordering for 2 or more operands.
    // The original operands are in OrigOps[OpIdx][Lane].
    // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
    void reorder() {
      unsigned NumOperands = getNumOperands();
      unsigned NumLanes = getNumLanes();
      // Each operand has its own mode. We are using this mode to help us select
      // the instructions for each lane, so that they match best with the ones
      // we have selected so far.
      SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);

      // This is a greedy single-pass algorithm. We are going over each lane
      // once and deciding on the best order right away with no back-tracking.
      // However, in order to increase its effectiveness, we start with the lane
      // that has operands that can move the least. For example, given the
      // following lanes:
      //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
      //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
      //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
      //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
      // we will start at Lane 1, since the operands of the subtraction cannot
      // be reordered. Then we will visit the rest of the lanes in a circular
      // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.

      // Find the first lane that we will start our search from.
      unsigned FirstLane = getBestLaneToStartReordering();

      // Initialize the modes.
      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
        Value *OpLane0 = getValue(OpIdx, FirstLane);
        // Keep track if we have instructions with all the same opcode on one
        // side.
        if (isa<LoadInst>(OpLane0))
          ReorderingModes[OpIdx] = ReorderingMode::Load;
        else if (isa<Instruction>(OpLane0)) {
          // Check if OpLane0 should be broadcast.
          if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
            ReorderingModes[OpIdx] = ReorderingMode::Splat;
          else
            ReorderingModes[OpIdx] = ReorderingMode::Opcode;
        }
        else if (isa<Constant>(OpLane0))
          ReorderingModes[OpIdx] = ReorderingMode::Constant;
        else if (isa<Argument>(OpLane0))
          // Our best hope is a Splat. It may save some cost in some cases.
          ReorderingModes[OpIdx] = ReorderingMode::Splat;
        else
          // NOTE: This should be unreachable.
          ReorderingModes[OpIdx] = ReorderingMode::Failed;
      }

      // If the initial strategy fails for any of the operand indexes, then we
      // perform reordering again in a second pass. This helps avoid assigning
      // high priority to the failed strategy, and should improve reordering for
      // the non-failed operand indexes.
      for (int Pass = 0; Pass != 2; ++Pass) {
        // Skip the second pass if the first pass did not fail.
        bool StrategyFailed = false;
        // Mark all operand data as free to use.
        clearUsed();
        // We keep the original operand order for the FirstLane, so reorder the
        // rest of the lanes. We are visiting the nodes in a circular fashion,
        // using FirstLane as the center point and increasing the radius
        // distance.
        for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
          // Visit the lane on the right and then the lane on the left.
          for (int Direction : {+1, -1}) {
            int Lane = FirstLane + Direction * Distance;
            if (Lane < 0 || Lane >= (int)NumLanes)
              continue;
            int LastLane = Lane - Direction;
            assert(LastLane >= 0 && LastLane < (int)NumLanes &&
                   "Out of bounds");
            // Look for a good match for each operand.
            for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
              // Search for the operand that matches SortedOps[OpIdx][Lane-1].
              Optional<unsigned> BestIdx =
                  getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
              // By not selecting a value, we allow the operands that follow to
              // select a better matching value. We will get a non-null value in
              // the next run of getBestOperand().
              if (BestIdx) {
                // Swap the current operand with the one returned by
                // getBestOperand().
                swap(OpIdx, BestIdx.getValue(), Lane);
              } else {
                // We failed to find a best operand, set mode to 'Failed'.
                ReorderingModes[OpIdx] = ReorderingMode::Failed;
                // Enable the second pass.
                StrategyFailed = true;
              }
            }
          }
        }
        // Skip second pass if the strategy did not fail.
        if (!StrategyFailed)
          break;
      }
    }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
      switch (RMode) {
      case ReorderingMode::Load:
        return "Load";
      case ReorderingMode::Opcode:
        return "Opcode";
      case ReorderingMode::Constant:
        return "Constant";
      case ReorderingMode::Splat:
        return "Splat";
      case ReorderingMode::Failed:
        return "Failed";
      }
      llvm_unreachable("Unimplemented Reordering Type");
    }

    LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
                                                   raw_ostream &OS) {
      return OS << getModeStr(RMode);
    }

    /// Debug print.
    LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
      printMode(RMode, dbgs());
    }

    friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
      return printMode(RMode, OS);
    }

    LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
      const unsigned Indent = 2;
      unsigned Cnt = 0;
      for (const OperandDataVec &OpDataVec : OpsVec) {
        OS << "Operand " << Cnt++ << "\n";
        for (const OperandData &OpData : OpDataVec) {
          OS.indent(Indent) << "{";
          if (Value *V = OpData.V)
            OS << *V;
          else
            OS << "null";
          OS << ", APO:" << OpData.APO << "}\n";
        }
        OS << "\n";
      }
      return OS;
    }

    /// Debug print.
    LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
  };

  /// Checks if the instruction is marked for deletion.
  bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }

  /// Marks values operands for later deletion by replacing them with Undefs.
  void eraseInstructions(ArrayRef<Value *> AV);

  ~BoUpSLP();

private:
  /// Checks if all users of \p I are the part of the vectorization tree.
  bool areAllUsersVectorized(Instruction *I) const;

  /// \returns the cost of the vectorizable entry.
  int getEntryCost(TreeEntry *E);

  /// This is the recursive part of buildTree.
  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
                     const EdgeInfo &EI);

  /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
  /// be vectorized to use the original vector (or aggregate "bitcast" to a
  /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
  /// returns false, setting \p CurrentOrder to either an empty vector or a
  /// non-identity permutation that allows to reuse extract instructions.
  bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
                       SmallVectorImpl<unsigned> &CurrentOrder) const;

  /// Vectorize a single entry in the tree.
  Value *vectorizeTree(TreeEntry *E);

  /// Vectorize a single entry in the tree, starting in \p VL.
  Value *vectorizeTree(ArrayRef<Value *> VL);

  /// \returns the scalarization cost for this type. Scalarization in this
  /// context means the creation of vectors from a group of scalars.
  int getGatherCost(FixedVectorType *Ty,
                    const DenseSet<unsigned> &ShuffledIndices) const;

  /// \returns the scalarization cost for this list of values. Assuming that
  /// this subtree gets vectorized, we may need to extract the values from the
  /// roots. This method calculates the cost of extracting the values.
  int getGatherCost(ArrayRef<Value *> VL) const;

  /// Set the Builder insert point to one after the last instruction in
  /// the bundle
  void setInsertPointAfterBundle(TreeEntry *E);

  /// \returns a vector from a collection of scalars in \p VL.
  Value *gather(ArrayRef<Value *> VL);

  /// \returns whether the VectorizableTree is fully vectorizable and will
  /// be beneficial even the tree height is tiny.
  bool isFullyVectorizableTinyTree() const;

  /// Reorder commutative or alt operands to get better probability of
  /// generating vectorized code.
  static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
                                             SmallVectorImpl<Value *> &Left,
                                             SmallVectorImpl<Value *> &Right,
                                             const DataLayout &DL,
                                             ScalarEvolution &SE,
                                             const BoUpSLP &R);
  struct TreeEntry {
    using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
    TreeEntry(VecTreeTy &Container) : Container(Container) {}

    /// \returns true if the scalars in VL are equal to this entry.
    bool isSame(ArrayRef<Value *> VL) const {
      if (VL.size() == Scalars.size())
        return std::equal(VL.begin(), VL.end(), Scalars.begin());
      return VL.size() == ReuseShuffleIndices.size() &&
             std::equal(
                 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
                 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
    }

    /// A vector of scalars.
    ValueList Scalars;

    /// The Scalars are vectorized into this value. It is initialized to Null.
    Value *VectorizedValue = nullptr;

    /// Do we need to gather this sequence ?
    enum EntryState { Vectorize, NeedToGather };
    EntryState State;

    /// Does this sequence require some shuffling?
    SmallVector<int, 4> ReuseShuffleIndices;

    /// Does this entry require reordering?
    SmallVector<unsigned, 4> ReorderIndices;

    /// Points back to the VectorizableTree.
    ///
    /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
    /// to be a pointer and needs to be able to initialize the child iterator.
    /// Thus we need a reference back to the container to translate the indices
    /// to entries.
    VecTreeTy &Container;

    /// The TreeEntry index containing the user of this entry.  We can actually
    /// have multiple users so the data structure is not truly a tree.
    SmallVector<EdgeInfo, 1> UserTreeIndices;

    /// The index of this treeEntry in VectorizableTree.
    int Idx = -1;

  private:
    /// The operands of each instruction in each lane Operands[op_index][lane].
    /// Note: This helps avoid the replication of the code that performs the
    /// reordering of operands during buildTree_rec() and vectorizeTree().
    SmallVector<ValueList, 2> Operands;

    /// The main/alternate instruction.
    Instruction *MainOp = nullptr;
    Instruction *AltOp = nullptr;

  public:
    /// Set this bundle's \p OpIdx'th operand to \p OpVL.
    void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
      if (Operands.size() < OpIdx + 1)
        Operands.resize(OpIdx + 1);
      assert(Operands[OpIdx].size() == 0 && "Already resized?");
      Operands[OpIdx].resize(Scalars.size());
      for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
        Operands[OpIdx][Lane] = OpVL[Lane];
    }

    /// Set the operands of this bundle in their original order.
    void setOperandsInOrder() {
      assert(Operands.empty() && "Already initialized?");
      auto *I0 = cast<Instruction>(Scalars[0]);
      Operands.resize(I0->getNumOperands());
      unsigned NumLanes = Scalars.size();
      for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
           OpIdx != NumOperands; ++OpIdx) {
        Operands[OpIdx].resize(NumLanes);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          auto *I = cast<Instruction>(Scalars[Lane]);
          assert(I->getNumOperands() == NumOperands &&
                 "Expected same number of operands");
          Operands[OpIdx][Lane] = I->getOperand(OpIdx);
        }
      }
    }

    /// \returns the \p OpIdx operand of this TreeEntry.
    ValueList &getOperand(unsigned OpIdx) {
      assert(OpIdx < Operands.size() && "Off bounds");
      return Operands[OpIdx];
    }

    /// \returns the number of operands.
    unsigned getNumOperands() const { return Operands.size(); }

    /// \return the single \p OpIdx operand.
    Value *getSingleOperand(unsigned OpIdx) const {
      assert(OpIdx < Operands.size() && "Off bounds");
      assert(!Operands[OpIdx].empty() && "No operand available");
      return Operands[OpIdx][0];
    }

    /// Some of the instructions in the list have alternate opcodes.
    bool isAltShuffle() const {
      return getOpcode() != getAltOpcode();
    }

    bool isOpcodeOrAlt(Instruction *I) const {
      unsigned CheckedOpcode = I->getOpcode();
      return (getOpcode() == CheckedOpcode ||
              getAltOpcode() == CheckedOpcode);
    }

    /// Chooses the correct key for scheduling data. If \p Op has the same (or
    /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
    /// \p OpValue.
    Value *isOneOf(Value *Op) const {
      auto *I = dyn_cast<Instruction>(Op);
      if (I && isOpcodeOrAlt(I))
        return Op;
      return MainOp;
    }

    void setOperations(const InstructionsState &S) {
      MainOp = S.MainOp;
      AltOp = S.AltOp;
    }

    Instruction *getMainOp() const {
      return MainOp;
    }

    Instruction *getAltOp() const {
      return AltOp;
    }

    /// The main/alternate opcodes for the list of instructions.
    unsigned getOpcode() const {
      return MainOp ? MainOp->getOpcode() : 0;
    }

    unsigned getAltOpcode() const {
      return AltOp ? AltOp->getOpcode() : 0;
    }

    /// Update operations state of this entry if reorder occurred.
    bool updateStateIfReorder() {
      if (ReorderIndices.empty())
        return false;
      InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
      setOperations(S);
      return true;
    }

#ifndef NDEBUG
    /// Debug printer.
    LLVM_DUMP_METHOD void dump() const {
      dbgs() << Idx << ".\n";
      for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
        dbgs() << "Operand " << OpI << ":\n";
        for (const Value *V : Operands[OpI])
          dbgs().indent(2) << *V << "\n";
      }
      dbgs() << "Scalars: \n";
      for (Value *V : Scalars)
        dbgs().indent(2) << *V << "\n";
      dbgs() << "State: ";
      switch (State) {
      case Vectorize:
        dbgs() << "Vectorize\n";
        break;
      case NeedToGather:
        dbgs() << "NeedToGather\n";
        break;
      }
      dbgs() << "MainOp: ";
      if (MainOp)
        dbgs() << *MainOp << "\n";
      else
        dbgs() << "NULL\n";
      dbgs() << "AltOp: ";
      if (AltOp)
        dbgs() << *AltOp << "\n";
      else
        dbgs() << "NULL\n";
      dbgs() << "VectorizedValue: ";
      if (VectorizedValue)
        dbgs() << *VectorizedValue << "\n";
      else
        dbgs() << "NULL\n";
      dbgs() << "ReuseShuffleIndices: ";
      if (ReuseShuffleIndices.empty())
        dbgs() << "Emtpy";
      else
        for (unsigned ReuseIdx : ReuseShuffleIndices)
          dbgs() << ReuseIdx << ", ";
      dbgs() << "\n";
      dbgs() << "ReorderIndices: ";
      for (unsigned ReorderIdx : ReorderIndices)
        dbgs() << ReorderIdx << ", ";
      dbgs() << "\n";
      dbgs() << "UserTreeIndices: ";
      for (const auto &EInfo : UserTreeIndices)
        dbgs() << EInfo << ", ";
      dbgs() << "\n";
    }
#endif
  };

  /// Create a new VectorizableTree entry.
  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
                          const InstructionsState &S,
                          const EdgeInfo &UserTreeIdx,
                          ArrayRef<unsigned> ReuseShuffleIndices = None,
                          ArrayRef<unsigned> ReorderIndices = None) {
    bool Vectorized = (bool)Bundle;
    VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
    TreeEntry *Last = VectorizableTree.back().get();
    Last->Idx = VectorizableTree.size() - 1;
    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
    Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
    Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
                                     ReuseShuffleIndices.end());
    Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
    Last->setOperations(S);
    if (Vectorized) {
      for (Value *V : VL) {
        assert(!getTreeEntry(V) && "Scalar already in tree!");
        ScalarToTreeEntry[V] = Last;
      }
      // Update the scheduler bundle to point to this TreeEntry.
      unsigned Lane = 0;
      for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
           BundleMember = BundleMember->NextInBundle) {
        BundleMember->TE = Last;
        BundleMember->Lane = Lane;
        ++Lane;
      }
      assert((!Bundle.getValue() || Lane == VL.size()) &&
             "Bundle and VL out of sync");
    } else {
      MustGather.insert(VL.begin(), VL.end());
    }

    if (UserTreeIdx.UserTE)
      Last->UserTreeIndices.push_back(UserTreeIdx);

    return Last;
  }

  /// -- Vectorization State --
  /// Holds all of the tree entries.
  TreeEntry::VecTreeTy VectorizableTree;

#ifndef NDEBUG
  /// Debug printer.
  LLVM_DUMP_METHOD void dumpVectorizableTree() const {
    for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
      VectorizableTree[Id]->dump();
      dbgs() << "\n";
    }
  }
#endif

  TreeEntry *getTreeEntry(Value *V) {
    auto I = ScalarToTreeEntry.find(V);
    if (I != ScalarToTreeEntry.end())
      return I->second;
    return nullptr;
  }

  const TreeEntry *getTreeEntry(Value *V) const {
    auto I = ScalarToTreeEntry.find(V);
    if (I != ScalarToTreeEntry.end())
      return I->second;
    return nullptr;
  }

  /// Maps a specific scalar to its tree entry.
  SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;

  /// Maps a value to the proposed vectorizable size.
  SmallDenseMap<Value *, unsigned> InstrElementSize;

  /// A list of scalars that we found that we need to keep as scalars.
  ValueSet MustGather;

  /// This POD struct describes one external user in the vectorized tree.
  struct ExternalUser {
    ExternalUser(Value *S, llvm::User *U, int L)
        : Scalar(S), User(U), Lane(L) {}

    // Which scalar in our function.
    Value *Scalar;

    // Which user that uses the scalar.
    llvm::User *User;

    // Which lane does the scalar belong to.
    int Lane;
  };
  using UserList = SmallVector<ExternalUser, 16>;

  /// Checks if two instructions may access the same memory.
  ///
  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
  /// is invariant in the calling loop.
  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
                 Instruction *Inst2) {
    // First check if the result is already in the cache.
    AliasCacheKey key = std::make_pair(Inst1, Inst2);
    Optional<bool> &result = AliasCache[key];
    if (result.hasValue()) {
      return result.getValue();
    }
    MemoryLocation Loc2 = getLocation(Inst2, AA);
    bool aliased = true;
    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
      // Do the alias check.
      aliased = AA->alias(Loc1, Loc2);
    }
    // Store the result in the cache.
    result = aliased;
    return aliased;
  }

  using AliasCacheKey = std::pair<Instruction *, Instruction *>;

  /// Cache for alias results.
  /// TODO: consider moving this to the AliasAnalysis itself.
  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;

  /// Removes an instruction from its block and eventually deletes it.
  /// It's like Instruction::eraseFromParent() except that the actual deletion
  /// is delayed until BoUpSLP is destructed.
  /// This is required to ensure that there are no incorrect collisions in the
  /// AliasCache, which can happen if a new instruction is allocated at the
  /// same address as a previously deleted instruction.
  void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
    auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
    It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
  }

  /// Temporary store for deleted instructions. Instructions will be deleted
  /// eventually when the BoUpSLP is destructed.
  DenseMap<Instruction *, bool> DeletedInstructions;

  /// A list of values that need to extracted out of the tree.
  /// This list holds pairs of (Internal Scalar : External User). External User
  /// can be nullptr, it means that this Internal Scalar will be used later,
  /// after vectorization.
  UserList ExternalUses;

  /// Values used only by @llvm.assume calls.
  SmallPtrSet<const Value *, 32> EphValues;

  /// Holds all of the instructions that we gathered.
  SetVector<Instruction *> GatherSeq;

  /// A list of blocks that we are going to CSE.
  SetVector<BasicBlock *> CSEBlocks;

  /// Contains all scheduling relevant data for an instruction.
  /// A ScheduleData either represents a single instruction or a member of an
  /// instruction bundle (= a group of instructions which is combined into a
  /// vector instruction).
  struct ScheduleData {
    // The initial value for the dependency counters. It means that the
    // dependencies are not calculated yet.
    enum { InvalidDeps = -1 };

    ScheduleData() = default;

    void init(int BlockSchedulingRegionID, Value *OpVal) {
      FirstInBundle = this;
      NextInBundle = nullptr;
      NextLoadStore = nullptr;
      IsScheduled = false;
      SchedulingRegionID = BlockSchedulingRegionID;
      UnscheduledDepsInBundle = UnscheduledDeps;
      clearDependencies();
      OpValue = OpVal;
      TE = nullptr;
      Lane = -1;
    }

    /// Returns true if the dependency information has been calculated.
    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }

    /// Returns true for single instructions and for bundle representatives
    /// (= the head of a bundle).
    bool isSchedulingEntity() const { return FirstInBundle == this; }

    /// Returns true if it represents an instruction bundle and not only a
    /// single instruction.
    bool isPartOfBundle() const {
      return NextInBundle != nullptr || FirstInBundle != this;
    }

    /// Returns true if it is ready for scheduling, i.e. it has no more
    /// unscheduled depending instructions/bundles.
    bool isReady() const {
      assert(isSchedulingEntity() &&
             "can't consider non-scheduling entity for ready list");
      return UnscheduledDepsInBundle == 0 && !IsScheduled;
    }

    /// Modifies the number of unscheduled dependencies, also updating it for
    /// the whole bundle.
    int incrementUnscheduledDeps(int Incr) {
      UnscheduledDeps += Incr;
      return FirstInBundle->UnscheduledDepsInBundle += Incr;
    }

    /// Sets the number of unscheduled dependencies to the number of
    /// dependencies.
    void resetUnscheduledDeps() {
      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
    }

    /// Clears all dependency information.
    void clearDependencies() {
      Dependencies = InvalidDeps;
      resetUnscheduledDeps();
      MemoryDependencies.clear();
    }

    void dump(raw_ostream &os) const {
      if (!isSchedulingEntity()) {
        os << "/ " << *Inst;
      } else if (NextInBundle) {
        os << '[' << *Inst;
        ScheduleData *SD = NextInBundle;
        while (SD) {
          os << ';' << *SD->Inst;
          SD = SD->NextInBundle;
        }
        os << ']';
      } else {
        os << *Inst;
      }
    }

    Instruction *Inst = nullptr;

    /// Points to the head in an instruction bundle (and always to this for
    /// single instructions).
    ScheduleData *FirstInBundle = nullptr;

    /// Single linked list of all instructions in a bundle. Null if it is a
    /// single instruction.
    ScheduleData *NextInBundle = nullptr;

    /// Single linked list of all memory instructions (e.g. load, store, call)
    /// in the block - until the end of the scheduling region.
    ScheduleData *NextLoadStore = nullptr;

    /// The dependent memory instructions.
    /// This list is derived on demand in calculateDependencies().
    SmallVector<ScheduleData *, 4> MemoryDependencies;

    /// This ScheduleData is in the current scheduling region if this matches
    /// the current SchedulingRegionID of BlockScheduling.
    int SchedulingRegionID = 0;

    /// Used for getting a "good" final ordering of instructions.
    int SchedulingPriority = 0;

    /// The number of dependencies. Constitutes of the number of users of the
    /// instruction plus the number of dependent memory instructions (if any).
    /// This value is calculated on demand.
    /// If InvalidDeps, the number of dependencies is not calculated yet.
    int Dependencies = InvalidDeps;

    /// The number of dependencies minus the number of dependencies of scheduled
    /// instructions. As soon as this is zero, the instruction/bundle gets ready
    /// for scheduling.
    /// Note that this is negative as long as Dependencies is not calculated.
    int UnscheduledDeps = InvalidDeps;

    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
    /// single instructions.
    int UnscheduledDepsInBundle = InvalidDeps;

    /// True if this instruction is scheduled (or considered as scheduled in the
    /// dry-run).
    bool IsScheduled = false;

    /// Opcode of the current instruction in the schedule data.
    Value *OpValue = nullptr;

    /// The TreeEntry that this instruction corresponds to.
    TreeEntry *TE = nullptr;

    /// The lane of this node in the TreeEntry.
    int Lane = -1;
  };

#ifndef NDEBUG
  friend inline raw_ostream &operator<<(raw_ostream &os,
                                        const BoUpSLP::ScheduleData &SD) {
    SD.dump(os);
    return os;
  }
#endif

  friend struct GraphTraits<BoUpSLP *>;
  friend struct DOTGraphTraits<BoUpSLP *>;

  /// Contains all scheduling data for a basic block.
  struct BlockScheduling {
    BlockScheduling(BasicBlock *BB)
        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}

    void clear() {
      ReadyInsts.clear();
      ScheduleStart = nullptr;
      ScheduleEnd = nullptr;
      FirstLoadStoreInRegion = nullptr;
      LastLoadStoreInRegion = nullptr;

      // Reduce the maximum schedule region size by the size of the
      // previous scheduling run.
      ScheduleRegionSizeLimit -= ScheduleRegionSize;
      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
        ScheduleRegionSizeLimit = MinScheduleRegionSize;
      ScheduleRegionSize = 0;

      // Make a new scheduling region, i.e. all existing ScheduleData is not
      // in the new region yet.
      ++SchedulingRegionID;
    }

    ScheduleData *getScheduleData(Value *V) {
      ScheduleData *SD = ScheduleDataMap[V];
      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
        return SD;
      return nullptr;
    }

    ScheduleData *getScheduleData(Value *V, Value *Key) {
      if (V == Key)
        return getScheduleData(V);
      auto I = ExtraScheduleDataMap.find(V);
      if (I != ExtraScheduleDataMap.end()) {
        ScheduleData *SD = I->second[Key];
        if (SD && SD->SchedulingRegionID == SchedulingRegionID)
          return SD;
      }
      return nullptr;
    }

    bool isInSchedulingRegion(ScheduleData *SD) const {
      return SD->SchedulingRegionID == SchedulingRegionID;
    }

    /// Marks an instruction as scheduled and puts all dependent ready
    /// instructions into the ready-list.
    template <typename ReadyListType>
    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
      SD->IsScheduled = true;
      LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");

      ScheduleData *BundleMember = SD;
      while (BundleMember) {
        if (BundleMember->Inst != BundleMember->OpValue) {
          BundleMember = BundleMember->NextInBundle;
          continue;
        }
        // Handle the def-use chain dependencies.

        // Decrement the unscheduled counter and insert to ready list if ready.
        auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
          doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
            if (OpDef && OpDef->hasValidDependencies() &&
                OpDef->incrementUnscheduledDeps(-1) == 0) {
              // There are no more unscheduled dependencies after
              // decrementing, so we can put the dependent instruction
              // into the ready list.
              ScheduleData *DepBundle = OpDef->FirstInBundle;
              assert(!DepBundle->IsScheduled &&
                     "already scheduled bundle gets ready");
              ReadyList.insert(DepBundle);
              LLVM_DEBUG(dbgs()
                         << "SLP:    gets ready (def): " << *DepBundle << "\n");
            }
          });
        };

        // If BundleMember is a vector bundle, its operands may have been
        // reordered duiring buildTree(). We therefore need to get its operands
        // through the TreeEntry.
        if (TreeEntry *TE = BundleMember->TE) {
          int Lane = BundleMember->Lane;
          assert(Lane >= 0 && "Lane not set");

          // Since vectorization tree is being built recursively this assertion
          // ensures that the tree entry has all operands set before reaching
          // this code. Couple of exceptions known at the moment are extracts
          // where their second (immediate) operand is not added. Since
          // immediates do not affect scheduler behavior this is considered
          // okay.
          auto *In = TE->getMainOp();
          assert(In &&
                 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
                  In->getNumOperands() == TE->getNumOperands()) &&
                 "Missed TreeEntry operands?");
          (void)In; // fake use to avoid build failure when assertions disabled

          for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
               OpIdx != NumOperands; ++OpIdx)
            if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
              DecrUnsched(I);
        } else {
          // If BundleMember is a stand-alone instruction, no operand reordering
          // has taken place, so we directly access its operands.
          for (Use &U : BundleMember->Inst->operands())
            if (auto *I = dyn_cast<Instruction>(U.get()))
              DecrUnsched(I);
        }
        // Handle the memory dependencies.
        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
            // There are no more unscheduled dependencies after decrementing,
            // so we can put the dependent instruction into the ready list.
            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
            assert(!DepBundle->IsScheduled &&
                   "already scheduled bundle gets ready");
            ReadyList.insert(DepBundle);
            LLVM_DEBUG(dbgs()
                       << "SLP:    gets ready (mem): " << *DepBundle << "\n");
          }
        }
        BundleMember = BundleMember->NextInBundle;
      }
    }

    void doForAllOpcodes(Value *V,
                         function_ref<void(ScheduleData *SD)> Action) {
      if (ScheduleData *SD = getScheduleData(V))
        Action(SD);
      auto I = ExtraScheduleDataMap.find(V);
      if (I != ExtraScheduleDataMap.end())
        for (auto &P : I->second)
          if (P.second->SchedulingRegionID == SchedulingRegionID)
            Action(P.second);
    }

    /// Put all instructions into the ReadyList which are ready for scheduling.
    template <typename ReadyListType>
    void initialFillReadyList(ReadyListType &ReadyList) {
      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
        doForAllOpcodes(I, [&](ScheduleData *SD) {
          if (SD->isSchedulingEntity() && SD->isReady()) {
            ReadyList.insert(SD);
            LLVM_DEBUG(dbgs()
                       << "SLP:    initially in ready list: " << *I << "\n");
          }
        });
      }
    }

    /// Checks if a bundle of instructions can be scheduled, i.e. has no
    /// cyclic dependencies. This is only a dry-run, no instructions are
    /// actually moved at this stage.
    /// \returns the scheduling bundle. The returned Optional value is non-None
    /// if \p VL is allowed to be scheduled.
    Optional<ScheduleData *>
    tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
                      const InstructionsState &S);

    /// Un-bundles a group of instructions.
    void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);

    /// Allocates schedule data chunk.
    ScheduleData *allocateScheduleDataChunks();

    /// Extends the scheduling region so that V is inside the region.
    /// \returns true if the region size is within the limit.
    bool extendSchedulingRegion(Value *V, const InstructionsState &S);

    /// Initialize the ScheduleData structures for new instructions in the
    /// scheduling region.
    void initScheduleData(Instruction *FromI, Instruction *ToI,
                          ScheduleData *PrevLoadStore,
                          ScheduleData *NextLoadStore);

    /// Updates the dependency information of a bundle and of all instructions/
    /// bundles which depend on the original bundle.
    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
                               BoUpSLP *SLP);

    /// Sets all instruction in the scheduling region to un-scheduled.
    void resetSchedule();

    BasicBlock *BB;

    /// Simple memory allocation for ScheduleData.
    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;

    /// The size of a ScheduleData array in ScheduleDataChunks.
    int ChunkSize;

    /// The allocator position in the current chunk, which is the last entry
    /// of ScheduleDataChunks.
    int ChunkPos;

    /// Attaches ScheduleData to Instruction.
    /// Note that the mapping survives during all vectorization iterations, i.e.
    /// ScheduleData structures are recycled.
    DenseMap<Value *, ScheduleData *> ScheduleDataMap;

    /// Attaches ScheduleData to Instruction with the leading key.
    DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
        ExtraScheduleDataMap;

    struct ReadyList : SmallVector<ScheduleData *, 8> {
      void insert(ScheduleData *SD) { push_back(SD); }
    };

    /// The ready-list for scheduling (only used for the dry-run).
    ReadyList ReadyInsts;

    /// The first instruction of the scheduling region.
    Instruction *ScheduleStart = nullptr;

    /// The first instruction _after_ the scheduling region.
    Instruction *ScheduleEnd = nullptr;

    /// The first memory accessing instruction in the scheduling region
    /// (can be null).
    ScheduleData *FirstLoadStoreInRegion = nullptr;

    /// The last memory accessing instruction in the scheduling region
    /// (can be null).
    ScheduleData *LastLoadStoreInRegion = nullptr;

    /// The current size of the scheduling region.
    int ScheduleRegionSize = 0;

    /// The maximum size allowed for the scheduling region.
    int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;

    /// The ID of the scheduling region. For a new vectorization iteration this
    /// is incremented which "removes" all ScheduleData from the region.
    // Make sure that the initial SchedulingRegionID is greater than the
    // initial SchedulingRegionID in ScheduleData (which is 0).
    int SchedulingRegionID = 1;
  };

  /// Attaches the BlockScheduling structures to basic blocks.
  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;

  /// Performs the "real" scheduling. Done before vectorization is actually
  /// performed in a basic block.
  void scheduleBlock(BlockScheduling *BS);

  /// List of users to ignore during scheduling and that don't need extracting.
  ArrayRef<Value *> UserIgnoreList;

  /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
  /// sorted SmallVectors of unsigned.
  struct OrdersTypeDenseMapInfo {
    static OrdersType getEmptyKey() {
      OrdersType V;
      V.push_back(~1U);
      return V;
    }

    static OrdersType getTombstoneKey() {
      OrdersType V;
      V.push_back(~2U);
      return V;
    }

    static unsigned getHashValue(const OrdersType &V) {
      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
    }

    static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
      return LHS == RHS;
    }
  };

  /// Contains orders of operations along with the number of bundles that have
  /// operations in this order. It stores only those orders that require
  /// reordering, if reordering is not required it is counted using \a
  /// NumOpsWantToKeepOriginalOrder.
  DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
  /// Number of bundles that do not require reordering.
  unsigned NumOpsWantToKeepOriginalOrder = 0;

  // Analysis and block reference.
  Function *F;
  ScalarEvolution *SE;
  TargetTransformInfo *TTI;
  TargetLibraryInfo *TLI;
  AAResults *AA;
  LoopInfo *LI;
  DominatorTree *DT;
  AssumptionCache *AC;
  DemandedBits *DB;
  const DataLayout *DL;
  OptimizationRemarkEmitter *ORE;

  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
  unsigned MinVecRegSize; // Set by cl::opt (default: 128).

  /// Instruction builder to construct the vectorized tree.
  IRBuilder<> Builder;

  /// A map of scalar integer values to the smallest bit width with which they
  /// can legally be represented. The values map to (width, signed) pairs,
  /// where "width" indicates the minimum bit width and "signed" is True if the
  /// value must be signed-extended, rather than zero-extended, back to its
  /// original width.
  MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
};

} // end namespace slpvectorizer

template <> struct GraphTraits<BoUpSLP *> {
  using TreeEntry = BoUpSLP::TreeEntry;

  /// NodeRef has to be a pointer per the GraphWriter.
  using NodeRef = TreeEntry *;

  using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;

  /// Add the VectorizableTree to the index iterator to be able to return
  /// TreeEntry pointers.
  struct ChildIteratorType
      : public iterator_adaptor_base<
            ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
    ContainerTy &VectorizableTree;

    ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
                      ContainerTy &VT)
        : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}

    NodeRef operator*() { return I->UserTE; }
  };

  static NodeRef getEntryNode(BoUpSLP &R) {
    return R.VectorizableTree[0].get();
  }

  static ChildIteratorType child_begin(NodeRef N) {
    return {N->UserTreeIndices.begin(), N->Container};
  }

  static ChildIteratorType child_end(NodeRef N) {
    return {N->UserTreeIndices.end(), N->Container};
  }

  /// For the node iterator we just need to turn the TreeEntry iterator into a
  /// TreeEntry* iterator so that it dereferences to NodeRef.
  class nodes_iterator {
    using ItTy = ContainerTy::iterator;
    ItTy It;

  public:
    nodes_iterator(const ItTy &It2) : It(It2) {}
    NodeRef operator*() { return It->get(); }
    nodes_iterator operator++() {
      ++It;
      return *this;
    }
    bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
  };

  static nodes_iterator nodes_begin(BoUpSLP *R) {
    return nodes_iterator(R->VectorizableTree.begin());
  }

  static nodes_iterator nodes_end(BoUpSLP *R) {
    return nodes_iterator(R->VectorizableTree.end());
  }

  static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
};

template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
  using TreeEntry = BoUpSLP::TreeEntry;

  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}

  std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
    std::string Str;
    raw_string_ostream OS(Str);
    if (isSplat(Entry->Scalars)) {
      OS << "<splat> " << *Entry->Scalars[0];
      return Str;
    }
    for (auto V : Entry->Scalars) {
      OS << *V;
      if (std::any_of(
              R->ExternalUses.begin(), R->ExternalUses.end(),
              [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
        OS << " <extract>";
      OS << "\n";
    }
    return Str;
  }

  static std::string getNodeAttributes(const TreeEntry *Entry,
                                       const BoUpSLP *) {
    if (Entry->State == TreeEntry::NeedToGather)
      return "color=red";
    return "";
  }
};

} // end namespace llvm

BoUpSLP::~BoUpSLP() {
  for (const auto &Pair : DeletedInstructions) {
    // Replace operands of ignored instructions with Undefs in case if they were
    // marked for deletion.
    if (Pair.getSecond()) {
      Value *Undef = UndefValue::get(Pair.getFirst()->getType());
      Pair.getFirst()->replaceAllUsesWith(Undef);
    }
    Pair.getFirst()->dropAllReferences();
  }
  for (const auto &Pair : DeletedInstructions) {
    assert(Pair.getFirst()->use_empty() &&
           "trying to erase instruction with users.");
    Pair.getFirst()->eraseFromParent();
  }
  assert(!verifyFunction(*F, &dbgs()));
}

void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
  for (auto *V : AV) {
    if (auto *I = dyn_cast<Instruction>(V))
      eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
  };
}

void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
                        ArrayRef<Value *> UserIgnoreLst) {
  ExtraValueToDebugLocsMap ExternallyUsedValues;
  buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
}

void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
                        ExtraValueToDebugLocsMap &ExternallyUsedValues,
                        ArrayRef<Value *> UserIgnoreLst) {
  deleteTree();
  UserIgnoreList = UserIgnoreLst;
  if (!allSameType(Roots))
    return;
  buildTree_rec(Roots, 0, EdgeInfo());

  // Collect the values that we need to extract from the tree.
  for (auto &TEPtr : VectorizableTree) {
    TreeEntry *Entry = TEPtr.get();

    // No need to handle users of gathered values.
    if (Entry->State == TreeEntry::NeedToGather)
      continue;

    // For each lane:
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
      Value *Scalar = Entry->Scalars[Lane];
      int FoundLane = Lane;
      if (!Entry->ReuseShuffleIndices.empty()) {
        FoundLane =
            std::distance(Entry->ReuseShuffleIndices.begin(),
                          llvm::find(Entry->ReuseShuffleIndices, FoundLane));
      }

      // Check if the scalar is externally used as an extra arg.
      auto ExtI = ExternallyUsedValues.find(Scalar);
      if (ExtI != ExternallyUsedValues.end()) {
        LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
                          << Lane << " from " << *Scalar << ".\n");
        ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
      }
      for (User *U : Scalar->users()) {
        LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");

        Instruction *UserInst = dyn_cast<Instruction>(U);
        if (!UserInst)
          continue;

        // Skip in-tree scalars that become vectors
        if (TreeEntry *UseEntry = getTreeEntry(U)) {
          Value *UseScalar = UseEntry->Scalars[0];
          // Some in-tree scalars will remain as scalar in vectorized
          // instructions. If that is the case, the one in Lane 0 will
          // be used.
          if (UseScalar != U ||
              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
            LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
                              << ".\n");
            assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
            continue;
          }
        }

        // Ignore users in the user ignore list.
        if (is_contained(UserIgnoreList, UserInst))
          continue;

        LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
                          << Lane << " from " << *Scalar << ".\n");
        ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
      }
    }
  }
}

void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
                            const EdgeInfo &UserTreeIdx) {
  assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");

  InstructionsState S = getSameOpcode(VL);
  if (Depth == RecursionMaxDepth) {
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  // Don't handle vectors.
  if (S.OpValue->getType()->isVectorTy()) {
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
    if (SI->getValueOperand()->getType()->isVectorTy()) {
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }

  // If all of the operands are identical or constant we have a simple solution.
  if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
    LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  // We now know that this is a vector of instructions of the same type from
  // the same block.

  // Don't vectorize ephemeral values.
  for (Value *V : VL) {
    if (EphValues.count(V)) {
      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
                        << ") is ephemeral.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
  }

  // Check if this is a duplicate of another entry.
  if (TreeEntry *E = getTreeEntry(S.OpValue)) {
    LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
    if (!E->isSame(VL)) {
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
    // Record the reuse of the tree node.  FIXME, currently this is only used to
    // properly draw the graph rather than for the actual vectorization.
    E->UserTreeIndices.push_back(UserTreeIdx);
    LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
                      << ".\n");
    return;
  }

  // Check that none of the instructions in the bundle are already in the tree.
  for (Value *V : VL) {
    auto *I = dyn_cast<Instruction>(V);
    if (!I)
      continue;
    if (getTreeEntry(I)) {
      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
                        << ") is already in tree.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
  }

  // If any of the scalars is marked as a value that needs to stay scalar, then
  // we need to gather the scalars.
  // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
  for (Value *V : VL) {
    if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
      LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
  }

  // Check that all of the users of the scalars that we want to vectorize are
  // schedulable.
  auto *VL0 = cast<Instruction>(S.OpValue);
  BasicBlock *BB = VL0->getParent();

  if (!DT->isReachableFromEntry(BB)) {
    // Don't go into unreachable blocks. They may contain instructions with
    // dependency cycles which confuse the final scheduling.
    LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
    return;
  }

  // Check that every instruction appears once in this bundle.
  SmallVector<unsigned, 4> ReuseShuffleIndicies;
  SmallVector<Value *, 4> UniqueValues;
  DenseMap<Value *, unsigned> UniquePositions;
  for (Value *V : VL) {
    auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
    ReuseShuffleIndicies.emplace_back(Res.first->second);
    if (Res.second)
      UniqueValues.emplace_back(V);
  }
  size_t NumUniqueScalarValues = UniqueValues.size();
  if (NumUniqueScalarValues == VL.size()) {
    ReuseShuffleIndicies.clear();
  } else {
    LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
    if (NumUniqueScalarValues <= 1 ||
        !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
      LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
      return;
    }
    VL = UniqueValues;
  }

  auto &BSRef = BlocksSchedules[BB];
  if (!BSRef)
    BSRef = std::make_unique<BlockScheduling>(BB);

  BlockScheduling &BS = *BSRef.get();

  Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
  if (!Bundle) {
    LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
    assert((!BS.getScheduleData(VL0) ||
            !BS.getScheduleData(VL0)->isPartOfBundle()) &&
           "tryScheduleBundle should cancelScheduling on failure");
    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                 ReuseShuffleIndicies);
    return;
  }
  LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");

  unsigned ShuffleOrOp = S.isAltShuffle() ?
                (unsigned) Instruction::ShuffleVector : S.getOpcode();
  switch (ShuffleOrOp) {
    case Instruction::PHI: {
      auto *PH = cast<PHINode>(VL0);

      // Check for terminator values (e.g. invoke).
      for (Value *V : VL)
        for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
          Instruction *Term = dyn_cast<Instruction>(
              cast<PHINode>(V)->getIncomingValueForBlock(
                  PH->getIncomingBlock(I)));
          if (Term && Term->isTerminator()) {
            LLVM_DEBUG(dbgs()
                       << "SLP: Need to swizzle PHINodes (terminator use).\n");
            BS.cancelScheduling(VL, VL0);
            newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                         ReuseShuffleIndicies);
            return;
          }
        }

      TreeEntry *TE =
          newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");

      // Keeps the reordered operands to avoid code duplication.
      SmallVector<ValueList, 2> OperandsVec;
      for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
              PH->getIncomingBlock(I)));
        TE->setOperand(I, Operands);
        OperandsVec.push_back(Operands);
      }
      for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
        buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
      return;
    }
    case Instruction::ExtractValue:
    case Instruction::ExtractElement: {
      OrdersType CurrentOrder;
      bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
      if (Reuse) {
        LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
        ++NumOpsWantToKeepOriginalOrder;
        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        // This is a special case, as it does not gather, but at the same time
        // we are not extending buildTree_rec() towards the operands.
        ValueList Op0;
        Op0.assign(VL.size(), VL0->getOperand(0));
        VectorizableTree.back()->setOperand(0, Op0);
        return;
      }
      if (!CurrentOrder.empty()) {
        LLVM_DEBUG({
          dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
                    "with order";
          for (unsigned Idx : CurrentOrder)
            dbgs() << " " << Idx;
          dbgs() << "\n";
        });
        // Insert new order with initial value 0, if it does not exist,
        // otherwise return the iterator to the existing one.
        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies, CurrentOrder);
        findRootOrder(CurrentOrder);
        ++NumOpsWantToKeepOrder[CurrentOrder];
        // This is a special case, as it does not gather, but at the same time
        // we are not extending buildTree_rec() towards the operands.
        ValueList Op0;
        Op0.assign(VL.size(), VL0->getOperand(0));
        VectorizableTree.back()->setOperand(0, Op0);
        return;
      }
      LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      BS.cancelScheduling(VL, VL0);
      return;
    }
    case Instruction::Load: {
      // Check that a vectorized load would load the same memory as a scalar
      // load. For example, we don't want to vectorize loads that are smaller
      // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
      // treats loading/storing it as an i8 struct. If we vectorize loads/stores
      // from such a struct, we read/write packed bits disagreeing with the
      // unvectorized version.
      Type *ScalarTy = VL0->getType();

      if (DL->getTypeSizeInBits(ScalarTy) !=
          DL->getTypeAllocSizeInBits(ScalarTy)) {
        BS.cancelScheduling(VL, VL0);
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
        return;
      }

      // Make sure all loads in the bundle are simple - we can't vectorize
      // atomic or volatile loads.
      SmallVector<Value *, 4> PointerOps(VL.size());
      auto POIter = PointerOps.begin();
      for (Value *V : VL) {
        auto *L = cast<LoadInst>(V);
        if (!L->isSimple()) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
          return;
        }
        *POIter = L->getPointerOperand();
        ++POIter;
      }

      OrdersType CurrentOrder;
      // Check the order of pointer operands.
      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
        Value *Ptr0;
        Value *PtrN;
        if (CurrentOrder.empty()) {
          Ptr0 = PointerOps.front();
          PtrN = PointerOps.back();
        } else {
          Ptr0 = PointerOps[CurrentOrder.front()];
          PtrN = PointerOps[CurrentOrder.back()];
        }
        const SCEV *Scev0 = SE->getSCEV(Ptr0);
        const SCEV *ScevN = SE->getSCEV(PtrN);
        const auto *Diff =
            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
        // Check that the sorted loads are consecutive.
        if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
          if (CurrentOrder.empty()) {
            // Original loads are consecutive and does not require reordering.
            ++NumOpsWantToKeepOriginalOrder;
            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
                                         UserTreeIdx, ReuseShuffleIndicies);
            TE->setOperandsInOrder();
            LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
          } else {
            // Need to reorder.
            TreeEntry *TE =
                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                             ReuseShuffleIndicies, CurrentOrder);
            TE->setOperandsInOrder();
            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
            findRootOrder(CurrentOrder);
            ++NumOpsWantToKeepOrder[CurrentOrder];
          }
          return;
        }
      }

      LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
      BS.cancelScheduling(VL, VL0);
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      return;
    }
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      Type *SrcTy = VL0->getOperand(0)->getType();
      for (Value *V : VL) {
        Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
        if (Ty != SrcTy || !isValidElementType(Ty)) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs()
                     << "SLP: Gathering casts with different src types.\n");
          return;
        }
      }
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");

      TE->setOperandsInOrder();
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::ICmp:
    case Instruction::FCmp: {
      // Check that all of the compares have the same predicate.
      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
      CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
      Type *ComparedTy = VL0->getOperand(0)->getType();
      for (Value *V : VL) {
        CmpInst *Cmp = cast<CmpInst>(V);
        if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
            Cmp->getOperand(0)->getType() != ComparedTy) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs()
                     << "SLP: Gathering cmp with different predicate.\n");
          return;
        }
      }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");

      ValueList Left, Right;
      if (cast<CmpInst>(VL0)->isCommutative()) {
        // Commutative predicate - collect + sort operands of the instructions
        // so that each side is more likely to have the same opcode.
        assert(P0 == SwapP0 && "Commutative Predicate mismatch");
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
      } else {
        // Collect operands - commute if it uses the swapped predicate.
        for (Value *V : VL) {
          auto *Cmp = cast<CmpInst>(V);
          Value *LHS = Cmp->getOperand(0);
          Value *RHS = Cmp->getOperand(1);
          if (Cmp->getPredicate() != P0)
            std::swap(LHS, RHS);
          Left.push_back(LHS);
          Right.push_back(RHS);
        }
      }
      TE->setOperand(0, Left);
      TE->setOperand(1, Right);
      buildTree_rec(Left, Depth + 1, {TE, 0});
      buildTree_rec(Right, Depth + 1, {TE, 1});
      return;
    }
    case Instruction::Select:
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");

      // Sort operands of the instructions so that each side is more likely to
      // have the same opcode.
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
        ValueList Left, Right;
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
        TE->setOperand(0, Left);
        TE->setOperand(1, Right);
        buildTree_rec(Left, Depth + 1, {TE, 0});
        buildTree_rec(Right, Depth + 1, {TE, 1});
        return;
      }

      TE->setOperandsInOrder();
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::GetElementPtr: {
      // We don't combine GEPs with complicated (nested) indexing.
      for (Value *V : VL) {
        if (cast<Instruction>(V)->getNumOperands() != 2) {
          LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          return;
        }
      }

      // We can't combine several GEPs into one vector if they operate on
      // different types.
      Type *Ty0 = VL0->getOperand(0)->getType();
      for (Value *V : VL) {
        Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
        if (Ty0 != CurTy) {
          LLVM_DEBUG(dbgs()
                     << "SLP: not-vectorizable GEP (different types).\n");
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          return;
        }
      }

      // We don't combine GEPs with non-constant indexes.
      Type *Ty1 = VL0->getOperand(1)->getType();
      for (Value *V : VL) {
        auto Op = cast<Instruction>(V)->getOperand(1);
        if (!isa<ConstantInt>(Op) ||
            (Op->getType() != Ty1 &&
             Op->getType()->getScalarSizeInBits() >
                 DL->getIndexSizeInBits(
                     V->getType()->getPointerAddressSpace()))) {
          LLVM_DEBUG(dbgs()
                     << "SLP: not-vectorizable GEP (non-constant indexes).\n");
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          return;
        }
      }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
      TE->setOperandsInOrder();
      for (unsigned i = 0, e = 2; i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::Store: {
      // Check if the stores are consecutive or if we need to swizzle them.
      llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
      // Make sure all stores in the bundle are simple - we can't vectorize
      // atomic or volatile stores.
      SmallVector<Value *, 4> PointerOps(VL.size());
      ValueList Operands(VL.size());
      auto POIter = PointerOps.begin();
      auto OIter = Operands.begin();
      for (Value *V : VL) {
        auto *SI = cast<StoreInst>(V);
        if (!SI->isSimple()) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
          return;
        }
        *POIter = SI->getPointerOperand();
        *OIter = SI->getValueOperand();
        ++POIter;
        ++OIter;
      }

      OrdersType CurrentOrder;
      // Check the order of pointer operands.
      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
        Value *Ptr0;
        Value *PtrN;
        if (CurrentOrder.empty()) {
          Ptr0 = PointerOps.front();
          PtrN = PointerOps.back();
        } else {
          Ptr0 = PointerOps[CurrentOrder.front()];
          PtrN = PointerOps[CurrentOrder.back()];
        }
        const SCEV *Scev0 = SE->getSCEV(Ptr0);
        const SCEV *ScevN = SE->getSCEV(PtrN);
        const auto *Diff =
            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
        // Check that the sorted pointer operands are consecutive.
        if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
          if (CurrentOrder.empty()) {
            // Original stores are consecutive and does not require reordering.
            ++NumOpsWantToKeepOriginalOrder;
            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
                                         UserTreeIdx, ReuseShuffleIndicies);
            TE->setOperandsInOrder();
            buildTree_rec(Operands, Depth + 1, {TE, 0});
            LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
          } else {
            TreeEntry *TE =
                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                             ReuseShuffleIndicies, CurrentOrder);
            TE->setOperandsInOrder();
            buildTree_rec(Operands, Depth + 1, {TE, 0});
            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
            findRootOrder(CurrentOrder);
            ++NumOpsWantToKeepOrder[CurrentOrder];
          }
          return;
        }
      }

      BS.cancelScheduling(VL, VL0);
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
      return;
    }
    case Instruction::Call: {
      // Check if the calls are all to the same vectorizable intrinsic or
      // library function.
      CallInst *CI = cast<CallInst>(VL0);
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);

      VFShape Shape = VFShape::get(
          *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
          false /*HasGlobalPred*/);
      Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);

      if (!VecFunc && !isTriviallyVectorizable(ID)) {
        BS.cancelScheduling(VL, VL0);
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
        return;
      }
      Function *F = CI->getCalledFunction();
      unsigned NumArgs = CI->getNumArgOperands();
      SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
      for (unsigned j = 0; j != NumArgs; ++j)
        if (hasVectorInstrinsicScalarOpd(ID, j))
          ScalarArgs[j] = CI->getArgOperand(j);
      for (Value *V : VL) {
        CallInst *CI2 = dyn_cast<CallInst>(V);
        if (!CI2 || CI2->getCalledFunction() != F ||
            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
            (VecFunc &&
             VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
                            << "\n");
          return;
        }
        // Some intrinsics have scalar arguments and should be same in order for
        // them to be vectorized.
        for (unsigned j = 0; j != NumArgs; ++j) {
          if (hasVectorInstrinsicScalarOpd(ID, j)) {
            Value *A1J = CI2->getArgOperand(j);
            if (ScalarArgs[j] != A1J) {
              BS.cancelScheduling(VL, VL0);
              newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                           ReuseShuffleIndicies);
              LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
                                << " argument " << ScalarArgs[j] << "!=" << A1J
                                << "\n");
              return;
            }
          }
        }
        // Verify that the bundle operands are identical between the two calls.
        if (CI->hasOperandBundles() &&
            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
          BS.cancelScheduling(VL, VL0);
          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                       ReuseShuffleIndicies);
          LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
                            << *CI << "!=" << *V << '\n');
          return;
        }
      }

      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      TE->setOperandsInOrder();
      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL) {
          auto *CI2 = cast<CallInst>(V);
          Operands.push_back(CI2->getArgOperand(i));
        }
        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    case Instruction::ShuffleVector: {
      // If this is not an alternate sequence of opcode like add-sub
      // then do not vectorize this instruction.
      if (!S.isAltShuffle()) {
        BS.cancelScheduling(VL, VL0);
        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                     ReuseShuffleIndicies);
        LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
        return;
      }
      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
                                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");

      // Reorder operands if reordering would enable vectorization.
      if (isa<BinaryOperator>(VL0)) {
        ValueList Left, Right;
        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
        TE->setOperand(0, Left);
        TE->setOperand(1, Right);
        buildTree_rec(Left, Depth + 1, {TE, 0});
        buildTree_rec(Right, Depth + 1, {TE, 1});
        return;
      }

      TE->setOperandsInOrder();
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (Value *V : VL)
          Operands.push_back(cast<Instruction>(V)->getOperand(i));

        buildTree_rec(Operands, Depth + 1, {TE, i});
      }
      return;
    }
    default:
      BS.cancelScheduling(VL, VL0);
      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
                   ReuseShuffleIndicies);
      LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
      return;
  }
}

unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
  unsigned N = 1;
  Type *EltTy = T;

  while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
         isa<VectorType>(EltTy)) {
    if (auto *ST = dyn_cast<StructType>(EltTy)) {
      // Check that struct is homogeneous.
      for (const auto *Ty : ST->elements())
        if (Ty != *ST->element_begin())
          return 0;
      N *= ST->getNumElements();
      EltTy = *ST->element_begin();
    } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
      N *= AT->getNumElements();
      EltTy = AT->getElementType();
    } else {
      auto *VT = cast<FixedVectorType>(EltTy);
      N *= VT->getNumElements();
      EltTy = VT->getElementType();
    }
  }

  if (!isValidElementType(EltTy))
    return 0;
  uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
    return 0;
  return N;
}

bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
                              SmallVectorImpl<unsigned> &CurrentOrder) const {
  Instruction *E0 = cast<Instruction>(OpValue);
  assert(E0->getOpcode() == Instruction::ExtractElement ||
         E0->getOpcode() == Instruction::ExtractValue);
  assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
  // Check if all of the extracts come from the same vector and from the
  // correct offset.
  Value *Vec = E0->getOperand(0);

  CurrentOrder.clear();

  // We have to extract from a vector/aggregate with the same number of elements.
  unsigned NElts;
  if (E0->getOpcode() == Instruction::ExtractValue) {
    const DataLayout &DL = E0->getModule()->getDataLayout();
    NElts = canMapToVector(Vec->getType(), DL);
    if (!NElts)
      return false;
    // Check if load can be rewritten as load of vector.
    LoadInst *LI = dyn_cast<LoadInst>(Vec);
    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
      return false;
  } else {
    NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
  }

  if (NElts != VL.size())
    return false;

  // Check that all of the indices extract from the correct offset.
  bool ShouldKeepOrder = true;
  unsigned E = VL.size();
  // Assign to all items the initial value E + 1 so we can check if the extract
  // instruction index was used already.
  // Also, later we can check that all the indices are used and we have a
  // consecutive access in the extract instructions, by checking that no
  // element of CurrentOrder still has value E + 1.
  CurrentOrder.assign(E, E + 1);
  unsigned I = 0;
  for (; I < E; ++I) {
    auto *Inst = cast<Instruction>(VL[I]);
    if (Inst->getOperand(0) != Vec)
      break;
    Optional<unsigned> Idx = getExtractIndex(Inst);
    if (!Idx)
      break;
    const unsigned ExtIdx = *Idx;
    if (ExtIdx != I) {
      if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
        break;
      ShouldKeepOrder = false;
      CurrentOrder[ExtIdx] = I;
    } else {
      if (CurrentOrder[I] != E + 1)
        break;
      CurrentOrder[I] = I;
    }
  }
  if (I < E) {
    CurrentOrder.clear();
    return false;
  }

  return ShouldKeepOrder;
}

bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
  return I->hasOneUse() ||
         std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
           return ScalarToTreeEntry.count(U) > 0;
         });
}

static std::pair<unsigned, unsigned>
getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
                   TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);

  // Calculate the cost of the scalar and vector calls.
  IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements());
  int IntrinsicCost =
    TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);

  auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
                                     VecTy->getNumElements())),
                            false /*HasGlobalPred*/);
  Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
  int LibCost = IntrinsicCost;
  if (!CI->isNoBuiltin() && VecFunc) {
    // Calculate the cost of the vector library call.
    SmallVector<Type *, 4> VecTys;
    for (Use &Arg : CI->args())
      VecTys.push_back(
          FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));

    // If the corresponding vector call is cheaper, return its cost.
    LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
                                    TTI::TCK_RecipThroughput);
  }
  return {IntrinsicCost, LibCost};
}

int BoUpSLP::getEntryCost(TreeEntry *E) {
  ArrayRef<Value*> VL = E->Scalars;

  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
    ScalarTy = CI->getOperand(0)->getType();
  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  // If we have computed a smaller type for the expression, update VecTy so
  // that the costs will be accurate.
  if (MinBWs.count(VL[0]))
    VecTy = FixedVectorType::get(
        IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());

  unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
  int ReuseShuffleCost = 0;
  if (NeedToShuffleReuses) {
    ReuseShuffleCost =
        TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
  }
  if (E->State == TreeEntry::NeedToGather) {
    if (allConstant(VL))
      return 0;
    if (isSplat(VL)) {
      return ReuseShuffleCost +
             TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
    }
    if (E->getOpcode() == Instruction::ExtractElement &&
        allSameType(VL) && allSameBlock(VL)) {
      Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
      if (ShuffleKind.hasValue()) {
        int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
        for (auto *V : VL) {
          // If all users of instruction are going to be vectorized and this
          // instruction itself is not going to be vectorized, consider this
          // instruction as dead and remove its cost from the final cost of the
          // vectorized tree.
          if (areAllUsersVectorized(cast<Instruction>(V)) &&
              !ScalarToTreeEntry.count(V)) {
            auto *IO = cast<ConstantInt>(
                cast<ExtractElementInst>(V)->getIndexOperand());
            Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
                                            IO->getZExtValue());
          }
        }
        return ReuseShuffleCost + Cost;
      }
    }
    return ReuseShuffleCost + getGatherCost(VL);
  }
  assert(E->State == TreeEntry::Vectorize && "Unhandled state");
  assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
  Instruction *VL0 = E->getMainOp();
  unsigned ShuffleOrOp =
      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
  switch (ShuffleOrOp) {
    case Instruction::PHI:
      return 0;

    case Instruction::ExtractValue:
    case Instruction::ExtractElement: {
      if (NeedToShuffleReuses) {
        unsigned Idx = 0;
        for (unsigned I : E->ReuseShuffleIndices) {
          if (ShuffleOrOp == Instruction::ExtractElement) {
            auto *IO = cast<ConstantInt>(
                cast<ExtractElementInst>(VL[I])->getIndexOperand());
            Idx = IO->getZExtValue();
            ReuseShuffleCost -= TTI->getVectorInstrCost(
                Instruction::ExtractElement, VecTy, Idx);
          } else {
            ReuseShuffleCost -= TTI->getVectorInstrCost(
                Instruction::ExtractElement, VecTy, Idx);
            ++Idx;
          }
        }
        Idx = ReuseShuffleNumbers;
        for (Value *V : VL) {
          if (ShuffleOrOp == Instruction::ExtractElement) {
            auto *IO = cast<ConstantInt>(
                cast<ExtractElementInst>(V)->getIndexOperand());
            Idx = IO->getZExtValue();
          } else {
            --Idx;
          }
          ReuseShuffleCost +=
              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
        }
      }
      int DeadCost = ReuseShuffleCost;
      if (!E->ReorderIndices.empty()) {
        // TODO: Merge this shuffle with the ReuseShuffleCost.
        DeadCost += TTI->getShuffleCost(
            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
      }
      for (unsigned I = 0, E = VL.size(); I < E; ++I) {
        Instruction *EI = cast<Instruction>(VL[I]);
        // If all users are going to be vectorized, instruction can be
        // considered as dead.
        // The same, if have only one user, it will be vectorized for sure.
        if (areAllUsersVectorized(EI)) {
          // Take credit for instruction that will become dead.
          if (EI->hasOneUse()) {
            Instruction *Ext = EI->user_back();
            if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
                all_of(Ext->users(),
                       [](User *U) { return isa<GetElementPtrInst>(U); })) {
              // Use getExtractWithExtendCost() to calculate the cost of
              // extractelement/ext pair.
              DeadCost -= TTI->getExtractWithExtendCost(
                  Ext->getOpcode(), Ext->getType(), VecTy, I);
              // Add back the cost of s|zext which is subtracted separately.
              DeadCost += TTI->getCastInstrCost(
                  Ext->getOpcode(), Ext->getType(), EI->getType(),
                  TTI::getCastContextHint(Ext), CostKind, Ext);
              continue;
            }
          }
          DeadCost -=
              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
        }
      }
      return DeadCost;
    }
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      Type *SrcTy = VL0->getOperand(0)->getType();
      int ScalarEltCost =
          TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
                                TTI::getCastContextHint(VL0), CostKind, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }

      // Calculate the cost of this instruction.
      int ScalarCost = VL.size() * ScalarEltCost;

      auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
      int VecCost = 0;
      // Check if the values are candidates to demote.
      if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
        VecCost =
            ReuseShuffleCost +
            TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
                                  TTI::getCastContextHint(VL0), CostKind, VL0);
      }
      return VecCost - ScalarCost;
    }
    case Instruction::FCmp:
    case Instruction::ICmp:
    case Instruction::Select: {
      // Calculate the cost of this instruction.
      int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
                                                  Builder.getInt1Ty(),
                                                  CostKind, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
      int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
                                            CostKind, VL0);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      // Certain instructions can be cheaper to vectorize if they have a
      // constant second vector operand.
      TargetTransformInfo::OperandValueKind Op1VK =
          TargetTransformInfo::OK_AnyValue;
      TargetTransformInfo::OperandValueKind Op2VK =
          TargetTransformInfo::OK_UniformConstantValue;
      TargetTransformInfo::OperandValueProperties Op1VP =
          TargetTransformInfo::OP_None;
      TargetTransformInfo::OperandValueProperties Op2VP =
          TargetTransformInfo::OP_PowerOf2;

      // If all operands are exactly the same ConstantInt then set the
      // operand kind to OK_UniformConstantValue.
      // If instead not all operands are constants, then set the operand kind
      // to OK_AnyValue. If all operands are constants but not the same,
      // then set the operand kind to OK_NonUniformConstantValue.
      ConstantInt *CInt0 = nullptr;
      for (unsigned i = 0, e = VL.size(); i < e; ++i) {
        const Instruction *I = cast<Instruction>(VL[i]);
        unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
        ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
        if (!CInt) {
          Op2VK = TargetTransformInfo::OK_AnyValue;
          Op2VP = TargetTransformInfo::OP_None;
          break;
        }
        if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
            !CInt->getValue().isPowerOf2())
          Op2VP = TargetTransformInfo::OP_None;
        if (i == 0) {
          CInt0 = CInt;
          continue;
        }
        if (CInt0 != CInt)
          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
      }

      SmallVector<const Value *, 4> Operands(VL0->operand_values());
      int ScalarEltCost = TTI->getArithmeticInstrCost(
          E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
          Operands, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
      int VecCost = TTI->getArithmeticInstrCost(
          E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
          Operands, VL0);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    case Instruction::GetElementPtr: {
      TargetTransformInfo::OperandValueKind Op1VK =
          TargetTransformInfo::OK_AnyValue;
      TargetTransformInfo::OperandValueKind Op2VK =
          TargetTransformInfo::OK_UniformConstantValue;

      int ScalarEltCost =
          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind,
                                      Op1VK, Op2VK);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
      int VecCost =
          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind,
                                      Op1VK, Op2VK);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    case Instruction::Load: {
      // Cost of wide load - cost of scalar loads.
      Align alignment = cast<LoadInst>(VL0)->getAlign();
      int ScalarEltCost =
          TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0,
                               CostKind, VL0);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
      int VecLdCost =
          TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
                               CostKind, VL0);
      if (!E->ReorderIndices.empty()) {
        // TODO: Merge this shuffle with the ReuseShuffleCost.
        VecLdCost += TTI->getShuffleCost(
            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
      }
      return ReuseShuffleCost + VecLdCost - ScalarLdCost;
    }
    case Instruction::Store: {
      // We know that we can merge the stores. Calculate the cost.
      bool IsReorder = !E->ReorderIndices.empty();
      auto *SI =
          cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
      Align Alignment = SI->getAlign();
      int ScalarEltCost =
          TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0,
                               CostKind, VL0);
      if (NeedToShuffleReuses)
        ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
      int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
                                           VecTy, Alignment, 0, CostKind, VL0);
      if (IsReorder) {
        // TODO: Merge this shuffle with the ReuseShuffleCost.
        VecStCost += TTI->getShuffleCost(
            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
      }
      return ReuseShuffleCost + VecStCost - ScalarStCost;
    }
    case Instruction::Call: {
      CallInst *CI = cast<CallInst>(VL0);
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);

      // Calculate the cost of the scalar and vector calls.
      IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1);
      int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
      if (NeedToShuffleReuses) {
        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
      }
      int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;

      auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
      int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);

      LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
                        << " (" << VecCallCost << "-" << ScalarCallCost << ")"
                        << " for " << *CI << "\n");

      return ReuseShuffleCost + VecCallCost - ScalarCallCost;
    }
    case Instruction::ShuffleVector: {
      assert(E->isAltShuffle() &&
             ((Instruction::isBinaryOp(E->getOpcode()) &&
               Instruction::isBinaryOp(E->getAltOpcode())) ||
              (Instruction::isCast(E->getOpcode()) &&
               Instruction::isCast(E->getAltOpcode()))) &&
             "Invalid Shuffle Vector Operand");
      int ScalarCost = 0;
      if (NeedToShuffleReuses) {
        for (unsigned Idx : E->ReuseShuffleIndices) {
          Instruction *I = cast<Instruction>(VL[Idx]);
          ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
        }
        for (Value *V : VL) {
          Instruction *I = cast<Instruction>(V);
          ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
        }
      }
      for (Value *V : VL) {
        Instruction *I = cast<Instruction>(V);
        assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
        ScalarCost += TTI->getInstructionCost(I, CostKind);
      }
      // VecCost is equal to sum of the cost of creating 2 vectors
      // and the cost of creating shuffle.
      int VecCost = 0;
      if (Instruction::isBinaryOp(E->getOpcode())) {
        VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
        VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
                                               CostKind);
      } else {
        Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
        Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
        auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
        auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
        VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
                                        TTI::CastContextHint::None, CostKind);
        VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
                                         TTI::CastContextHint::None, CostKind);
      }
      VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
      return ReuseShuffleCost + VecCost - ScalarCost;
    }
    default:
      llvm_unreachable("Unknown instruction");
  }
}

bool BoUpSLP::isFullyVectorizableTinyTree() const {
  LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
                    << VectorizableTree.size() << " is fully vectorizable .\n");

  // We only handle trees of heights 1 and 2.
  if (VectorizableTree.size() == 1 &&
      VectorizableTree[0]->State == TreeEntry::Vectorize)
    return true;

  if (VectorizableTree.size() != 2)
    return false;

  // Handle splat and all-constants stores.
  if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
      (allConstant(VectorizableTree[1]->Scalars) ||
       isSplat(VectorizableTree[1]->Scalars)))
    return true;

  // Gathering cost would be too much for tiny trees.
  if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
      VectorizableTree[1]->State == TreeEntry::NeedToGather)
    return false;

  return true;
}

static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
                                       TargetTransformInfo *TTI) {
  // Look past the root to find a source value. Arbitrarily follow the
  // path through operand 0 of any 'or'. Also, peek through optional
  // shift-left-by-multiple-of-8-bits.
  Value *ZextLoad = Root;
  const APInt *ShAmtC;
  while (!isa<ConstantExpr>(ZextLoad) &&
         (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
          (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
           ShAmtC->urem(8) == 0)))
    ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);

  // Check if the input is an extended load of the required or/shift expression.
  Value *LoadPtr;
  if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
    return false;

  // Require that the total load bit width is a legal integer type.
  // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
  // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
  Type *SrcTy = LoadPtr->getType()->getPointerElementType();
  unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
  if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
    return false;

  // Everything matched - assume that we can fold the whole sequence using
  // load combining.
  LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
             << *(cast<Instruction>(Root)) << "\n");

  return true;
}

bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
  if (RdxOpcode != Instruction::Or)
    return false;

  unsigned NumElts = VectorizableTree[0]->Scalars.size();
  Value *FirstReduced = VectorizableTree[0]->Scalars[0];
  return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
}

bool BoUpSLP::isLoadCombineCandidate() const {
  // Peek through a final sequence of stores and check if all operations are
  // likely to be load-combined.
  unsigned NumElts = VectorizableTree[0]->Scalars.size();
  for (Value *Scalar : VectorizableTree[0]->Scalars) {
    Value *X;
    if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
        !isLoadCombineCandidateImpl(X, NumElts, TTI))
      return false;
  }
  return true;
}

bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
  // We can vectorize the tree if its size is greater than or equal to the
  // minimum size specified by the MinTreeSize command line option.
  if (VectorizableTree.size() >= MinTreeSize)
    return false;

  // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
  // can vectorize it if we can prove it fully vectorizable.
  if (isFullyVectorizableTinyTree())
    return false;

  assert(VectorizableTree.empty()
             ? ExternalUses.empty()
             : true && "We shouldn't have any external users");

  // Otherwise, we can't vectorize the tree. It is both tiny and not fully
  // vectorizable.
  return true;
}

int BoUpSLP::getSpillCost() const {
  // Walk from the bottom of the tree to the top, tracking which values are
  // live. When we see a call instruction that is not part of our tree,
  // query TTI to see if there is a cost to keeping values live over it
  // (for example, if spills and fills are required).
  unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
  int Cost = 0;

  SmallPtrSet<Instruction*, 4> LiveValues;
  Instruction *PrevInst = nullptr;

  // The entries in VectorizableTree are not necessarily ordered by their
  // position in basic blocks. Collect them and order them by dominance so later
  // instructions are guaranteed to be visited first. For instructions in
  // different basic blocks, we only scan to the beginning of the block, so
  // their order does not matter, as long as all instructions in a basic block
  // are grouped together. Using dominance ensures a deterministic order.
  SmallVector<Instruction *, 16> OrderedScalars;
  for (const auto &TEPtr : VectorizableTree) {
    Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
    if (!Inst)
      continue;
    OrderedScalars.push_back(Inst);
  }
  llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
    return DT->dominates(B, A);
  });

  for (Instruction *Inst : OrderedScalars) {
    if (!PrevInst) {
      PrevInst = Inst;
      continue;
    }

    // Update LiveValues.
    LiveValues.erase(PrevInst);
    for (auto &J : PrevInst->operands()) {
      if (isa<Instruction>(&*J) && getTreeEntry(&*J))
        LiveValues.insert(cast<Instruction>(&*J));
    }

    LLVM_DEBUG({
      dbgs() << "SLP: #LV: " << LiveValues.size();
      for (auto *X : LiveValues)
        dbgs() << " " << X->getName();
      dbgs() << ", Looking at ";
      Inst->dump();
    });

    // Now find the sequence of instructions between PrevInst and Inst.
    unsigned NumCalls = 0;
    BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
                                 PrevInstIt =
                                     PrevInst->getIterator().getReverse();
    while (InstIt != PrevInstIt) {
      if (PrevInstIt == PrevInst->getParent()->rend()) {
        PrevInstIt = Inst->getParent()->rbegin();
        continue;
      }

      // Debug information does not impact spill cost.
      if ((isa<CallInst>(&*PrevInstIt) &&
           !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
          &*PrevInstIt != PrevInst)
        NumCalls++;

      ++PrevInstIt;
    }

    if (NumCalls) {
      SmallVector<Type*, 4> V;
      for (auto *II : LiveValues)
        V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
      Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
    }

    PrevInst = Inst;
  }

  return Cost;
}

int BoUpSLP::getTreeCost() {
  int Cost = 0;
  LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
                    << VectorizableTree.size() << ".\n");

  unsigned BundleWidth = VectorizableTree[0]->Scalars.size();

  for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
    TreeEntry &TE = *VectorizableTree[I].get();

    // We create duplicate tree entries for gather sequences that have multiple
    // uses. However, we should not compute the cost of duplicate sequences.
    // For example, if we have a build vector (i.e., insertelement sequence)
    // that is used by more than one vector instruction, we only need to
    // compute the cost of the insertelement instructions once. The redundant
    // instructions will be eliminated by CSE.
    //
    // We should consider not creating duplicate tree entries for gather
    // sequences, and instead add additional edges to the tree representing
    // their uses. Since such an approach results in fewer total entries,
    // existing heuristics based on tree size may yield different results.
    //
    if (TE.State == TreeEntry::NeedToGather &&
        std::any_of(std::next(VectorizableTree.begin(), I + 1),
                    VectorizableTree.end(),
                    [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
                      return EntryPtr->State == TreeEntry::NeedToGather &&
                             EntryPtr->isSame(TE.Scalars);
                    }))
      continue;

    int C = getEntryCost(&TE);
    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
                      << " for bundle that starts with " << *TE.Scalars[0]
                      << ".\n");
    Cost += C;
  }

  SmallPtrSet<Value *, 16> ExtractCostCalculated;
  int ExtractCost = 0;
  for (ExternalUser &EU : ExternalUses) {
    // We only add extract cost once for the same scalar.
    if (!ExtractCostCalculated.insert(EU.Scalar).second)
      continue;

    // Uses by ephemeral values are free (because the ephemeral value will be
    // removed prior to code generation, and so the extraction will be
    // removed as well).
    if (EphValues.count(EU.User))
      continue;

    // If we plan to rewrite the tree in a smaller type, we will need to sign
    // extend the extracted value back to the original type. Here, we account
    // for the extract and the added cost of the sign extend if needed.
    auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
    auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
    if (MinBWs.count(ScalarRoot)) {
      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
      auto Extend =
          MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
      VecTy = FixedVectorType::get(MinTy, BundleWidth);
      ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
                                                   VecTy, EU.Lane);
    } else {
      ExtractCost +=
          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
    }
  }

  int SpillCost = getSpillCost();
  Cost += SpillCost + ExtractCost;

#ifndef NDEBUG
  SmallString<256> Str;
  {
    raw_svector_ostream OS(Str);
    OS << "SLP: Spill Cost = " << SpillCost << ".\n"
       << "SLP: Extract Cost = " << ExtractCost << ".\n"
       << "SLP: Total Cost = " << Cost << ".\n";
  }
  LLVM_DEBUG(dbgs() << Str);
  if (ViewSLPTree)
    ViewGraph(this, "SLP" + F->getName(), false, Str);
#endif

  return Cost;
}

int BoUpSLP::getGatherCost(FixedVectorType *Ty,
                           const DenseSet<unsigned> &ShuffledIndices) const {
  unsigned NumElts = Ty->getNumElements();
  APInt DemandedElts = APInt::getNullValue(NumElts);
  for (unsigned I = 0; I < NumElts; ++I)
    if (!ShuffledIndices.count(I))
      DemandedElts.setBit(I);
  int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
                                           /*Extract*/ false);
  if (!ShuffledIndices.empty())
    Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
  return Cost;
}

int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
  // Find the type of the operands in VL.
  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
  // Find the cost of inserting/extracting values from the vector.
  // Check if the same elements are inserted several times and count them as
  // shuffle candidates.
  DenseSet<unsigned> ShuffledElements;
  DenseSet<Value *> UniqueElements;
  // Iterate in reverse order to consider insert elements with the high cost.
  for (unsigned I = VL.size(); I > 0; --I) {
    unsigned Idx = I - 1;
    if (!UniqueElements.insert(VL[Idx]).second)
      ShuffledElements.insert(Idx);
  }
  return getGatherCost(VecTy, ShuffledElements);
}

// Perform operand reordering on the instructions in VL and return the reordered
// operands in Left and Right.
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
                                             SmallVectorImpl<Value *> &Left,
                                             SmallVectorImpl<Value *> &Right,
                                             const DataLayout &DL,
                                             ScalarEvolution &SE,
                                             const BoUpSLP &R) {
  if (VL.empty())
    return;
  VLOperands Ops(VL, DL, SE, R);
  // Reorder the operands in place.
  Ops.reorder();
  Left = Ops.getVL(0);
  Right = Ops.getVL(1);
}

void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
  // Get the basic block this bundle is in. All instructions in the bundle
  // should be in this block.
  auto *Front = E->getMainOp();
  auto *BB = Front->getParent();
  assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
                      [=](Value *V) -> bool {
                        auto *I = cast<Instruction>(V);
                        return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
                      }));

  // The last instruction in the bundle in program order.
  Instruction *LastInst = nullptr;

  // Find the last instruction. The common case should be that BB has been
  // scheduled, and the last instruction is VL.back(). So we start with
  // VL.back() and iterate over schedule data until we reach the end of the
  // bundle. The end of the bundle is marked by null ScheduleData.
  if (BlocksSchedules.count(BB)) {
    auto *Bundle =
        BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
    if (Bundle && Bundle->isPartOfBundle())
      for (; Bundle; Bundle = Bundle->NextInBundle)
        if (Bundle->OpValue == Bundle->Inst)
          LastInst = Bundle->Inst;
  }

  // LastInst can still be null at this point if there's either not an entry
  // for BB in BlocksSchedules or there's no ScheduleData available for
  // VL.back(). This can be the case if buildTree_rec aborts for various
  // reasons (e.g., the maximum recursion depth is reached, the maximum region
  // size is reached, etc.). ScheduleData is initialized in the scheduling
  // "dry-run".
  //
  // If this happens, we can still find the last instruction by brute force. We
  // iterate forwards from Front (inclusive) until we either see all
  // instructions in the bundle or reach the end of the block. If Front is the
  // last instruction in program order, LastInst will be set to Front, and we
  // will visit all the remaining instructions in the block.
  //
  // One of the reasons we exit early from buildTree_rec is to place an upper
  // bound on compile-time. Thus, taking an additional compile-time hit here is
  // not ideal. However, this should be exceedingly rare since it requires that
  // we both exit early from buildTree_rec and that the bundle be out-of-order
  // (causing us to iterate all the way to the end of the block).
  if (!LastInst) {
    SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
    for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
      if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
        LastInst = &I;
      if (Bundle.empty())
        break;
    }
  }
  assert(LastInst && "Failed to find last instruction in bundle");

  // Set the insertion point after the last instruction in the bundle. Set the
  // debug location to Front.
  Builder.SetInsertPoint(BB, ++LastInst->getIterator());
  Builder.SetCurrentDebugLocation(Front->getDebugLoc());
}

Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
  Value *Val0 =
      isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
  FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
  Value *Vec = UndefValue::get(VecTy);
  unsigned InsIndex = 0;
  for (Value *Val : VL) {
    Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
    auto *InsElt = dyn_cast<InsertElementInst>(Vec);
    if (!InsElt)
      continue;
    GatherSeq.insert(InsElt);
    CSEBlocks.insert(InsElt->getParent());
    // Add to our 'need-to-extract' list.
    if (TreeEntry *Entry = getTreeEntry(Val)) {
      // Find which lane we need to extract.
      unsigned FoundLane = std::distance(Entry->Scalars.begin(),
                                         find(Entry->Scalars, Val));
      assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane");
      if (!Entry->ReuseShuffleIndices.empty()) {
        FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
                                  find(Entry->ReuseShuffleIndices, FoundLane));
      }
      ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
    }
  }

  return Vec;
}

Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
  InstructionsState S = getSameOpcode(VL);
  if (S.getOpcode()) {
    if (TreeEntry *E = getTreeEntry(S.OpValue)) {
      if (E->isSame(VL)) {
        Value *V = vectorizeTree(E);
        if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
          // We need to get the vectorized value but without shuffle.
          if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
            V = SV->getOperand(0);
          } else {
            // Reshuffle to get only unique values.
            SmallVector<int, 4> UniqueIdxs;
            SmallSet<int, 4> UsedIdxs;
            for (int Idx : E->ReuseShuffleIndices)
              if (UsedIdxs.insert(Idx).second)
                UniqueIdxs.emplace_back(Idx);
            V = Builder.CreateShuffleVector(V, UniqueIdxs);
          }
        }
        return V;
      }
    }
  }

  // Check that every instruction appears once in this bundle.
  SmallVector<int, 4> ReuseShuffleIndicies;
  SmallVector<Value *, 4> UniqueValues;
  if (VL.size() > 2) {
    DenseMap<Value *, unsigned> UniquePositions;
    for (Value *V : VL) {
      auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
      ReuseShuffleIndicies.emplace_back(Res.first->second);
      if (Res.second || isa<Constant>(V))
        UniqueValues.emplace_back(V);
    }
    // Do not shuffle single element or if number of unique values is not power
    // of 2.
    if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
        !llvm::isPowerOf2_32(UniqueValues.size()))
      ReuseShuffleIndicies.clear();
    else
      VL = UniqueValues;
  }

  Value *Vec = gather(VL);
  if (!ReuseShuffleIndicies.empty()) {
    Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
    if (auto *I = dyn_cast<Instruction>(Vec)) {
      GatherSeq.insert(I);
      CSEBlocks.insert(I->getParent());
    }
  }
  return Vec;
}

Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
  IRBuilder<>::InsertPointGuard Guard(Builder);

  if (E->VectorizedValue) {
    LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
    return E->VectorizedValue;
  }

  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
  if (E->State == TreeEntry::NeedToGather) {
    setInsertPointAfterBundle(E);
    Value *Vec = gather(E->Scalars);
    if (NeedToShuffleReuses) {
      Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle");
      if (auto *I = dyn_cast<Instruction>(Vec)) {
        GatherSeq.insert(I);
        CSEBlocks.insert(I->getParent());
      }
    }
    E->VectorizedValue = Vec;
    return Vec;
  }

  assert(E->State == TreeEntry::Vectorize && "Unhandled state");
  unsigned ShuffleOrOp =
      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
  Instruction *VL0 = E->getMainOp();
  Type *ScalarTy = VL0->getType();
  if (auto *Store = dyn_cast<StoreInst>(VL0))
    ScalarTy = Store->getValueOperand()->getType();
  auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
  switch (ShuffleOrOp) {
    case Instruction::PHI: {
      auto *PH = cast<PHINode>(VL0);
      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
      Value *V = NewPhi;
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;

      // PHINodes may have multiple entries from the same block. We want to
      // visit every block once.
      SmallPtrSet<BasicBlock*, 4> VisitedBBs;

      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
        ValueList Operands;
        BasicBlock *IBB = PH->getIncomingBlock(i);

        if (!VisitedBBs.insert(IBB).second) {
          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
          continue;
        }

        Builder.SetInsertPoint(IBB->getTerminator());
        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
        Value *Vec = vectorizeTree(E->getOperand(i));
        NewPhi->addIncoming(Vec, IBB);
      }

      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
             "Invalid number of incoming values");
      return V;
    }

    case Instruction::ExtractElement: {
      Value *V = E->getSingleOperand(0);
      if (!E->ReorderIndices.empty()) {
        SmallVector<int, 4> Mask;
        inversePermutation(E->ReorderIndices, Mask);
        Builder.SetInsertPoint(VL0);
        V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle");
      }
      if (NeedToShuffleReuses) {
        // TODO: Merge this shuffle with the ReorderShuffleMask.
        if (E->ReorderIndices.empty())
          Builder.SetInsertPoint(VL0);
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      return V;
    }
    case Instruction::ExtractValue: {
      auto *LI = cast<LoadInst>(E->getSingleOperand(0));
      Builder.SetInsertPoint(LI);
      auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
      Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
      LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
      Value *NewV = propagateMetadata(V, E->Scalars);
      if (!E->ReorderIndices.empty()) {
        SmallVector<int, 4> Mask;
        inversePermutation(E->ReorderIndices, Mask);
        NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle");
      }
      if (NeedToShuffleReuses) {
        // TODO: Merge this shuffle with the ReorderShuffleMask.
        NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices,
                                           "shuffle");
      }
      E->VectorizedValue = NewV;
      return NewV;
    }
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      setInsertPointAfterBundle(E);

      Value *InVec = vectorizeTree(E->getOperand(0));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      auto *CI = cast<CastInst>(VL0);
      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::FCmp:
    case Instruction::ICmp: {
      setInsertPointAfterBundle(E);

      Value *L = vectorizeTree(E->getOperand(0));
      Value *R = vectorizeTree(E->getOperand(1));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
      Value *V = Builder.CreateCmp(P0, L, R);
      propagateIRFlags(V, E->Scalars, VL0);
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::Select: {
      setInsertPointAfterBundle(E);

      Value *Cond = vectorizeTree(E->getOperand(0));
      Value *True = vectorizeTree(E->getOperand(1));
      Value *False = vectorizeTree(E->getOperand(2));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V = Builder.CreateSelect(Cond, True, False);
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::FNeg: {
      setInsertPointAfterBundle(E);

      Value *Op = vectorizeTree(E->getOperand(0));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V = Builder.CreateUnOp(
          static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
      propagateIRFlags(V, E->Scalars, VL0);
      if (auto *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);

      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      setInsertPointAfterBundle(E);

      Value *LHS = vectorizeTree(E->getOperand(0));
      Value *RHS = vectorizeTree(E->getOperand(1));

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V = Builder.CreateBinOp(
          static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
          RHS);
      propagateIRFlags(V, E->Scalars, VL0);
      if (auto *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);

      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    case Instruction::Load: {
      // Loads are inserted at the head of the tree because we don't want to
      // sink them all the way down past store instructions.
      bool IsReorder = E->updateStateIfReorder();
      if (IsReorder)
        VL0 = E->getMainOp();
      setInsertPointAfterBundle(E);

      LoadInst *LI = cast<LoadInst>(VL0);
      unsigned AS = LI->getPointerAddressSpace();

      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
                                            VecTy->getPointerTo(AS));

      // The pointer operand uses an in-tree scalar so we add the new BitCast to
      // ExternalUses list to make sure that an extract will be generated in the
      // future.
      Value *PO = LI->getPointerOperand();
      if (getTreeEntry(PO))
        ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));

      LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
      Value *V = propagateMetadata(LI, E->Scalars);
      if (IsReorder) {
        SmallVector<int, 4> Mask;
        inversePermutation(E->ReorderIndices, Mask);
        V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle");
      }
      if (NeedToShuffleReuses) {
        // TODO: Merge this shuffle with the ReorderShuffleMask.
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
      }
      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::Store: {
      bool IsReorder = !E->ReorderIndices.empty();
      auto *SI = cast<StoreInst>(
          IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
      unsigned AS = SI->getPointerAddressSpace();

      setInsertPointAfterBundle(E);

      Value *VecValue = vectorizeTree(E->getOperand(0));
      if (IsReorder) {
        SmallVector<int, 4> Mask(E->ReorderIndices.begin(),
                                 E->ReorderIndices.end());
        VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf");
      }
      Value *ScalarPtr = SI->getPointerOperand();
      Value *VecPtr = Builder.CreateBitCast(
          ScalarPtr, VecValue->getType()->getPointerTo(AS));
      StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
                                                 SI->getAlign());

      // The pointer operand uses an in-tree scalar, so add the new BitCast to
      // ExternalUses to make sure that an extract will be generated in the
      // future.
      if (getTreeEntry(ScalarPtr))
        ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));

      Value *V = propagateMetadata(ST, E->Scalars);
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::GetElementPtr: {
      setInsertPointAfterBundle(E);

      Value *Op0 = vectorizeTree(E->getOperand(0));

      std::vector<Value *> OpVecs;
      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
           ++j) {
        ValueList &VL = E->getOperand(j);
        // Need to cast all elements to the same type before vectorization to
        // avoid crash.
        Type *VL0Ty = VL0->getOperand(j)->getType();
        Type *Ty = llvm::all_of(
                       VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
                       ? VL0Ty
                       : DL->getIndexType(cast<GetElementPtrInst>(VL0)
                                              ->getPointerOperandType()
                                              ->getScalarType());
        for (Value *&V : VL) {
          auto *CI = cast<ConstantInt>(V);
          V = ConstantExpr::getIntegerCast(CI, Ty,
                                           CI->getValue().isSignBitSet());
        }
        Value *OpVec = vectorizeTree(VL);
        OpVecs.push_back(OpVec);
      }

      Value *V = Builder.CreateGEP(
          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
      if (Instruction *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);

      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    case Instruction::Call: {
      CallInst *CI = cast<CallInst>(VL0);
      setInsertPointAfterBundle(E);

      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
      if (Function *FI = CI->getCalledFunction())
        IID = FI->getIntrinsicID();

      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);

      auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
      bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
                          VecCallCosts.first <= VecCallCosts.second;

      Value *ScalarArg = nullptr;
      std::vector<Value *> OpVecs;
      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
        ValueList OpVL;
        // Some intrinsics have scalar arguments. This argument should not be
        // vectorized.
        if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
          CallInst *CEI = cast<CallInst>(VL0);
          ScalarArg = CEI->getArgOperand(j);
          OpVecs.push_back(CEI->getArgOperand(j));
          continue;
        }

        Value *OpVec = vectorizeTree(E->getOperand(j));
        LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
        OpVecs.push_back(OpVec);
      }

      Function *CF;
      if (!UseIntrinsic) {
        VFShape Shape =
            VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
                                  VecTy->getNumElements())),
                         false /*HasGlobalPred*/);
        CF = VFDatabase(*CI).getVectorizedFunction(Shape);
      } else {
        Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
        CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
      }

      SmallVector<OperandBundleDef, 1> OpBundles;
      CI->getOperandBundlesAsDefs(OpBundles);
      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);

      // The scalar argument uses an in-tree scalar so we add the new vectorized
      // call to ExternalUses list to make sure that an extract will be
      // generated in the future.
      if (ScalarArg && getTreeEntry(ScalarArg))
        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));

      propagateIRFlags(V, E->Scalars, VL0);
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;
      return V;
    }
    case Instruction::ShuffleVector: {
      assert(E->isAltShuffle() &&
             ((Instruction::isBinaryOp(E->getOpcode()) &&
               Instruction::isBinaryOp(E->getAltOpcode())) ||
              (Instruction::isCast(E->getOpcode()) &&
               Instruction::isCast(E->getAltOpcode()))) &&
             "Invalid Shuffle Vector Operand");

      Value *LHS = nullptr, *RHS = nullptr;
      if (Instruction::isBinaryOp(E->getOpcode())) {
        setInsertPointAfterBundle(E);
        LHS = vectorizeTree(E->getOperand(0));
        RHS = vectorizeTree(E->getOperand(1));
      } else {
        setInsertPointAfterBundle(E);
        LHS = vectorizeTree(E->getOperand(0));
      }

      if (E->VectorizedValue) {
        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
        return E->VectorizedValue;
      }

      Value *V0, *V1;
      if (Instruction::isBinaryOp(E->getOpcode())) {
        V0 = Builder.CreateBinOp(
            static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
        V1 = Builder.CreateBinOp(
            static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
      } else {
        V0 = Builder.CreateCast(
            static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
        V1 = Builder.CreateCast(
            static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
      }

      // Create shuffle to take alternate operations from the vector.
      // Also, gather up main and alt scalar ops to propagate IR flags to
      // each vector operation.
      ValueList OpScalars, AltScalars;
      unsigned e = E->Scalars.size();
      SmallVector<int, 8> Mask(e);
      for (unsigned i = 0; i < e; ++i) {
        auto *OpInst = cast<Instruction>(E->Scalars[i]);
        assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
        if (OpInst->getOpcode() == E->getAltOpcode()) {
          Mask[i] = e + i;
          AltScalars.push_back(E->Scalars[i]);
        } else {
          Mask[i] = i;
          OpScalars.push_back(E->Scalars[i]);
        }
      }

      propagateIRFlags(V0, OpScalars);
      propagateIRFlags(V1, AltScalars);

      Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
      if (Instruction *I = dyn_cast<Instruction>(V))
        V = propagateMetadata(I, E->Scalars);
      if (NeedToShuffleReuses)
        V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");

      E->VectorizedValue = V;
      ++NumVectorInstructions;

      return V;
    }
    default:
    llvm_unreachable("unknown inst");
  }
  return nullptr;
}

Value *BoUpSLP::vectorizeTree() {
  ExtraValueToDebugLocsMap ExternallyUsedValues;
  return vectorizeTree(ExternallyUsedValues);
}

Value *
BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
  // All blocks must be scheduled before any instructions are inserted.
  for (auto &BSIter : BlocksSchedules) {
    scheduleBlock(BSIter.second.get());
  }

  Builder.SetInsertPoint(&F->getEntryBlock().front());
  auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());

  // If the vectorized tree can be rewritten in a smaller type, we truncate the
  // vectorized root. InstCombine will then rewrite the entire expression. We
  // sign extend the extracted values below.
  auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
  if (MinBWs.count(ScalarRoot)) {
    if (auto *I = dyn_cast<Instruction>(VectorRoot))
      Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
    auto BundleWidth = VectorizableTree[0]->Scalars.size();
    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
    auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
    VectorizableTree[0]->VectorizedValue = Trunc;
  }

  LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
                    << " values .\n");

  // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
  // specified by ScalarType.
  auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
    if (!MinBWs.count(ScalarRoot))
      return Ex;
    if (MinBWs[ScalarRoot].second)
      return Builder.CreateSExt(Ex, ScalarType);
    return Builder.CreateZExt(Ex, ScalarType);
  };

  // Extract all of the elements with the external uses.
  for (const auto &ExternalUse : ExternalUses) {
    Value *Scalar = ExternalUse.Scalar;
    llvm::User *User = ExternalUse.User;

    // Skip users that we already RAUW. This happens when one instruction
    // has multiple uses of the same value.
    if (User && !is_contained(Scalar->users(), User))
      continue;
    TreeEntry *E = getTreeEntry(Scalar);
    assert(E && "Invalid scalar");
    assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");

    Value *Vec = E->VectorizedValue;
    assert(Vec && "Can't find vectorizable value");

    Value *Lane = Builder.getInt32(ExternalUse.Lane);
    // If User == nullptr, the Scalar is used as extra arg. Generate
    // ExtractElement instruction and update the record for this scalar in
    // ExternallyUsedValues.
    if (!User) {
      assert(ExternallyUsedValues.count(Scalar) &&
             "Scalar with nullptr as an external user must be registered in "
             "ExternallyUsedValues map");
      if (auto *VecI = dyn_cast<Instruction>(Vec)) {
        Builder.SetInsertPoint(VecI->getParent(),
                               std::next(VecI->getIterator()));
      } else {
        Builder.SetInsertPoint(&F->getEntryBlock().front());
      }
      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
      Ex = extend(ScalarRoot, Ex, Scalar->getType());
      CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
      auto &Locs = ExternallyUsedValues[Scalar];
      ExternallyUsedValues.insert({Ex, Locs});
      ExternallyUsedValues.erase(Scalar);
      // Required to update internally referenced instructions.
      Scalar->replaceAllUsesWith(Ex);
      continue;
    }

    // Generate extracts for out-of-tree users.
    // Find the insertion point for the extractelement lane.
    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
      if (PHINode *PH = dyn_cast<PHINode>(User)) {
        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
          if (PH->getIncomingValue(i) == Scalar) {
            Instruction *IncomingTerminator =
                PH->getIncomingBlock(i)->getTerminator();
            if (isa<CatchSwitchInst>(IncomingTerminator)) {
              Builder.SetInsertPoint(VecI->getParent(),
                                     std::next(VecI->getIterator()));
            } else {
              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
            }
            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
            Ex = extend(ScalarRoot, Ex, Scalar->getType());
            CSEBlocks.insert(PH->getIncomingBlock(i));
            PH->setOperand(i, Ex);
          }
        }
      } else {
        Builder.SetInsertPoint(cast<Instruction>(User));
        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
        Ex = extend(ScalarRoot, Ex, Scalar->getType());
        CSEBlocks.insert(cast<Instruction>(User)->getParent());
        User->replaceUsesOfWith(Scalar, Ex);
      }
    } else {
      Builder.SetInsertPoint(&F->getEntryBlock().front());
      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
      Ex = extend(ScalarRoot, Ex, Scalar->getType());
      CSEBlocks.insert(&F->getEntryBlock());
      User->replaceUsesOfWith(Scalar, Ex);
    }

    LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
  }

  // For each vectorized value:
  for (auto &TEPtr : VectorizableTree) {
    TreeEntry *Entry = TEPtr.get();

    // No need to handle users of gathered values.
    if (Entry->State == TreeEntry::NeedToGather)
      continue;

    assert(Entry->VectorizedValue && "Can't find vectorizable value");

    // For each lane:
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
      Value *Scalar = Entry->Scalars[Lane];

#ifndef NDEBUG
      Type *Ty = Scalar->getType();
      if (!Ty->isVoidTy()) {
        for (User *U : Scalar->users()) {
          LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");

          // It is legal to delete users in the ignorelist.
          assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
                 "Deleting out-of-tree value");
        }
      }
#endif
      LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
      eraseInstruction(cast<Instruction>(Scalar));
    }
  }

  Builder.ClearInsertionPoint();
  InstrElementSize.clear();

  return VectorizableTree[0]->VectorizedValue;
}

void BoUpSLP::optimizeGatherSequence() {
  LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
                    << " gather sequences instructions.\n");
  // LICM InsertElementInst sequences.
  for (Instruction *I : GatherSeq) {
    if (isDeleted(I))
      continue;

    // Check if this block is inside a loop.
    Loop *L = LI->getLoopFor(I->getParent());
    if (!L)
      continue;

    // Check if it has a preheader.
    BasicBlock *PreHeader = L->getLoopPreheader();
    if (!PreHeader)
      continue;

    // If the vector or the element that we insert into it are
    // instructions that are defined in this basic block then we can't
    // hoist this instruction.
    auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
    auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
    if (Op0 && L->contains(Op0))
      continue;
    if (Op1 && L->contains(Op1))
      continue;

    // We can hoist this instruction. Move it to the pre-header.
    I->moveBefore(PreHeader->getTerminator());
  }

  // Make a list of all reachable blocks in our CSE queue.
  SmallVector<const DomTreeNode *, 8> CSEWorkList;
  CSEWorkList.reserve(CSEBlocks.size());
  for (BasicBlock *BB : CSEBlocks)
    if (DomTreeNode *N = DT->getNode(BB)) {
      assert(DT->isReachableFromEntry(N));
      CSEWorkList.push_back(N);
    }

  // Sort blocks by domination. This ensures we visit a block after all blocks
  // dominating it are visited.
  llvm::stable_sort(CSEWorkList,
                    [this](const DomTreeNode *A, const DomTreeNode *B) {
                      return DT->properlyDominates(A, B);
                    });

  // Perform O(N^2) search over the gather sequences and merge identical
  // instructions. TODO: We can further optimize this scan if we split the
  // instructions into different buckets based on the insert lane.
  SmallVector<Instruction *, 16> Visited;
  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
           "Worklist not sorted properly!");
    BasicBlock *BB = (*I)->getBlock();
    // For all instructions in blocks containing gather sequences:
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
      Instruction *In = &*it++;
      if (isDeleted(In))
        continue;
      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
        continue;

      // Check if we can replace this instruction with any of the
      // visited instructions.
      for (Instruction *v : Visited) {
        if (In->isIdenticalTo(v) &&
            DT->dominates(v->getParent(), In->getParent())) {
          In->replaceAllUsesWith(v);
          eraseInstruction(In);
          In = nullptr;
          break;
        }
      }
      if (In) {
        assert(!is_contained(Visited, In));
        Visited.push_back(In);
      }
    }
  }
  CSEBlocks.clear();
  GatherSeq.clear();
}

// Groups the instructions to a bundle (which is then a single scheduling entity)
// and schedules instructions until the bundle gets ready.
Optional<BoUpSLP::ScheduleData *>
BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
                                            const InstructionsState &S) {
  if (isa<PHINode>(S.OpValue))
    return nullptr;

  // Initialize the instruction bundle.
  Instruction *OldScheduleEnd = ScheduleEnd;
  ScheduleData *PrevInBundle = nullptr;
  ScheduleData *Bundle = nullptr;
  bool ReSchedule = false;
  LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");

  // Make sure that the scheduling region contains all
  // instructions of the bundle.
  for (Value *V : VL) {
    if (!extendSchedulingRegion(V, S))
      return None;
  }

  for (Value *V : VL) {
    ScheduleData *BundleMember = getScheduleData(V);
    assert(BundleMember &&
           "no ScheduleData for bundle member (maybe not in same basic block)");
    if (BundleMember->IsScheduled) {
      // A bundle member was scheduled as single instruction before and now
      // needs to be scheduled as part of the bundle. We just get rid of the
      // existing schedule.
      LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
                        << " was already scheduled\n");
      ReSchedule = true;
    }
    assert(BundleMember->isSchedulingEntity() &&
           "bundle member already part of other bundle");
    if (PrevInBundle) {
      PrevInBundle->NextInBundle = BundleMember;
    } else {
      Bundle = BundleMember;
    }
    BundleMember->UnscheduledDepsInBundle = 0;
    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;

    // Group the instructions to a bundle.
    BundleMember->FirstInBundle = Bundle;
    PrevInBundle = BundleMember;
  }
  if (ScheduleEnd != OldScheduleEnd) {
    // The scheduling region got new instructions at the lower end (or it is a
    // new region for the first bundle). This makes it necessary to
    // recalculate all dependencies.
    // It is seldom that this needs to be done a second time after adding the
    // initial bundle to the region.
    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
      doForAllOpcodes(I, [](ScheduleData *SD) {
        SD->clearDependencies();
      });
    }
    ReSchedule = true;
  }
  if (ReSchedule) {
    resetSchedule();
    initialFillReadyList(ReadyInsts);
  }
  assert(Bundle && "Failed to find schedule bundle");

  LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
                    << BB->getName() << "\n");

  calculateDependencies(Bundle, true, SLP);

  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
  // means that there are no cyclic dependencies and we can schedule it.
  // Note that's important that we don't "schedule" the bundle yet (see
  // cancelScheduling).
  while (!Bundle->isReady() && !ReadyInsts.empty()) {

    ScheduleData *pickedSD = ReadyInsts.back();
    ReadyInsts.pop_back();

    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
      schedule(pickedSD, ReadyInsts);
    }
  }
  if (!Bundle->isReady()) {
    cancelScheduling(VL, S.OpValue);
    return None;
  }
  return Bundle;
}

void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
                                                Value *OpValue) {
  if (isa<PHINode>(OpValue))
    return;

  ScheduleData *Bundle = getScheduleData(OpValue);
  LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
  assert(!Bundle->IsScheduled &&
         "Can't cancel bundle which is already scheduled");
  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
         "tried to unbundle something which is not a bundle");

  // Un-bundle: make single instructions out of the bundle.
  ScheduleData *BundleMember = Bundle;
  while (BundleMember) {
    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
    BundleMember->FirstInBundle = BundleMember;
    ScheduleData *Next = BundleMember->NextInBundle;
    BundleMember->NextInBundle = nullptr;
    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
    if (BundleMember->UnscheduledDepsInBundle == 0) {
      ReadyInsts.insert(BundleMember);
    }
    BundleMember = Next;
  }
}

BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
  // Allocate a new ScheduleData for the instruction.
  if (ChunkPos >= ChunkSize) {
    ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
    ChunkPos = 0;
  }
  return &(ScheduleDataChunks.back()[ChunkPos++]);
}

bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
                                                      const InstructionsState &S) {
  if (getScheduleData(V, isOneOf(S, V)))
    return true;
  Instruction *I = dyn_cast<Instruction>(V);
  assert(I && "bundle member must be an instruction");
  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
  auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
    ScheduleData *ISD = getScheduleData(I);
    if (!ISD)
      return false;
    assert(isInSchedulingRegion(ISD) &&
           "ScheduleData not in scheduling region");
    ScheduleData *SD = allocateScheduleDataChunks();
    SD->Inst = I;
    SD->init(SchedulingRegionID, S.OpValue);
    ExtraScheduleDataMap[I][S.OpValue] = SD;
    return true;
  };
  if (CheckSheduleForI(I))
    return true;
  if (!ScheduleStart) {
    // It's the first instruction in the new region.
    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
    ScheduleStart = I;
    ScheduleEnd = I->getNextNode();
    if (isOneOf(S, I) != I)
      CheckSheduleForI(I);
    assert(ScheduleEnd && "tried to vectorize a terminator?");
    LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
    return true;
  }
  // Search up and down at the same time, because we don't know if the new
  // instruction is above or below the existing scheduling region.
  BasicBlock::reverse_iterator UpIter =
      ++ScheduleStart->getIterator().getReverse();
  BasicBlock::reverse_iterator UpperEnd = BB->rend();
  BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
  BasicBlock::iterator LowerEnd = BB->end();
  while (true) {
    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
      LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
      return false;
    }

    if (UpIter != UpperEnd) {
      if (&*UpIter == I) {
        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
        ScheduleStart = I;
        if (isOneOf(S, I) != I)
          CheckSheduleForI(I);
        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
                          << "\n");
        return true;
      }
      ++UpIter;
    }
    if (DownIter != LowerEnd) {
      if (&*DownIter == I) {
        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
                         nullptr);
        ScheduleEnd = I->getNextNode();
        if (isOneOf(S, I) != I)
          CheckSheduleForI(I);
        assert(ScheduleEnd && "tried to vectorize a terminator?");
        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
                          << "\n");
        return true;
      }
      ++DownIter;
    }
    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
           "instruction not found in block");
  }
  return true;
}

void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
                                                Instruction *ToI,
                                                ScheduleData *PrevLoadStore,
                                                ScheduleData *NextLoadStore) {
  ScheduleData *CurrentLoadStore = PrevLoadStore;
  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
    ScheduleData *SD = ScheduleDataMap[I];
    if (!SD) {
      SD = allocateScheduleDataChunks();
      ScheduleDataMap[I] = SD;
      SD->Inst = I;
    }
    assert(!isInSchedulingRegion(SD) &&
           "new ScheduleData already in scheduling region");
    SD->init(SchedulingRegionID, I);

    if (I->mayReadOrWriteMemory() &&
        (!isa<IntrinsicInst>(I) ||
         cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
      // Update the linked list of memory accessing instructions.
      if (CurrentLoadStore) {
        CurrentLoadStore->NextLoadStore = SD;
      } else {
        FirstLoadStoreInRegion = SD;
      }
      CurrentLoadStore = SD;
    }
  }
  if (NextLoadStore) {
    if (CurrentLoadStore)
      CurrentLoadStore->NextLoadStore = NextLoadStore;
  } else {
    LastLoadStoreInRegion = CurrentLoadStore;
  }
}

void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
                                                     bool InsertInReadyList,
                                                     BoUpSLP *SLP) {
  assert(SD->isSchedulingEntity());

  SmallVector<ScheduleData *, 10> WorkList;
  WorkList.push_back(SD);

  while (!WorkList.empty()) {
    ScheduleData *SD = WorkList.back();
    WorkList.pop_back();

    ScheduleData *BundleMember = SD;
    while (BundleMember) {
      assert(isInSchedulingRegion(BundleMember));
      if (!BundleMember->hasValidDependencies()) {

        LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
                          << "\n");
        BundleMember->Dependencies = 0;
        BundleMember->resetUnscheduledDeps();

        // Handle def-use chain dependencies.
        if (BundleMember->OpValue != BundleMember->Inst) {
          ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
          if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
            BundleMember->Dependencies++;
            ScheduleData *DestBundle = UseSD->FirstInBundle;
            if (!DestBundle->IsScheduled)
              BundleMember->incrementUnscheduledDeps(1);
            if (!DestBundle->hasValidDependencies())
              WorkList.push_back(DestBundle);
          }
        } else {
          for (User *U : BundleMember->Inst->users()) {
            if (isa<Instruction>(U)) {
              ScheduleData *UseSD = getScheduleData(U);
              if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
                BundleMember->Dependencies++;
                ScheduleData *DestBundle = UseSD->FirstInBundle;
                if (!DestBundle->IsScheduled)
                  BundleMember->incrementUnscheduledDeps(1);
                if (!DestBundle->hasValidDependencies())
                  WorkList.push_back(DestBundle);
              }
            } else {
              // I'm not sure if this can ever happen. But we need to be safe.
              // This lets the instruction/bundle never be scheduled and
              // eventually disable vectorization.
              BundleMember->Dependencies++;
              BundleMember->incrementUnscheduledDeps(1);
            }
          }
        }

        // Handle the memory dependencies.
        ScheduleData *DepDest = BundleMember->NextLoadStore;
        if (DepDest) {
          Instruction *SrcInst = BundleMember->Inst;
          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
          unsigned numAliased = 0;
          unsigned DistToSrc = 1;

          while (DepDest) {
            assert(isInSchedulingRegion(DepDest));

            // We have two limits to reduce the complexity:
            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
            //    SLP->isAliased (which is the expensive part in this loop).
            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
            //    the whole loop (even if the loop is fast, it's quadratic).
            //    It's important for the loop break condition (see below) to
            //    check this limit even between two read-only instructions.
            if (DistToSrc >= MaxMemDepDistance ||
                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
                     (numAliased >= AliasedCheckLimit ||
                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {

              // We increment the counter only if the locations are aliased
              // (instead of counting all alias checks). This gives a better
              // balance between reduced runtime and accurate dependencies.
              numAliased++;

              DepDest->MemoryDependencies.push_back(BundleMember);
              BundleMember->Dependencies++;
              ScheduleData *DestBundle = DepDest->FirstInBundle;
              if (!DestBundle->IsScheduled) {
                BundleMember->incrementUnscheduledDeps(1);
              }
              if (!DestBundle->hasValidDependencies()) {
                WorkList.push_back(DestBundle);
              }
            }
            DepDest = DepDest->NextLoadStore;

            // Example, explaining the loop break condition: Let's assume our
            // starting instruction is i0 and MaxMemDepDistance = 3.
            //
            //                      +--------v--v--v
            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
            //             +--------^--^--^
            //
            // MaxMemDepDistance let us stop alias-checking at i3 and we add
            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
            // Previously we already added dependencies from i3 to i6,i7,i8
            // (because of MaxMemDepDistance). As we added a dependency from
            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
            // and we can abort this loop at i6.
            if (DistToSrc >= 2 * MaxMemDepDistance)
              break;
            DistToSrc++;
          }
        }
      }
      BundleMember = BundleMember->NextInBundle;
    }
    if (InsertInReadyList && SD->isReady()) {
      ReadyInsts.push_back(SD);
      LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
                        << "\n");
    }
  }
}

void BoUpSLP::BlockScheduling::resetSchedule() {
  assert(ScheduleStart &&
         "tried to reset schedule on block which has not been scheduled");
  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
    doForAllOpcodes(I, [&](ScheduleData *SD) {
      assert(isInSchedulingRegion(SD) &&
             "ScheduleData not in scheduling region");
      SD->IsScheduled = false;
      SD->resetUnscheduledDeps();
    });
  }
  ReadyInsts.clear();
}

void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
  if (!BS->ScheduleStart)
    return;

  LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");

  BS->resetSchedule();

  // For the real scheduling we use a more sophisticated ready-list: it is
  // sorted by the original instruction location. This lets the final schedule
  // be as  close as possible to the original instruction order.
  struct ScheduleDataCompare {
    bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
      return SD2->SchedulingPriority < SD1->SchedulingPriority;
    }
  };
  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;

  // Ensure that all dependency data is updated and fill the ready-list with
  // initial instructions.
  int Idx = 0;
  int NumToSchedule = 0;
  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
       I = I->getNextNode()) {
    BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
      assert(SD->isPartOfBundle() ==
                 (getTreeEntry(SD->Inst) != nullptr) &&
             "scheduler and vectorizer bundle mismatch");
      SD->FirstInBundle->SchedulingPriority = Idx++;
      if (SD->isSchedulingEntity()) {
        BS->calculateDependencies(SD, false, this);
        NumToSchedule++;
      }
    });
  }
  BS->initialFillReadyList(ReadyInsts);

  Instruction *LastScheduledInst = BS->ScheduleEnd;

  // Do the "real" scheduling.
  while (!ReadyInsts.empty()) {
    ScheduleData *picked = *ReadyInsts.begin();
    ReadyInsts.erase(ReadyInsts.begin());

    // Move the scheduled instruction(s) to their dedicated places, if not
    // there yet.
    ScheduleData *BundleMember = picked;
    while (BundleMember) {
      Instruction *pickedInst = BundleMember->Inst;
      if (LastScheduledInst->getNextNode() != pickedInst) {
        BS->BB->getInstList().remove(pickedInst);
        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
                                     pickedInst);
      }
      LastScheduledInst = pickedInst;
      BundleMember = BundleMember->NextInBundle;
    }

    BS->schedule(picked, ReadyInsts);
    NumToSchedule--;
  }
  assert(NumToSchedule == 0 && "could not schedule all instructions");

  // Avoid duplicate scheduling of the block.
  BS->ScheduleStart = nullptr;
}

unsigned BoUpSLP::getVectorElementSize(Value *V) {
  // If V is a store, just return the width of the stored value without
  // traversing the expression tree. This is the common case.
  if (auto *Store = dyn_cast<StoreInst>(V))
    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());

  auto E = InstrElementSize.find(V);
  if (E != InstrElementSize.end())
    return E->second;

  // If V is not a store, we can traverse the expression tree to find loads
  // that feed it. The type of the loaded value may indicate a more suitable
  // width than V's type. We want to base the vector element size on the width
  // of memory operations where possible.
  SmallVector<Instruction *, 16> Worklist;
  SmallPtrSet<Instruction *, 16> Visited;
  if (auto *I = dyn_cast<Instruction>(V)) {
    Worklist.push_back(I);
    Visited.insert(I);
  }

  // Traverse the expression tree in bottom-up order looking for loads. If we
  // encounter an instruction we don't yet handle, we give up.
  auto MaxWidth = 0u;
  auto FoundUnknownInst = false;
  while (!Worklist.empty() && !FoundUnknownInst) {
    auto *I = Worklist.pop_back_val();

    // We should only be looking at scalar instructions here. If the current
    // instruction has a vector type, give up.
    auto *Ty = I->getType();
    if (isa<VectorType>(Ty))
      FoundUnknownInst = true;

    // If the current instruction is a load, update MaxWidth to reflect the
    // width of the loaded value.
    else if (isa<LoadInst>(I))
      MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));

    // Otherwise, we need to visit the operands of the instruction. We only
    // handle the interesting cases from buildTree here. If an operand is an
    // instruction we haven't yet visited, we add it to the worklist.
    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
      for (Use &U : I->operands())
        if (auto *J = dyn_cast<Instruction>(U.get()))
          if (Visited.insert(J).second)
            Worklist.push_back(J);
    }

    // If we don't yet handle the instruction, give up.
    else
      FoundUnknownInst = true;
  }

  int Width = MaxWidth;
  // If we didn't encounter a memory access in the expression tree, or if we
  // gave up for some reason, just return the width of V. Otherwise, return the
  // maximum width we found.
  if (!MaxWidth || FoundUnknownInst)
    Width = DL->getTypeSizeInBits(V->getType());

  for (Instruction *I : Visited)
    InstrElementSize[I] = Width;

  return Width;
}

// Determine if a value V in a vectorizable expression Expr can be demoted to a
// smaller type with a truncation. We collect the values that will be demoted
// in ToDemote and additional roots that require investigating in Roots.
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
                                  SmallVectorImpl<Value *> &ToDemote,
                                  SmallVectorImpl<Value *> &Roots) {
  // We can always demote constants.
  if (isa<Constant>(V)) {
    ToDemote.push_back(V);
    return true;
  }

  // If the value is not an instruction in the expression with only one use, it
  // cannot be demoted.
  auto *I = dyn_cast<Instruction>(V);
  if (!I || !I->hasOneUse() || !Expr.count(I))
    return false;

  switch (I->getOpcode()) {

  // We can always demote truncations and extensions. Since truncations can
  // seed additional demotion, we save the truncated value.
  case Instruction::Trunc:
    Roots.push_back(I->getOperand(0));
    break;
  case Instruction::ZExt:
  case Instruction::SExt:
    break;

  // We can demote certain binary operations if we can demote both of their
  // operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
      return false;
    break;

  // We can demote selects if we can demote their true and false values.
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
      return false;
    break;
  }

  // We can demote phis if we can demote all their incoming operands. Note that
  // we don't need to worry about cycles since we ensure single use above.
  case Instruction::PHI: {
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
        return false;
    break;
  }

  // Otherwise, conservatively give up.
  default:
    return false;
  }

  // Record the value that we can demote.
  ToDemote.push_back(V);
  return true;
}

void BoUpSLP::computeMinimumValueSizes() {
  // If there are no external uses, the expression tree must be rooted by a
  // store. We can't demote in-memory values, so there is nothing to do here.
  if (ExternalUses.empty())
    return;

  // We only attempt to truncate integer expressions.
  auto &TreeRoot = VectorizableTree[0]->Scalars;
  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
  if (!TreeRootIT)
    return;

  // If the expression is not rooted by a store, these roots should have
  // external uses. We will rely on InstCombine to rewrite the expression in
  // the narrower type. However, InstCombine only rewrites single-use values.
  // This means that if a tree entry other than a root is used externally, it
  // must have multiple uses and InstCombine will not rewrite it. The code
  // below ensures that only the roots are used externally.
  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
  for (auto &EU : ExternalUses)
    if (!Expr.erase(EU.Scalar))
      return;
  if (!Expr.empty())
    return;

  // Collect the scalar values of the vectorizable expression. We will use this
  // context to determine which values can be demoted. If we see a truncation,
  // we mark it as seeding another demotion.
  for (auto &EntryPtr : VectorizableTree)
    Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());

  // Ensure the roots of the vectorizable tree don't form a cycle. They must
  // have a single external user that is not in the vectorizable tree.
  for (auto *Root : TreeRoot)
    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
      return;

  // Conservatively determine if we can actually truncate the roots of the
  // expression. Collect the values that can be demoted in ToDemote and
  // additional roots that require investigating in Roots.
  SmallVector<Value *, 32> ToDemote;
  SmallVector<Value *, 4> Roots;
  for (auto *Root : TreeRoot)
    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
      return;

  // The maximum bit width required to represent all the values that can be
  // demoted without loss of precision. It would be safe to truncate the roots
  // of the expression to this width.
  auto MaxBitWidth = 8u;

  // We first check if all the bits of the roots are demanded. If they're not,
  // we can truncate the roots to this narrower type.
  for (auto *Root : TreeRoot) {
    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
    MaxBitWidth = std::max<unsigned>(
        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
  }

  // True if the roots can be zero-extended back to their original type, rather
  // than sign-extended. We know that if the leading bits are not demanded, we
  // can safely zero-extend. So we initialize IsKnownPositive to True.
  bool IsKnownPositive = true;

  // If all the bits of the roots are demanded, we can try a little harder to
  // compute a narrower type. This can happen, for example, if the roots are
  // getelementptr indices. InstCombine promotes these indices to the pointer
  // width. Thus, all their bits are technically demanded even though the
  // address computation might be vectorized in a smaller type.
  //
  // We start by looking at each entry that can be demoted. We compute the
  // maximum bit width required to store the scalar by using ValueTracking to
  // compute the number of high-order bits we can truncate.
  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
      llvm::all_of(TreeRoot, [](Value *R) {
        assert(R->hasOneUse() && "Root should have only one use!");
        return isa<GetElementPtrInst>(R->user_back());
      })) {
    MaxBitWidth = 8u;

    // Determine if the sign bit of all the roots is known to be zero. If not,
    // IsKnownPositive is set to False.
    IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
      KnownBits Known = computeKnownBits(R, *DL);
      return Known.isNonNegative();
    });

    // Determine the maximum number of bits required to store the scalar
    // values.
    for (auto *Scalar : ToDemote) {
      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
    }

    // If we can't prove that the sign bit is zero, we must add one to the
    // maximum bit width to account for the unknown sign bit. This preserves
    // the existing sign bit so we can safely sign-extend the root back to the
    // original type. Otherwise, if we know the sign bit is zero, we will
    // zero-extend the root instead.
    //
    // FIXME: This is somewhat suboptimal, as there will be cases where adding
    //        one to the maximum bit width will yield a larger-than-necessary
    //        type. In general, we need to add an extra bit only if we can't
    //        prove that the upper bit of the original type is equal to the
    //        upper bit of the proposed smaller type. If these two bits are the
    //        same (either zero or one) we know that sign-extending from the
    //        smaller type will result in the same value. Here, since we can't
    //        yet prove this, we are just making the proposed smaller type
    //        larger to ensure correctness.
    if (!IsKnownPositive)
      ++MaxBitWidth;
  }

  // Round MaxBitWidth up to the next power-of-two.
  if (!isPowerOf2_64(MaxBitWidth))
    MaxBitWidth = NextPowerOf2(MaxBitWidth);

  // If the maximum bit width we compute is less than the with of the roots'
  // type, we can proceed with the narrowing. Otherwise, do nothing.
  if (MaxBitWidth >= TreeRootIT->getBitWidth())
    return;

  // If we can truncate the root, we must collect additional values that might
  // be demoted as a result. That is, those seeded by truncations we will
  // modify.
  while (!Roots.empty())
    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);

  // Finally, map the values we can demote to the maximum bit with we computed.
  for (auto *Scalar : ToDemote)
    MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
}

namespace {

/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
  SLPVectorizerPass Impl;

  /// Pass identification, replacement for typeid
  static char ID;

  explicit SLPVectorizer() : FunctionPass(ID) {
    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    return false;
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    FunctionPass::getAnalysisUsage(AU);
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<DemandedBitsWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<InjectTLIMappingsLegacy>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
  auto *AA = &AM.getResult<AAManager>(F);
  auto *LI = &AM.getResult<LoopAnalysis>(F);
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
  auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<GlobalsAA>();
  return PA;
}

bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
                                TargetTransformInfo *TTI_,
                                TargetLibraryInfo *TLI_, AAResults *AA_,
                                LoopInfo *LI_, DominatorTree *DT_,
                                AssumptionCache *AC_, DemandedBits *DB_,
                                OptimizationRemarkEmitter *ORE_) {
  if (!RunSLPVectorization)
    return false;
  SE = SE_;
  TTI = TTI_;
  TLI = TLI_;
  AA = AA_;
  LI = LI_;
  DT = DT_;
  AC = AC_;
  DB = DB_;
  DL = &F.getParent()->getDataLayout();

  Stores.clear();
  GEPs.clear();
  bool Changed = false;

  // If the target claims to have no vector registers don't attempt
  // vectorization.
  if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
    return false;

  // Don't vectorize when the attribute NoImplicitFloat is used.
  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
    return false;

  LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");

  // Use the bottom up slp vectorizer to construct chains that start with
  // store instructions.
  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);

  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
  // delete instructions.

  // Scan the blocks in the function in post order.
  for (auto BB : post_order(&F.getEntryBlock())) {
    collectSeedInstructions(BB);

    // Vectorize trees that end at stores.
    if (!Stores.empty()) {
      LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
                        << " underlying objects.\n");
      Changed |= vectorizeStoreChains(R);
    }

    // Vectorize trees that end at reductions.
    Changed |= vectorizeChainsInBlock(BB, R);

    // Vectorize the index computations of getelementptr instructions. This
    // is primarily intended to catch gather-like idioms ending at
    // non-consecutive loads.
    if (!GEPs.empty()) {
      LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
                        << " underlying objects.\n");
      Changed |= vectorizeGEPIndices(BB, R);
    }
  }

  if (Changed) {
    R.optimizeGatherSequence();
    LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
  }
  return Changed;
}

bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
                                            unsigned Idx) {
  LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
                    << "\n");
  const unsigned Sz = R.getVectorElementSize(Chain[0]);
  const unsigned MinVF = R.getMinVecRegSize() / Sz;
  unsigned VF = Chain.size();

  if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
    return false;

  LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
                    << "\n");

  R.buildTree(Chain);
  Optional<ArrayRef<unsigned>> Order = R.bestOrder();
  // TODO: Handle orders of size less than number of elements in the vector.
  if (Order && Order->size() == Chain.size()) {
    // TODO: reorder tree nodes without tree rebuilding.
    SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
    llvm::transform(*Order, ReorderedOps.begin(),
                    [Chain](const unsigned Idx) { return Chain[Idx]; });
    R.buildTree(ReorderedOps);
  }
  if (R.isTreeTinyAndNotFullyVectorizable())
    return false;
  if (R.isLoadCombineCandidate())
    return false;

  R.computeMinimumValueSizes();

  int Cost = R.getTreeCost();

  LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
  if (Cost < -SLPCostThreshold) {
    LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");

    using namespace ore;

    R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
                                        cast<StoreInst>(Chain[0]))
                     << "Stores SLP vectorized with cost " << NV("Cost", Cost)
                     << " and with tree size "
                     << NV("TreeSize", R.getTreeSize()));

    R.vectorizeTree();
    return true;
  }

  return false;
}

bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
                                        BoUpSLP &R) {
  // We may run into multiple chains that merge into a single chain. We mark the
  // stores that we vectorized so that we don't visit the same store twice.
  BoUpSLP::ValueSet VectorizedStores;
  bool Changed = false;

  int E = Stores.size();
  SmallBitVector Tails(E, false);
  SmallVector<int, 16> ConsecutiveChain(E, E + 1);
  int MaxIter = MaxStoreLookup.getValue();
  int IterCnt;
  auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
                                  &ConsecutiveChain](int K, int Idx) {
    if (IterCnt >= MaxIter)
      return true;
    ++IterCnt;
    if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
      return false;

    Tails.set(Idx);
    ConsecutiveChain[K] = Idx;
    return true;
  };
  // Do a quadratic search on all of the given stores in reverse order and find
  // all of the pairs of stores that follow each other.
  for (int Idx = E - 1; Idx >= 0; --Idx) {
    // If a store has multiple consecutive store candidates, search according
    // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
    // This is because usually pairing with immediate succeeding or preceding
    // candidate create the best chance to find slp vectorization opportunity.
    const int MaxLookDepth = std::max(E - Idx, Idx + 1);
    IterCnt = 0;
    for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
      if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
          (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
        break;
  }

  // For stores that start but don't end a link in the chain:
  for (int Cnt = E; Cnt > 0; --Cnt) {
    int I = Cnt - 1;
    if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
      continue;
    // We found a store instr that starts a chain. Now follow the chain and try
    // to vectorize it.
    BoUpSLP::ValueList Operands;
    // Collect the chain into a list.
    while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
      Operands.push_back(Stores[I]);
      // Move to the next value in the chain.
      I = ConsecutiveChain[I];
    }

    // If a vector register can't hold 1 element, we are done.
    unsigned MaxVecRegSize = R.getMaxVecRegSize();
    unsigned EltSize = R.getVectorElementSize(Stores[0]);
    if (MaxVecRegSize % EltSize != 0)
      continue;

    unsigned MaxElts = MaxVecRegSize / EltSize;
    // FIXME: Is division-by-2 the correct step? Should we assert that the
    // register size is a power-of-2?
    unsigned StartIdx = 0;
    for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
      for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
        ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
        if (!VectorizedStores.count(Slice.front()) &&
            !VectorizedStores.count(Slice.back()) &&
            vectorizeStoreChain(Slice, R, Cnt)) {
          // Mark the vectorized stores so that we don't vectorize them again.
          VectorizedStores.insert(Slice.begin(), Slice.end());
          Changed = true;
          // If we vectorized initial block, no need to try to vectorize it
          // again.
          if (Cnt == StartIdx)
            StartIdx += Size;
          Cnt += Size;
          continue;
        }
        ++Cnt;
      }
      // Check if the whole array was vectorized already - exit.
      if (StartIdx >= Operands.size())
        break;
    }
  }

  return Changed;
}

void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
  // Initialize the collections. We will make a single pass over the block.
  Stores.clear();
  GEPs.clear();

  // Visit the store and getelementptr instructions in BB and organize them in
  // Stores and GEPs according to the underlying objects of their pointer
  // operands.
  for (Instruction &I : *BB) {
    // Ignore store instructions that are volatile or have a pointer operand
    // that doesn't point to a scalar type.
    if (auto *SI = dyn_cast<StoreInst>(&I)) {
      if (!SI->isSimple())
        continue;
      if (!isValidElementType(SI->getValueOperand()->getType()))
        continue;
      Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
    }

    // Ignore getelementptr instructions that have more than one index, a
    // constant index, or a pointer operand that doesn't point to a scalar
    // type.
    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
      auto Idx = GEP->idx_begin()->get();
      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
        continue;
      if (!isValidElementType(Idx->getType()))
        continue;
      if (GEP->getType()->isVectorTy())
        continue;
      GEPs[GEP->getPointerOperand()].push_back(GEP);
    }
  }
}

bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
  if (!A || !B)
    return false;
  Value *VL[] = {A, B};
  return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
}

bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
                                           bool AllowReorder,
                                           ArrayRef<Value *> InsertUses) {
  if (VL.size() < 2)
    return false;

  LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
                    << VL.size() << ".\n");

  // Check that all of the parts are instructions of the same type,
  // we permit an alternate opcode via InstructionsState.
  InstructionsState S = getSameOpcode(VL);
  if (!S.getOpcode())
    return false;

  Instruction *I0 = cast<Instruction>(S.OpValue);
  // Make sure invalid types (including vector type) are rejected before
  // determining vectorization factor for scalar instructions.
  for (Value *V : VL) {
    Type *Ty = V->getType();
    if (!isValidElementType(Ty)) {
      // NOTE: the following will give user internal llvm type name, which may
      // not be useful.
      R.getORE()->emit([&]() {
        std::string type_str;
        llvm::raw_string_ostream rso(type_str);
        Ty->print(rso);
        return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
               << "Cannot SLP vectorize list: type "
               << rso.str() + " is unsupported by vectorizer";
      });
      return false;
    }
  }

  unsigned Sz = R.getVectorElementSize(I0);
  unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
  unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
  if (MaxVF < 2) {
    R.getORE()->emit([&]() {
      return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
             << "Cannot SLP vectorize list: vectorization factor "
             << "less than 2 is not supported";
    });
    return false;
  }

  bool Changed = false;
  bool CandidateFound = false;
  int MinCost = SLPCostThreshold;

  bool CompensateUseCost =
      !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
        return V && isa<InsertElementInst>(V);
      });
  assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&
         "Each scalar expected to have an associated InsertElement user.");

  unsigned NextInst = 0, MaxInst = VL.size();
  for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
    // No actual vectorization should happen, if number of parts is the same as
    // provided vectorization factor (i.e. the scalar type is used for vector
    // code during codegen).
    auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
    if (TTI->getNumberOfParts(VecTy) == VF)
      continue;
    for (unsigned I = NextInst; I < MaxInst; ++I) {
      unsigned OpsWidth = 0;

      if (I + VF > MaxInst)
        OpsWidth = MaxInst - I;
      else
        OpsWidth = VF;

      if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
        break;

      ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
      // Check that a previous iteration of this loop did not delete the Value.
      if (llvm::any_of(Ops, [&R](Value *V) {
            auto *I = dyn_cast<Instruction>(V);
            return I && R.isDeleted(I);
          }))
        continue;

      LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
                        << "\n");

      R.buildTree(Ops);
      Optional<ArrayRef<unsigned>> Order = R.bestOrder();
      // TODO: check if we can allow reordering for more cases.
      if (AllowReorder && Order) {
        // TODO: reorder tree nodes without tree rebuilding.
        // Conceptually, there is nothing actually preventing us from trying to
        // reorder a larger list. In fact, we do exactly this when vectorizing
        // reductions. However, at this point, we only expect to get here when
        // there are exactly two operations.
        assert(Ops.size() == 2);
        Value *ReorderedOps[] = {Ops[1], Ops[0]};
        R.buildTree(ReorderedOps, None);
      }
      if (R.isTreeTinyAndNotFullyVectorizable())
        continue;

      R.computeMinimumValueSizes();
      int Cost = R.getTreeCost();
      CandidateFound = true;
      if (CompensateUseCost) {
        // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
        // rather than sum of single inserts as the latter may overestimate
        // cost. This work should imply improving cost estimation for extracts
        // that added in for external (for vectorization tree) users,i.e. that
        // part should also switch to same interface.
        // For example, the following case is projected code after SLP:
        //  %4 = extractelement <4 x i64> %3, i32 0
        //  %v0 = insertelement <4 x i64> undef, i64 %4, i32 0
        //  %5 = extractelement <4 x i64> %3, i32 1
        //  %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
        //  %6 = extractelement <4 x i64> %3, i32 2
        //  %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
        //  %7 = extractelement <4 x i64> %3, i32 3
        //  %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
        //
        // Extracts here added by SLP in order to feed users (the inserts) of
        // original scalars and contribute to "ExtractCost" at cost evaluation.
        // The inserts in turn form sequence to build an aggregate that
        // detected by findBuildAggregate routine.
        // SLP makes an assumption that such sequence will be optimized away
        // later (instcombine) so it tries to compensate ExctractCost with
        // cost of insert sequence.
        // Current per element cost calculation approach is not quite accurate
        // and tends to create bias toward favoring vectorization.
        // Switching to the TTI interface might help a bit.
        // Alternative solution could be pattern-match to detect a no-op or
        // shuffle.
        unsigned UserCost = 0;
        for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
          auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
          if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
            UserCost += TTI->getVectorInstrCost(
                Instruction::InsertElement, IE->getType(), CI->getZExtValue());
        }
        LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost
                          << ".\n");
        Cost -= UserCost;
      }

      MinCost = std::min(MinCost, Cost);

      if (Cost < -SLPCostThreshold) {
        LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
        R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
                                                    cast<Instruction>(Ops[0]))
                                 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
                                 << " and with tree size "
                                 << ore::NV("TreeSize", R.getTreeSize()));

        R.vectorizeTree();
        // Move to the next bundle.
        I += VF - 1;
        NextInst = I + 1;
        Changed = true;
      }
    }
  }

  if (!Changed && CandidateFound) {
    R.getORE()->emit([&]() {
      return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
             << "List vectorization was possible but not beneficial with cost "
             << ore::NV("Cost", MinCost) << " >= "
             << ore::NV("Treshold", -SLPCostThreshold);
    });
  } else if (!Changed) {
    R.getORE()->emit([&]() {
      return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
             << "Cannot SLP vectorize list: vectorization was impossible"
             << " with available vectorization factors";
    });
  }
  return Changed;
}

bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
  if (!I)
    return false;

  if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
    return false;

  Value *P = I->getParent();

  // Vectorize in current basic block only.
  auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
  auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
  if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
    return false;

  // Try to vectorize V.
  if (tryToVectorizePair(Op0, Op1, R))
    return true;

  auto *A = dyn_cast<BinaryOperator>(Op0);
  auto *B = dyn_cast<BinaryOperator>(Op1);
  // Try to skip B.
  if (B && B->hasOneUse()) {
    auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
    auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
    if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
      return true;
    if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
      return true;
  }

  // Try to skip A.
  if (A && A->hasOneUse()) {
    auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
    auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
    if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
      return true;
    if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
      return true;
  }
  return false;
}

/// Generate a shuffle mask to be used in a reduction tree.
///
/// \param VecLen The length of the vector to be reduced.
/// \param NumEltsToRdx The number of elements that should be reduced in the
///        vector.
/// \param IsPairwise Whether the reduction is a pairwise or splitting
///        reduction. A pairwise reduction will generate a mask of
///        <0,2,...> or <1,3,..> while a splitting reduction will generate
///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen,
                                                 unsigned NumEltsToRdx,
                                                 bool IsPairwise, bool IsLeft) {
  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");

  SmallVector<int, 32> ShuffleMask(VecLen, -1);

  if (IsPairwise)
    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
      ShuffleMask[i] = 2 * i + !IsLeft;
  else
    // Move the upper half of the vector to the lower half.
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
      ShuffleMask[i] = NumEltsToRdx + i;

  return ShuffleMask;
}

namespace {

/// Model horizontal reductions.
///
/// A horizontal reduction is a tree of reduction operations (currently add and
/// fadd) that has operations that can be put into a vector as its leaf.
/// For example, this tree:
///
/// mul mul mul mul
///  \  /    \  /
///   +       +
///    \     /
///       +
/// This tree has "mul" as its reduced values and "+" as its reduction
/// operations. A reduction might be feeding into a store or a binary operation
/// feeding a phi.
///    ...
///    \  /
///     +
///     |
///  phi +=
///
///  Or:
///    ...
///    \  /
///     +
///     |
///   *p =
///
class HorizontalReduction {
  using ReductionOpsType = SmallVector<Value *, 16>;
  using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
  ReductionOpsListType  ReductionOps;
  SmallVector<Value *, 32> ReducedVals;
  // Use map vector to make stable output.
  MapVector<Instruction *, Value *> ExtraArgs;

  /// Kind of the reduction data.
  enum ReductionKind {
    RK_None,       /// Not a reduction.
    RK_Arithmetic, /// Binary reduction data.
    RK_SMin,       /// Signed minimum reduction data.
    RK_UMin,       /// Unsigned minimum reduction data.
    RK_SMax,       /// Signed maximum reduction data.
    RK_UMax,       /// Unsigned maximum reduction data.
  };

  /// Contains info about operation, like its opcode, left and right operands.
  class OperationData {
    /// Opcode of the instruction.
    unsigned Opcode = 0;

    /// Kind of the reduction operation.
    ReductionKind Kind = RK_None;

    /// Checks if the reduction operation can be vectorized.
    bool isVectorizable() const {
      // We currently only support add/mul/logical && min/max reductions.
      return ((Kind == RK_Arithmetic &&
               (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
                Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
                Opcode == Instruction::And || Opcode == Instruction::Or ||
                Opcode == Instruction::Xor)) ||
              (Opcode == Instruction::ICmp &&
               (Kind == RK_SMin || Kind == RK_SMax ||
                Kind == RK_UMin || Kind == RK_UMax)));
    }

    /// Creates reduction operation with the current opcode.
    Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
                    const Twine &Name) const {
      assert(isVectorizable() &&
             "Expected add|fadd or min/max reduction operation.");
      Value *Cmp = nullptr;
      switch (Kind) {
      case RK_Arithmetic:
        return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
                                   Name);
      case RK_SMin:
        assert(Opcode == Instruction::ICmp && "Expected integer types.");
        Cmp = Builder.CreateICmpSLT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_SMax:
        assert(Opcode == Instruction::ICmp && "Expected integer types.");
        Cmp = Builder.CreateICmpSGT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_UMin:
        assert(Opcode == Instruction::ICmp && "Expected integer types.");
        Cmp = Builder.CreateICmpULT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_UMax:
        assert(Opcode == Instruction::ICmp && "Expected integer types.");
        Cmp = Builder.CreateICmpUGT(LHS, RHS);
        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
      case RK_None:
        break;
      }
      llvm_unreachable("Unknown reduction operation.");
    }

  public:
    explicit OperationData() = default;

    /// Construction for reduced values. They are identified by opcode only and
    /// don't have associated LHS/RHS values.
    explicit OperationData(Instruction &I) {
      Opcode = I.getOpcode();
    }

    /// Constructor for reduction operations with opcode and its left and
    /// right operands.
    OperationData(unsigned Opcode, ReductionKind Kind)
        : Opcode(Opcode), Kind(Kind) {
      assert(Kind != RK_None && "One of the reduction operations is expected.");
    }

    explicit operator bool() const { return Opcode; }

    /// Return true if this operation is any kind of minimum or maximum.
    bool isMinMax() const {
      switch (Kind) {
      case RK_Arithmetic:
        return false;
      case RK_SMin:
      case RK_SMax:
      case RK_UMin:
      case RK_UMax:
        return true;
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }

    /// Get the index of the first operand.
    unsigned getFirstOperandIndex() const {
      assert(!!*this && "The opcode is not set.");
      // We allow calling this before 'Kind' is set, so handle that specially.
      if (Kind == RK_None)
        return 0;
      return isMinMax() ? 1 : 0;
    }

    /// Total number of operands in the reduction operation.
    unsigned getNumberOfOperands() const {
      assert(Kind != RK_None && !!*this && "Expected reduction operation.");
      return isMinMax() ? 3 : 2;
    }

    /// Checks if the instruction is in basic block \p BB.
    /// For a min/max reduction check that both compare and select are in \p BB.
    bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const {
      assert(Kind != RK_None && !!*this && "Expected reduction operation.");
      if (IsRedOp && isMinMax()) {
        auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
        return I->getParent() == BB && Cmp && Cmp->getParent() == BB;
      }
      return I->getParent() == BB;
    }

    /// Expected number of uses for reduction operations/reduced values.
    bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
      assert(Kind != RK_None && !!*this && "Expected reduction operation.");
      // SelectInst must be used twice while the condition op must have single
      // use only.
      if (isMinMax())
        return I->hasNUses(2) &&
               (!IsReductionOp ||
                cast<SelectInst>(I)->getCondition()->hasOneUse());

      // Arithmetic reduction operation must be used once only.
      return I->hasOneUse();
    }

    /// Initializes the list of reduction operations.
    void initReductionOps(ReductionOpsListType &ReductionOps) {
      assert(Kind != RK_None && !!*this && "Expected reduction operation.");
      if (isMinMax())
        ReductionOps.assign(2, ReductionOpsType());
      else
        ReductionOps.assign(1, ReductionOpsType());
    }

    /// Add all reduction operations for the reduction instruction \p I.
    void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
      assert(Kind != RK_None && !!*this && "Expected reduction operation.");
      if (isMinMax()) {
        ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
        ReductionOps[1].emplace_back(I);
      } else {
        ReductionOps[0].emplace_back(I);
      }
    }

    /// Checks if instruction is associative and can be vectorized.
    bool isAssociative(Instruction *I) const {
      assert(Kind != RK_None && *this && "Expected reduction operation.");
      switch (Kind) {
      case RK_Arithmetic:
        return I->isAssociative();
      case RK_SMin:
      case RK_SMax:
      case RK_UMin:
      case RK_UMax:
        assert(Opcode == Instruction::ICmp &&
               "Only integer compare operation is expected.");
        return true;
      case RK_None:
        break;
      }
      llvm_unreachable("Reduction kind is not set");
    }

    /// Checks if the reduction operation can be vectorized.
    bool isVectorizable(Instruction *I) const {
      return isVectorizable() && isAssociative(I);
    }

    /// Checks if two operation data are both a reduction op or both a reduced
    /// value.
    bool operator==(const OperationData &OD) const {
      assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) &&
             "One of the comparing operations is incorrect.");
      return Kind == OD.Kind && Opcode == OD.Opcode;
    }
    bool operator!=(const OperationData &OD) const { return !(*this == OD); }
    void clear() {
      Opcode = 0;
      Kind = RK_None;
    }

    /// Get the opcode of the reduction operation.
    unsigned getOpcode() const {
      assert(isVectorizable() && "Expected vectorizable operation.");
      return Opcode;
    }

    /// Get kind of reduction data.
    ReductionKind getKind() const { return Kind; }
    Value *getLHS(Instruction *I) const {
      if (Kind == RK_None)
        return nullptr;
      return I->getOperand(getFirstOperandIndex());
    }
    Value *getRHS(Instruction *I) const {
      if (Kind == RK_None)
        return nullptr;
      return I->getOperand(getFirstOperandIndex() + 1);
    }

    /// Creates reduction operation with the current opcode with the IR flags
    /// from \p ReductionOps.
    Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
                    const Twine &Name,
                    const ReductionOpsListType &ReductionOps) const {
      assert(isVectorizable() &&
             "Expected add|fadd or min/max reduction operation.");
      auto *Op = createOp(Builder, LHS, RHS, Name);
      switch (Kind) {
      case RK_Arithmetic:
        propagateIRFlags(Op, ReductionOps[0]);
        return Op;
      case RK_SMin:
      case RK_SMax:
      case RK_UMin:
      case RK_UMax:
        if (auto *SI = dyn_cast<SelectInst>(Op))
          propagateIRFlags(SI->getCondition(), ReductionOps[0]);
        propagateIRFlags(Op, ReductionOps[1]);
        return Op;
      case RK_None:
        break;
      }
      llvm_unreachable("Unknown reduction operation.");
    }
    /// Creates reduction operation with the current opcode with the IR flags
    /// from \p I.
    Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
                    const Twine &Name, Instruction *I) const {
      assert(isVectorizable() &&
             "Expected add|fadd or min/max reduction operation.");
      auto *Op = createOp(Builder, LHS, RHS, Name);
      switch (Kind) {
      case RK_Arithmetic:
        propagateIRFlags(Op, I);
        return Op;
      case RK_SMin:
      case RK_SMax:
      case RK_UMin:
      case RK_UMax:
        if (auto *SI = dyn_cast<SelectInst>(Op)) {
          propagateIRFlags(SI->getCondition(),
                           cast<SelectInst>(I)->getCondition());
        }
        propagateIRFlags(Op, I);
        return Op;
      case RK_None:
        break;
      }
      llvm_unreachable("Unknown reduction operation.");
    }

    TargetTransformInfo::ReductionFlags getFlags() const {
      TargetTransformInfo::ReductionFlags Flags;
      switch (Kind) {
      case RK_Arithmetic:
        break;
      case RK_SMin:
        Flags.IsSigned = true;
        Flags.IsMaxOp = false;
        break;
      case RK_SMax:
        Flags.IsSigned = true;
        Flags.IsMaxOp = true;
        break;
      case RK_UMin:
        Flags.IsSigned = false;
        Flags.IsMaxOp = false;
        break;
      case RK_UMax:
        Flags.IsSigned = false;
        Flags.IsMaxOp = true;
        break;
      case RK_None:
        llvm_unreachable("Reduction kind is not set");
      }
      return Flags;
    }
  };

  WeakTrackingVH ReductionRoot;

  /// The operation data of the reduction operation.
  OperationData ReductionData;

  /// The operation data of the values we perform a reduction on.
  OperationData ReducedValueData;

  /// Should we model this reduction as a pairwise reduction tree or a tree that
  /// splits the vector in halves and adds those halves.
  bool IsPairwiseReduction = false;

  /// Checks if the ParentStackElem.first should be marked as a reduction
  /// operation with an extra argument or as extra argument itself.
  void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
                    Value *ExtraArg) {
    if (ExtraArgs.count(ParentStackElem.first)) {
      ExtraArgs[ParentStackElem.first] = nullptr;
      // We ran into something like:
      // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
      // The whole ParentStackElem.first should be considered as an extra value
      // in this case.
      // Do not perform analysis of remaining operands of ParentStackElem.first
      // instruction, this whole instruction is an extra argument.
      ParentStackElem.second = ParentStackElem.first->getNumOperands();
    } else {
      // We ran into something like:
      // ParentStackElem.first += ... + ExtraArg + ...
      ExtraArgs[ParentStackElem.first] = ExtraArg;
    }
  }

  static OperationData getOperationData(Instruction *I) {
    if (!I)
      return OperationData();

    Value *LHS;
    Value *RHS;
    if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) {
      return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic);
    }
    if (auto *Select = dyn_cast<SelectInst>(I)) {
      // Look for a min/max pattern.
      if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, RK_UMin);
      } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, RK_SMin);
      } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, RK_UMax);
      } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
        return OperationData(Instruction::ICmp, RK_SMax);
      } else {
        // Try harder: look for min/max pattern based on instructions producing
        // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
        // During the intermediate stages of SLP, it's very common to have
        // pattern like this (since optimizeGatherSequence is run only once
        // at the end):
        // %1 = extractelement <2 x i32> %a, i32 0
        // %2 = extractelement <2 x i32> %a, i32 1
        // %cond = icmp sgt i32 %1, %2
        // %3 = extractelement <2 x i32> %a, i32 0
        // %4 = extractelement <2 x i32> %a, i32 1
        // %select = select i1 %cond, i32 %3, i32 %4
        CmpInst::Predicate Pred;
        Instruction *L1;
        Instruction *L2;

        LHS = Select->getTrueValue();
        RHS = Select->getFalseValue();
        Value *Cond = Select->getCondition();

        // TODO: Support inverse predicates.
        if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
          if (!isa<ExtractElementInst>(RHS) ||
              !L2->isIdenticalTo(cast<Instruction>(RHS)))
            return OperationData(*I);
        } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
          if (!isa<ExtractElementInst>(LHS) ||
              !L1->isIdenticalTo(cast<Instruction>(LHS)))
            return OperationData(*I);
        } else {
          if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
            return OperationData(*I);
          if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
              !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
              !L2->isIdenticalTo(cast<Instruction>(RHS)))
            return OperationData(*I);
        }
        switch (Pred) {
        default:
          return OperationData(*I);

        case CmpInst::ICMP_ULT:
        case CmpInst::ICMP_ULE:
          return OperationData(Instruction::ICmp, RK_UMin);

        case CmpInst::ICMP_SLT:
        case CmpInst::ICMP_SLE:
          return OperationData(Instruction::ICmp, RK_SMin);

        case CmpInst::ICMP_UGT:
        case CmpInst::ICMP_UGE:
          return OperationData(Instruction::ICmp, RK_UMax);

        case CmpInst::ICMP_SGT:
        case CmpInst::ICMP_SGE:
          return OperationData(Instruction::ICmp, RK_SMax);
        }
      }
    }
    return OperationData(*I);
  }

public:
  HorizontalReduction() = default;

  /// Try to find a reduction tree.
  bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
    assert((!Phi || is_contained(Phi->operands(), B)) &&
           "Thi phi needs to use the binary operator");

    ReductionData = getOperationData(B);

    // We could have a initial reductions that is not an add.
    //  r *= v1 + v2 + v3 + v4
    // In such a case start looking for a tree rooted in the first '+'.
    if (Phi) {
      if (ReductionData.getLHS(B) == Phi) {
        Phi = nullptr;
        B = dyn_cast<Instruction>(ReductionData.getRHS(B));
        ReductionData = getOperationData(B);
      } else if (ReductionData.getRHS(B) == Phi) {
        Phi = nullptr;
        B = dyn_cast<Instruction>(ReductionData.getLHS(B));
        ReductionData = getOperationData(B);
      }
    }

    if (!ReductionData.isVectorizable(B))
      return false;

    Type *Ty = B->getType();
    if (!isValidElementType(Ty))
      return false;
    if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
      return false;

    ReducedValueData.clear();
    ReductionRoot = B;

    // Post order traverse the reduction tree starting at B. We only handle true
    // trees containing only binary operators.
    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
    Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
    ReductionData.initReductionOps(ReductionOps);
    while (!Stack.empty()) {
      Instruction *TreeN = Stack.back().first;
      unsigned EdgeToVist = Stack.back().second++;
      OperationData OpData = getOperationData(TreeN);
      bool IsReducedValue = OpData != ReductionData;

      // Postorder vist.
      if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
        if (IsReducedValue)
          ReducedVals.push_back(TreeN);
        else {
          auto I = ExtraArgs.find(TreeN);
          if (I != ExtraArgs.end() && !I->second) {
            // Check if TreeN is an extra argument of its parent operation.
            if (Stack.size() <= 1) {
              // TreeN can't be an extra argument as it is a root reduction
              // operation.
              return false;
            }
            // Yes, TreeN is an extra argument, do not add it to a list of
            // reduction operations.
            // Stack[Stack.size() - 2] always points to the parent operation.
            markExtraArg(Stack[Stack.size() - 2], TreeN);
            ExtraArgs.erase(TreeN);
          } else
            ReductionData.addReductionOps(TreeN, ReductionOps);
        }
        // Retract.
        Stack.pop_back();
        continue;
      }

      // Visit left or right.
      Value *NextV = TreeN->getOperand(EdgeToVist);
      if (NextV != Phi) {
        auto *I = dyn_cast<Instruction>(NextV);
        OpData = getOperationData(I);
        // Continue analysis if the next operand is a reduction operation or
        // (possibly) a reduced value. If the reduced value opcode is not set,
        // the first met operation != reduction operation is considered as the
        // reduced value class.
        if (I && (!ReducedValueData || OpData == ReducedValueData ||
                  OpData == ReductionData)) {
          const bool IsReductionOperation = OpData == ReductionData;
          // Only handle trees in the current basic block.
          if (!ReductionData.hasSameParent(I, B->getParent(),
                                           IsReductionOperation)) {
            // I is an extra argument for TreeN (its parent operation).
            markExtraArg(Stack.back(), I);
            continue;
          }

          // Each tree node needs to have minimal number of users except for the
          // ultimate reduction.
          if (!ReductionData.hasRequiredNumberOfUses(I,
                                                     OpData == ReductionData) &&
              I != B) {
            // I is an extra argument for TreeN (its parent operation).
            markExtraArg(Stack.back(), I);
            continue;
          }

          if (IsReductionOperation) {
            // We need to be able to reassociate the reduction operations.
            if (!OpData.isAssociative(I)) {
              // I is an extra argument for TreeN (its parent operation).
              markExtraArg(Stack.back(), I);
              continue;
            }
          } else if (ReducedValueData &&
                     ReducedValueData != OpData) {
            // Make sure that the opcodes of the operations that we are going to
            // reduce match.
            // I is an extra argument for TreeN (its parent operation).
            markExtraArg(Stack.back(), I);
            continue;
          } else if (!ReducedValueData)
            ReducedValueData = OpData;

          Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
          continue;
        }
      }
      // NextV is an extra argument for TreeN (its parent operation).
      markExtraArg(Stack.back(), NextV);
    }
    return true;
  }

  /// Attempt to vectorize the tree found by matchAssociativeReduction.
  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
    // If there are a sufficient number of reduction values, reduce
    // to a nearby power-of-2. We can safely generate oversized
    // vectors and rely on the backend to split them to legal sizes.
    unsigned NumReducedVals = ReducedVals.size();
    if (NumReducedVals < 4)
      return false;

    // FIXME: Fast-math-flags should be set based on the instructions in the
    //        reduction (not all of 'fast' are required).
    IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
    FastMathFlags Unsafe;
    Unsafe.setFast();
    Builder.setFastMathFlags(Unsafe);

    BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
    // The same extra argument may be used several times, so log each attempt
    // to use it.
    for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
      assert(Pair.first && "DebugLoc must be set.");
      ExternallyUsedValues[Pair.second].push_back(Pair.first);
    }

    // The compare instruction of a min/max is the insertion point for new
    // instructions and may be replaced with a new compare instruction.
    auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
      assert(isa<SelectInst>(RdxRootInst) &&
             "Expected min/max reduction to have select root instruction");
      Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
      assert(isa<Instruction>(ScalarCond) &&
             "Expected min/max reduction to have compare condition");
      return cast<Instruction>(ScalarCond);
    };

    // The reduction root is used as the insertion point for new instructions,
    // so set it as externally used to prevent it from being deleted.
    ExternallyUsedValues[ReductionRoot];
    SmallVector<Value *, 16> IgnoreList;
    for (ReductionOpsType &RdxOp : ReductionOps)
      IgnoreList.append(RdxOp.begin(), RdxOp.end());

    unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
    if (NumReducedVals > ReduxWidth) {
      // In the loop below, we are building a tree based on a window of
      // 'ReduxWidth' values.
      // If the operands of those values have common traits (compare predicate,
      // constant operand, etc), then we want to group those together to
      // minimize the cost of the reduction.

      // TODO: This should be extended to count common operands for
      //       compares and binops.

      // Step 1: Count the number of times each compare predicate occurs.
      SmallDenseMap<unsigned, unsigned> PredCountMap;
      for (Value *RdxVal : ReducedVals) {
        CmpInst::Predicate Pred;
        if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
          ++PredCountMap[Pred];
      }
      // Step 2: Sort the values so the most common predicates come first.
      stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
        CmpInst::Predicate PredA, PredB;
        if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
            match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
          return PredCountMap[PredA] > PredCountMap[PredB];
        }
        return false;
      });
    }

    Value *VectorizedTree = nullptr;
    unsigned i = 0;
    while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
      ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
      V.buildTree(VL, ExternallyUsedValues, IgnoreList);
      Optional<ArrayRef<unsigned>> Order = V.bestOrder();
      if (Order) {
        assert(Order->size() == VL.size() &&
               "Order size must be the same as number of vectorized "
               "instructions.");
        // TODO: reorder tree nodes without tree rebuilding.
        SmallVector<Value *, 4> ReorderedOps(VL.size());
        llvm::transform(*Order, ReorderedOps.begin(),
                        [VL](const unsigned Idx) { return VL[Idx]; });
        V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
      }
      if (V.isTreeTinyAndNotFullyVectorizable())
        break;
      if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
        break;

      V.computeMinimumValueSizes();

      // Estimate cost.
      int TreeCost = V.getTreeCost();
      int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
      int Cost = TreeCost + ReductionCost;
      if (Cost >= -SLPCostThreshold) {
        V.getORE()->emit([&]() {
          return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
                                          cast<Instruction>(VL[0]))
                 << "Vectorizing horizontal reduction is possible"
                 << "but not beneficial with cost " << ore::NV("Cost", Cost)
                 << " and threshold "
                 << ore::NV("Threshold", -SLPCostThreshold);
        });
        break;
      }

      LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
                        << Cost << ". (HorRdx)\n");
      V.getORE()->emit([&]() {
        return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
                                  cast<Instruction>(VL[0]))
               << "Vectorized horizontal reduction with cost "
               << ore::NV("Cost", Cost) << " and with tree size "
               << ore::NV("TreeSize", V.getTreeSize());
      });

      // Vectorize a tree.
      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
      Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);

      // Emit a reduction. For min/max, the root is a select, but the insertion
      // point is the compare condition of that select.
      Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
      if (ReductionData.isMinMax())
        Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
      else
        Builder.SetInsertPoint(RdxRootInst);

      Value *ReducedSubTree =
          emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);

      if (!VectorizedTree) {
        // Initialize the final value in the reduction.
        VectorizedTree = ReducedSubTree;
      } else {
        // Update the final value in the reduction.
        Builder.SetCurrentDebugLocation(Loc);
        VectorizedTree = ReductionData.createOp(
            Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps);
      }
      i += ReduxWidth;
      ReduxWidth = PowerOf2Floor(NumReducedVals - i);
    }

    if (VectorizedTree) {
      // Finish the reduction.
      for (; i < NumReducedVals; ++i) {
        auto *I = cast<Instruction>(ReducedVals[i]);
        Builder.SetCurrentDebugLocation(I->getDebugLoc());
        VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "",
                                                ReductionOps);
      }
      for (auto &Pair : ExternallyUsedValues) {
        // Add each externally used value to the final reduction.
        for (auto *I : Pair.second) {
          Builder.SetCurrentDebugLocation(I->getDebugLoc());
          VectorizedTree = ReductionData.createOp(Builder, VectorizedTree,
                                                  Pair.first, "op.extra", I);
        }
      }

      // Update users. For a min/max reduction that ends with a compare and
      // select, we also have to RAUW for the compare instruction feeding the
      // reduction root. That's because the original compare may have extra uses
      // besides the final select of the reduction.
      if (ReductionData.isMinMax()) {
        if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
          Instruction *ScalarCmp =
              getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
          ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
        }
      }
      ReductionRoot->replaceAllUsesWith(VectorizedTree);

      // Mark all scalar reduction ops for deletion, they are replaced by the
      // vector reductions.
      V.eraseInstructions(IgnoreList);
    }
    return VectorizedTree != nullptr;
  }

  unsigned numReductionValues() const {
    return ReducedVals.size();
  }

private:
  /// Calculate the cost of a reduction.
  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
                       unsigned ReduxWidth) {
    Type *ScalarTy = FirstReducedVal->getType();
    auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth);

    int PairwiseRdxCost;
    int SplittingRdxCost;
    switch (ReductionData.getKind()) {
    case RK_Arithmetic:
      PairwiseRdxCost =
          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
                                          /*IsPairwiseForm=*/true);
      SplittingRdxCost =
          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
                                          /*IsPairwiseForm=*/false);
      break;
    case RK_SMin:
    case RK_SMax:
    case RK_UMin:
    case RK_UMax: {
      auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy));
      bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
                        ReductionData.getKind() == RK_UMax;
      PairwiseRdxCost =
          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
                                      /*IsPairwiseForm=*/true, IsUnsigned);
      SplittingRdxCost =
          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
                                      /*IsPairwiseForm=*/false, IsUnsigned);
      break;
    }
    case RK_None:
      llvm_unreachable("Expected arithmetic or min/max reduction operation");
    }

    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;

    int ScalarReduxCost = 0;
    switch (ReductionData.getKind()) {
    case RK_Arithmetic:
      ScalarReduxCost =
          TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
      break;
    case RK_SMin:
    case RK_SMax:
    case RK_UMin:
    case RK_UMax:
      ScalarReduxCost =
          TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
          TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
                                  CmpInst::makeCmpResultType(ScalarTy));
      break;
    case RK_None:
      llvm_unreachable("Expected arithmetic or min/max reduction operation");
    }
    ScalarReduxCost *= (ReduxWidth - 1);

    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
                      << " for reduction that starts with " << *FirstReducedVal
                      << " (It is a "
                      << (IsPairwiseReduction ? "pairwise" : "splitting")
                      << " reduction)\n");

    return VecReduxCost - ScalarReduxCost;
  }

  /// Emit a horizontal reduction of the vectorized value.
  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
                       unsigned ReduxWidth, const TargetTransformInfo *TTI) {
    assert(VectorizedValue && "Need to have a vectorized tree node");
    assert(isPowerOf2_32(ReduxWidth) &&
           "We only handle power-of-two reductions for now");

    if (!IsPairwiseReduction) {
      // FIXME: The builder should use an FMF guard. It should not be hard-coded
      //        to 'fast'.
      assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
      return createSimpleTargetReduction(
          Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
          ReductionData.getFlags(), ReductionOps.back());
    }

    Value *TmpVec = VectorizedValue;
    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
      auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true);
      auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false);

      Value *LeftShuf =
          Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l");
      Value *RightShuf =
          Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r");
      TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx",
                                      ReductionOps);
    }

    // The result is in the first element of the vector.
    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
  }
};

} // end anonymous namespace

static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
  if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
    return cast<FixedVectorType>(IE->getType())->getNumElements();

  unsigned AggregateSize = 1;
  auto *IV = cast<InsertValueInst>(InsertInst);
  Type *CurrentType = IV->getType();
  do {
    if (auto *ST = dyn_cast<StructType>(CurrentType)) {
      for (auto *Elt : ST->elements())
        if (Elt != ST->getElementType(0)) // check homogeneity
          return None;
      AggregateSize *= ST->getNumElements();
      CurrentType = ST->getElementType(0);
    } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
      AggregateSize *= AT->getNumElements();
      CurrentType = AT->getElementType();
    } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
      AggregateSize *= VT->getNumElements();
      return AggregateSize;
    } else if (CurrentType->isSingleValueType()) {
      return AggregateSize;
    } else {
      return None;
    }
  } while (true);
}

static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
                                          unsigned OperandOffset) {
  unsigned OperandIndex = OperandOffset;
  if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
    if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
      auto *VT = cast<FixedVectorType>(IE->getType());
      OperandIndex *= VT->getNumElements();
      OperandIndex += CI->getZExtValue();
      return OperandIndex;
    }
    return None;
  }

  auto *IV = cast<InsertValueInst>(InsertInst);
  Type *CurrentType = IV->getType();
  for (unsigned int Index : IV->indices()) {
    if (auto *ST = dyn_cast<StructType>(CurrentType)) {
      OperandIndex *= ST->getNumElements();
      CurrentType = ST->getElementType(Index);
    } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
      OperandIndex *= AT->getNumElements();
      CurrentType = AT->getElementType();
    } else {
      return None;
    }
    OperandIndex += Index;
  }
  return OperandIndex;
}

static bool findBuildAggregate_rec(Instruction *LastInsertInst,
                                   TargetTransformInfo *TTI,
                                   SmallVectorImpl<Value *> &BuildVectorOpds,
                                   SmallVectorImpl<Value *> &InsertElts,
                                   unsigned OperandOffset) {
  do {
    Value *InsertedOperand = LastInsertInst->getOperand(1);
    Optional<unsigned> OperandIndex =
        getOperandIndex(LastInsertInst, OperandOffset);
    if (!OperandIndex)
      return false;
    if (isa<InsertElementInst>(InsertedOperand) ||
        isa<InsertValueInst>(InsertedOperand)) {
      if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
                                  BuildVectorOpds, InsertElts, *OperandIndex))
        return false;
    } else {
      BuildVectorOpds[*OperandIndex] = InsertedOperand;
      InsertElts[*OperandIndex] = LastInsertInst;
    }
    if (isa<UndefValue>(LastInsertInst->getOperand(0)))
      return true;
    LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
  } while (LastInsertInst != nullptr &&
           (isa<InsertValueInst>(LastInsertInst) ||
            isa<InsertElementInst>(LastInsertInst)) &&
           LastInsertInst->hasOneUse());
  return false;
}

/// Recognize construction of vectors like
///  %ra = insertelement <4 x float> undef, float %s0, i32 0
///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
///  starting from the last insertelement or insertvalue instruction.
///
/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
///
/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
///
/// \return true if it matches.
static bool findBuildAggregate(Instruction *LastInsertInst,
                               TargetTransformInfo *TTI,
                               SmallVectorImpl<Value *> &BuildVectorOpds,
                               SmallVectorImpl<Value *> &InsertElts) {

  assert((isa<InsertElementInst>(LastInsertInst) ||
          isa<InsertValueInst>(LastInsertInst)) &&
         "Expected insertelement or insertvalue instruction!");

  assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
         "Expected empty result vectors!");

  Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
  if (!AggregateSize)
    return false;
  BuildVectorOpds.resize(*AggregateSize);
  InsertElts.resize(*AggregateSize);

  if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
                             0)) {
    llvm::erase_if(BuildVectorOpds,
                   [](const Value *V) { return V == nullptr; });
    llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; });
    if (BuildVectorOpds.size() >= 2)
      return true;
  }

  return false;
}

static bool PhiTypeSorterFunc(Value *V, Value *V2) {
  return V->getType() < V2->getType();
}

/// Try and get a reduction value from a phi node.
///
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
/// if they come from either \p ParentBB or a containing loop latch.
///
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
/// if not possible.
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
                                BasicBlock *ParentBB, LoopInfo *LI) {
  // There are situations where the reduction value is not dominated by the
  // reduction phi. Vectorizing such cases has been reported to cause
  // miscompiles. See PR25787.
  auto DominatedReduxValue = [&](Value *R) {
    return isa<Instruction>(R) &&
           DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
  };

  Value *Rdx = nullptr;

  // Return the incoming value if it comes from the same BB as the phi node.
  if (P->getIncomingBlock(0) == ParentBB) {
    Rdx = P->getIncomingValue(0);
  } else if (P->getIncomingBlock(1) == ParentBB) {
    Rdx = P->getIncomingValue(1);
  }

  if (Rdx && DominatedReduxValue(Rdx))
    return Rdx;

  // Otherwise, check whether we have a loop latch to look at.
  Loop *BBL = LI->getLoopFor(ParentBB);
  if (!BBL)
    return nullptr;
  BasicBlock *BBLatch = BBL->getLoopLatch();
  if (!BBLatch)
    return nullptr;

  // There is a loop latch, return the incoming value if it comes from
  // that. This reduction pattern occasionally turns up.
  if (P->getIncomingBlock(0) == BBLatch) {
    Rdx = P->getIncomingValue(0);
  } else if (P->getIncomingBlock(1) == BBLatch) {
    Rdx = P->getIncomingValue(1);
  }

  if (Rdx && DominatedReduxValue(Rdx))
    return Rdx;

  return nullptr;
}

/// Attempt to reduce a horizontal reduction.
/// If it is legal to match a horizontal reduction feeding the phi node \a P
/// with reduction operators \a Root (or one of its operands) in a basic block
/// \a BB, then check if it can be done. If horizontal reduction is not found
/// and root instruction is a binary operation, vectorization of the operands is
/// attempted.
/// \returns true if a horizontal reduction was matched and reduced or operands
/// of one of the binary instruction were vectorized.
/// \returns false if a horizontal reduction was not matched (or not possible)
/// or no vectorization of any binary operation feeding \a Root instruction was
/// performed.
static bool tryToVectorizeHorReductionOrInstOperands(
    PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
    TargetTransformInfo *TTI,
    const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
  if (!ShouldVectorizeHor)
    return false;

  if (!Root)
    return false;

  if (Root->getParent() != BB || isa<PHINode>(Root))
    return false;
  // Start analysis starting from Root instruction. If horizontal reduction is
  // found, try to vectorize it. If it is not a horizontal reduction or
  // vectorization is not possible or not effective, and currently analyzed
  // instruction is a binary operation, try to vectorize the operands, using
  // pre-order DFS traversal order. If the operands were not vectorized, repeat
  // the same procedure considering each operand as a possible root of the
  // horizontal reduction.
  // Interrupt the process if the Root instruction itself was vectorized or all
  // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
  SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
  SmallPtrSet<Value *, 8> VisitedInstrs;
  bool Res = false;
  while (!Stack.empty()) {
    Instruction *Inst;
    unsigned Level;
    std::tie(Inst, Level) = Stack.pop_back_val();
    auto *BI = dyn_cast<BinaryOperator>(Inst);
    auto *SI = dyn_cast<SelectInst>(Inst);
    if (BI || SI) {
      HorizontalReduction HorRdx;
      if (HorRdx.matchAssociativeReduction(P, Inst)) {
        if (HorRdx.tryToReduce(R, TTI)) {
          Res = true;
          // Set P to nullptr to avoid re-analysis of phi node in
          // matchAssociativeReduction function unless this is the root node.
          P = nullptr;
          continue;
        }
      }
      if (P && BI) {
        Inst = dyn_cast<Instruction>(BI->getOperand(0));
        if (Inst == P)
          Inst = dyn_cast<Instruction>(BI->getOperand(1));
        if (!Inst) {
          // Set P to nullptr to avoid re-analysis of phi node in
          // matchAssociativeReduction function unless this is the root node.
          P = nullptr;
          continue;
        }
      }
    }
    // Set P to nullptr to avoid re-analysis of phi node in
    // matchAssociativeReduction function unless this is the root node.
    P = nullptr;
    if (Vectorize(Inst, R)) {
      Res = true;
      continue;
    }

    // Try to vectorize operands.
    // Continue analysis for the instruction from the same basic block only to
    // save compile time.
    if (++Level < RecursionMaxDepth)
      for (auto *Op : Inst->operand_values())
        if (VisitedInstrs.insert(Op).second)
          if (auto *I = dyn_cast<Instruction>(Op))
            if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
              Stack.emplace_back(I, Level);
  }
  return Res;
}

bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
                                                 BasicBlock *BB, BoUpSLP &R,
                                                 TargetTransformInfo *TTI) {
  auto *I = dyn_cast_or_null<Instruction>(V);
  if (!I)
    return false;

  if (!isa<BinaryOperator>(I))
    P = nullptr;
  // Try to match and vectorize a horizontal reduction.
  auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
    return tryToVectorize(I, R);
  };
  return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
                                                  ExtraVectorization);
}

bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
                                                 BasicBlock *BB, BoUpSLP &R) {
  const DataLayout &DL = BB->getModule()->getDataLayout();
  if (!R.canMapToVector(IVI->getType(), DL))
    return false;

  SmallVector<Value *, 16> BuildVectorOpds;
  SmallVector<Value *, 16> BuildVectorInsts;
  if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
    return false;

  LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
  // Aggregate value is unlikely to be processed in vector register, we need to
  // extract scalars into scalar registers, so NeedExtraction is set true.
  return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
                            BuildVectorInsts);
}

bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
                                                   BasicBlock *BB, BoUpSLP &R) {
  SmallVector<Value *, 16> BuildVectorInsts;
  SmallVector<Value *, 16> BuildVectorOpds;
  if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
      (llvm::all_of(BuildVectorOpds,
                    [](Value *V) { return isa<ExtractElementInst>(V); }) &&
       isShuffle(BuildVectorOpds)))
    return false;

  // Vectorize starting with the build vector operands ignoring the BuildVector
  // instructions for the purpose of scheduling and user extraction.
  return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
                            BuildVectorInsts);
}

bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
                                         BoUpSLP &R) {
  if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
    return true;

  bool OpsChanged = false;
  for (int Idx = 0; Idx < 2; ++Idx) {
    OpsChanged |=
        vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
  }
  return OpsChanged;
}

bool SLPVectorizerPass::vectorizeSimpleInstructions(
    SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
  bool OpsChanged = false;
  for (auto *I : reverse(Instructions)) {
    if (R.isDeleted(I))
      continue;
    if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
      OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
    else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
      OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
    else if (auto *CI = dyn_cast<CmpInst>(I))
      OpsChanged |= vectorizeCmpInst(CI, BB, R);
  }
  Instructions.clear();
  return OpsChanged;
}

bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
  bool Changed = false;
  SmallVector<Value *, 4> Incoming;
  SmallPtrSet<Value *, 16> VisitedInstrs;
  unsigned MaxVecRegSize = R.getMaxVecRegSize();

  bool HaveVectorizedPhiNodes = true;
  while (HaveVectorizedPhiNodes) {
    HaveVectorizedPhiNodes = false;

    // Collect the incoming values from the PHIs.
    Incoming.clear();
    for (Instruction &I : *BB) {
      PHINode *P = dyn_cast<PHINode>(&I);
      if (!P)
        break;

      if (!VisitedInstrs.count(P) && !R.isDeleted(P))
        Incoming.push_back(P);
    }

    // Sort by type.
    llvm::stable_sort(Incoming, PhiTypeSorterFunc);

    // Try to vectorize elements base on their type.
    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
                                           E = Incoming.end();
         IncIt != E;) {

      // Look for the next elements with the same type.
      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
      Type *EltTy = (*IncIt)->getType();

      assert(EltTy->isSized() &&
             "Instructions should all be sized at this point");
      TypeSize EltTS = DL->getTypeSizeInBits(EltTy);
      if (EltTS.isScalable()) {
        // For now, just ignore vectorizing scalable types.
        ++IncIt;
        continue;
      }

      unsigned EltSize = EltTS.getFixedSize();
      unsigned MaxNumElts = MaxVecRegSize / EltSize;
      if (MaxNumElts < 2) {
        ++IncIt;
        continue;
      }

      while (SameTypeIt != E &&
             (*SameTypeIt)->getType() == EltTy &&
             static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) {
        VisitedInstrs.insert(*SameTypeIt);
        ++SameTypeIt;
      }

      // Try to vectorize them.
      unsigned NumElts = (SameTypeIt - IncIt);
      LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
                        << NumElts << ")\n");
      // The order in which the phi nodes appear in the program does not matter.
      // So allow tryToVectorizeList to reorder them if it is beneficial. This
      // is done when there are exactly two elements since tryToVectorizeList
      // asserts that there are only two values when AllowReorder is true.
      bool AllowReorder = NumElts == 2;
      if (NumElts > 1 &&
          tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
        // Success start over because instructions might have been changed.
        HaveVectorizedPhiNodes = true;
        Changed = true;
        break;
      }

      // Start over at the next instruction of a different type (or the end).
      IncIt = SameTypeIt;
    }
  }

  VisitedInstrs.clear();

  SmallVector<Instruction *, 8> PostProcessInstructions;
  SmallDenseSet<Instruction *, 4> KeyNodes;
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
    // Skip instructions with scalable type. The num of elements is unknown at
    // compile-time for scalable type.
    if (isa<ScalableVectorType>(it->getType()))
      continue;

    // Skip instructions marked for the deletion.
    if (R.isDeleted(&*it))
      continue;
    // We may go through BB multiple times so skip the one we have checked.
    if (!VisitedInstrs.insert(&*it).second) {
      if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
          vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
        // We would like to start over since some instructions are deleted
        // and the iterator may become invalid value.
        Changed = true;
        it = BB->begin();
        e = BB->end();
      }
      continue;
    }

    if (isa<DbgInfoIntrinsic>(it))
      continue;

    // Try to vectorize reductions that use PHINodes.
    if (PHINode *P = dyn_cast<PHINode>(it)) {
      // Check that the PHI is a reduction PHI.
      if (P->getNumIncomingValues() != 2)
        return Changed;

      // Try to match and vectorize a horizontal reduction.
      if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
                                   TTI)) {
        Changed = true;
        it = BB->begin();
        e = BB->end();
        continue;
      }
      continue;
    }

    // Ran into an instruction without users, like terminator, or function call
    // with ignored return value, store. Ignore unused instructions (basing on
    // instruction type, except for CallInst and InvokeInst).
    if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
                            isa<InvokeInst>(it))) {
      KeyNodes.insert(&*it);
      bool OpsChanged = false;
      if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
        for (auto *V : it->operand_values()) {
          // Try to match and vectorize a horizontal reduction.
          OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
        }
      }
      // Start vectorization of post-process list of instructions from the
      // top-tree instructions to try to vectorize as many instructions as
      // possible.
      OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
      if (OpsChanged) {
        // We would like to start over since some instructions are deleted
        // and the iterator may become invalid value.
        Changed = true;
        it = BB->begin();
        e = BB->end();
        continue;
      }
    }

    if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
        isa<InsertValueInst>(it))
      PostProcessInstructions.push_back(&*it);
  }

  return Changed;
}

bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
  auto Changed = false;
  for (auto &Entry : GEPs) {
    // If the getelementptr list has fewer than two elements, there's nothing
    // to do.
    if (Entry.second.size() < 2)
      continue;

    LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
                      << Entry.second.size() << ".\n");

    // Process the GEP list in chunks suitable for the target's supported
    // vector size. If a vector register can't hold 1 element, we are done. We
    // are trying to vectorize the index computations, so the maximum number of
    // elements is based on the size of the index expression, rather than the
    // size of the GEP itself (the target's pointer size).
    unsigned MaxVecRegSize = R.getMaxVecRegSize();
    unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
    if (MaxVecRegSize < EltSize)
      continue;

    unsigned MaxElts = MaxVecRegSize / EltSize;
    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
      auto Len = std::min<unsigned>(BE - BI, MaxElts);
      ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);

      // Initialize a set a candidate getelementptrs. Note that we use a
      // SetVector here to preserve program order. If the index computations
      // are vectorizable and begin with loads, we want to minimize the chance
      // of having to reorder them later.
      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());

      // Some of the candidates may have already been vectorized after we
      // initially collected them. If so, they are marked as deleted, so remove
      // them from the set of candidates.
      Candidates.remove_if(
          [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });

      // Remove from the set of candidates all pairs of getelementptrs with
      // constant differences. Such getelementptrs are likely not good
      // candidates for vectorization in a bottom-up phase since one can be
      // computed from the other. We also ensure all candidate getelementptr
      // indices are unique.
      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
        auto *GEPI = GEPList[I];
        if (!Candidates.count(GEPI))
          continue;
        auto *SCEVI = SE->getSCEV(GEPList[I]);
        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
          auto *GEPJ = GEPList[J];
          auto *SCEVJ = SE->getSCEV(GEPList[J]);
          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
            Candidates.remove(GEPI);
            Candidates.remove(GEPJ);
          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
            Candidates.remove(GEPJ);
          }
        }
      }

      // We break out of the above computation as soon as we know there are
      // fewer than two candidates remaining.
      if (Candidates.size() < 2)
        continue;

      // Add the single, non-constant index of each candidate to the bundle. We
      // ensured the indices met these constraints when we originally collected
      // the getelementptrs.
      SmallVector<Value *, 16> Bundle(Candidates.size());
      auto BundleIndex = 0u;
      for (auto *V : Candidates) {
        auto *GEP = cast<GetElementPtrInst>(V);
        auto *GEPIdx = GEP->idx_begin()->get();
        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
        Bundle[BundleIndex++] = GEPIdx;
      }

      // Try and vectorize the indices. We are currently only interested in
      // gather-like cases of the form:
      //
      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
      //
      // where the loads of "a", the loads of "b", and the subtractions can be
      // performed in parallel. It's likely that detecting this pattern in a
      // bottom-up phase will be simpler and less costly than building a
      // full-blown top-down phase beginning at the consecutive loads.
      Changed |= tryToVectorizeList(Bundle, R);
    }
  }
  return Changed;
}

bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
  bool Changed = false;
  // Attempt to sort and vectorize each of the store-groups.
  for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
       ++it) {
    if (it->second.size() < 2)
      continue;

    LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
                      << it->second.size() << ".\n");

    Changed |= vectorizeStores(it->second, R);
  }
  return Changed;
}

char SLPVectorizer::ID = 0;

static const char lv_name[] = "SLP Vectorizer";

INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)

Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }