SLPVectorizer.cpp
293 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
// stores that can be put together into vector-stores. Next, it attempts to
// construct vectorizable tree using the use-def chains. If a profitable tree
// was found, the SLP vectorizer performs vectorization on the tree.
//
// The pass is inspired by the work described in the paper:
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
using namespace slpvectorizer;
#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"
STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
cl::desc("Run the SLP vectorization passes"));
static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
"number "));
static cl::opt<bool>
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
cl::desc("Attempt to vectorize horizontal reductions"));
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
"slp-vectorize-hor-store", cl::init(false), cl::Hidden,
cl::desc(
"Attempt to vectorize horizontal reductions feeding into a store"));
static cl::opt<int>
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
cl::desc("Attempt to vectorize for this register size in bits"));
static cl::opt<int>
MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
cl::desc("Maximum depth of the lookup for consecutive stores."));
/// Limits the size of scheduling regions in a block.
/// It avoid long compile times for _very_ large blocks where vector
/// instructions are spread over a wide range.
/// This limit is way higher than needed by real-world functions.
static cl::opt<int>
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
cl::desc("Limit the size of the SLP scheduling region per block"));
static cl::opt<int> MinVectorRegSizeOption(
"slp-min-reg-size", cl::init(128), cl::Hidden,
cl::desc("Attempt to vectorize for this register size in bits"));
static cl::opt<unsigned> RecursionMaxDepth(
"slp-recursion-max-depth", cl::init(12), cl::Hidden,
cl::desc("Limit the recursion depth when building a vectorizable tree"));
static cl::opt<unsigned> MinTreeSize(
"slp-min-tree-size", cl::init(3), cl::Hidden,
cl::desc("Only vectorize small trees if they are fully vectorizable"));
// The maximum depth that the look-ahead score heuristic will explore.
// The higher this value, the higher the compilation time overhead.
static cl::opt<int> LookAheadMaxDepth(
"slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
cl::desc("The maximum look-ahead depth for operand reordering scores"));
// The Look-ahead heuristic goes through the users of the bundle to calculate
// the users cost in getExternalUsesCost(). To avoid compilation time increase
// we limit the number of users visited to this value.
static cl::opt<unsigned> LookAheadUsersBudget(
"slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
cl::desc("The maximum number of users to visit while visiting the "
"predecessors. This prevents compilation time increase."));
static cl::opt<bool>
ViewSLPTree("view-slp-tree", cl::Hidden,
cl::desc("Display the SLP trees with Graphviz"));
// Limit the number of alias checks. The limit is chosen so that
// it has no negative effect on the llvm benchmarks.
static const unsigned AliasedCheckLimit = 10;
// Another limit for the alias checks: The maximum distance between load/store
// instructions where alias checks are done.
// This limit is useful for very large basic blocks.
static const unsigned MaxMemDepDistance = 160;
/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
/// regions to be handled.
static const int MinScheduleRegionSize = 16;
/// Predicate for the element types that the SLP vectorizer supports.
///
/// The most important thing to filter here are types which are invalid in LLVM
/// vectors. We also filter target specific types which have absolutely no
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
/// avoids spending time checking the cost model and realizing that they will
/// be inevitably scalarized.
static bool isValidElementType(Type *Ty) {
return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
!Ty->isPPC_FP128Ty();
}
/// \returns true if all of the instructions in \p VL are in the same block or
/// false otherwise.
static bool allSameBlock(ArrayRef<Value *> VL) {
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
return false;
BasicBlock *BB = I0->getParent();
for (int I = 1, E = VL.size(); I < E; I++) {
auto *II = dyn_cast<Instruction>(VL[I]);
if (!II)
return false;
if (BB != II->getParent())
return false;
}
return true;
}
/// \returns True if all of the values in \p VL are constants (but not
/// globals/constant expressions).
static bool allConstant(ArrayRef<Value *> VL) {
// Constant expressions and globals can't be vectorized like normal integer/FP
// constants.
for (Value *i : VL)
if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
return false;
return true;
}
/// \returns True if all of the values in \p VL are identical.
static bool isSplat(ArrayRef<Value *> VL) {
for (unsigned i = 1, e = VL.size(); i < e; ++i)
if (VL[i] != VL[0])
return false;
return true;
}
/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
static bool isCommutative(Instruction *I) {
if (auto *Cmp = dyn_cast<CmpInst>(I))
return Cmp->isCommutative();
if (auto *BO = dyn_cast<BinaryOperator>(I))
return BO->isCommutative();
// TODO: This should check for generic Instruction::isCommutative(), but
// we need to confirm that the caller code correctly handles Intrinsics
// for example (does not have 2 operands).
return false;
}
/// Checks if the vector of instructions can be represented as a shuffle, like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %x0x0 = mul i8 %x0, %x0
/// %x3x3 = mul i8 %x3, %x3
/// %y1y1 = mul i8 %y1, %y1
/// %y2y2 = mul i8 %y2, %y2
/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
/// ret <4 x i8> %ins4
/// can be transformed into:
/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
/// i32 6>
/// %2 = mul <4 x i8> %1, %1
/// ret <4 x i8> %2
/// We convert this initially to something like:
/// %x0 = extractelement <4 x i8> %x, i32 0
/// %x3 = extractelement <4 x i8> %x, i32 3
/// %y1 = extractelement <4 x i8> %y, i32 1
/// %y2 = extractelement <4 x i8> %y, i32 2
/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
/// %5 = mul <4 x i8> %4, %4
/// %6 = extractelement <4 x i8> %5, i32 0
/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
/// %7 = extractelement <4 x i8> %5, i32 1
/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
/// %8 = extractelement <4 x i8> %5, i32 2
/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
/// %9 = extractelement <4 x i8> %5, i32 3
/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
/// ret <4 x i8> %ins4
/// InstCombiner transforms this into a shuffle and vector mul
/// TODO: Can we split off and reuse the shuffle mask detection from
/// TargetTransformInfo::getInstructionThroughput?
static Optional<TargetTransformInfo::ShuffleKind>
isShuffle(ArrayRef<Value *> VL) {
auto *EI0 = cast<ExtractElementInst>(VL[0]);
unsigned Size =
cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
Value *Vec1 = nullptr;
Value *Vec2 = nullptr;
enum ShuffleMode { Unknown, Select, Permute };
ShuffleMode CommonShuffleMode = Unknown;
for (unsigned I = 0, E = VL.size(); I < E; ++I) {
auto *EI = cast<ExtractElementInst>(VL[I]);
auto *Vec = EI->getVectorOperand();
// All vector operands must have the same number of vector elements.
if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
return None;
auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
if (!Idx)
return None;
// Undefined behavior if Idx is negative or >= Size.
if (Idx->getValue().uge(Size))
continue;
unsigned IntIdx = Idx->getValue().getZExtValue();
// We can extractelement from undef vector.
if (isa<UndefValue>(Vec))
continue;
// For correct shuffling we have to have at most 2 different vector operands
// in all extractelement instructions.
if (!Vec1 || Vec1 == Vec)
Vec1 = Vec;
else if (!Vec2 || Vec2 == Vec)
Vec2 = Vec;
else
return None;
if (CommonShuffleMode == Permute)
continue;
// If the extract index is not the same as the operation number, it is a
// permutation.
if (IntIdx != I) {
CommonShuffleMode = Permute;
continue;
}
CommonShuffleMode = Select;
}
// If we're not crossing lanes in different vectors, consider it as blending.
if (CommonShuffleMode == Select && Vec2)
return TargetTransformInfo::SK_Select;
// If Vec2 was never used, we have a permutation of a single vector, otherwise
// we have permutation of 2 vectors.
return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
: TargetTransformInfo::SK_PermuteSingleSrc;
}
namespace {
/// Main data required for vectorization of instructions.
struct InstructionsState {
/// The very first instruction in the list with the main opcode.
Value *OpValue = nullptr;
/// The main/alternate instruction.
Instruction *MainOp = nullptr;
Instruction *AltOp = nullptr;
/// The main/alternate opcodes for the list of instructions.
unsigned getOpcode() const {
return MainOp ? MainOp->getOpcode() : 0;
}
unsigned getAltOpcode() const {
return AltOp ? AltOp->getOpcode() : 0;
}
/// Some of the instructions in the list have alternate opcodes.
bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
bool isOpcodeOrAlt(Instruction *I) const {
unsigned CheckedOpcode = I->getOpcode();
return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
}
InstructionsState() = delete;
InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
: OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
};
} // end anonymous namespace
/// Chooses the correct key for scheduling data. If \p Op has the same (or
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
/// OpValue.
static Value *isOneOf(const InstructionsState &S, Value *Op) {
auto *I = dyn_cast<Instruction>(Op);
if (I && S.isOpcodeOrAlt(I))
return Op;
return S.OpValue;
}
/// \returns true if \p Opcode is allowed as part of of the main/alternate
/// instruction for SLP vectorization.
///
/// Example of unsupported opcode is SDIV that can potentially cause UB if the
/// "shuffled out" lane would result in division by zero.
static bool isValidForAlternation(unsigned Opcode) {
if (Instruction::isIntDivRem(Opcode))
return false;
return true;
}
/// \returns analysis of the Instructions in \p VL described in
/// InstructionsState, the Opcode that we suppose the whole list
/// could be vectorized even if its structure is diverse.
static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
unsigned BaseIndex = 0) {
// Make sure these are all Instructions.
if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
return InstructionsState(VL[BaseIndex], nullptr, nullptr);
bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
unsigned AltOpcode = Opcode;
unsigned AltIndex = BaseIndex;
// Check for one alternate opcode from another BinaryOperator.
// TODO - generalize to support all operators (types, calls etc.).
for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
if (InstOpcode == Opcode || InstOpcode == AltOpcode)
continue;
if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
isValidForAlternation(Opcode)) {
AltOpcode = InstOpcode;
AltIndex = Cnt;
continue;
}
} else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
if (Ty0 == Ty1) {
if (InstOpcode == Opcode || InstOpcode == AltOpcode)
continue;
if (Opcode == AltOpcode) {
assert(isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) &&
"Cast isn't safe for alternation, logic needs to be updated!");
AltOpcode = InstOpcode;
AltIndex = Cnt;
continue;
}
}
} else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
continue;
return InstructionsState(VL[BaseIndex], nullptr, nullptr);
}
return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
cast<Instruction>(VL[AltIndex]));
}
/// \returns true if all of the values in \p VL have the same type or false
/// otherwise.
static bool allSameType(ArrayRef<Value *> VL) {
Type *Ty = VL[0]->getType();
for (int i = 1, e = VL.size(); i < e; i++)
if (VL[i]->getType() != Ty)
return false;
return true;
}
/// \returns True if Extract{Value,Element} instruction extracts element Idx.
static Optional<unsigned> getExtractIndex(Instruction *E) {
unsigned Opcode = E->getOpcode();
assert((Opcode == Instruction::ExtractElement ||
Opcode == Instruction::ExtractValue) &&
"Expected extractelement or extractvalue instruction.");
if (Opcode == Instruction::ExtractElement) {
auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
if (!CI)
return None;
return CI->getZExtValue();
}
ExtractValueInst *EI = cast<ExtractValueInst>(E);
if (EI->getNumIndices() != 1)
return None;
return *EI->idx_begin();
}
/// \returns True if in-tree use also needs extract. This refers to
/// possible scalar operand in vectorized instruction.
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
TargetLibraryInfo *TLI) {
unsigned Opcode = UserInst->getOpcode();
switch (Opcode) {
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(UserInst);
return (LI->getPointerOperand() == Scalar);
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(UserInst);
return (SI->getPointerOperand() == Scalar);
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(UserInst);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
if (hasVectorInstrinsicScalarOpd(ID, i))
return (CI->getArgOperand(i) == Scalar);
}
LLVM_FALLTHROUGH;
}
default:
return false;
}
}
/// \returns the AA location that is being access by the instruction.
static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return MemoryLocation::get(SI);
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return MemoryLocation::get(LI);
return MemoryLocation();
}
/// \returns True if the instruction is not a volatile or atomic load/store.
static bool isSimple(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->isSimple();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isSimple();
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
return !MI->isVolatile();
return true;
}
namespace llvm {
static void inversePermutation(ArrayRef<unsigned> Indices,
SmallVectorImpl<int> &Mask) {
Mask.clear();
const unsigned E = Indices.size();
Mask.resize(E, E + 1);
for (unsigned I = 0; I < E; ++I)
Mask[Indices[I]] = I;
}
namespace slpvectorizer {
/// Bottom Up SLP Vectorizer.
class BoUpSLP {
struct TreeEntry;
struct ScheduleData;
public:
using ValueList = SmallVector<Value *, 8>;
using InstrList = SmallVector<Instruction *, 16>;
using ValueSet = SmallPtrSet<Value *, 16>;
using StoreList = SmallVector<StoreInst *, 8>;
using ExtraValueToDebugLocsMap =
MapVector<Value *, SmallVector<Instruction *, 2>>;
using OrdersType = SmallVector<unsigned, 4>;
BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
const DataLayout *DL, OptimizationRemarkEmitter *ORE)
: F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
CodeMetrics::collectEphemeralValues(F, AC, EphValues);
// Use the vector register size specified by the target unless overridden
// by a command-line option.
// TODO: It would be better to limit the vectorization factor based on
// data type rather than just register size. For example, x86 AVX has
// 256-bit registers, but it does not support integer operations
// at that width (that requires AVX2).
if (MaxVectorRegSizeOption.getNumOccurrences())
MaxVecRegSize = MaxVectorRegSizeOption;
else
MaxVecRegSize = TTI->getRegisterBitWidth(true);
if (MinVectorRegSizeOption.getNumOccurrences())
MinVecRegSize = MinVectorRegSizeOption;
else
MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
}
/// Vectorize the tree that starts with the elements in \p VL.
/// Returns the vectorized root.
Value *vectorizeTree();
/// Vectorize the tree but with the list of externally used values \p
/// ExternallyUsedValues. Values in this MapVector can be replaced but the
/// generated extractvalue instructions.
Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
/// \returns the cost incurred by unwanted spills and fills, caused by
/// holding live values over call sites.
int getSpillCost() const;
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
int getTreeCost();
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
/// the purpose of scheduling and extraction in the \p UserIgnoreLst.
void buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst = None);
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
/// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
/// into account (and updating it, if required) list of externally used
/// values stored in \p ExternallyUsedValues.
void buildTree(ArrayRef<Value *> Roots,
ExtraValueToDebugLocsMap &ExternallyUsedValues,
ArrayRef<Value *> UserIgnoreLst = None);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
ExternalUses.clear();
NumOpsWantToKeepOrder.clear();
NumOpsWantToKeepOriginalOrder = 0;
for (auto &Iter : BlocksSchedules) {
BlockScheduling *BS = Iter.second.get();
BS->clear();
}
MinBWs.clear();
}
unsigned getTreeSize() const { return VectorizableTree.size(); }
/// Perform LICM and CSE on the newly generated gather sequences.
void optimizeGatherSequence();
/// \returns The best order of instructions for vectorization.
Optional<ArrayRef<unsigned>> bestOrder() const {
assert(llvm::all_of(
NumOpsWantToKeepOrder,
[this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
return D.getFirst().size() ==
VectorizableTree[0]->Scalars.size();
}) &&
"All orders must have the same size as number of instructions in "
"tree node.");
auto I = std::max_element(
NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
[](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
return D1.second < D2.second;
});
if (I == NumOpsWantToKeepOrder.end() ||
I->getSecond() <= NumOpsWantToKeepOriginalOrder)
return None;
return makeArrayRef(I->getFirst());
}
/// Builds the correct order for root instructions.
/// If some leaves have the same instructions to be vectorized, we may
/// incorrectly evaluate the best order for the root node (it is built for the
/// vector of instructions without repeated instructions and, thus, has less
/// elements than the root node). This function builds the correct order for
/// the root node.
/// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
/// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
/// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
/// be reordered, the best order will be \<1, 0\>. We need to extend this
/// order for the root node. For the root node this order should look like
/// \<3, 0, 1, 2\>. This function extends the order for the reused
/// instructions.
void findRootOrder(OrdersType &Order) {
// If the leaf has the same number of instructions to vectorize as the root
// - order must be set already.
unsigned RootSize = VectorizableTree[0]->Scalars.size();
if (Order.size() == RootSize)
return;
SmallVector<unsigned, 4> RealOrder(Order.size());
std::swap(Order, RealOrder);
SmallVector<int, 4> Mask;
inversePermutation(RealOrder, Mask);
Order.assign(Mask.begin(), Mask.end());
// The leaf has less number of instructions - need to find the true order of
// the root.
// Scan the nodes starting from the leaf back to the root.
const TreeEntry *PNode = VectorizableTree.back().get();
SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
SmallPtrSet<const TreeEntry *, 4> Visited;
while (!Nodes.empty() && Order.size() != RootSize) {
const TreeEntry *PNode = Nodes.pop_back_val();
if (!Visited.insert(PNode).second)
continue;
const TreeEntry &Node = *PNode;
for (const EdgeInfo &EI : Node.UserTreeIndices)
if (EI.UserTE)
Nodes.push_back(EI.UserTE);
if (Node.ReuseShuffleIndices.empty())
continue;
// Build the order for the parent node.
OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
// The algorithm of the order extension is:
// 1. Calculate the number of the same instructions for the order.
// 2. Calculate the index of the new order: total number of instructions
// with order less than the order of the current instruction + reuse
// number of the current instruction.
// 3. The new order is just the index of the instruction in the original
// vector of the instructions.
for (unsigned I : Node.ReuseShuffleIndices)
++OrderCounter[Order[I]];
SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
unsigned OrderIdx = Order[ReusedIdx];
unsigned NewIdx = 0;
for (unsigned J = 0; J < OrderIdx; ++J)
NewIdx += OrderCounter[J];
NewIdx += CurrentCounter[OrderIdx];
++CurrentCounter[OrderIdx];
assert(NewOrder[NewIdx] == RootSize &&
"The order index should not be written already.");
NewOrder[NewIdx] = I;
}
std::swap(Order, NewOrder);
}
assert(Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.");
assert(llvm::all_of(Order,
[RootSize](unsigned Val) { return Val != RootSize; }) &&
"All indices must be initialized");
}
/// \return The vector element size in bits to use when vectorizing the
/// expression tree ending at \p V. If V is a store, the size is the width of
/// the stored value. Otherwise, the size is the width of the largest loaded
/// value reaching V. This method is used by the vectorizer to calculate
/// vectorization factors.
unsigned getVectorElementSize(Value *V);
/// Compute the minimum type sizes required to represent the entries in a
/// vectorizable tree.
void computeMinimumValueSizes();
// \returns maximum vector register size as set by TTI or overridden by cl::opt.
unsigned getMaxVecRegSize() const {
return MaxVecRegSize;
}
// \returns minimum vector register size as set by cl::opt.
unsigned getMinVecRegSize() const {
return MinVecRegSize;
}
/// Check if homogeneous aggregate is isomorphic to some VectorType.
/// Accepts homogeneous multidimensional aggregate of scalars/vectors like
/// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
/// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
///
/// \returns number of elements in vector if isomorphism exists, 0 otherwise.
unsigned canMapToVector(Type *T, const DataLayout &DL) const;
/// \returns True if the VectorizableTree is both tiny and not fully
/// vectorizable. We do not vectorize such trees.
bool isTreeTinyAndNotFullyVectorizable() const;
/// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
/// can be load combined in the backend. Load combining may not be allowed in
/// the IR optimizer, so we do not want to alter the pattern. For example,
/// partially transforming a scalar bswap() pattern into vector code is
/// effectively impossible for the backend to undo.
/// TODO: If load combining is allowed in the IR optimizer, this analysis
/// may not be necessary.
bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
/// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
/// can be load combined in the backend. Load combining may not be allowed in
/// the IR optimizer, so we do not want to alter the pattern. For example,
/// partially transforming a scalar bswap() pattern into vector code is
/// effectively impossible for the backend to undo.
/// TODO: If load combining is allowed in the IR optimizer, this analysis
/// may not be necessary.
bool isLoadCombineCandidate() const;
OptimizationRemarkEmitter *getORE() { return ORE; }
/// This structure holds any data we need about the edges being traversed
/// during buildTree_rec(). We keep track of:
/// (i) the user TreeEntry index, and
/// (ii) the index of the edge.
struct EdgeInfo {
EdgeInfo() = default;
EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
: UserTE(UserTE), EdgeIdx(EdgeIdx) {}
/// The user TreeEntry.
TreeEntry *UserTE = nullptr;
/// The operand index of the use.
unsigned EdgeIdx = UINT_MAX;
#ifndef NDEBUG
friend inline raw_ostream &operator<<(raw_ostream &OS,
const BoUpSLP::EdgeInfo &EI) {
EI.dump(OS);
return OS;
}
/// Debug print.
void dump(raw_ostream &OS) const {
OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
<< " EdgeIdx:" << EdgeIdx << "}";
}
LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
#endif
};
/// A helper data structure to hold the operands of a vector of instructions.
/// This supports a fixed vector length for all operand vectors.
class VLOperands {
/// For each operand we need (i) the value, and (ii) the opcode that it
/// would be attached to if the expression was in a left-linearized form.
/// This is required to avoid illegal operand reordering.
/// For example:
/// \verbatim
/// 0 Op1
/// |/
/// Op1 Op2 Linearized + Op2
/// \ / ----------> |/
/// - -
///
/// Op1 - Op2 (0 + Op1) - Op2
/// \endverbatim
///
/// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
///
/// Another way to think of this is to track all the operations across the
/// path from the operand all the way to the root of the tree and to
/// calculate the operation that corresponds to this path. For example, the
/// path from Op2 to the root crosses the RHS of the '-', therefore the
/// corresponding operation is a '-' (which matches the one in the
/// linearized tree, as shown above).
///
/// For lack of a better term, we refer to this operation as Accumulated
/// Path Operation (APO).
struct OperandData {
OperandData() = default;
OperandData(Value *V, bool APO, bool IsUsed)
: V(V), APO(APO), IsUsed(IsUsed) {}
/// The operand value.
Value *V = nullptr;
/// TreeEntries only allow a single opcode, or an alternate sequence of
/// them (e.g, +, -). Therefore, we can safely use a boolean value for the
/// APO. It is set to 'true' if 'V' is attached to an inverse operation
/// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
/// (e.g., Add/Mul)
bool APO = false;
/// Helper data for the reordering function.
bool IsUsed = false;
};
/// During operand reordering, we are trying to select the operand at lane
/// that matches best with the operand at the neighboring lane. Our
/// selection is based on the type of value we are looking for. For example,
/// if the neighboring lane has a load, we need to look for a load that is
/// accessing a consecutive address. These strategies are summarized in the
/// 'ReorderingMode' enumerator.
enum class ReorderingMode {
Load, ///< Matching loads to consecutive memory addresses
Opcode, ///< Matching instructions based on opcode (same or alternate)
Constant, ///< Matching constants
Splat, ///< Matching the same instruction multiple times (broadcast)
Failed, ///< We failed to create a vectorizable group
};
using OperandDataVec = SmallVector<OperandData, 2>;
/// A vector of operand vectors.
SmallVector<OperandDataVec, 4> OpsVec;
const DataLayout &DL;
ScalarEvolution &SE;
const BoUpSLP &R;
/// \returns the operand data at \p OpIdx and \p Lane.
OperandData &getData(unsigned OpIdx, unsigned Lane) {
return OpsVec[OpIdx][Lane];
}
/// \returns the operand data at \p OpIdx and \p Lane. Const version.
const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
return OpsVec[OpIdx][Lane];
}
/// Clears the used flag for all entries.
void clearUsed() {
for (unsigned OpIdx = 0, NumOperands = getNumOperands();
OpIdx != NumOperands; ++OpIdx)
for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
++Lane)
OpsVec[OpIdx][Lane].IsUsed = false;
}
/// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
}
// The hard-coded scores listed here are not very important. When computing
// the scores of matching one sub-tree with another, we are basically
// counting the number of values that are matching. So even if all scores
// are set to 1, we would still get a decent matching result.
// However, sometimes we have to break ties. For example we may have to
// choose between matching loads vs matching opcodes. This is what these
// scores are helping us with: they provide the order of preference.
/// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
static const int ScoreConsecutiveLoads = 3;
/// ExtractElementInst from same vector and consecutive indexes.
static const int ScoreConsecutiveExtracts = 3;
/// Constants.
static const int ScoreConstants = 2;
/// Instructions with the same opcode.
static const int ScoreSameOpcode = 2;
/// Instructions with alt opcodes (e.g, add + sub).
static const int ScoreAltOpcodes = 1;
/// Identical instructions (a.k.a. splat or broadcast).
static const int ScoreSplat = 1;
/// Matching with an undef is preferable to failing.
static const int ScoreUndef = 1;
/// Score for failing to find a decent match.
static const int ScoreFail = 0;
/// User exteranl to the vectorized code.
static const int ExternalUseCost = 1;
/// The user is internal but in a different lane.
static const int UserInDiffLaneCost = ExternalUseCost;
/// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
ScalarEvolution &SE) {
auto *LI1 = dyn_cast<LoadInst>(V1);
auto *LI2 = dyn_cast<LoadInst>(V2);
if (LI1 && LI2)
return isConsecutiveAccess(LI1, LI2, DL, SE)
? VLOperands::ScoreConsecutiveLoads
: VLOperands::ScoreFail;
auto *C1 = dyn_cast<Constant>(V1);
auto *C2 = dyn_cast<Constant>(V2);
if (C1 && C2)
return VLOperands::ScoreConstants;
// Extracts from consecutive indexes of the same vector better score as
// the extracts could be optimized away.
Value *EV;
ConstantInt *Ex1Idx, *Ex2Idx;
if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
return VLOperands::ScoreConsecutiveExtracts;
auto *I1 = dyn_cast<Instruction>(V1);
auto *I2 = dyn_cast<Instruction>(V2);
if (I1 && I2) {
if (I1 == I2)
return VLOperands::ScoreSplat;
InstructionsState S = getSameOpcode({I1, I2});
// Note: Only consider instructions with <= 2 operands to avoid
// complexity explosion.
if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
: VLOperands::ScoreSameOpcode;
}
if (isa<UndefValue>(V2))
return VLOperands::ScoreUndef;
return VLOperands::ScoreFail;
}
/// Holds the values and their lane that are taking part in the look-ahead
/// score calculation. This is used in the external uses cost calculation.
SmallDenseMap<Value *, int> InLookAheadValues;
/// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
/// either external to the vectorized code, or require shuffling.
int getExternalUsesCost(const std::pair<Value *, int> &LHS,
const std::pair<Value *, int> &RHS) {
int Cost = 0;
std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
Value *V = Values[Idx].first;
// Calculate the absolute lane, using the minimum relative lane of LHS
// and RHS as base and Idx as the offset.
int Ln = std::min(LHS.second, RHS.second) + Idx;
assert(Ln >= 0 && "Bad lane calculation");
unsigned UsersBudget = LookAheadUsersBudget;
for (User *U : V->users()) {
if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
// The user is in the VectorizableTree. Check if we need to insert.
auto It = llvm::find(UserTE->Scalars, U);
assert(It != UserTE->Scalars.end() && "U is in UserTE");
int UserLn = std::distance(UserTE->Scalars.begin(), It);
assert(UserLn >= 0 && "Bad lane");
if (UserLn != Ln)
Cost += UserInDiffLaneCost;
} else {
// Check if the user is in the look-ahead code.
auto It2 = InLookAheadValues.find(U);
if (It2 != InLookAheadValues.end()) {
// The user is in the look-ahead code. Check the lane.
if (It2->second != Ln)
Cost += UserInDiffLaneCost;
} else {
// The user is neither in SLP tree nor in the look-ahead code.
Cost += ExternalUseCost;
}
}
// Limit the number of visited uses to cap compilation time.
if (--UsersBudget == 0)
break;
}
}
return Cost;
}
/// Go through the operands of \p LHS and \p RHS recursively until \p
/// MaxLevel, and return the cummulative score. For example:
/// \verbatim
/// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
/// \ / \ / \ / \ /
/// + + + +
/// G1 G2 G3 G4
/// \endverbatim
/// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
/// each level recursively, accumulating the score. It starts from matching
/// the additions at level 0, then moves on to the loads (level 1). The
/// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
/// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
/// {A[0],C[0]} has a score of VLOperands::ScoreFail.
/// Please note that the order of the operands does not matter, as we
/// evaluate the score of all profitable combinations of operands. In
/// other words the score of G1 and G4 is the same as G1 and G2. This
/// heuristic is based on ideas described in:
/// Look-ahead SLP: Auto-vectorization in the presence of commutative
/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
/// Luís F. W. Góes
int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
const std::pair<Value *, int> &RHS, int CurrLevel,
int MaxLevel) {
Value *V1 = LHS.first;
Value *V2 = RHS.first;
// Get the shallow score of V1 and V2.
int ShallowScoreAtThisLevel =
std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
getExternalUsesCost(LHS, RHS));
int Lane1 = LHS.second;
int Lane2 = RHS.second;
// If reached MaxLevel,
// or if V1 and V2 are not instructions,
// or if they are SPLAT,
// or if they are not consecutive, early return the current cost.
auto *I1 = dyn_cast<Instruction>(V1);
auto *I2 = dyn_cast<Instruction>(V2);
if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
(isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
return ShallowScoreAtThisLevel;
assert(I1 && I2 && "Should have early exited.");
// Keep track of in-tree values for determining the external-use cost.
InLookAheadValues[V1] = Lane1;
InLookAheadValues[V2] = Lane2;
// Contains the I2 operand indexes that got matched with I1 operands.
SmallSet<unsigned, 4> Op2Used;
// Recursion towards the operands of I1 and I2. We are trying all possbile
// operand pairs, and keeping track of the best score.
for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
OpIdx1 != NumOperands1; ++OpIdx1) {
// Try to pair op1I with the best operand of I2.
int MaxTmpScore = 0;
unsigned MaxOpIdx2 = 0;
bool FoundBest = false;
// If I2 is commutative try all combinations.
unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
unsigned ToIdx = isCommutative(I2)
? I2->getNumOperands()
: std::min(I2->getNumOperands(), OpIdx1 + 1);
assert(FromIdx <= ToIdx && "Bad index");
for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
// Skip operands already paired with OpIdx1.
if (Op2Used.count(OpIdx2))
continue;
// Recursively calculate the cost at each level
int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
{I2->getOperand(OpIdx2), Lane2},
CurrLevel + 1, MaxLevel);
// Look for the best score.
if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
MaxTmpScore = TmpScore;
MaxOpIdx2 = OpIdx2;
FoundBest = true;
}
}
if (FoundBest) {
// Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
Op2Used.insert(MaxOpIdx2);
ShallowScoreAtThisLevel += MaxTmpScore;
}
}
return ShallowScoreAtThisLevel;
}
/// \Returns the look-ahead score, which tells us how much the sub-trees
/// rooted at \p LHS and \p RHS match, the more they match the higher the
/// score. This helps break ties in an informed way when we cannot decide on
/// the order of the operands by just considering the immediate
/// predecessors.
int getLookAheadScore(const std::pair<Value *, int> &LHS,
const std::pair<Value *, int> &RHS) {
InLookAheadValues.clear();
return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
}
// Search all operands in Ops[*][Lane] for the one that matches best
// Ops[OpIdx][LastLane] and return its opreand index.
// If no good match can be found, return None.
Optional<unsigned>
getBestOperand(unsigned OpIdx, int Lane, int LastLane,
ArrayRef<ReorderingMode> ReorderingModes) {
unsigned NumOperands = getNumOperands();
// The operand of the previous lane at OpIdx.
Value *OpLastLane = getData(OpIdx, LastLane).V;
// Our strategy mode for OpIdx.
ReorderingMode RMode = ReorderingModes[OpIdx];
// The linearized opcode of the operand at OpIdx, Lane.
bool OpIdxAPO = getData(OpIdx, Lane).APO;
// The best operand index and its score.
// Sometimes we have more than one option (e.g., Opcode and Undefs), so we
// are using the score to differentiate between the two.
struct BestOpData {
Optional<unsigned> Idx = None;
unsigned Score = 0;
} BestOp;
// Iterate through all unused operands and look for the best.
for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
// Get the operand at Idx and Lane.
OperandData &OpData = getData(Idx, Lane);
Value *Op = OpData.V;
bool OpAPO = OpData.APO;
// Skip already selected operands.
if (OpData.IsUsed)
continue;
// Skip if we are trying to move the operand to a position with a
// different opcode in the linearized tree form. This would break the
// semantics.
if (OpAPO != OpIdxAPO)
continue;
// Look for an operand that matches the current mode.
switch (RMode) {
case ReorderingMode::Load:
case ReorderingMode::Constant:
case ReorderingMode::Opcode: {
bool LeftToRight = Lane > LastLane;
Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
Value *OpRight = (LeftToRight) ? Op : OpLastLane;
unsigned Score =
getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
if (Score > BestOp.Score) {
BestOp.Idx = Idx;
BestOp.Score = Score;
}
break;
}
case ReorderingMode::Splat:
if (Op == OpLastLane)
BestOp.Idx = Idx;
break;
case ReorderingMode::Failed:
return None;
}
}
if (BestOp.Idx) {
getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
return BestOp.Idx;
}
// If we could not find a good match return None.
return None;
}
/// Helper for reorderOperandVecs. \Returns the lane that we should start
/// reordering from. This is the one which has the least number of operands
/// that can freely move about.
unsigned getBestLaneToStartReordering() const {
unsigned BestLane = 0;
unsigned Min = UINT_MAX;
for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
++Lane) {
unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
if (NumFreeOps < Min) {
Min = NumFreeOps;
BestLane = Lane;
}
}
return BestLane;
}
/// \Returns the maximum number of operands that are allowed to be reordered
/// for \p Lane. This is used as a heuristic for selecting the first lane to
/// start operand reordering.
unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
unsigned CntTrue = 0;
unsigned NumOperands = getNumOperands();
// Operands with the same APO can be reordered. We therefore need to count
// how many of them we have for each APO, like this: Cnt[APO] = x.
// Since we only have two APOs, namely true and false, we can avoid using
// a map. Instead we can simply count the number of operands that
// correspond to one of them (in this case the 'true' APO), and calculate
// the other by subtracting it from the total number of operands.
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
if (getData(OpIdx, Lane).APO)
++CntTrue;
unsigned CntFalse = NumOperands - CntTrue;
return std::max(CntTrue, CntFalse);
}
/// Go through the instructions in VL and append their operands.
void appendOperandsOfVL(ArrayRef<Value *> VL) {
assert(!VL.empty() && "Bad VL");
assert((empty() || VL.size() == getNumLanes()) &&
"Expected same number of lanes");
assert(isa<Instruction>(VL[0]) && "Expected instruction");
unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
OpsVec.resize(NumOperands);
unsigned NumLanes = VL.size();
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
OpsVec[OpIdx].resize(NumLanes);
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
// Our tree has just 3 nodes: the root and two operands.
// It is therefore trivial to get the APO. We only need to check the
// opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
// RHS operand. The LHS operand of both add and sub is never attached
// to an inversese operation in the linearized form, therefore its APO
// is false. The RHS is true only if VL[Lane] is an inverse operation.
// Since operand reordering is performed on groups of commutative
// operations or alternating sequences (e.g., +, -), we can safely
// tell the inverse operations by checking commutativity.
bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
bool APO = (OpIdx == 0) ? false : IsInverseOperation;
OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
APO, false};
}
}
}
/// \returns the number of operands.
unsigned getNumOperands() const { return OpsVec.size(); }
/// \returns the number of lanes.
unsigned getNumLanes() const { return OpsVec[0].size(); }
/// \returns the operand value at \p OpIdx and \p Lane.
Value *getValue(unsigned OpIdx, unsigned Lane) const {
return getData(OpIdx, Lane).V;
}
/// \returns true if the data structure is empty.
bool empty() const { return OpsVec.empty(); }
/// Clears the data.
void clear() { OpsVec.clear(); }
/// \Returns true if there are enough operands identical to \p Op to fill
/// the whole vector.
/// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
bool OpAPO = getData(OpIdx, Lane).APO;
for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
if (Ln == Lane)
continue;
// This is set to true if we found a candidate for broadcast at Lane.
bool FoundCandidate = false;
for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
OperandData &Data = getData(OpI, Ln);
if (Data.APO != OpAPO || Data.IsUsed)
continue;
if (Data.V == Op) {
FoundCandidate = true;
Data.IsUsed = true;
break;
}
}
if (!FoundCandidate)
return false;
}
return true;
}
public:
/// Initialize with all the operands of the instruction vector \p RootVL.
VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
ScalarEvolution &SE, const BoUpSLP &R)
: DL(DL), SE(SE), R(R) {
// Append all the operands of RootVL.
appendOperandsOfVL(RootVL);
}
/// \Returns a value vector with the operands across all lanes for the
/// opearnd at \p OpIdx.
ValueList getVL(unsigned OpIdx) const {
ValueList OpVL(OpsVec[OpIdx].size());
assert(OpsVec[OpIdx].size() == getNumLanes() &&
"Expected same num of lanes across all operands");
for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
OpVL[Lane] = OpsVec[OpIdx][Lane].V;
return OpVL;
}
// Performs operand reordering for 2 or more operands.
// The original operands are in OrigOps[OpIdx][Lane].
// The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
void reorder() {
unsigned NumOperands = getNumOperands();
unsigned NumLanes = getNumLanes();
// Each operand has its own mode. We are using this mode to help us select
// the instructions for each lane, so that they match best with the ones
// we have selected so far.
SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
// This is a greedy single-pass algorithm. We are going over each lane
// once and deciding on the best order right away with no back-tracking.
// However, in order to increase its effectiveness, we start with the lane
// that has operands that can move the least. For example, given the
// following lanes:
// Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
// Lane 1 : A[1] = C[1] - B[1] // Visited 1st
// Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
// Lane 3 : A[3] = C[3] - B[3] // Visited 4th
// we will start at Lane 1, since the operands of the subtraction cannot
// be reordered. Then we will visit the rest of the lanes in a circular
// fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
// Find the first lane that we will start our search from.
unsigned FirstLane = getBestLaneToStartReordering();
// Initialize the modes.
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
Value *OpLane0 = getValue(OpIdx, FirstLane);
// Keep track if we have instructions with all the same opcode on one
// side.
if (isa<LoadInst>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Load;
else if (isa<Instruction>(OpLane0)) {
// Check if OpLane0 should be broadcast.
if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
ReorderingModes[OpIdx] = ReorderingMode::Splat;
else
ReorderingModes[OpIdx] = ReorderingMode::Opcode;
}
else if (isa<Constant>(OpLane0))
ReorderingModes[OpIdx] = ReorderingMode::Constant;
else if (isa<Argument>(OpLane0))
// Our best hope is a Splat. It may save some cost in some cases.
ReorderingModes[OpIdx] = ReorderingMode::Splat;
else
// NOTE: This should be unreachable.
ReorderingModes[OpIdx] = ReorderingMode::Failed;
}
// If the initial strategy fails for any of the operand indexes, then we
// perform reordering again in a second pass. This helps avoid assigning
// high priority to the failed strategy, and should improve reordering for
// the non-failed operand indexes.
for (int Pass = 0; Pass != 2; ++Pass) {
// Skip the second pass if the first pass did not fail.
bool StrategyFailed = false;
// Mark all operand data as free to use.
clearUsed();
// We keep the original operand order for the FirstLane, so reorder the
// rest of the lanes. We are visiting the nodes in a circular fashion,
// using FirstLane as the center point and increasing the radius
// distance.
for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
// Visit the lane on the right and then the lane on the left.
for (int Direction : {+1, -1}) {
int Lane = FirstLane + Direction * Distance;
if (Lane < 0 || Lane >= (int)NumLanes)
continue;
int LastLane = Lane - Direction;
assert(LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds");
// Look for a good match for each operand.
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
// Search for the operand that matches SortedOps[OpIdx][Lane-1].
Optional<unsigned> BestIdx =
getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
// By not selecting a value, we allow the operands that follow to
// select a better matching value. We will get a non-null value in
// the next run of getBestOperand().
if (BestIdx) {
// Swap the current operand with the one returned by
// getBestOperand().
swap(OpIdx, BestIdx.getValue(), Lane);
} else {
// We failed to find a best operand, set mode to 'Failed'.
ReorderingModes[OpIdx] = ReorderingMode::Failed;
// Enable the second pass.
StrategyFailed = true;
}
}
}
}
// Skip second pass if the strategy did not fail.
if (!StrategyFailed)
break;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
switch (RMode) {
case ReorderingMode::Load:
return "Load";
case ReorderingMode::Opcode:
return "Opcode";
case ReorderingMode::Constant:
return "Constant";
case ReorderingMode::Splat:
return "Splat";
case ReorderingMode::Failed:
return "Failed";
}
llvm_unreachable("Unimplemented Reordering Type");
}
LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
raw_ostream &OS) {
return OS << getModeStr(RMode);
}
/// Debug print.
LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
printMode(RMode, dbgs());
}
friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
return printMode(RMode, OS);
}
LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
const unsigned Indent = 2;
unsigned Cnt = 0;
for (const OperandDataVec &OpDataVec : OpsVec) {
OS << "Operand " << Cnt++ << "\n";
for (const OperandData &OpData : OpDataVec) {
OS.indent(Indent) << "{";
if (Value *V = OpData.V)
OS << *V;
else
OS << "null";
OS << ", APO:" << OpData.APO << "}\n";
}
OS << "\n";
}
return OS;
}
/// Debug print.
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
};
/// Checks if the instruction is marked for deletion.
bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
/// Marks values operands for later deletion by replacing them with Undefs.
void eraseInstructions(ArrayRef<Value *> AV);
~BoUpSLP();
private:
/// Checks if all users of \p I are the part of the vectorization tree.
bool areAllUsersVectorized(Instruction *I) const;
/// \returns the cost of the vectorizable entry.
int getEntryCost(TreeEntry *E);
/// This is the recursive part of buildTree.
void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
const EdgeInfo &EI);
/// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
/// be vectorized to use the original vector (or aggregate "bitcast" to a
/// vector) and sets \p CurrentOrder to the identity permutation; otherwise
/// returns false, setting \p CurrentOrder to either an empty vector or a
/// non-identity permutation that allows to reuse extract instructions.
bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
SmallVectorImpl<unsigned> &CurrentOrder) const;
/// Vectorize a single entry in the tree.
Value *vectorizeTree(TreeEntry *E);
/// Vectorize a single entry in the tree, starting in \p VL.
Value *vectorizeTree(ArrayRef<Value *> VL);
/// \returns the scalarization cost for this type. Scalarization in this
/// context means the creation of vectors from a group of scalars.
int getGatherCost(FixedVectorType *Ty,
const DenseSet<unsigned> &ShuffledIndices) const;
/// \returns the scalarization cost for this list of values. Assuming that
/// this subtree gets vectorized, we may need to extract the values from the
/// roots. This method calculates the cost of extracting the values.
int getGatherCost(ArrayRef<Value *> VL) const;
/// Set the Builder insert point to one after the last instruction in
/// the bundle
void setInsertPointAfterBundle(TreeEntry *E);
/// \returns a vector from a collection of scalars in \p VL.
Value *gather(ArrayRef<Value *> VL);
/// \returns whether the VectorizableTree is fully vectorizable and will
/// be beneficial even the tree height is tiny.
bool isFullyVectorizableTinyTree() const;
/// Reorder commutative or alt operands to get better probability of
/// generating vectorized code.
static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right,
const DataLayout &DL,
ScalarEvolution &SE,
const BoUpSLP &R);
struct TreeEntry {
using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
TreeEntry(VecTreeTy &Container) : Container(Container) {}
/// \returns true if the scalars in VL are equal to this entry.
bool isSame(ArrayRef<Value *> VL) const {
if (VL.size() == Scalars.size())
return std::equal(VL.begin(), VL.end(), Scalars.begin());
return VL.size() == ReuseShuffleIndices.size() &&
std::equal(
VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
[this](Value *V, int Idx) { return V == Scalars[Idx]; });
}
/// A vector of scalars.
ValueList Scalars;
/// The Scalars are vectorized into this value. It is initialized to Null.
Value *VectorizedValue = nullptr;
/// Do we need to gather this sequence ?
enum EntryState { Vectorize, NeedToGather };
EntryState State;
/// Does this sequence require some shuffling?
SmallVector<int, 4> ReuseShuffleIndices;
/// Does this entry require reordering?
SmallVector<unsigned, 4> ReorderIndices;
/// Points back to the VectorizableTree.
///
/// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
/// to be a pointer and needs to be able to initialize the child iterator.
/// Thus we need a reference back to the container to translate the indices
/// to entries.
VecTreeTy &Container;
/// The TreeEntry index containing the user of this entry. We can actually
/// have multiple users so the data structure is not truly a tree.
SmallVector<EdgeInfo, 1> UserTreeIndices;
/// The index of this treeEntry in VectorizableTree.
int Idx = -1;
private:
/// The operands of each instruction in each lane Operands[op_index][lane].
/// Note: This helps avoid the replication of the code that performs the
/// reordering of operands during buildTree_rec() and vectorizeTree().
SmallVector<ValueList, 2> Operands;
/// The main/alternate instruction.
Instruction *MainOp = nullptr;
Instruction *AltOp = nullptr;
public:
/// Set this bundle's \p OpIdx'th operand to \p OpVL.
void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
if (Operands.size() < OpIdx + 1)
Operands.resize(OpIdx + 1);
assert(Operands[OpIdx].size() == 0 && "Already resized?");
Operands[OpIdx].resize(Scalars.size());
for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
Operands[OpIdx][Lane] = OpVL[Lane];
}
/// Set the operands of this bundle in their original order.
void setOperandsInOrder() {
assert(Operands.empty() && "Already initialized?");
auto *I0 = cast<Instruction>(Scalars[0]);
Operands.resize(I0->getNumOperands());
unsigned NumLanes = Scalars.size();
for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
OpIdx != NumOperands; ++OpIdx) {
Operands[OpIdx].resize(NumLanes);
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
auto *I = cast<Instruction>(Scalars[Lane]);
assert(I->getNumOperands() == NumOperands &&
"Expected same number of operands");
Operands[OpIdx][Lane] = I->getOperand(OpIdx);
}
}
}
/// \returns the \p OpIdx operand of this TreeEntry.
ValueList &getOperand(unsigned OpIdx) {
assert(OpIdx < Operands.size() && "Off bounds");
return Operands[OpIdx];
}
/// \returns the number of operands.
unsigned getNumOperands() const { return Operands.size(); }
/// \return the single \p OpIdx operand.
Value *getSingleOperand(unsigned OpIdx) const {
assert(OpIdx < Operands.size() && "Off bounds");
assert(!Operands[OpIdx].empty() && "No operand available");
return Operands[OpIdx][0];
}
/// Some of the instructions in the list have alternate opcodes.
bool isAltShuffle() const {
return getOpcode() != getAltOpcode();
}
bool isOpcodeOrAlt(Instruction *I) const {
unsigned CheckedOpcode = I->getOpcode();
return (getOpcode() == CheckedOpcode ||
getAltOpcode() == CheckedOpcode);
}
/// Chooses the correct key for scheduling data. If \p Op has the same (or
/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
/// \p OpValue.
Value *isOneOf(Value *Op) const {
auto *I = dyn_cast<Instruction>(Op);
if (I && isOpcodeOrAlt(I))
return Op;
return MainOp;
}
void setOperations(const InstructionsState &S) {
MainOp = S.MainOp;
AltOp = S.AltOp;
}
Instruction *getMainOp() const {
return MainOp;
}
Instruction *getAltOp() const {
return AltOp;
}
/// The main/alternate opcodes for the list of instructions.
unsigned getOpcode() const {
return MainOp ? MainOp->getOpcode() : 0;
}
unsigned getAltOpcode() const {
return AltOp ? AltOp->getOpcode() : 0;
}
/// Update operations state of this entry if reorder occurred.
bool updateStateIfReorder() {
if (ReorderIndices.empty())
return false;
InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
setOperations(S);
return true;
}
#ifndef NDEBUG
/// Debug printer.
LLVM_DUMP_METHOD void dump() const {
dbgs() << Idx << ".\n";
for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
dbgs() << "Operand " << OpI << ":\n";
for (const Value *V : Operands[OpI])
dbgs().indent(2) << *V << "\n";
}
dbgs() << "Scalars: \n";
for (Value *V : Scalars)
dbgs().indent(2) << *V << "\n";
dbgs() << "State: ";
switch (State) {
case Vectorize:
dbgs() << "Vectorize\n";
break;
case NeedToGather:
dbgs() << "NeedToGather\n";
break;
}
dbgs() << "MainOp: ";
if (MainOp)
dbgs() << *MainOp << "\n";
else
dbgs() << "NULL\n";
dbgs() << "AltOp: ";
if (AltOp)
dbgs() << *AltOp << "\n";
else
dbgs() << "NULL\n";
dbgs() << "VectorizedValue: ";
if (VectorizedValue)
dbgs() << *VectorizedValue << "\n";
else
dbgs() << "NULL\n";
dbgs() << "ReuseShuffleIndices: ";
if (ReuseShuffleIndices.empty())
dbgs() << "Emtpy";
else
for (unsigned ReuseIdx : ReuseShuffleIndices)
dbgs() << ReuseIdx << ", ";
dbgs() << "\n";
dbgs() << "ReorderIndices: ";
for (unsigned ReorderIdx : ReorderIndices)
dbgs() << ReorderIdx << ", ";
dbgs() << "\n";
dbgs() << "UserTreeIndices: ";
for (const auto &EInfo : UserTreeIndices)
dbgs() << EInfo << ", ";
dbgs() << "\n";
}
#endif
};
/// Create a new VectorizableTree entry.
TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
const InstructionsState &S,
const EdgeInfo &UserTreeIdx,
ArrayRef<unsigned> ReuseShuffleIndices = None,
ArrayRef<unsigned> ReorderIndices = None) {
bool Vectorized = (bool)Bundle;
VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
TreeEntry *Last = VectorizableTree.back().get();
Last->Idx = VectorizableTree.size() - 1;
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
ReuseShuffleIndices.end());
Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
Last->setOperations(S);
if (Vectorized) {
for (Value *V : VL) {
assert(!getTreeEntry(V) && "Scalar already in tree!");
ScalarToTreeEntry[V] = Last;
}
// Update the scheduler bundle to point to this TreeEntry.
unsigned Lane = 0;
for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
BundleMember = BundleMember->NextInBundle) {
BundleMember->TE = Last;
BundleMember->Lane = Lane;
++Lane;
}
assert((!Bundle.getValue() || Lane == VL.size()) &&
"Bundle and VL out of sync");
} else {
MustGather.insert(VL.begin(), VL.end());
}
if (UserTreeIdx.UserTE)
Last->UserTreeIndices.push_back(UserTreeIdx);
return Last;
}
/// -- Vectorization State --
/// Holds all of the tree entries.
TreeEntry::VecTreeTy VectorizableTree;
#ifndef NDEBUG
/// Debug printer.
LLVM_DUMP_METHOD void dumpVectorizableTree() const {
for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
VectorizableTree[Id]->dump();
dbgs() << "\n";
}
}
#endif
TreeEntry *getTreeEntry(Value *V) {
auto I = ScalarToTreeEntry.find(V);
if (I != ScalarToTreeEntry.end())
return I->second;
return nullptr;
}
const TreeEntry *getTreeEntry(Value *V) const {
auto I = ScalarToTreeEntry.find(V);
if (I != ScalarToTreeEntry.end())
return I->second;
return nullptr;
}
/// Maps a specific scalar to its tree entry.
SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
/// Maps a value to the proposed vectorizable size.
SmallDenseMap<Value *, unsigned> InstrElementSize;
/// A list of scalars that we found that we need to keep as scalars.
ValueSet MustGather;
/// This POD struct describes one external user in the vectorized tree.
struct ExternalUser {
ExternalUser(Value *S, llvm::User *U, int L)
: Scalar(S), User(U), Lane(L) {}
// Which scalar in our function.
Value *Scalar;
// Which user that uses the scalar.
llvm::User *User;
// Which lane does the scalar belong to.
int Lane;
};
using UserList = SmallVector<ExternalUser, 16>;
/// Checks if two instructions may access the same memory.
///
/// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
/// is invariant in the calling loop.
bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
Instruction *Inst2) {
// First check if the result is already in the cache.
AliasCacheKey key = std::make_pair(Inst1, Inst2);
Optional<bool> &result = AliasCache[key];
if (result.hasValue()) {
return result.getValue();
}
MemoryLocation Loc2 = getLocation(Inst2, AA);
bool aliased = true;
if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
// Do the alias check.
aliased = AA->alias(Loc1, Loc2);
}
// Store the result in the cache.
result = aliased;
return aliased;
}
using AliasCacheKey = std::pair<Instruction *, Instruction *>;
/// Cache for alias results.
/// TODO: consider moving this to the AliasAnalysis itself.
DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
/// Removes an instruction from its block and eventually deletes it.
/// It's like Instruction::eraseFromParent() except that the actual deletion
/// is delayed until BoUpSLP is destructed.
/// This is required to ensure that there are no incorrect collisions in the
/// AliasCache, which can happen if a new instruction is allocated at the
/// same address as a previously deleted instruction.
void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
}
/// Temporary store for deleted instructions. Instructions will be deleted
/// eventually when the BoUpSLP is destructed.
DenseMap<Instruction *, bool> DeletedInstructions;
/// A list of values that need to extracted out of the tree.
/// This list holds pairs of (Internal Scalar : External User). External User
/// can be nullptr, it means that this Internal Scalar will be used later,
/// after vectorization.
UserList ExternalUses;
/// Values used only by @llvm.assume calls.
SmallPtrSet<const Value *, 32> EphValues;
/// Holds all of the instructions that we gathered.
SetVector<Instruction *> GatherSeq;
/// A list of blocks that we are going to CSE.
SetVector<BasicBlock *> CSEBlocks;
/// Contains all scheduling relevant data for an instruction.
/// A ScheduleData either represents a single instruction or a member of an
/// instruction bundle (= a group of instructions which is combined into a
/// vector instruction).
struct ScheduleData {
// The initial value for the dependency counters. It means that the
// dependencies are not calculated yet.
enum { InvalidDeps = -1 };
ScheduleData() = default;
void init(int BlockSchedulingRegionID, Value *OpVal) {
FirstInBundle = this;
NextInBundle = nullptr;
NextLoadStore = nullptr;
IsScheduled = false;
SchedulingRegionID = BlockSchedulingRegionID;
UnscheduledDepsInBundle = UnscheduledDeps;
clearDependencies();
OpValue = OpVal;
TE = nullptr;
Lane = -1;
}
/// Returns true if the dependency information has been calculated.
bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
/// Returns true for single instructions and for bundle representatives
/// (= the head of a bundle).
bool isSchedulingEntity() const { return FirstInBundle == this; }
/// Returns true if it represents an instruction bundle and not only a
/// single instruction.
bool isPartOfBundle() const {
return NextInBundle != nullptr || FirstInBundle != this;
}
/// Returns true if it is ready for scheduling, i.e. it has no more
/// unscheduled depending instructions/bundles.
bool isReady() const {
assert(isSchedulingEntity() &&
"can't consider non-scheduling entity for ready list");
return UnscheduledDepsInBundle == 0 && !IsScheduled;
}
/// Modifies the number of unscheduled dependencies, also updating it for
/// the whole bundle.
int incrementUnscheduledDeps(int Incr) {
UnscheduledDeps += Incr;
return FirstInBundle->UnscheduledDepsInBundle += Incr;
}
/// Sets the number of unscheduled dependencies to the number of
/// dependencies.
void resetUnscheduledDeps() {
incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
}
/// Clears all dependency information.
void clearDependencies() {
Dependencies = InvalidDeps;
resetUnscheduledDeps();
MemoryDependencies.clear();
}
void dump(raw_ostream &os) const {
if (!isSchedulingEntity()) {
os << "/ " << *Inst;
} else if (NextInBundle) {
os << '[' << *Inst;
ScheduleData *SD = NextInBundle;
while (SD) {
os << ';' << *SD->Inst;
SD = SD->NextInBundle;
}
os << ']';
} else {
os << *Inst;
}
}
Instruction *Inst = nullptr;
/// Points to the head in an instruction bundle (and always to this for
/// single instructions).
ScheduleData *FirstInBundle = nullptr;
/// Single linked list of all instructions in a bundle. Null if it is a
/// single instruction.
ScheduleData *NextInBundle = nullptr;
/// Single linked list of all memory instructions (e.g. load, store, call)
/// in the block - until the end of the scheduling region.
ScheduleData *NextLoadStore = nullptr;
/// The dependent memory instructions.
/// This list is derived on demand in calculateDependencies().
SmallVector<ScheduleData *, 4> MemoryDependencies;
/// This ScheduleData is in the current scheduling region if this matches
/// the current SchedulingRegionID of BlockScheduling.
int SchedulingRegionID = 0;
/// Used for getting a "good" final ordering of instructions.
int SchedulingPriority = 0;
/// The number of dependencies. Constitutes of the number of users of the
/// instruction plus the number of dependent memory instructions (if any).
/// This value is calculated on demand.
/// If InvalidDeps, the number of dependencies is not calculated yet.
int Dependencies = InvalidDeps;
/// The number of dependencies minus the number of dependencies of scheduled
/// instructions. As soon as this is zero, the instruction/bundle gets ready
/// for scheduling.
/// Note that this is negative as long as Dependencies is not calculated.
int UnscheduledDeps = InvalidDeps;
/// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
/// single instructions.
int UnscheduledDepsInBundle = InvalidDeps;
/// True if this instruction is scheduled (or considered as scheduled in the
/// dry-run).
bool IsScheduled = false;
/// Opcode of the current instruction in the schedule data.
Value *OpValue = nullptr;
/// The TreeEntry that this instruction corresponds to.
TreeEntry *TE = nullptr;
/// The lane of this node in the TreeEntry.
int Lane = -1;
};
#ifndef NDEBUG
friend inline raw_ostream &operator<<(raw_ostream &os,
const BoUpSLP::ScheduleData &SD) {
SD.dump(os);
return os;
}
#endif
friend struct GraphTraits<BoUpSLP *>;
friend struct DOTGraphTraits<BoUpSLP *>;
/// Contains all scheduling data for a basic block.
struct BlockScheduling {
BlockScheduling(BasicBlock *BB)
: BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
void clear() {
ReadyInsts.clear();
ScheduleStart = nullptr;
ScheduleEnd = nullptr;
FirstLoadStoreInRegion = nullptr;
LastLoadStoreInRegion = nullptr;
// Reduce the maximum schedule region size by the size of the
// previous scheduling run.
ScheduleRegionSizeLimit -= ScheduleRegionSize;
if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
ScheduleRegionSizeLimit = MinScheduleRegionSize;
ScheduleRegionSize = 0;
// Make a new scheduling region, i.e. all existing ScheduleData is not
// in the new region yet.
++SchedulingRegionID;
}
ScheduleData *getScheduleData(Value *V) {
ScheduleData *SD = ScheduleDataMap[V];
if (SD && SD->SchedulingRegionID == SchedulingRegionID)
return SD;
return nullptr;
}
ScheduleData *getScheduleData(Value *V, Value *Key) {
if (V == Key)
return getScheduleData(V);
auto I = ExtraScheduleDataMap.find(V);
if (I != ExtraScheduleDataMap.end()) {
ScheduleData *SD = I->second[Key];
if (SD && SD->SchedulingRegionID == SchedulingRegionID)
return SD;
}
return nullptr;
}
bool isInSchedulingRegion(ScheduleData *SD) const {
return SD->SchedulingRegionID == SchedulingRegionID;
}
/// Marks an instruction as scheduled and puts all dependent ready
/// instructions into the ready-list.
template <typename ReadyListType>
void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
SD->IsScheduled = true;
LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
ScheduleData *BundleMember = SD;
while (BundleMember) {
if (BundleMember->Inst != BundleMember->OpValue) {
BundleMember = BundleMember->NextInBundle;
continue;
}
// Handle the def-use chain dependencies.
// Decrement the unscheduled counter and insert to ready list if ready.
auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
if (OpDef && OpDef->hasValidDependencies() &&
OpDef->incrementUnscheduledDeps(-1) == 0) {
// There are no more unscheduled dependencies after
// decrementing, so we can put the dependent instruction
// into the ready list.
ScheduleData *DepBundle = OpDef->FirstInBundle;
assert(!DepBundle->IsScheduled &&
"already scheduled bundle gets ready");
ReadyList.insert(DepBundle);
LLVM_DEBUG(dbgs()
<< "SLP: gets ready (def): " << *DepBundle << "\n");
}
});
};
// If BundleMember is a vector bundle, its operands may have been
// reordered duiring buildTree(). We therefore need to get its operands
// through the TreeEntry.
if (TreeEntry *TE = BundleMember->TE) {
int Lane = BundleMember->Lane;
assert(Lane >= 0 && "Lane not set");
// Since vectorization tree is being built recursively this assertion
// ensures that the tree entry has all operands set before reaching
// this code. Couple of exceptions known at the moment are extracts
// where their second (immediate) operand is not added. Since
// immediates do not affect scheduler behavior this is considered
// okay.
auto *In = TE->getMainOp();
assert(In &&
(isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
In->getNumOperands() == TE->getNumOperands()) &&
"Missed TreeEntry operands?");
(void)In; // fake use to avoid build failure when assertions disabled
for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
OpIdx != NumOperands; ++OpIdx)
if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
DecrUnsched(I);
} else {
// If BundleMember is a stand-alone instruction, no operand reordering
// has taken place, so we directly access its operands.
for (Use &U : BundleMember->Inst->operands())
if (auto *I = dyn_cast<Instruction>(U.get()))
DecrUnsched(I);
}
// Handle the memory dependencies.
for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
// There are no more unscheduled dependencies after decrementing,
// so we can put the dependent instruction into the ready list.
ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
assert(!DepBundle->IsScheduled &&
"already scheduled bundle gets ready");
ReadyList.insert(DepBundle);
LLVM_DEBUG(dbgs()
<< "SLP: gets ready (mem): " << *DepBundle << "\n");
}
}
BundleMember = BundleMember->NextInBundle;
}
}
void doForAllOpcodes(Value *V,
function_ref<void(ScheduleData *SD)> Action) {
if (ScheduleData *SD = getScheduleData(V))
Action(SD);
auto I = ExtraScheduleDataMap.find(V);
if (I != ExtraScheduleDataMap.end())
for (auto &P : I->second)
if (P.second->SchedulingRegionID == SchedulingRegionID)
Action(P.second);
}
/// Put all instructions into the ReadyList which are ready for scheduling.
template <typename ReadyListType>
void initialFillReadyList(ReadyListType &ReadyList) {
for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
doForAllOpcodes(I, [&](ScheduleData *SD) {
if (SD->isSchedulingEntity() && SD->isReady()) {
ReadyList.insert(SD);
LLVM_DEBUG(dbgs()
<< "SLP: initially in ready list: " << *I << "\n");
}
});
}
}
/// Checks if a bundle of instructions can be scheduled, i.e. has no
/// cyclic dependencies. This is only a dry-run, no instructions are
/// actually moved at this stage.
/// \returns the scheduling bundle. The returned Optional value is non-None
/// if \p VL is allowed to be scheduled.
Optional<ScheduleData *>
tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
const InstructionsState &S);
/// Un-bundles a group of instructions.
void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
/// Allocates schedule data chunk.
ScheduleData *allocateScheduleDataChunks();
/// Extends the scheduling region so that V is inside the region.
/// \returns true if the region size is within the limit.
bool extendSchedulingRegion(Value *V, const InstructionsState &S);
/// Initialize the ScheduleData structures for new instructions in the
/// scheduling region.
void initScheduleData(Instruction *FromI, Instruction *ToI,
ScheduleData *PrevLoadStore,
ScheduleData *NextLoadStore);
/// Updates the dependency information of a bundle and of all instructions/
/// bundles which depend on the original bundle.
void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
BoUpSLP *SLP);
/// Sets all instruction in the scheduling region to un-scheduled.
void resetSchedule();
BasicBlock *BB;
/// Simple memory allocation for ScheduleData.
std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
/// The size of a ScheduleData array in ScheduleDataChunks.
int ChunkSize;
/// The allocator position in the current chunk, which is the last entry
/// of ScheduleDataChunks.
int ChunkPos;
/// Attaches ScheduleData to Instruction.
/// Note that the mapping survives during all vectorization iterations, i.e.
/// ScheduleData structures are recycled.
DenseMap<Value *, ScheduleData *> ScheduleDataMap;
/// Attaches ScheduleData to Instruction with the leading key.
DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
ExtraScheduleDataMap;
struct ReadyList : SmallVector<ScheduleData *, 8> {
void insert(ScheduleData *SD) { push_back(SD); }
};
/// The ready-list for scheduling (only used for the dry-run).
ReadyList ReadyInsts;
/// The first instruction of the scheduling region.
Instruction *ScheduleStart = nullptr;
/// The first instruction _after_ the scheduling region.
Instruction *ScheduleEnd = nullptr;
/// The first memory accessing instruction in the scheduling region
/// (can be null).
ScheduleData *FirstLoadStoreInRegion = nullptr;
/// The last memory accessing instruction in the scheduling region
/// (can be null).
ScheduleData *LastLoadStoreInRegion = nullptr;
/// The current size of the scheduling region.
int ScheduleRegionSize = 0;
/// The maximum size allowed for the scheduling region.
int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
/// The ID of the scheduling region. For a new vectorization iteration this
/// is incremented which "removes" all ScheduleData from the region.
// Make sure that the initial SchedulingRegionID is greater than the
// initial SchedulingRegionID in ScheduleData (which is 0).
int SchedulingRegionID = 1;
};
/// Attaches the BlockScheduling structures to basic blocks.
MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
/// Performs the "real" scheduling. Done before vectorization is actually
/// performed in a basic block.
void scheduleBlock(BlockScheduling *BS);
/// List of users to ignore during scheduling and that don't need extracting.
ArrayRef<Value *> UserIgnoreList;
/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
/// sorted SmallVectors of unsigned.
struct OrdersTypeDenseMapInfo {
static OrdersType getEmptyKey() {
OrdersType V;
V.push_back(~1U);
return V;
}
static OrdersType getTombstoneKey() {
OrdersType V;
V.push_back(~2U);
return V;
}
static unsigned getHashValue(const OrdersType &V) {
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
}
static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
return LHS == RHS;
}
};
/// Contains orders of operations along with the number of bundles that have
/// operations in this order. It stores only those orders that require
/// reordering, if reordering is not required it is counted using \a
/// NumOpsWantToKeepOriginalOrder.
DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
/// Number of bundles that do not require reordering.
unsigned NumOpsWantToKeepOriginalOrder = 0;
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
TargetTransformInfo *TTI;
TargetLibraryInfo *TLI;
AAResults *AA;
LoopInfo *LI;
DominatorTree *DT;
AssumptionCache *AC;
DemandedBits *DB;
const DataLayout *DL;
OptimizationRemarkEmitter *ORE;
unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
unsigned MinVecRegSize; // Set by cl::opt (default: 128).
/// Instruction builder to construct the vectorized tree.
IRBuilder<> Builder;
/// A map of scalar integer values to the smallest bit width with which they
/// can legally be represented. The values map to (width, signed) pairs,
/// where "width" indicates the minimum bit width and "signed" is True if the
/// value must be signed-extended, rather than zero-extended, back to its
/// original width.
MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
};
} // end namespace slpvectorizer
template <> struct GraphTraits<BoUpSLP *> {
using TreeEntry = BoUpSLP::TreeEntry;
/// NodeRef has to be a pointer per the GraphWriter.
using NodeRef = TreeEntry *;
using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
/// Add the VectorizableTree to the index iterator to be able to return
/// TreeEntry pointers.
struct ChildIteratorType
: public iterator_adaptor_base<
ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
ContainerTy &VectorizableTree;
ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
ContainerTy &VT)
: ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
NodeRef operator*() { return I->UserTE; }
};
static NodeRef getEntryNode(BoUpSLP &R) {
return R.VectorizableTree[0].get();
}
static ChildIteratorType child_begin(NodeRef N) {
return {N->UserTreeIndices.begin(), N->Container};
}
static ChildIteratorType child_end(NodeRef N) {
return {N->UserTreeIndices.end(), N->Container};
}
/// For the node iterator we just need to turn the TreeEntry iterator into a
/// TreeEntry* iterator so that it dereferences to NodeRef.
class nodes_iterator {
using ItTy = ContainerTy::iterator;
ItTy It;
public:
nodes_iterator(const ItTy &It2) : It(It2) {}
NodeRef operator*() { return It->get(); }
nodes_iterator operator++() {
++It;
return *this;
}
bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
};
static nodes_iterator nodes_begin(BoUpSLP *R) {
return nodes_iterator(R->VectorizableTree.begin());
}
static nodes_iterator nodes_end(BoUpSLP *R) {
return nodes_iterator(R->VectorizableTree.end());
}
static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
};
template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
using TreeEntry = BoUpSLP::TreeEntry;
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
std::string Str;
raw_string_ostream OS(Str);
if (isSplat(Entry->Scalars)) {
OS << "<splat> " << *Entry->Scalars[0];
return Str;
}
for (auto V : Entry->Scalars) {
OS << *V;
if (std::any_of(
R->ExternalUses.begin(), R->ExternalUses.end(),
[&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
OS << " <extract>";
OS << "\n";
}
return Str;
}
static std::string getNodeAttributes(const TreeEntry *Entry,
const BoUpSLP *) {
if (Entry->State == TreeEntry::NeedToGather)
return "color=red";
return "";
}
};
} // end namespace llvm
BoUpSLP::~BoUpSLP() {
for (const auto &Pair : DeletedInstructions) {
// Replace operands of ignored instructions with Undefs in case if they were
// marked for deletion.
if (Pair.getSecond()) {
Value *Undef = UndefValue::get(Pair.getFirst()->getType());
Pair.getFirst()->replaceAllUsesWith(Undef);
}
Pair.getFirst()->dropAllReferences();
}
for (const auto &Pair : DeletedInstructions) {
assert(Pair.getFirst()->use_empty() &&
"trying to erase instruction with users.");
Pair.getFirst()->eraseFromParent();
}
assert(!verifyFunction(*F, &dbgs()));
}
void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
for (auto *V : AV) {
if (auto *I = dyn_cast<Instruction>(V))
eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
};
}
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst) {
ExtraValueToDebugLocsMap ExternallyUsedValues;
buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
}
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ExtraValueToDebugLocsMap &ExternallyUsedValues,
ArrayRef<Value *> UserIgnoreLst) {
deleteTree();
UserIgnoreList = UserIgnoreLst;
if (!allSameType(Roots))
return;
buildTree_rec(Roots, 0, EdgeInfo());
// Collect the values that we need to extract from the tree.
for (auto &TEPtr : VectorizableTree) {
TreeEntry *Entry = TEPtr.get();
// No need to handle users of gathered values.
if (Entry->State == TreeEntry::NeedToGather)
continue;
// For each lane:
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
Value *Scalar = Entry->Scalars[Lane];
int FoundLane = Lane;
if (!Entry->ReuseShuffleIndices.empty()) {
FoundLane =
std::distance(Entry->ReuseShuffleIndices.begin(),
llvm::find(Entry->ReuseShuffleIndices, FoundLane));
}
// Check if the scalar is externally used as an extra arg.
auto ExtI = ExternallyUsedValues.find(Scalar);
if (ExtI != ExternallyUsedValues.end()) {
LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n");
ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
}
for (User *U : Scalar->users()) {
LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
Instruction *UserInst = dyn_cast<Instruction>(U);
if (!UserInst)
continue;
// Skip in-tree scalars that become vectors
if (TreeEntry *UseEntry = getTreeEntry(U)) {
Value *UseScalar = UseEntry->Scalars[0];
// Some in-tree scalars will remain as scalar in vectorized
// instructions. If that is the case, the one in Lane 0 will
// be used.
if (UseScalar != U ||
!InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
<< ".\n");
assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
continue;
}
}
// Ignore users in the user ignore list.
if (is_contained(UserIgnoreList, UserInst))
continue;
LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
<< Lane << " from " << *Scalar << ".\n");
ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
}
}
}
}
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
const EdgeInfo &UserTreeIdx) {
assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
InstructionsState S = getSameOpcode(VL);
if (Depth == RecursionMaxDepth) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Don't handle vectors.
if (S.OpValue->getType()->isVectorTy()) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
if (SI->getValueOperand()->getType()->isVectorTy()) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// If all of the operands are identical or constant we have a simple solution.
if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// We now know that this is a vector of instructions of the same type from
// the same block.
// Don't vectorize ephemeral values.
for (Value *V : VL) {
if (EphValues.count(V)) {
LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
<< ") is ephemeral.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
}
// Check if this is a duplicate of another entry.
if (TreeEntry *E = getTreeEntry(S.OpValue)) {
LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
if (!E->isSame(VL)) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Record the reuse of the tree node. FIXME, currently this is only used to
// properly draw the graph rather than for the actual vectorization.
E->UserTreeIndices.push_back(UserTreeIdx);
LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
<< ".\n");
return;
}
// Check that none of the instructions in the bundle are already in the tree.
for (Value *V : VL) {
auto *I = dyn_cast<Instruction>(V);
if (!I)
continue;
if (getTreeEntry(I)) {
LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
<< ") is already in tree.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
}
// If any of the scalars is marked as a value that needs to stay scalar, then
// we need to gather the scalars.
// The reduction nodes (stored in UserIgnoreList) also should stay scalar.
for (Value *V : VL) {
if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
}
// Check that all of the users of the scalars that we want to vectorize are
// schedulable.
auto *VL0 = cast<Instruction>(S.OpValue);
BasicBlock *BB = VL0->getParent();
if (!DT->isReachableFromEntry(BB)) {
// Don't go into unreachable blocks. They may contain instructions with
// dependency cycles which confuse the final scheduling.
LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
// Check that every instruction appears once in this bundle.
SmallVector<unsigned, 4> ReuseShuffleIndicies;
SmallVector<Value *, 4> UniqueValues;
DenseMap<Value *, unsigned> UniquePositions;
for (Value *V : VL) {
auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
ReuseShuffleIndicies.emplace_back(Res.first->second);
if (Res.second)
UniqueValues.emplace_back(V);
}
size_t NumUniqueScalarValues = UniqueValues.size();
if (NumUniqueScalarValues == VL.size()) {
ReuseShuffleIndicies.clear();
} else {
LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
if (NumUniqueScalarValues <= 1 ||
!llvm::isPowerOf2_32(NumUniqueScalarValues)) {
LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
return;
}
VL = UniqueValues;
}
auto &BSRef = BlocksSchedules[BB];
if (!BSRef)
BSRef = std::make_unique<BlockScheduling>(BB);
BlockScheduling &BS = *BSRef.get();
Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
if (!Bundle) {
LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
assert((!BS.getScheduleData(VL0) ||
!BS.getScheduleData(VL0)->isPartOfBundle()) &&
"tryScheduleBundle should cancelScheduling on failure");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
unsigned ShuffleOrOp = S.isAltShuffle() ?
(unsigned) Instruction::ShuffleVector : S.getOpcode();
switch (ShuffleOrOp) {
case Instruction::PHI: {
auto *PH = cast<PHINode>(VL0);
// Check for terminator values (e.g. invoke).
for (Value *V : VL)
for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
Instruction *Term = dyn_cast<Instruction>(
cast<PHINode>(V)->getIncomingValueForBlock(
PH->getIncomingBlock(I)));
if (Term && Term->isTerminator()) {
LLVM_DEBUG(dbgs()
<< "SLP: Need to swizzle PHINodes (terminator use).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
TreeEntry *TE =
newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
// Keeps the reordered operands to avoid code duplication.
SmallVector<ValueList, 2> OperandsVec;
for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
PH->getIncomingBlock(I)));
TE->setOperand(I, Operands);
OperandsVec.push_back(Operands);
}
for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
return;
}
case Instruction::ExtractValue:
case Instruction::ExtractElement: {
OrdersType CurrentOrder;
bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
if (Reuse) {
LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
++NumOpsWantToKeepOriginalOrder;
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
// This is a special case, as it does not gather, but at the same time
// we are not extending buildTree_rec() towards the operands.
ValueList Op0;
Op0.assign(VL.size(), VL0->getOperand(0));
VectorizableTree.back()->setOperand(0, Op0);
return;
}
if (!CurrentOrder.empty()) {
LLVM_DEBUG({
dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order";
for (unsigned Idx : CurrentOrder)
dbgs() << " " << Idx;
dbgs() << "\n";
});
// Insert new order with initial value 0, if it does not exist,
// otherwise return the iterator to the existing one.
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies, CurrentOrder);
findRootOrder(CurrentOrder);
++NumOpsWantToKeepOrder[CurrentOrder];
// This is a special case, as it does not gather, but at the same time
// we are not extending buildTree_rec() towards the operands.
ValueList Op0;
Op0.assign(VL.size(), VL0->getOperand(0));
VectorizableTree.back()->setOperand(0, Op0);
return;
}
LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
BS.cancelScheduling(VL, VL0);
return;
}
case Instruction::Load: {
// Check that a vectorized load would load the same memory as a scalar
// load. For example, we don't want to vectorize loads that are smaller
// than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
// treats loading/storing it as an i8 struct. If we vectorize loads/stores
// from such a struct, we read/write packed bits disagreeing with the
// unvectorized version.
Type *ScalarTy = VL0->getType();
if (DL->getTypeSizeInBits(ScalarTy) !=
DL->getTypeAllocSizeInBits(ScalarTy)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
return;
}
// Make sure all loads in the bundle are simple - we can't vectorize
// atomic or volatile loads.
SmallVector<Value *, 4> PointerOps(VL.size());
auto POIter = PointerOps.begin();
for (Value *V : VL) {
auto *L = cast<LoadInst>(V);
if (!L->isSimple()) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
return;
}
*POIter = L->getPointerOperand();
++POIter;
}
OrdersType CurrentOrder;
// Check the order of pointer operands.
if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
Value *Ptr0;
Value *PtrN;
if (CurrentOrder.empty()) {
Ptr0 = PointerOps.front();
PtrN = PointerOps.back();
} else {
Ptr0 = PointerOps[CurrentOrder.front()];
PtrN = PointerOps[CurrentOrder.back()];
}
const SCEV *Scev0 = SE->getSCEV(Ptr0);
const SCEV *ScevN = SE->getSCEV(PtrN);
const auto *Diff =
dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
uint64_t Size = DL->getTypeAllocSize(ScalarTy);
// Check that the sorted loads are consecutive.
if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
if (CurrentOrder.empty()) {
// Original loads are consecutive and does not require reordering.
++NumOpsWantToKeepOriginalOrder;
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
UserTreeIdx, ReuseShuffleIndicies);
TE->setOperandsInOrder();
LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
} else {
// Need to reorder.
TreeEntry *TE =
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies, CurrentOrder);
TE->setOperandsInOrder();
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
findRootOrder(CurrentOrder);
++NumOpsWantToKeepOrder[CurrentOrder];
}
return;
}
}
LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
Type *SrcTy = VL0->getOperand(0)->getType();
for (Value *V : VL) {
Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
if (Ty != SrcTy || !isValidElementType(Ty)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs()
<< "SLP: Gathering casts with different src types.\n");
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
TE->setOperandsInOrder();
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Check that all of the compares have the same predicate.
CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
Type *ComparedTy = VL0->getOperand(0)->getType();
for (Value *V : VL) {
CmpInst *Cmp = cast<CmpInst>(V);
if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
Cmp->getOperand(0)->getType() != ComparedTy) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs()
<< "SLP: Gathering cmp with different predicate.\n");
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
ValueList Left, Right;
if (cast<CmpInst>(VL0)->isCommutative()) {
// Commutative predicate - collect + sort operands of the instructions
// so that each side is more likely to have the same opcode.
assert(P0 == SwapP0 && "Commutative Predicate mismatch");
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
} else {
// Collect operands - commute if it uses the swapped predicate.
for (Value *V : VL) {
auto *Cmp = cast<CmpInst>(V);
Value *LHS = Cmp->getOperand(0);
Value *RHS = Cmp->getOperand(1);
if (Cmp->getPredicate() != P0)
std::swap(LHS, RHS);
Left.push_back(LHS);
Right.push_back(RHS);
}
}
TE->setOperand(0, Left);
TE->setOperand(1, Right);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
}
case Instruction::Select:
case Instruction::FNeg:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
// Sort operands of the instructions so that each side is more likely to
// have the same opcode.
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
ValueList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
TE->setOperand(0, Left);
TE->setOperand(1, Right);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
}
TE->setOperandsInOrder();
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::GetElementPtr: {
// We don't combine GEPs with complicated (nested) indexing.
for (Value *V : VL) {
if (cast<Instruction>(V)->getNumOperands() != 2) {
LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
// We can't combine several GEPs into one vector if they operate on
// different types.
Type *Ty0 = VL0->getOperand(0)->getType();
for (Value *V : VL) {
Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
if (Ty0 != CurTy) {
LLVM_DEBUG(dbgs()
<< "SLP: not-vectorizable GEP (different types).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
// We don't combine GEPs with non-constant indexes.
Type *Ty1 = VL0->getOperand(1)->getType();
for (Value *V : VL) {
auto Op = cast<Instruction>(V)->getOperand(1);
if (!isa<ConstantInt>(Op) ||
(Op->getType() != Ty1 &&
Op->getType()->getScalarSizeInBits() >
DL->getIndexSizeInBits(
V->getType()->getPointerAddressSpace()))) {
LLVM_DEBUG(dbgs()
<< "SLP: not-vectorizable GEP (non-constant indexes).\n");
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
TE->setOperandsInOrder();
for (unsigned i = 0, e = 2; i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::Store: {
// Check if the stores are consecutive or if we need to swizzle them.
llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
// Make sure all stores in the bundle are simple - we can't vectorize
// atomic or volatile stores.
SmallVector<Value *, 4> PointerOps(VL.size());
ValueList Operands(VL.size());
auto POIter = PointerOps.begin();
auto OIter = Operands.begin();
for (Value *V : VL) {
auto *SI = cast<StoreInst>(V);
if (!SI->isSimple()) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
return;
}
*POIter = SI->getPointerOperand();
*OIter = SI->getValueOperand();
++POIter;
++OIter;
}
OrdersType CurrentOrder;
// Check the order of pointer operands.
if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
Value *Ptr0;
Value *PtrN;
if (CurrentOrder.empty()) {
Ptr0 = PointerOps.front();
PtrN = PointerOps.back();
} else {
Ptr0 = PointerOps[CurrentOrder.front()];
PtrN = PointerOps[CurrentOrder.back()];
}
const SCEV *Scev0 = SE->getSCEV(Ptr0);
const SCEV *ScevN = SE->getSCEV(PtrN);
const auto *Diff =
dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
uint64_t Size = DL->getTypeAllocSize(ScalarTy);
// Check that the sorted pointer operands are consecutive.
if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
if (CurrentOrder.empty()) {
// Original stores are consecutive and does not require reordering.
++NumOpsWantToKeepOriginalOrder;
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
UserTreeIdx, ReuseShuffleIndicies);
TE->setOperandsInOrder();
buildTree_rec(Operands, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
} else {
TreeEntry *TE =
newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies, CurrentOrder);
TE->setOperandsInOrder();
buildTree_rec(Operands, Depth + 1, {TE, 0});
LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
findRootOrder(CurrentOrder);
++NumOpsWantToKeepOrder[CurrentOrder];
}
return;
}
}
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
return;
}
case Instruction::Call: {
// Check if the calls are all to the same vectorizable intrinsic or
// library function.
CallInst *CI = cast<CallInst>(VL0);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
VFShape Shape = VFShape::get(
*CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
false /*HasGlobalPred*/);
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
if (!VecFunc && !isTriviallyVectorizable(ID)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
return;
}
Function *F = CI->getCalledFunction();
unsigned NumArgs = CI->getNumArgOperands();
SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
for (unsigned j = 0; j != NumArgs; ++j)
if (hasVectorInstrinsicScalarOpd(ID, j))
ScalarArgs[j] = CI->getArgOperand(j);
for (Value *V : VL) {
CallInst *CI2 = dyn_cast<CallInst>(V);
if (!CI2 || CI2->getCalledFunction() != F ||
getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
(VecFunc &&
VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
!CI->hasIdenticalOperandBundleSchema(*CI2)) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
<< "\n");
return;
}
// Some intrinsics have scalar arguments and should be same in order for
// them to be vectorized.
for (unsigned j = 0; j != NumArgs; ++j) {
if (hasVectorInstrinsicScalarOpd(ID, j)) {
Value *A1J = CI2->getArgOperand(j);
if (ScalarArgs[j] != A1J) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
<< " argument " << ScalarArgs[j] << "!=" << A1J
<< "\n");
return;
}
}
}
// Verify that the bundle operands are identical between the two calls.
if (CI->hasOperandBundles() &&
!std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
CI->op_begin() + CI->getBundleOperandsEndIndex(),
CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n');
return;
}
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
TE->setOperandsInOrder();
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL) {
auto *CI2 = cast<CallInst>(V);
Operands.push_back(CI2->getArgOperand(i));
}
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
case Instruction::ShuffleVector: {
// If this is not an alternate sequence of opcode like add-sub
// then do not vectorize this instruction.
if (!S.isAltShuffle()) {
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
return;
}
TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
// Reorder operands if reordering would enable vectorization.
if (isa<BinaryOperator>(VL0)) {
ValueList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
TE->setOperand(0, Left);
TE->setOperand(1, Right);
buildTree_rec(Left, Depth + 1, {TE, 0});
buildTree_rec(Right, Depth + 1, {TE, 1});
return;
}
TE->setOperandsInOrder();
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (Value *V : VL)
Operands.push_back(cast<Instruction>(V)->getOperand(i));
buildTree_rec(Operands, Depth + 1, {TE, i});
}
return;
}
default:
BS.cancelScheduling(VL, VL0);
newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
ReuseShuffleIndicies);
LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
return;
}
}
unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
unsigned N = 1;
Type *EltTy = T;
while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
isa<VectorType>(EltTy)) {
if (auto *ST = dyn_cast<StructType>(EltTy)) {
// Check that struct is homogeneous.
for (const auto *Ty : ST->elements())
if (Ty != *ST->element_begin())
return 0;
N *= ST->getNumElements();
EltTy = *ST->element_begin();
} else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
N *= AT->getNumElements();
EltTy = AT->getElementType();
} else {
auto *VT = cast<FixedVectorType>(EltTy);
N *= VT->getNumElements();
EltTy = VT->getElementType();
}
}
if (!isValidElementType(EltTy))
return 0;
uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
return 0;
return N;
}
bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
SmallVectorImpl<unsigned> &CurrentOrder) const {
Instruction *E0 = cast<Instruction>(OpValue);
assert(E0->getOpcode() == Instruction::ExtractElement ||
E0->getOpcode() == Instruction::ExtractValue);
assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
// Check if all of the extracts come from the same vector and from the
// correct offset.
Value *Vec = E0->getOperand(0);
CurrentOrder.clear();
// We have to extract from a vector/aggregate with the same number of elements.
unsigned NElts;
if (E0->getOpcode() == Instruction::ExtractValue) {
const DataLayout &DL = E0->getModule()->getDataLayout();
NElts = canMapToVector(Vec->getType(), DL);
if (!NElts)
return false;
// Check if load can be rewritten as load of vector.
LoadInst *LI = dyn_cast<LoadInst>(Vec);
if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
return false;
} else {
NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
}
if (NElts != VL.size())
return false;
// Check that all of the indices extract from the correct offset.
bool ShouldKeepOrder = true;
unsigned E = VL.size();
// Assign to all items the initial value E + 1 so we can check if the extract
// instruction index was used already.
// Also, later we can check that all the indices are used and we have a
// consecutive access in the extract instructions, by checking that no
// element of CurrentOrder still has value E + 1.
CurrentOrder.assign(E, E + 1);
unsigned I = 0;
for (; I < E; ++I) {
auto *Inst = cast<Instruction>(VL[I]);
if (Inst->getOperand(0) != Vec)
break;
Optional<unsigned> Idx = getExtractIndex(Inst);
if (!Idx)
break;
const unsigned ExtIdx = *Idx;
if (ExtIdx != I) {
if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
break;
ShouldKeepOrder = false;
CurrentOrder[ExtIdx] = I;
} else {
if (CurrentOrder[I] != E + 1)
break;
CurrentOrder[I] = I;
}
}
if (I < E) {
CurrentOrder.clear();
return false;
}
return ShouldKeepOrder;
}
bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
return I->hasOneUse() ||
std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
return ScalarToTreeEntry.count(U) > 0;
});
}
static std::pair<unsigned, unsigned>
getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// Calculate the cost of the scalar and vector calls.
IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements());
int IntrinsicCost =
TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
VecTy->getNumElements())),
false /*HasGlobalPred*/);
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
int LibCost = IntrinsicCost;
if (!CI->isNoBuiltin() && VecFunc) {
// Calculate the cost of the vector library call.
SmallVector<Type *, 4> VecTys;
for (Use &Arg : CI->args())
VecTys.push_back(
FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
// If the corresponding vector call is cheaper, return its cost.
LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
TTI::TCK_RecipThroughput);
}
return {IntrinsicCost, LibCost};
}
int BoUpSLP::getEntryCost(TreeEntry *E) {
ArrayRef<Value*> VL = E->Scalars;
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
ScalarTy = CI->getOperand(0)->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
// If we have computed a smaller type for the expression, update VecTy so
// that the costs will be accurate.
if (MinBWs.count(VL[0]))
VecTy = FixedVectorType::get(
IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
int ReuseShuffleCost = 0;
if (NeedToShuffleReuses) {
ReuseShuffleCost =
TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
if (E->State == TreeEntry::NeedToGather) {
if (allConstant(VL))
return 0;
if (isSplat(VL)) {
return ReuseShuffleCost +
TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
}
if (E->getOpcode() == Instruction::ExtractElement &&
allSameType(VL) && allSameBlock(VL)) {
Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
if (ShuffleKind.hasValue()) {
int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
for (auto *V : VL) {
// If all users of instruction are going to be vectorized and this
// instruction itself is not going to be vectorized, consider this
// instruction as dead and remove its cost from the final cost of the
// vectorized tree.
if (areAllUsersVectorized(cast<Instruction>(V)) &&
!ScalarToTreeEntry.count(V)) {
auto *IO = cast<ConstantInt>(
cast<ExtractElementInst>(V)->getIndexOperand());
Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
IO->getZExtValue());
}
}
return ReuseShuffleCost + Cost;
}
}
return ReuseShuffleCost + getGatherCost(VL);
}
assert(E->State == TreeEntry::Vectorize && "Unhandled state");
assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
Instruction *VL0 = E->getMainOp();
unsigned ShuffleOrOp =
E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
switch (ShuffleOrOp) {
case Instruction::PHI:
return 0;
case Instruction::ExtractValue:
case Instruction::ExtractElement: {
if (NeedToShuffleReuses) {
unsigned Idx = 0;
for (unsigned I : E->ReuseShuffleIndices) {
if (ShuffleOrOp == Instruction::ExtractElement) {
auto *IO = cast<ConstantInt>(
cast<ExtractElementInst>(VL[I])->getIndexOperand());
Idx = IO->getZExtValue();
ReuseShuffleCost -= TTI->getVectorInstrCost(
Instruction::ExtractElement, VecTy, Idx);
} else {
ReuseShuffleCost -= TTI->getVectorInstrCost(
Instruction::ExtractElement, VecTy, Idx);
++Idx;
}
}
Idx = ReuseShuffleNumbers;
for (Value *V : VL) {
if (ShuffleOrOp == Instruction::ExtractElement) {
auto *IO = cast<ConstantInt>(
cast<ExtractElementInst>(V)->getIndexOperand());
Idx = IO->getZExtValue();
} else {
--Idx;
}
ReuseShuffleCost +=
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
}
}
int DeadCost = ReuseShuffleCost;
if (!E->ReorderIndices.empty()) {
// TODO: Merge this shuffle with the ReuseShuffleCost.
DeadCost += TTI->getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
for (unsigned I = 0, E = VL.size(); I < E; ++I) {
Instruction *EI = cast<Instruction>(VL[I]);
// If all users are going to be vectorized, instruction can be
// considered as dead.
// The same, if have only one user, it will be vectorized for sure.
if (areAllUsersVectorized(EI)) {
// Take credit for instruction that will become dead.
if (EI->hasOneUse()) {
Instruction *Ext = EI->user_back();
if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
all_of(Ext->users(),
[](User *U) { return isa<GetElementPtrInst>(U); })) {
// Use getExtractWithExtendCost() to calculate the cost of
// extractelement/ext pair.
DeadCost -= TTI->getExtractWithExtendCost(
Ext->getOpcode(), Ext->getType(), VecTy, I);
// Add back the cost of s|zext which is subtracted separately.
DeadCost += TTI->getCastInstrCost(
Ext->getOpcode(), Ext->getType(), EI->getType(),
TTI::getCastContextHint(Ext), CostKind, Ext);
continue;
}
}
DeadCost -=
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
}
}
return DeadCost;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
Type *SrcTy = VL0->getOperand(0)->getType();
int ScalarEltCost =
TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
TTI::getCastContextHint(VL0), CostKind, VL0);
if (NeedToShuffleReuses) {
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
// Calculate the cost of this instruction.
int ScalarCost = VL.size() * ScalarEltCost;
auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
int VecCost = 0;
// Check if the values are candidates to demote.
if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
VecCost =
ReuseShuffleCost +
TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
TTI::getCastContextHint(VL0), CostKind, VL0);
}
return VecCost - ScalarCost;
}
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select: {
// Calculate the cost of this instruction.
int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
Builder.getInt1Ty(),
CostKind, VL0);
if (NeedToShuffleReuses) {
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
CostKind, VL0);
return ReuseShuffleCost + VecCost - ScalarCost;
}
case Instruction::FNeg:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Certain instructions can be cheaper to vectorize if they have a
// constant second vector operand.
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_UniformConstantValue;
TargetTransformInfo::OperandValueProperties Op1VP =
TargetTransformInfo::OP_None;
TargetTransformInfo::OperandValueProperties Op2VP =
TargetTransformInfo::OP_PowerOf2;
// If all operands are exactly the same ConstantInt then set the
// operand kind to OK_UniformConstantValue.
// If instead not all operands are constants, then set the operand kind
// to OK_AnyValue. If all operands are constants but not the same,
// then set the operand kind to OK_NonUniformConstantValue.
ConstantInt *CInt0 = nullptr;
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
const Instruction *I = cast<Instruction>(VL[i]);
unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
if (!CInt) {
Op2VK = TargetTransformInfo::OK_AnyValue;
Op2VP = TargetTransformInfo::OP_None;
break;
}
if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
!CInt->getValue().isPowerOf2())
Op2VP = TargetTransformInfo::OP_None;
if (i == 0) {
CInt0 = CInt;
continue;
}
if (CInt0 != CInt)
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
}
SmallVector<const Value *, 4> Operands(VL0->operand_values());
int ScalarEltCost = TTI->getArithmeticInstrCost(
E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
Operands, VL0);
if (NeedToShuffleReuses) {
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
int VecCost = TTI->getArithmeticInstrCost(
E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
Operands, VL0);
return ReuseShuffleCost + VecCost - ScalarCost;
}
case Instruction::GetElementPtr: {
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_UniformConstantValue;
int ScalarEltCost =
TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind,
Op1VK, Op2VK);
if (NeedToShuffleReuses) {
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
int VecCost =
TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind,
Op1VK, Op2VK);
return ReuseShuffleCost + VecCost - ScalarCost;
}
case Instruction::Load: {
// Cost of wide load - cost of scalar loads.
Align alignment = cast<LoadInst>(VL0)->getAlign();
int ScalarEltCost =
TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0,
CostKind, VL0);
if (NeedToShuffleReuses) {
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
int VecLdCost =
TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
CostKind, VL0);
if (!E->ReorderIndices.empty()) {
// TODO: Merge this shuffle with the ReuseShuffleCost.
VecLdCost += TTI->getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
return ReuseShuffleCost + VecLdCost - ScalarLdCost;
}
case Instruction::Store: {
// We know that we can merge the stores. Calculate the cost.
bool IsReorder = !E->ReorderIndices.empty();
auto *SI =
cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
Align Alignment = SI->getAlign();
int ScalarEltCost =
TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0,
CostKind, VL0);
if (NeedToShuffleReuses)
ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
VecTy, Alignment, 0, CostKind, VL0);
if (IsReorder) {
// TODO: Merge this shuffle with the ReuseShuffleCost.
VecStCost += TTI->getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
return ReuseShuffleCost + VecStCost - ScalarStCost;
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// Calculate the cost of the scalar and vector calls.
IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1);
int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
if (NeedToShuffleReuses) {
ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
}
int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);
LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
<< " (" << VecCallCost << "-" << ScalarCallCost << ")"
<< " for " << *CI << "\n");
return ReuseShuffleCost + VecCallCost - ScalarCallCost;
}
case Instruction::ShuffleVector: {
assert(E->isAltShuffle() &&
((Instruction::isBinaryOp(E->getOpcode()) &&
Instruction::isBinaryOp(E->getAltOpcode())) ||
(Instruction::isCast(E->getOpcode()) &&
Instruction::isCast(E->getAltOpcode()))) &&
"Invalid Shuffle Vector Operand");
int ScalarCost = 0;
if (NeedToShuffleReuses) {
for (unsigned Idx : E->ReuseShuffleIndices) {
Instruction *I = cast<Instruction>(VL[Idx]);
ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
}
for (Value *V : VL) {
Instruction *I = cast<Instruction>(V);
ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
}
}
for (Value *V : VL) {
Instruction *I = cast<Instruction>(V);
assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
ScalarCost += TTI->getInstructionCost(I, CostKind);
}
// VecCost is equal to sum of the cost of creating 2 vectors
// and the cost of creating shuffle.
int VecCost = 0;
if (Instruction::isBinaryOp(E->getOpcode())) {
VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
CostKind);
} else {
Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
TTI::CastContextHint::None, CostKind);
VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
TTI::CastContextHint::None, CostKind);
}
VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
return ReuseShuffleCost + VecCost - ScalarCost;
}
default:
llvm_unreachable("Unknown instruction");
}
}
bool BoUpSLP::isFullyVectorizableTinyTree() const {
LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n");
// We only handle trees of heights 1 and 2.
if (VectorizableTree.size() == 1 &&
VectorizableTree[0]->State == TreeEntry::Vectorize)
return true;
if (VectorizableTree.size() != 2)
return false;
// Handle splat and all-constants stores.
if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
(allConstant(VectorizableTree[1]->Scalars) ||
isSplat(VectorizableTree[1]->Scalars)))
return true;
// Gathering cost would be too much for tiny trees.
if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
VectorizableTree[1]->State == TreeEntry::NeedToGather)
return false;
return true;
}
static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
TargetTransformInfo *TTI) {
// Look past the root to find a source value. Arbitrarily follow the
// path through operand 0 of any 'or'. Also, peek through optional
// shift-left-by-multiple-of-8-bits.
Value *ZextLoad = Root;
const APInt *ShAmtC;
while (!isa<ConstantExpr>(ZextLoad) &&
(match(ZextLoad, m_Or(m_Value(), m_Value())) ||
(match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
ShAmtC->urem(8) == 0)))
ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
// Check if the input is an extended load of the required or/shift expression.
Value *LoadPtr;
if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
return false;
// Require that the total load bit width is a legal integer type.
// For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
// But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
Type *SrcTy = LoadPtr->getType()->getPointerElementType();
unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
return false;
// Everything matched - assume that we can fold the whole sequence using
// load combining.
LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n");
return true;
}
bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
if (RdxOpcode != Instruction::Or)
return false;
unsigned NumElts = VectorizableTree[0]->Scalars.size();
Value *FirstReduced = VectorizableTree[0]->Scalars[0];
return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
}
bool BoUpSLP::isLoadCombineCandidate() const {
// Peek through a final sequence of stores and check if all operations are
// likely to be load-combined.
unsigned NumElts = VectorizableTree[0]->Scalars.size();
for (Value *Scalar : VectorizableTree[0]->Scalars) {
Value *X;
if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
!isLoadCombineCandidateImpl(X, NumElts, TTI))
return false;
}
return true;
}
bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
// We can vectorize the tree if its size is greater than or equal to the
// minimum size specified by the MinTreeSize command line option.
if (VectorizableTree.size() >= MinTreeSize)
return false;
// If we have a tiny tree (a tree whose size is less than MinTreeSize), we
// can vectorize it if we can prove it fully vectorizable.
if (isFullyVectorizableTinyTree())
return false;
assert(VectorizableTree.empty()
? ExternalUses.empty()
: true && "We shouldn't have any external users");
// Otherwise, we can't vectorize the tree. It is both tiny and not fully
// vectorizable.
return true;
}
int BoUpSLP::getSpillCost() const {
// Walk from the bottom of the tree to the top, tracking which values are
// live. When we see a call instruction that is not part of our tree,
// query TTI to see if there is a cost to keeping values live over it
// (for example, if spills and fills are required).
unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
int Cost = 0;
SmallPtrSet<Instruction*, 4> LiveValues;
Instruction *PrevInst = nullptr;
// The entries in VectorizableTree are not necessarily ordered by their
// position in basic blocks. Collect them and order them by dominance so later
// instructions are guaranteed to be visited first. For instructions in
// different basic blocks, we only scan to the beginning of the block, so
// their order does not matter, as long as all instructions in a basic block
// are grouped together. Using dominance ensures a deterministic order.
SmallVector<Instruction *, 16> OrderedScalars;
for (const auto &TEPtr : VectorizableTree) {
Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
if (!Inst)
continue;
OrderedScalars.push_back(Inst);
}
llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
return DT->dominates(B, A);
});
for (Instruction *Inst : OrderedScalars) {
if (!PrevInst) {
PrevInst = Inst;
continue;
}
// Update LiveValues.
LiveValues.erase(PrevInst);
for (auto &J : PrevInst->operands()) {
if (isa<Instruction>(&*J) && getTreeEntry(&*J))
LiveValues.insert(cast<Instruction>(&*J));
}
LLVM_DEBUG({
dbgs() << "SLP: #LV: " << LiveValues.size();
for (auto *X : LiveValues)
dbgs() << " " << X->getName();
dbgs() << ", Looking at ";
Inst->dump();
});
// Now find the sequence of instructions between PrevInst and Inst.
unsigned NumCalls = 0;
BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
PrevInstIt =
PrevInst->getIterator().getReverse();
while (InstIt != PrevInstIt) {
if (PrevInstIt == PrevInst->getParent()->rend()) {
PrevInstIt = Inst->getParent()->rbegin();
continue;
}
// Debug information does not impact spill cost.
if ((isa<CallInst>(&*PrevInstIt) &&
!isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
&*PrevInstIt != PrevInst)
NumCalls++;
++PrevInstIt;
}
if (NumCalls) {
SmallVector<Type*, 4> V;
for (auto *II : LiveValues)
V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
}
PrevInst = Inst;
}
return Cost;
}
int BoUpSLP::getTreeCost() {
int Cost = 0;
LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n");
unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
TreeEntry &TE = *VectorizableTree[I].get();
// We create duplicate tree entries for gather sequences that have multiple
// uses. However, we should not compute the cost of duplicate sequences.
// For example, if we have a build vector (i.e., insertelement sequence)
// that is used by more than one vector instruction, we only need to
// compute the cost of the insertelement instructions once. The redundant
// instructions will be eliminated by CSE.
//
// We should consider not creating duplicate tree entries for gather
// sequences, and instead add additional edges to the tree representing
// their uses. Since such an approach results in fewer total entries,
// existing heuristics based on tree size may yield different results.
//
if (TE.State == TreeEntry::NeedToGather &&
std::any_of(std::next(VectorizableTree.begin(), I + 1),
VectorizableTree.end(),
[TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
return EntryPtr->State == TreeEntry::NeedToGather &&
EntryPtr->isSame(TE.Scalars);
}))
continue;
int C = getEntryCost(&TE);
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
<< " for bundle that starts with " << *TE.Scalars[0]
<< ".\n");
Cost += C;
}
SmallPtrSet<Value *, 16> ExtractCostCalculated;
int ExtractCost = 0;
for (ExternalUser &EU : ExternalUses) {
// We only add extract cost once for the same scalar.
if (!ExtractCostCalculated.insert(EU.Scalar).second)
continue;
// Uses by ephemeral values are free (because the ephemeral value will be
// removed prior to code generation, and so the extraction will be
// removed as well).
if (EphValues.count(EU.User))
continue;
// If we plan to rewrite the tree in a smaller type, we will need to sign
// extend the extracted value back to the original type. Here, we account
// for the extract and the added cost of the sign extend if needed.
auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
if (MinBWs.count(ScalarRoot)) {
auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
auto Extend =
MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
VecTy = FixedVectorType::get(MinTy, BundleWidth);
ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
VecTy, EU.Lane);
} else {
ExtractCost +=
TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
}
}
int SpillCost = getSpillCost();
Cost += SpillCost + ExtractCost;
#ifndef NDEBUG
SmallString<256> Str;
{
raw_svector_ostream OS(Str);
OS << "SLP: Spill Cost = " << SpillCost << ".\n"
<< "SLP: Extract Cost = " << ExtractCost << ".\n"
<< "SLP: Total Cost = " << Cost << ".\n";
}
LLVM_DEBUG(dbgs() << Str);
if (ViewSLPTree)
ViewGraph(this, "SLP" + F->getName(), false, Str);
#endif
return Cost;
}
int BoUpSLP::getGatherCost(FixedVectorType *Ty,
const DenseSet<unsigned> &ShuffledIndices) const {
unsigned NumElts = Ty->getNumElements();
APInt DemandedElts = APInt::getNullValue(NumElts);
for (unsigned I = 0; I < NumElts; ++I)
if (!ShuffledIndices.count(I))
DemandedElts.setBit(I);
int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
/*Extract*/ false);
if (!ShuffledIndices.empty())
Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
return Cost;
}
int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
// Find the type of the operands in VL.
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
// Find the cost of inserting/extracting values from the vector.
// Check if the same elements are inserted several times and count them as
// shuffle candidates.
DenseSet<unsigned> ShuffledElements;
DenseSet<Value *> UniqueElements;
// Iterate in reverse order to consider insert elements with the high cost.
for (unsigned I = VL.size(); I > 0; --I) {
unsigned Idx = I - 1;
if (!UniqueElements.insert(VL[Idx]).second)
ShuffledElements.insert(Idx);
}
return getGatherCost(VecTy, ShuffledElements);
}
// Perform operand reordering on the instructions in VL and return the reordered
// operands in Left and Right.
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right,
const DataLayout &DL,
ScalarEvolution &SE,
const BoUpSLP &R) {
if (VL.empty())
return;
VLOperands Ops(VL, DL, SE, R);
// Reorder the operands in place.
Ops.reorder();
Left = Ops.getVL(0);
Right = Ops.getVL(1);
}
void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
// Get the basic block this bundle is in. All instructions in the bundle
// should be in this block.
auto *Front = E->getMainOp();
auto *BB = Front->getParent();
assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
[=](Value *V) -> bool {
auto *I = cast<Instruction>(V);
return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
}));
// The last instruction in the bundle in program order.
Instruction *LastInst = nullptr;
// Find the last instruction. The common case should be that BB has been
// scheduled, and the last instruction is VL.back(). So we start with
// VL.back() and iterate over schedule data until we reach the end of the
// bundle. The end of the bundle is marked by null ScheduleData.
if (BlocksSchedules.count(BB)) {
auto *Bundle =
BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
if (Bundle && Bundle->isPartOfBundle())
for (; Bundle; Bundle = Bundle->NextInBundle)
if (Bundle->OpValue == Bundle->Inst)
LastInst = Bundle->Inst;
}
// LastInst can still be null at this point if there's either not an entry
// for BB in BlocksSchedules or there's no ScheduleData available for
// VL.back(). This can be the case if buildTree_rec aborts for various
// reasons (e.g., the maximum recursion depth is reached, the maximum region
// size is reached, etc.). ScheduleData is initialized in the scheduling
// "dry-run".
//
// If this happens, we can still find the last instruction by brute force. We
// iterate forwards from Front (inclusive) until we either see all
// instructions in the bundle or reach the end of the block. If Front is the
// last instruction in program order, LastInst will be set to Front, and we
// will visit all the remaining instructions in the block.
//
// One of the reasons we exit early from buildTree_rec is to place an upper
// bound on compile-time. Thus, taking an additional compile-time hit here is
// not ideal. However, this should be exceedingly rare since it requires that
// we both exit early from buildTree_rec and that the bundle be out-of-order
// (causing us to iterate all the way to the end of the block).
if (!LastInst) {
SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
LastInst = &I;
if (Bundle.empty())
break;
}
}
assert(LastInst && "Failed to find last instruction in bundle");
// Set the insertion point after the last instruction in the bundle. Set the
// debug location to Front.
Builder.SetInsertPoint(BB, ++LastInst->getIterator());
Builder.SetCurrentDebugLocation(Front->getDebugLoc());
}
Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
Value *Val0 =
isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
Value *Vec = UndefValue::get(VecTy);
unsigned InsIndex = 0;
for (Value *Val : VL) {
Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
auto *InsElt = dyn_cast<InsertElementInst>(Vec);
if (!InsElt)
continue;
GatherSeq.insert(InsElt);
CSEBlocks.insert(InsElt->getParent());
// Add to our 'need-to-extract' list.
if (TreeEntry *Entry = getTreeEntry(Val)) {
// Find which lane we need to extract.
unsigned FoundLane = std::distance(Entry->Scalars.begin(),
find(Entry->Scalars, Val));
assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane");
if (!Entry->ReuseShuffleIndices.empty()) {
FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
find(Entry->ReuseShuffleIndices, FoundLane));
}
ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
}
}
return Vec;
}
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
InstructionsState S = getSameOpcode(VL);
if (S.getOpcode()) {
if (TreeEntry *E = getTreeEntry(S.OpValue)) {
if (E->isSame(VL)) {
Value *V = vectorizeTree(E);
if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
// We need to get the vectorized value but without shuffle.
if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
V = SV->getOperand(0);
} else {
// Reshuffle to get only unique values.
SmallVector<int, 4> UniqueIdxs;
SmallSet<int, 4> UsedIdxs;
for (int Idx : E->ReuseShuffleIndices)
if (UsedIdxs.insert(Idx).second)
UniqueIdxs.emplace_back(Idx);
V = Builder.CreateShuffleVector(V, UniqueIdxs);
}
}
return V;
}
}
}
// Check that every instruction appears once in this bundle.
SmallVector<int, 4> ReuseShuffleIndicies;
SmallVector<Value *, 4> UniqueValues;
if (VL.size() > 2) {
DenseMap<Value *, unsigned> UniquePositions;
for (Value *V : VL) {
auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
ReuseShuffleIndicies.emplace_back(Res.first->second);
if (Res.second || isa<Constant>(V))
UniqueValues.emplace_back(V);
}
// Do not shuffle single element or if number of unique values is not power
// of 2.
if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
!llvm::isPowerOf2_32(UniqueValues.size()))
ReuseShuffleIndicies.clear();
else
VL = UniqueValues;
}
Value *Vec = gather(VL);
if (!ReuseShuffleIndicies.empty()) {
Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
if (auto *I = dyn_cast<Instruction>(Vec)) {
GatherSeq.insert(I);
CSEBlocks.insert(I->getParent());
}
}
return Vec;
}
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
IRBuilder<>::InsertPointGuard Guard(Builder);
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
return E->VectorizedValue;
}
bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
if (E->State == TreeEntry::NeedToGather) {
setInsertPointAfterBundle(E);
Value *Vec = gather(E->Scalars);
if (NeedToShuffleReuses) {
Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle");
if (auto *I = dyn_cast<Instruction>(Vec)) {
GatherSeq.insert(I);
CSEBlocks.insert(I->getParent());
}
}
E->VectorizedValue = Vec;
return Vec;
}
assert(E->State == TreeEntry::Vectorize && "Unhandled state");
unsigned ShuffleOrOp =
E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
Instruction *VL0 = E->getMainOp();
Type *ScalarTy = VL0->getType();
if (auto *Store = dyn_cast<StoreInst>(VL0))
ScalarTy = Store->getValueOperand()->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
switch (ShuffleOrOp) {
case Instruction::PHI: {
auto *PH = cast<PHINode>(VL0);
Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
Value *V = NewPhi;
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
// PHINodes may have multiple entries from the same block. We want to
// visit every block once.
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
ValueList Operands;
BasicBlock *IBB = PH->getIncomingBlock(i);
if (!VisitedBBs.insert(IBB).second) {
NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
continue;
}
Builder.SetInsertPoint(IBB->getTerminator());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
Value *Vec = vectorizeTree(E->getOperand(i));
NewPhi->addIncoming(Vec, IBB);
}
assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
"Invalid number of incoming values");
return V;
}
case Instruction::ExtractElement: {
Value *V = E->getSingleOperand(0);
if (!E->ReorderIndices.empty()) {
SmallVector<int, 4> Mask;
inversePermutation(E->ReorderIndices, Mask);
Builder.SetInsertPoint(VL0);
V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle");
}
if (NeedToShuffleReuses) {
// TODO: Merge this shuffle with the ReorderShuffleMask.
if (E->ReorderIndices.empty())
Builder.SetInsertPoint(VL0);
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
}
E->VectorizedValue = V;
return V;
}
case Instruction::ExtractValue: {
auto *LI = cast<LoadInst>(E->getSingleOperand(0));
Builder.SetInsertPoint(LI);
auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
Value *NewV = propagateMetadata(V, E->Scalars);
if (!E->ReorderIndices.empty()) {
SmallVector<int, 4> Mask;
inversePermutation(E->ReorderIndices, Mask);
NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle");
}
if (NeedToShuffleReuses) {
// TODO: Merge this shuffle with the ReorderShuffleMask.
NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices,
"shuffle");
}
E->VectorizedValue = NewV;
return NewV;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
setInsertPointAfterBundle(E);
Value *InVec = vectorizeTree(E->getOperand(0));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
auto *CI = cast<CastInst>(VL0);
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::FCmp:
case Instruction::ICmp: {
setInsertPointAfterBundle(E);
Value *L = vectorizeTree(E->getOperand(0));
Value *R = vectorizeTree(E->getOperand(1));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
Value *V = Builder.CreateCmp(P0, L, R);
propagateIRFlags(V, E->Scalars, VL0);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Select: {
setInsertPointAfterBundle(E);
Value *Cond = vectorizeTree(E->getOperand(0));
Value *True = vectorizeTree(E->getOperand(1));
Value *False = vectorizeTree(E->getOperand(2));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V = Builder.CreateSelect(Cond, True, False);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::FNeg: {
setInsertPointAfterBundle(E);
Value *Op = vectorizeTree(E->getOperand(0));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V = Builder.CreateUnOp(
static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
propagateIRFlags(V, E->Scalars, VL0);
if (auto *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
setInsertPointAfterBundle(E);
Value *LHS = vectorizeTree(E->getOperand(0));
Value *RHS = vectorizeTree(E->getOperand(1));
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V = Builder.CreateBinOp(
static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
RHS);
propagateIRFlags(V, E->Scalars, VL0);
if (auto *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Load: {
// Loads are inserted at the head of the tree because we don't want to
// sink them all the way down past store instructions.
bool IsReorder = E->updateStateIfReorder();
if (IsReorder)
VL0 = E->getMainOp();
setInsertPointAfterBundle(E);
LoadInst *LI = cast<LoadInst>(VL0);
unsigned AS = LI->getPointerAddressSpace();
Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
VecTy->getPointerTo(AS));
// The pointer operand uses an in-tree scalar so we add the new BitCast to
// ExternalUses list to make sure that an extract will be generated in the
// future.
Value *PO = LI->getPointerOperand();
if (getTreeEntry(PO))
ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
Value *V = propagateMetadata(LI, E->Scalars);
if (IsReorder) {
SmallVector<int, 4> Mask;
inversePermutation(E->ReorderIndices, Mask);
V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle");
}
if (NeedToShuffleReuses) {
// TODO: Merge this shuffle with the ReorderShuffleMask.
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
}
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Store: {
bool IsReorder = !E->ReorderIndices.empty();
auto *SI = cast<StoreInst>(
IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
unsigned AS = SI->getPointerAddressSpace();
setInsertPointAfterBundle(E);
Value *VecValue = vectorizeTree(E->getOperand(0));
if (IsReorder) {
SmallVector<int, 4> Mask(E->ReorderIndices.begin(),
E->ReorderIndices.end());
VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf");
}
Value *ScalarPtr = SI->getPointerOperand();
Value *VecPtr = Builder.CreateBitCast(
ScalarPtr, VecValue->getType()->getPointerTo(AS));
StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
SI->getAlign());
// The pointer operand uses an in-tree scalar, so add the new BitCast to
// ExternalUses to make sure that an extract will be generated in the
// future.
if (getTreeEntry(ScalarPtr))
ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
Value *V = propagateMetadata(ST, E->Scalars);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::GetElementPtr: {
setInsertPointAfterBundle(E);
Value *Op0 = vectorizeTree(E->getOperand(0));
std::vector<Value *> OpVecs;
for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
++j) {
ValueList &VL = E->getOperand(j);
// Need to cast all elements to the same type before vectorization to
// avoid crash.
Type *VL0Ty = VL0->getOperand(j)->getType();
Type *Ty = llvm::all_of(
VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
? VL0Ty
: DL->getIndexType(cast<GetElementPtrInst>(VL0)
->getPointerOperandType()
->getScalarType());
for (Value *&V : VL) {
auto *CI = cast<ConstantInt>(V);
V = ConstantExpr::getIntegerCast(CI, Ty,
CI->getValue().isSignBitSet());
}
Value *OpVec = vectorizeTree(VL);
OpVecs.push_back(OpVec);
}
Value *V = Builder.CreateGEP(
cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
if (Instruction *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
setInsertPointAfterBundle(E);
Intrinsic::ID IID = Intrinsic::not_intrinsic;
if (Function *FI = CI->getCalledFunction())
IID = FI->getIntrinsicID();
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
VecCallCosts.first <= VecCallCosts.second;
Value *ScalarArg = nullptr;
std::vector<Value *> OpVecs;
for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
ValueList OpVL;
// Some intrinsics have scalar arguments. This argument should not be
// vectorized.
if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
CallInst *CEI = cast<CallInst>(VL0);
ScalarArg = CEI->getArgOperand(j);
OpVecs.push_back(CEI->getArgOperand(j));
continue;
}
Value *OpVec = vectorizeTree(E->getOperand(j));
LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
OpVecs.push_back(OpVec);
}
Function *CF;
if (!UseIntrinsic) {
VFShape Shape =
VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
VecTy->getNumElements())),
false /*HasGlobalPred*/);
CF = VFDatabase(*CI).getVectorizedFunction(Shape);
} else {
Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
}
SmallVector<OperandBundleDef, 1> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
// The scalar argument uses an in-tree scalar so we add the new vectorized
// call to ExternalUses list to make sure that an extract will be
// generated in the future.
if (ScalarArg && getTreeEntry(ScalarArg))
ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
propagateIRFlags(V, E->Scalars, VL0);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
case Instruction::ShuffleVector: {
assert(E->isAltShuffle() &&
((Instruction::isBinaryOp(E->getOpcode()) &&
Instruction::isBinaryOp(E->getAltOpcode())) ||
(Instruction::isCast(E->getOpcode()) &&
Instruction::isCast(E->getAltOpcode()))) &&
"Invalid Shuffle Vector Operand");
Value *LHS = nullptr, *RHS = nullptr;
if (Instruction::isBinaryOp(E->getOpcode())) {
setInsertPointAfterBundle(E);
LHS = vectorizeTree(E->getOperand(0));
RHS = vectorizeTree(E->getOperand(1));
} else {
setInsertPointAfterBundle(E);
LHS = vectorizeTree(E->getOperand(0));
}
if (E->VectorizedValue) {
LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
return E->VectorizedValue;
}
Value *V0, *V1;
if (Instruction::isBinaryOp(E->getOpcode())) {
V0 = Builder.CreateBinOp(
static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
V1 = Builder.CreateBinOp(
static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
} else {
V0 = Builder.CreateCast(
static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
V1 = Builder.CreateCast(
static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
}
// Create shuffle to take alternate operations from the vector.
// Also, gather up main and alt scalar ops to propagate IR flags to
// each vector operation.
ValueList OpScalars, AltScalars;
unsigned e = E->Scalars.size();
SmallVector<int, 8> Mask(e);
for (unsigned i = 0; i < e; ++i) {
auto *OpInst = cast<Instruction>(E->Scalars[i]);
assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
if (OpInst->getOpcode() == E->getAltOpcode()) {
Mask[i] = e + i;
AltScalars.push_back(E->Scalars[i]);
} else {
Mask[i] = i;
OpScalars.push_back(E->Scalars[i]);
}
}
propagateIRFlags(V0, OpScalars);
propagateIRFlags(V1, AltScalars);
Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
if (Instruction *I = dyn_cast<Instruction>(V))
V = propagateMetadata(I, E->Scalars);
if (NeedToShuffleReuses)
V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
E->VectorizedValue = V;
++NumVectorInstructions;
return V;
}
default:
llvm_unreachable("unknown inst");
}
return nullptr;
}
Value *BoUpSLP::vectorizeTree() {
ExtraValueToDebugLocsMap ExternallyUsedValues;
return vectorizeTree(ExternallyUsedValues);
}
Value *
BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
// All blocks must be scheduled before any instructions are inserted.
for (auto &BSIter : BlocksSchedules) {
scheduleBlock(BSIter.second.get());
}
Builder.SetInsertPoint(&F->getEntryBlock().front());
auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
// If the vectorized tree can be rewritten in a smaller type, we truncate the
// vectorized root. InstCombine will then rewrite the entire expression. We
// sign extend the extracted values below.
auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
if (MinBWs.count(ScalarRoot)) {
if (auto *I = dyn_cast<Instruction>(VectorRoot))
Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
auto BundleWidth = VectorizableTree[0]->Scalars.size();
auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
VectorizableTree[0]->VectorizedValue = Trunc;
}
LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
<< " values .\n");
// If necessary, sign-extend or zero-extend ScalarRoot to the larger type
// specified by ScalarType.
auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
if (!MinBWs.count(ScalarRoot))
return Ex;
if (MinBWs[ScalarRoot].second)
return Builder.CreateSExt(Ex, ScalarType);
return Builder.CreateZExt(Ex, ScalarType);
};
// Extract all of the elements with the external uses.
for (const auto &ExternalUse : ExternalUses) {
Value *Scalar = ExternalUse.Scalar;
llvm::User *User = ExternalUse.User;
// Skip users that we already RAUW. This happens when one instruction
// has multiple uses of the same value.
if (User && !is_contained(Scalar->users(), User))
continue;
TreeEntry *E = getTreeEntry(Scalar);
assert(E && "Invalid scalar");
assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
Value *Vec = E->VectorizedValue;
assert(Vec && "Can't find vectorizable value");
Value *Lane = Builder.getInt32(ExternalUse.Lane);
// If User == nullptr, the Scalar is used as extra arg. Generate
// ExtractElement instruction and update the record for this scalar in
// ExternallyUsedValues.
if (!User) {
assert(ExternallyUsedValues.count(Scalar) &&
"Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map");
if (auto *VecI = dyn_cast<Instruction>(Vec)) {
Builder.SetInsertPoint(VecI->getParent(),
std::next(VecI->getIterator()));
} else {
Builder.SetInsertPoint(&F->getEntryBlock().front());
}
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
Ex = extend(ScalarRoot, Ex, Scalar->getType());
CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
auto &Locs = ExternallyUsedValues[Scalar];
ExternallyUsedValues.insert({Ex, Locs});
ExternallyUsedValues.erase(Scalar);
// Required to update internally referenced instructions.
Scalar->replaceAllUsesWith(Ex);
continue;
}
// Generate extracts for out-of-tree users.
// Find the insertion point for the extractelement lane.
if (auto *VecI = dyn_cast<Instruction>(Vec)) {
if (PHINode *PH = dyn_cast<PHINode>(User)) {
for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
if (PH->getIncomingValue(i) == Scalar) {
Instruction *IncomingTerminator =
PH->getIncomingBlock(i)->getTerminator();
if (isa<CatchSwitchInst>(IncomingTerminator)) {
Builder.SetInsertPoint(VecI->getParent(),
std::next(VecI->getIterator()));
} else {
Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
}
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
Ex = extend(ScalarRoot, Ex, Scalar->getType());
CSEBlocks.insert(PH->getIncomingBlock(i));
PH->setOperand(i, Ex);
}
}
} else {
Builder.SetInsertPoint(cast<Instruction>(User));
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
Ex = extend(ScalarRoot, Ex, Scalar->getType());
CSEBlocks.insert(cast<Instruction>(User)->getParent());
User->replaceUsesOfWith(Scalar, Ex);
}
} else {
Builder.SetInsertPoint(&F->getEntryBlock().front());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
Ex = extend(ScalarRoot, Ex, Scalar->getType());
CSEBlocks.insert(&F->getEntryBlock());
User->replaceUsesOfWith(Scalar, Ex);
}
LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
}
// For each vectorized value:
for (auto &TEPtr : VectorizableTree) {
TreeEntry *Entry = TEPtr.get();
// No need to handle users of gathered values.
if (Entry->State == TreeEntry::NeedToGather)
continue;
assert(Entry->VectorizedValue && "Can't find vectorizable value");
// For each lane:
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
Value *Scalar = Entry->Scalars[Lane];
#ifndef NDEBUG
Type *Ty = Scalar->getType();
if (!Ty->isVoidTy()) {
for (User *U : Scalar->users()) {
LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
// It is legal to delete users in the ignorelist.
assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Deleting out-of-tree value");
}
}
#endif
LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
eraseInstruction(cast<Instruction>(Scalar));
}
}
Builder.ClearInsertionPoint();
InstrElementSize.clear();
return VectorizableTree[0]->VectorizedValue;
}
void BoUpSLP::optimizeGatherSequence() {
LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
<< " gather sequences instructions.\n");
// LICM InsertElementInst sequences.
for (Instruction *I : GatherSeq) {
if (isDeleted(I))
continue;
// Check if this block is inside a loop.
Loop *L = LI->getLoopFor(I->getParent());
if (!L)
continue;
// Check if it has a preheader.
BasicBlock *PreHeader = L->getLoopPreheader();
if (!PreHeader)
continue;
// If the vector or the element that we insert into it are
// instructions that are defined in this basic block then we can't
// hoist this instruction.
auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
if (Op0 && L->contains(Op0))
continue;
if (Op1 && L->contains(Op1))
continue;
// We can hoist this instruction. Move it to the pre-header.
I->moveBefore(PreHeader->getTerminator());
}
// Make a list of all reachable blocks in our CSE queue.
SmallVector<const DomTreeNode *, 8> CSEWorkList;
CSEWorkList.reserve(CSEBlocks.size());
for (BasicBlock *BB : CSEBlocks)
if (DomTreeNode *N = DT->getNode(BB)) {
assert(DT->isReachableFromEntry(N));
CSEWorkList.push_back(N);
}
// Sort blocks by domination. This ensures we visit a block after all blocks
// dominating it are visited.
llvm::stable_sort(CSEWorkList,
[this](const DomTreeNode *A, const DomTreeNode *B) {
return DT->properlyDominates(A, B);
});
// Perform O(N^2) search over the gather sequences and merge identical
// instructions. TODO: We can further optimize this scan if we split the
// instructions into different buckets based on the insert lane.
SmallVector<Instruction *, 16> Visited;
for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
"Worklist not sorted properly!");
BasicBlock *BB = (*I)->getBlock();
// For all instructions in blocks containing gather sequences:
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
Instruction *In = &*it++;
if (isDeleted(In))
continue;
if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
for (Instruction *v : Visited) {
if (In->isIdenticalTo(v) &&
DT->dominates(v->getParent(), In->getParent())) {
In->replaceAllUsesWith(v);
eraseInstruction(In);
In = nullptr;
break;
}
}
if (In) {
assert(!is_contained(Visited, In));
Visited.push_back(In);
}
}
}
CSEBlocks.clear();
GatherSeq.clear();
}
// Groups the instructions to a bundle (which is then a single scheduling entity)
// and schedules instructions until the bundle gets ready.
Optional<BoUpSLP::ScheduleData *>
BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
const InstructionsState &S) {
if (isa<PHINode>(S.OpValue))
return nullptr;
// Initialize the instruction bundle.
Instruction *OldScheduleEnd = ScheduleEnd;
ScheduleData *PrevInBundle = nullptr;
ScheduleData *Bundle = nullptr;
bool ReSchedule = false;
LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
// Make sure that the scheduling region contains all
// instructions of the bundle.
for (Value *V : VL) {
if (!extendSchedulingRegion(V, S))
return None;
}
for (Value *V : VL) {
ScheduleData *BundleMember = getScheduleData(V);
assert(BundleMember &&
"no ScheduleData for bundle member (maybe not in same basic block)");
if (BundleMember->IsScheduled) {
// A bundle member was scheduled as single instruction before and now
// needs to be scheduled as part of the bundle. We just get rid of the
// existing schedule.
LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
<< " was already scheduled\n");
ReSchedule = true;
}
assert(BundleMember->isSchedulingEntity() &&
"bundle member already part of other bundle");
if (PrevInBundle) {
PrevInBundle->NextInBundle = BundleMember;
} else {
Bundle = BundleMember;
}
BundleMember->UnscheduledDepsInBundle = 0;
Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
// Group the instructions to a bundle.
BundleMember->FirstInBundle = Bundle;
PrevInBundle = BundleMember;
}
if (ScheduleEnd != OldScheduleEnd) {
// The scheduling region got new instructions at the lower end (or it is a
// new region for the first bundle). This makes it necessary to
// recalculate all dependencies.
// It is seldom that this needs to be done a second time after adding the
// initial bundle to the region.
for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
doForAllOpcodes(I, [](ScheduleData *SD) {
SD->clearDependencies();
});
}
ReSchedule = true;
}
if (ReSchedule) {
resetSchedule();
initialFillReadyList(ReadyInsts);
}
assert(Bundle && "Failed to find schedule bundle");
LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
<< BB->getName() << "\n");
calculateDependencies(Bundle, true, SLP);
// Now try to schedule the new bundle. As soon as the bundle is "ready" it
// means that there are no cyclic dependencies and we can schedule it.
// Note that's important that we don't "schedule" the bundle yet (see
// cancelScheduling).
while (!Bundle->isReady() && !ReadyInsts.empty()) {
ScheduleData *pickedSD = ReadyInsts.back();
ReadyInsts.pop_back();
if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
schedule(pickedSD, ReadyInsts);
}
}
if (!Bundle->isReady()) {
cancelScheduling(VL, S.OpValue);
return None;
}
return Bundle;
}
void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
Value *OpValue) {
if (isa<PHINode>(OpValue))
return;
ScheduleData *Bundle = getScheduleData(OpValue);
LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
assert(!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled");
assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
"tried to unbundle something which is not a bundle");
// Un-bundle: make single instructions out of the bundle.
ScheduleData *BundleMember = Bundle;
while (BundleMember) {
assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
BundleMember->FirstInBundle = BundleMember;
ScheduleData *Next = BundleMember->NextInBundle;
BundleMember->NextInBundle = nullptr;
BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
if (BundleMember->UnscheduledDepsInBundle == 0) {
ReadyInsts.insert(BundleMember);
}
BundleMember = Next;
}
}
BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
// Allocate a new ScheduleData for the instruction.
if (ChunkPos >= ChunkSize) {
ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
ChunkPos = 0;
}
return &(ScheduleDataChunks.back()[ChunkPos++]);
}
bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
const InstructionsState &S) {
if (getScheduleData(V, isOneOf(S, V)))
return true;
Instruction *I = dyn_cast<Instruction>(V);
assert(I && "bundle member must be an instruction");
assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
ScheduleData *ISD = getScheduleData(I);
if (!ISD)
return false;
assert(isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region");
ScheduleData *SD = allocateScheduleDataChunks();
SD->Inst = I;
SD->init(SchedulingRegionID, S.OpValue);
ExtraScheduleDataMap[I][S.OpValue] = SD;
return true;
};
if (CheckSheduleForI(I))
return true;
if (!ScheduleStart) {
// It's the first instruction in the new region.
initScheduleData(I, I->getNextNode(), nullptr, nullptr);
ScheduleStart = I;
ScheduleEnd = I->getNextNode();
if (isOneOf(S, I) != I)
CheckSheduleForI(I);
assert(ScheduleEnd && "tried to vectorize a terminator?");
LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
return true;
}
// Search up and down at the same time, because we don't know if the new
// instruction is above or below the existing scheduling region.
BasicBlock::reverse_iterator UpIter =
++ScheduleStart->getIterator().getReverse();
BasicBlock::reverse_iterator UpperEnd = BB->rend();
BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
BasicBlock::iterator LowerEnd = BB->end();
while (true) {
if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
return false;
}
if (UpIter != UpperEnd) {
if (&*UpIter == I) {
initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
ScheduleStart = I;
if (isOneOf(S, I) != I)
CheckSheduleForI(I);
LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
<< "\n");
return true;
}
++UpIter;
}
if (DownIter != LowerEnd) {
if (&*DownIter == I) {
initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
nullptr);
ScheduleEnd = I->getNextNode();
if (isOneOf(S, I) != I)
CheckSheduleForI(I);
assert(ScheduleEnd && "tried to vectorize a terminator?");
LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
<< "\n");
return true;
}
++DownIter;
}
assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
"instruction not found in block");
}
return true;
}
void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
Instruction *ToI,
ScheduleData *PrevLoadStore,
ScheduleData *NextLoadStore) {
ScheduleData *CurrentLoadStore = PrevLoadStore;
for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
ScheduleData *SD = ScheduleDataMap[I];
if (!SD) {
SD = allocateScheduleDataChunks();
ScheduleDataMap[I] = SD;
SD->Inst = I;
}
assert(!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region");
SD->init(SchedulingRegionID, I);
if (I->mayReadOrWriteMemory() &&
(!isa<IntrinsicInst>(I) ||
cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
// Update the linked list of memory accessing instructions.
if (CurrentLoadStore) {
CurrentLoadStore->NextLoadStore = SD;
} else {
FirstLoadStoreInRegion = SD;
}
CurrentLoadStore = SD;
}
}
if (NextLoadStore) {
if (CurrentLoadStore)
CurrentLoadStore->NextLoadStore = NextLoadStore;
} else {
LastLoadStoreInRegion = CurrentLoadStore;
}
}
void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
bool InsertInReadyList,
BoUpSLP *SLP) {
assert(SD->isSchedulingEntity());
SmallVector<ScheduleData *, 10> WorkList;
WorkList.push_back(SD);
while (!WorkList.empty()) {
ScheduleData *SD = WorkList.back();
WorkList.pop_back();
ScheduleData *BundleMember = SD;
while (BundleMember) {
assert(isInSchedulingRegion(BundleMember));
if (!BundleMember->hasValidDependencies()) {
LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
<< "\n");
BundleMember->Dependencies = 0;
BundleMember->resetUnscheduledDeps();
// Handle def-use chain dependencies.
if (BundleMember->OpValue != BundleMember->Inst) {
ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
BundleMember->Dependencies++;
ScheduleData *DestBundle = UseSD->FirstInBundle;
if (!DestBundle->IsScheduled)
BundleMember->incrementUnscheduledDeps(1);
if (!DestBundle->hasValidDependencies())
WorkList.push_back(DestBundle);
}
} else {
for (User *U : BundleMember->Inst->users()) {
if (isa<Instruction>(U)) {
ScheduleData *UseSD = getScheduleData(U);
if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
BundleMember->Dependencies++;
ScheduleData *DestBundle = UseSD->FirstInBundle;
if (!DestBundle->IsScheduled)
BundleMember->incrementUnscheduledDeps(1);
if (!DestBundle->hasValidDependencies())
WorkList.push_back(DestBundle);
}
} else {
// I'm not sure if this can ever happen. But we need to be safe.
// This lets the instruction/bundle never be scheduled and
// eventually disable vectorization.
BundleMember->Dependencies++;
BundleMember->incrementUnscheduledDeps(1);
}
}
}
// Handle the memory dependencies.
ScheduleData *DepDest = BundleMember->NextLoadStore;
if (DepDest) {
Instruction *SrcInst = BundleMember->Inst;
MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
unsigned numAliased = 0;
unsigned DistToSrc = 1;
while (DepDest) {
assert(isInSchedulingRegion(DepDest));
// We have two limits to reduce the complexity:
// 1) AliasedCheckLimit: It's a small limit to reduce calls to
// SLP->isAliased (which is the expensive part in this loop).
// 2) MaxMemDepDistance: It's for very large blocks and it aborts
// the whole loop (even if the loop is fast, it's quadratic).
// It's important for the loop break condition (see below) to
// check this limit even between two read-only instructions.
if (DistToSrc >= MaxMemDepDistance ||
((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
(numAliased >= AliasedCheckLimit ||
SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
// We increment the counter only if the locations are aliased
// (instead of counting all alias checks). This gives a better
// balance between reduced runtime and accurate dependencies.
numAliased++;
DepDest->MemoryDependencies.push_back(BundleMember);
BundleMember->Dependencies++;
ScheduleData *DestBundle = DepDest->FirstInBundle;
if (!DestBundle->IsScheduled) {
BundleMember->incrementUnscheduledDeps(1);
}
if (!DestBundle->hasValidDependencies()) {
WorkList.push_back(DestBundle);
}
}
DepDest = DepDest->NextLoadStore;
// Example, explaining the loop break condition: Let's assume our
// starting instruction is i0 and MaxMemDepDistance = 3.
//
// +--------v--v--v
// i0,i1,i2,i3,i4,i5,i6,i7,i8
// +--------^--^--^
//
// MaxMemDepDistance let us stop alias-checking at i3 and we add
// dependencies from i0 to i3,i4,.. (even if they are not aliased).
// Previously we already added dependencies from i3 to i6,i7,i8
// (because of MaxMemDepDistance). As we added a dependency from
// i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
// and we can abort this loop at i6.
if (DistToSrc >= 2 * MaxMemDepDistance)
break;
DistToSrc++;
}
}
}
BundleMember = BundleMember->NextInBundle;
}
if (InsertInReadyList && SD->isReady()) {
ReadyInsts.push_back(SD);
LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
<< "\n");
}
}
}
void BoUpSLP::BlockScheduling::resetSchedule() {
assert(ScheduleStart &&
"tried to reset schedule on block which has not been scheduled");
for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
doForAllOpcodes(I, [&](ScheduleData *SD) {
assert(isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region");
SD->IsScheduled = false;
SD->resetUnscheduledDeps();
});
}
ReadyInsts.clear();
}
void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
if (!BS->ScheduleStart)
return;
LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
BS->resetSchedule();
// For the real scheduling we use a more sophisticated ready-list: it is
// sorted by the original instruction location. This lets the final schedule
// be as close as possible to the original instruction order.
struct ScheduleDataCompare {
bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
return SD2->SchedulingPriority < SD1->SchedulingPriority;
}
};
std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
// Ensure that all dependency data is updated and fill the ready-list with
// initial instructions.
int Idx = 0;
int NumToSchedule = 0;
for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
I = I->getNextNode()) {
BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
assert(SD->isPartOfBundle() ==
(getTreeEntry(SD->Inst) != nullptr) &&
"scheduler and vectorizer bundle mismatch");
SD->FirstInBundle->SchedulingPriority = Idx++;
if (SD->isSchedulingEntity()) {
BS->calculateDependencies(SD, false, this);
NumToSchedule++;
}
});
}
BS->initialFillReadyList(ReadyInsts);
Instruction *LastScheduledInst = BS->ScheduleEnd;
// Do the "real" scheduling.
while (!ReadyInsts.empty()) {
ScheduleData *picked = *ReadyInsts.begin();
ReadyInsts.erase(ReadyInsts.begin());
// Move the scheduled instruction(s) to their dedicated places, if not
// there yet.
ScheduleData *BundleMember = picked;
while (BundleMember) {
Instruction *pickedInst = BundleMember->Inst;
if (LastScheduledInst->getNextNode() != pickedInst) {
BS->BB->getInstList().remove(pickedInst);
BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
pickedInst);
}
LastScheduledInst = pickedInst;
BundleMember = BundleMember->NextInBundle;
}
BS->schedule(picked, ReadyInsts);
NumToSchedule--;
}
assert(NumToSchedule == 0 && "could not schedule all instructions");
// Avoid duplicate scheduling of the block.
BS->ScheduleStart = nullptr;
}
unsigned BoUpSLP::getVectorElementSize(Value *V) {
// If V is a store, just return the width of the stored value without
// traversing the expression tree. This is the common case.
if (auto *Store = dyn_cast<StoreInst>(V))
return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
auto E = InstrElementSize.find(V);
if (E != InstrElementSize.end())
return E->second;
// If V is not a store, we can traverse the expression tree to find loads
// that feed it. The type of the loaded value may indicate a more suitable
// width than V's type. We want to base the vector element size on the width
// of memory operations where possible.
SmallVector<Instruction *, 16> Worklist;
SmallPtrSet<Instruction *, 16> Visited;
if (auto *I = dyn_cast<Instruction>(V)) {
Worklist.push_back(I);
Visited.insert(I);
}
// Traverse the expression tree in bottom-up order looking for loads. If we
// encounter an instruction we don't yet handle, we give up.
auto MaxWidth = 0u;
auto FoundUnknownInst = false;
while (!Worklist.empty() && !FoundUnknownInst) {
auto *I = Worklist.pop_back_val();
// We should only be looking at scalar instructions here. If the current
// instruction has a vector type, give up.
auto *Ty = I->getType();
if (isa<VectorType>(Ty))
FoundUnknownInst = true;
// If the current instruction is a load, update MaxWidth to reflect the
// width of the loaded value.
else if (isa<LoadInst>(I))
MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
// Otherwise, we need to visit the operands of the instruction. We only
// handle the interesting cases from buildTree here. If an operand is an
// instruction we haven't yet visited, we add it to the worklist.
else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get()))
if (Visited.insert(J).second)
Worklist.push_back(J);
}
// If we don't yet handle the instruction, give up.
else
FoundUnknownInst = true;
}
int Width = MaxWidth;
// If we didn't encounter a memory access in the expression tree, or if we
// gave up for some reason, just return the width of V. Otherwise, return the
// maximum width we found.
if (!MaxWidth || FoundUnknownInst)
Width = DL->getTypeSizeInBits(V->getType());
for (Instruction *I : Visited)
InstrElementSize[I] = Width;
return Width;
}
// Determine if a value V in a vectorizable expression Expr can be demoted to a
// smaller type with a truncation. We collect the values that will be demoted
// in ToDemote and additional roots that require investigating in Roots.
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
SmallVectorImpl<Value *> &ToDemote,
SmallVectorImpl<Value *> &Roots) {
// We can always demote constants.
if (isa<Constant>(V)) {
ToDemote.push_back(V);
return true;
}
// If the value is not an instruction in the expression with only one use, it
// cannot be demoted.
auto *I = dyn_cast<Instruction>(V);
if (!I || !I->hasOneUse() || !Expr.count(I))
return false;
switch (I->getOpcode()) {
// We can always demote truncations and extensions. Since truncations can
// seed additional demotion, we save the truncated value.
case Instruction::Trunc:
Roots.push_back(I->getOperand(0));
break;
case Instruction::ZExt:
case Instruction::SExt:
break;
// We can demote certain binary operations if we can demote both of their
// operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
!collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
return false;
break;
// We can demote selects if we can demote their true and false values.
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
!collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
return false;
break;
}
// We can demote phis if we can demote all their incoming operands. Note that
// we don't need to worry about cycles since we ensure single use above.
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(I);
for (Value *IncValue : PN->incoming_values())
if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
return false;
break;
}
// Otherwise, conservatively give up.
default:
return false;
}
// Record the value that we can demote.
ToDemote.push_back(V);
return true;
}
void BoUpSLP::computeMinimumValueSizes() {
// If there are no external uses, the expression tree must be rooted by a
// store. We can't demote in-memory values, so there is nothing to do here.
if (ExternalUses.empty())
return;
// We only attempt to truncate integer expressions.
auto &TreeRoot = VectorizableTree[0]->Scalars;
auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
if (!TreeRootIT)
return;
// If the expression is not rooted by a store, these roots should have
// external uses. We will rely on InstCombine to rewrite the expression in
// the narrower type. However, InstCombine only rewrites single-use values.
// This means that if a tree entry other than a root is used externally, it
// must have multiple uses and InstCombine will not rewrite it. The code
// below ensures that only the roots are used externally.
SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
for (auto &EU : ExternalUses)
if (!Expr.erase(EU.Scalar))
return;
if (!Expr.empty())
return;
// Collect the scalar values of the vectorizable expression. We will use this
// context to determine which values can be demoted. If we see a truncation,
// we mark it as seeding another demotion.
for (auto &EntryPtr : VectorizableTree)
Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
// Ensure the roots of the vectorizable tree don't form a cycle. They must
// have a single external user that is not in the vectorizable tree.
for (auto *Root : TreeRoot)
if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
return;
// Conservatively determine if we can actually truncate the roots of the
// expression. Collect the values that can be demoted in ToDemote and
// additional roots that require investigating in Roots.
SmallVector<Value *, 32> ToDemote;
SmallVector<Value *, 4> Roots;
for (auto *Root : TreeRoot)
if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
return;
// The maximum bit width required to represent all the values that can be
// demoted without loss of precision. It would be safe to truncate the roots
// of the expression to this width.
auto MaxBitWidth = 8u;
// We first check if all the bits of the roots are demanded. If they're not,
// we can truncate the roots to this narrower type.
for (auto *Root : TreeRoot) {
auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
MaxBitWidth = std::max<unsigned>(
Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
}
// True if the roots can be zero-extended back to their original type, rather
// than sign-extended. We know that if the leading bits are not demanded, we
// can safely zero-extend. So we initialize IsKnownPositive to True.
bool IsKnownPositive = true;
// If all the bits of the roots are demanded, we can try a little harder to
// compute a narrower type. This can happen, for example, if the roots are
// getelementptr indices. InstCombine promotes these indices to the pointer
// width. Thus, all their bits are technically demanded even though the
// address computation might be vectorized in a smaller type.
//
// We start by looking at each entry that can be demoted. We compute the
// maximum bit width required to store the scalar by using ValueTracking to
// compute the number of high-order bits we can truncate.
if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
llvm::all_of(TreeRoot, [](Value *R) {
assert(R->hasOneUse() && "Root should have only one use!");
return isa<GetElementPtrInst>(R->user_back());
})) {
MaxBitWidth = 8u;
// Determine if the sign bit of all the roots is known to be zero. If not,
// IsKnownPositive is set to False.
IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
KnownBits Known = computeKnownBits(R, *DL);
return Known.isNonNegative();
});
// Determine the maximum number of bits required to store the scalar
// values.
for (auto *Scalar : ToDemote) {
auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
}
// If we can't prove that the sign bit is zero, we must add one to the
// maximum bit width to account for the unknown sign bit. This preserves
// the existing sign bit so we can safely sign-extend the root back to the
// original type. Otherwise, if we know the sign bit is zero, we will
// zero-extend the root instead.
//
// FIXME: This is somewhat suboptimal, as there will be cases where adding
// one to the maximum bit width will yield a larger-than-necessary
// type. In general, we need to add an extra bit only if we can't
// prove that the upper bit of the original type is equal to the
// upper bit of the proposed smaller type. If these two bits are the
// same (either zero or one) we know that sign-extending from the
// smaller type will result in the same value. Here, since we can't
// yet prove this, we are just making the proposed smaller type
// larger to ensure correctness.
if (!IsKnownPositive)
++MaxBitWidth;
}
// Round MaxBitWidth up to the next power-of-two.
if (!isPowerOf2_64(MaxBitWidth))
MaxBitWidth = NextPowerOf2(MaxBitWidth);
// If the maximum bit width we compute is less than the with of the roots'
// type, we can proceed with the narrowing. Otherwise, do nothing.
if (MaxBitWidth >= TreeRootIT->getBitWidth())
return;
// If we can truncate the root, we must collect additional values that might
// be demoted as a result. That is, those seeded by truncations we will
// modify.
while (!Roots.empty())
collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
// Finally, map the values we can demote to the maximum bit with we computed.
for (auto *Scalar : ToDemote)
MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
}
namespace {
/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
SLPVectorizerPass Impl;
/// Pass identification, replacement for typeid
static char ID;
explicit SLPVectorizer() : FunctionPass(ID) {
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override {
return false;
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<InjectTLIMappingsLegacy>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.setPreservesCFG();
}
};
} // end anonymous namespace
PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
auto *AA = &AM.getResult<AAManager>(F);
auto *LI = &AM.getResult<LoopAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<AAManager>();
PA.preserve<GlobalsAA>();
return PA;
}
bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
TargetTransformInfo *TTI_,
TargetLibraryInfo *TLI_, AAResults *AA_,
LoopInfo *LI_, DominatorTree *DT_,
AssumptionCache *AC_, DemandedBits *DB_,
OptimizationRemarkEmitter *ORE_) {
if (!RunSLPVectorization)
return false;
SE = SE_;
TTI = TTI_;
TLI = TLI_;
AA = AA_;
LI = LI_;
DT = DT_;
AC = AC_;
DB = DB_;
DL = &F.getParent()->getDataLayout();
Stores.clear();
GEPs.clear();
bool Changed = false;
// If the target claims to have no vector registers don't attempt
// vectorization.
if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
return false;
// Don't vectorize when the attribute NoImplicitFloat is used.
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return false;
LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
// Use the bottom up slp vectorizer to construct chains that start with
// store instructions.
BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
// A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
// delete instructions.
// Scan the blocks in the function in post order.
for (auto BB : post_order(&F.getEntryBlock())) {
collectSeedInstructions(BB);
// Vectorize trees that end at stores.
if (!Stores.empty()) {
LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
<< " underlying objects.\n");
Changed |= vectorizeStoreChains(R);
}
// Vectorize trees that end at reductions.
Changed |= vectorizeChainsInBlock(BB, R);
// Vectorize the index computations of getelementptr instructions. This
// is primarily intended to catch gather-like idioms ending at
// non-consecutive loads.
if (!GEPs.empty()) {
LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
<< " underlying objects.\n");
Changed |= vectorizeGEPIndices(BB, R);
}
}
if (Changed) {
R.optimizeGatherSequence();
LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
}
return Changed;
}
bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
unsigned Idx) {
LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
<< "\n");
const unsigned Sz = R.getVectorElementSize(Chain[0]);
const unsigned MinVF = R.getMinVecRegSize() / Sz;
unsigned VF = Chain.size();
if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
return false;
LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
<< "\n");
R.buildTree(Chain);
Optional<ArrayRef<unsigned>> Order = R.bestOrder();
// TODO: Handle orders of size less than number of elements in the vector.
if (Order && Order->size() == Chain.size()) {
// TODO: reorder tree nodes without tree rebuilding.
SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
llvm::transform(*Order, ReorderedOps.begin(),
[Chain](const unsigned Idx) { return Chain[Idx]; });
R.buildTree(ReorderedOps);
}
if (R.isTreeTinyAndNotFullyVectorizable())
return false;
if (R.isLoadCombineCandidate())
return false;
R.computeMinimumValueSizes();
int Cost = R.getTreeCost();
LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
if (Cost < -SLPCostThreshold) {
LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
using namespace ore;
R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
cast<StoreInst>(Chain[0]))
<< "Stores SLP vectorized with cost " << NV("Cost", Cost)
<< " and with tree size "
<< NV("TreeSize", R.getTreeSize()));
R.vectorizeTree();
return true;
}
return false;
}
bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
BoUpSLP &R) {
// We may run into multiple chains that merge into a single chain. We mark the
// stores that we vectorized so that we don't visit the same store twice.
BoUpSLP::ValueSet VectorizedStores;
bool Changed = false;
int E = Stores.size();
SmallBitVector Tails(E, false);
SmallVector<int, 16> ConsecutiveChain(E, E + 1);
int MaxIter = MaxStoreLookup.getValue();
int IterCnt;
auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
&ConsecutiveChain](int K, int Idx) {
if (IterCnt >= MaxIter)
return true;
++IterCnt;
if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
return false;
Tails.set(Idx);
ConsecutiveChain[K] = Idx;
return true;
};
// Do a quadratic search on all of the given stores in reverse order and find
// all of the pairs of stores that follow each other.
for (int Idx = E - 1; Idx >= 0; --Idx) {
// If a store has multiple consecutive store candidates, search according
// to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
// This is because usually pairing with immediate succeeding or preceding
// candidate create the best chance to find slp vectorization opportunity.
const int MaxLookDepth = std::max(E - Idx, Idx + 1);
IterCnt = 0;
for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
(Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
break;
}
// For stores that start but don't end a link in the chain:
for (int Cnt = E; Cnt > 0; --Cnt) {
int I = Cnt - 1;
if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
continue;
// We found a store instr that starts a chain. Now follow the chain and try
// to vectorize it.
BoUpSLP::ValueList Operands;
// Collect the chain into a list.
while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
Operands.push_back(Stores[I]);
// Move to the next value in the chain.
I = ConsecutiveChain[I];
}
// If a vector register can't hold 1 element, we are done.
unsigned MaxVecRegSize = R.getMaxVecRegSize();
unsigned EltSize = R.getVectorElementSize(Stores[0]);
if (MaxVecRegSize % EltSize != 0)
continue;
unsigned MaxElts = MaxVecRegSize / EltSize;
// FIXME: Is division-by-2 the correct step? Should we assert that the
// register size is a power-of-2?
unsigned StartIdx = 0;
for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
if (!VectorizedStores.count(Slice.front()) &&
!VectorizedStores.count(Slice.back()) &&
vectorizeStoreChain(Slice, R, Cnt)) {
// Mark the vectorized stores so that we don't vectorize them again.
VectorizedStores.insert(Slice.begin(), Slice.end());
Changed = true;
// If we vectorized initial block, no need to try to vectorize it
// again.
if (Cnt == StartIdx)
StartIdx += Size;
Cnt += Size;
continue;
}
++Cnt;
}
// Check if the whole array was vectorized already - exit.
if (StartIdx >= Operands.size())
break;
}
}
return Changed;
}
void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
// Initialize the collections. We will make a single pass over the block.
Stores.clear();
GEPs.clear();
// Visit the store and getelementptr instructions in BB and organize them in
// Stores and GEPs according to the underlying objects of their pointer
// operands.
for (Instruction &I : *BB) {
// Ignore store instructions that are volatile or have a pointer operand
// that doesn't point to a scalar type.
if (auto *SI = dyn_cast<StoreInst>(&I)) {
if (!SI->isSimple())
continue;
if (!isValidElementType(SI->getValueOperand()->getType()))
continue;
Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
}
// Ignore getelementptr instructions that have more than one index, a
// constant index, or a pointer operand that doesn't point to a scalar
// type.
else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
auto Idx = GEP->idx_begin()->get();
if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
continue;
if (!isValidElementType(Idx->getType()))
continue;
if (GEP->getType()->isVectorTy())
continue;
GEPs[GEP->getPointerOperand()].push_back(GEP);
}
}
}
bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B)
return false;
Value *VL[] = {A, B};
return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
}
bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
bool AllowReorder,
ArrayRef<Value *> InsertUses) {
if (VL.size() < 2)
return false;
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n");
// Check that all of the parts are instructions of the same type,
// we permit an alternate opcode via InstructionsState.
InstructionsState S = getSameOpcode(VL);
if (!S.getOpcode())
return false;
Instruction *I0 = cast<Instruction>(S.OpValue);
// Make sure invalid types (including vector type) are rejected before
// determining vectorization factor for scalar instructions.
for (Value *V : VL) {
Type *Ty = V->getType();
if (!isValidElementType(Ty)) {
// NOTE: the following will give user internal llvm type name, which may
// not be useful.
R.getORE()->emit([&]() {
std::string type_str;
llvm::raw_string_ostream rso(type_str);
Ty->print(rso);
return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
<< "Cannot SLP vectorize list: type "
<< rso.str() + " is unsupported by vectorizer";
});
return false;
}
}
unsigned Sz = R.getVectorElementSize(I0);
unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
if (MaxVF < 2) {
R.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
<< "Cannot SLP vectorize list: vectorization factor "
<< "less than 2 is not supported";
});
return false;
}
bool Changed = false;
bool CandidateFound = false;
int MinCost = SLPCostThreshold;
bool CompensateUseCost =
!InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
return V && isa<InsertElementInst>(V);
});
assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&
"Each scalar expected to have an associated InsertElement user.");
unsigned NextInst = 0, MaxInst = VL.size();
for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
// No actual vectorization should happen, if number of parts is the same as
// provided vectorization factor (i.e. the scalar type is used for vector
// code during codegen).
auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
if (TTI->getNumberOfParts(VecTy) == VF)
continue;
for (unsigned I = NextInst; I < MaxInst; ++I) {
unsigned OpsWidth = 0;
if (I + VF > MaxInst)
OpsWidth = MaxInst - I;
else
OpsWidth = VF;
if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
break;
ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
// Check that a previous iteration of this loop did not delete the Value.
if (llvm::any_of(Ops, [&R](Value *V) {
auto *I = dyn_cast<Instruction>(V);
return I && R.isDeleted(I);
}))
continue;
LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
<< "\n");
R.buildTree(Ops);
Optional<ArrayRef<unsigned>> Order = R.bestOrder();
// TODO: check if we can allow reordering for more cases.
if (AllowReorder && Order) {
// TODO: reorder tree nodes without tree rebuilding.
// Conceptually, there is nothing actually preventing us from trying to
// reorder a larger list. In fact, we do exactly this when vectorizing
// reductions. However, at this point, we only expect to get here when
// there are exactly two operations.
assert(Ops.size() == 2);
Value *ReorderedOps[] = {Ops[1], Ops[0]};
R.buildTree(ReorderedOps, None);
}
if (R.isTreeTinyAndNotFullyVectorizable())
continue;
R.computeMinimumValueSizes();
int Cost = R.getTreeCost();
CandidateFound = true;
if (CompensateUseCost) {
// TODO: Use TTI's getScalarizationOverhead for sequence of inserts
// rather than sum of single inserts as the latter may overestimate
// cost. This work should imply improving cost estimation for extracts
// that added in for external (for vectorization tree) users,i.e. that
// part should also switch to same interface.
// For example, the following case is projected code after SLP:
// %4 = extractelement <4 x i64> %3, i32 0
// %v0 = insertelement <4 x i64> undef, i64 %4, i32 0
// %5 = extractelement <4 x i64> %3, i32 1
// %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
// %6 = extractelement <4 x i64> %3, i32 2
// %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
// %7 = extractelement <4 x i64> %3, i32 3
// %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
//
// Extracts here added by SLP in order to feed users (the inserts) of
// original scalars and contribute to "ExtractCost" at cost evaluation.
// The inserts in turn form sequence to build an aggregate that
// detected by findBuildAggregate routine.
// SLP makes an assumption that such sequence will be optimized away
// later (instcombine) so it tries to compensate ExctractCost with
// cost of insert sequence.
// Current per element cost calculation approach is not quite accurate
// and tends to create bias toward favoring vectorization.
// Switching to the TTI interface might help a bit.
// Alternative solution could be pattern-match to detect a no-op or
// shuffle.
unsigned UserCost = 0;
for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
UserCost += TTI->getVectorInstrCost(
Instruction::InsertElement, IE->getType(), CI->getZExtValue());
}
LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost
<< ".\n");
Cost -= UserCost;
}
MinCost = std::min(MinCost, Cost);
if (Cost < -SLPCostThreshold) {
LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
cast<Instruction>(Ops[0]))
<< "SLP vectorized with cost " << ore::NV("Cost", Cost)
<< " and with tree size "
<< ore::NV("TreeSize", R.getTreeSize()));
R.vectorizeTree();
// Move to the next bundle.
I += VF - 1;
NextInst = I + 1;
Changed = true;
}
}
}
if (!Changed && CandidateFound) {
R.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
<< "List vectorization was possible but not beneficial with cost "
<< ore::NV("Cost", MinCost) << " >= "
<< ore::NV("Treshold", -SLPCostThreshold);
});
} else if (!Changed) {
R.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
<< "Cannot SLP vectorize list: vectorization was impossible"
<< " with available vectorization factors";
});
}
return Changed;
}
bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
if (!I)
return false;
if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
return false;
Value *P = I->getParent();
// Vectorize in current basic block only.
auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
return false;
// Try to vectorize V.
if (tryToVectorizePair(Op0, Op1, R))
return true;
auto *A = dyn_cast<BinaryOperator>(Op0);
auto *B = dyn_cast<BinaryOperator>(Op1);
// Try to skip B.
if (B && B->hasOneUse()) {
auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
return true;
if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
return true;
}
// Try to skip A.
if (A && A->hasOneUse()) {
auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
return true;
if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
return true;
}
return false;
}
/// Generate a shuffle mask to be used in a reduction tree.
///
/// \param VecLen The length of the vector to be reduced.
/// \param NumEltsToRdx The number of elements that should be reduced in the
/// vector.
/// \param IsPairwise Whether the reduction is a pairwise or splitting
/// reduction. A pairwise reduction will generate a mask of
/// <0,2,...> or <1,3,..> while a splitting reduction will generate
/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen,
unsigned NumEltsToRdx,
bool IsPairwise, bool IsLeft) {
assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
SmallVector<int, 32> ShuffleMask(VecLen, -1);
if (IsPairwise)
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
for (unsigned i = 0; i != NumEltsToRdx; ++i)
ShuffleMask[i] = 2 * i + !IsLeft;
else
// Move the upper half of the vector to the lower half.
for (unsigned i = 0; i != NumEltsToRdx; ++i)
ShuffleMask[i] = NumEltsToRdx + i;
return ShuffleMask;
}
namespace {
/// Model horizontal reductions.
///
/// A horizontal reduction is a tree of reduction operations (currently add and
/// fadd) that has operations that can be put into a vector as its leaf.
/// For example, this tree:
///
/// mul mul mul mul
/// \ / \ /
/// + +
/// \ /
/// +
/// This tree has "mul" as its reduced values and "+" as its reduction
/// operations. A reduction might be feeding into a store or a binary operation
/// feeding a phi.
/// ...
/// \ /
/// +
/// |
/// phi +=
///
/// Or:
/// ...
/// \ /
/// +
/// |
/// *p =
///
class HorizontalReduction {
using ReductionOpsType = SmallVector<Value *, 16>;
using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
ReductionOpsListType ReductionOps;
SmallVector<Value *, 32> ReducedVals;
// Use map vector to make stable output.
MapVector<Instruction *, Value *> ExtraArgs;
/// Kind of the reduction data.
enum ReductionKind {
RK_None, /// Not a reduction.
RK_Arithmetic, /// Binary reduction data.
RK_SMin, /// Signed minimum reduction data.
RK_UMin, /// Unsigned minimum reduction data.
RK_SMax, /// Signed maximum reduction data.
RK_UMax, /// Unsigned maximum reduction data.
};
/// Contains info about operation, like its opcode, left and right operands.
class OperationData {
/// Opcode of the instruction.
unsigned Opcode = 0;
/// Kind of the reduction operation.
ReductionKind Kind = RK_None;
/// Checks if the reduction operation can be vectorized.
bool isVectorizable() const {
// We currently only support add/mul/logical && min/max reductions.
return ((Kind == RK_Arithmetic &&
(Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
Opcode == Instruction::And || Opcode == Instruction::Or ||
Opcode == Instruction::Xor)) ||
(Opcode == Instruction::ICmp &&
(Kind == RK_SMin || Kind == RK_SMax ||
Kind == RK_UMin || Kind == RK_UMax)));
}
/// Creates reduction operation with the current opcode.
Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
const Twine &Name) const {
assert(isVectorizable() &&
"Expected add|fadd or min/max reduction operation.");
Value *Cmp = nullptr;
switch (Kind) {
case RK_Arithmetic:
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
Name);
case RK_SMin:
assert(Opcode == Instruction::ICmp && "Expected integer types.");
Cmp = Builder.CreateICmpSLT(LHS, RHS);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
case RK_SMax:
assert(Opcode == Instruction::ICmp && "Expected integer types.");
Cmp = Builder.CreateICmpSGT(LHS, RHS);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
case RK_UMin:
assert(Opcode == Instruction::ICmp && "Expected integer types.");
Cmp = Builder.CreateICmpULT(LHS, RHS);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
case RK_UMax:
assert(Opcode == Instruction::ICmp && "Expected integer types.");
Cmp = Builder.CreateICmpUGT(LHS, RHS);
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
case RK_None:
break;
}
llvm_unreachable("Unknown reduction operation.");
}
public:
explicit OperationData() = default;
/// Construction for reduced values. They are identified by opcode only and
/// don't have associated LHS/RHS values.
explicit OperationData(Instruction &I) {
Opcode = I.getOpcode();
}
/// Constructor for reduction operations with opcode and its left and
/// right operands.
OperationData(unsigned Opcode, ReductionKind Kind)
: Opcode(Opcode), Kind(Kind) {
assert(Kind != RK_None && "One of the reduction operations is expected.");
}
explicit operator bool() const { return Opcode; }
/// Return true if this operation is any kind of minimum or maximum.
bool isMinMax() const {
switch (Kind) {
case RK_Arithmetic:
return false;
case RK_SMin:
case RK_SMax:
case RK_UMin:
case RK_UMax:
return true;
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Get the index of the first operand.
unsigned getFirstOperandIndex() const {
assert(!!*this && "The opcode is not set.");
// We allow calling this before 'Kind' is set, so handle that specially.
if (Kind == RK_None)
return 0;
return isMinMax() ? 1 : 0;
}
/// Total number of operands in the reduction operation.
unsigned getNumberOfOperands() const {
assert(Kind != RK_None && !!*this && "Expected reduction operation.");
return isMinMax() ? 3 : 2;
}
/// Checks if the instruction is in basic block \p BB.
/// For a min/max reduction check that both compare and select are in \p BB.
bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const {
assert(Kind != RK_None && !!*this && "Expected reduction operation.");
if (IsRedOp && isMinMax()) {
auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
return I->getParent() == BB && Cmp && Cmp->getParent() == BB;
}
return I->getParent() == BB;
}
/// Expected number of uses for reduction operations/reduced values.
bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
assert(Kind != RK_None && !!*this && "Expected reduction operation.");
// SelectInst must be used twice while the condition op must have single
// use only.
if (isMinMax())
return I->hasNUses(2) &&
(!IsReductionOp ||
cast<SelectInst>(I)->getCondition()->hasOneUse());
// Arithmetic reduction operation must be used once only.
return I->hasOneUse();
}
/// Initializes the list of reduction operations.
void initReductionOps(ReductionOpsListType &ReductionOps) {
assert(Kind != RK_None && !!*this && "Expected reduction operation.");
if (isMinMax())
ReductionOps.assign(2, ReductionOpsType());
else
ReductionOps.assign(1, ReductionOpsType());
}
/// Add all reduction operations for the reduction instruction \p I.
void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
assert(Kind != RK_None && !!*this && "Expected reduction operation.");
if (isMinMax()) {
ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
ReductionOps[1].emplace_back(I);
} else {
ReductionOps[0].emplace_back(I);
}
}
/// Checks if instruction is associative and can be vectorized.
bool isAssociative(Instruction *I) const {
assert(Kind != RK_None && *this && "Expected reduction operation.");
switch (Kind) {
case RK_Arithmetic:
return I->isAssociative();
case RK_SMin:
case RK_SMax:
case RK_UMin:
case RK_UMax:
assert(Opcode == Instruction::ICmp &&
"Only integer compare operation is expected.");
return true;
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Checks if the reduction operation can be vectorized.
bool isVectorizable(Instruction *I) const {
return isVectorizable() && isAssociative(I);
}
/// Checks if two operation data are both a reduction op or both a reduced
/// value.
bool operator==(const OperationData &OD) const {
assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) &&
"One of the comparing operations is incorrect.");
return Kind == OD.Kind && Opcode == OD.Opcode;
}
bool operator!=(const OperationData &OD) const { return !(*this == OD); }
void clear() {
Opcode = 0;
Kind = RK_None;
}
/// Get the opcode of the reduction operation.
unsigned getOpcode() const {
assert(isVectorizable() && "Expected vectorizable operation.");
return Opcode;
}
/// Get kind of reduction data.
ReductionKind getKind() const { return Kind; }
Value *getLHS(Instruction *I) const {
if (Kind == RK_None)
return nullptr;
return I->getOperand(getFirstOperandIndex());
}
Value *getRHS(Instruction *I) const {
if (Kind == RK_None)
return nullptr;
return I->getOperand(getFirstOperandIndex() + 1);
}
/// Creates reduction operation with the current opcode with the IR flags
/// from \p ReductionOps.
Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
const Twine &Name,
const ReductionOpsListType &ReductionOps) const {
assert(isVectorizable() &&
"Expected add|fadd or min/max reduction operation.");
auto *Op = createOp(Builder, LHS, RHS, Name);
switch (Kind) {
case RK_Arithmetic:
propagateIRFlags(Op, ReductionOps[0]);
return Op;
case RK_SMin:
case RK_SMax:
case RK_UMin:
case RK_UMax:
if (auto *SI = dyn_cast<SelectInst>(Op))
propagateIRFlags(SI->getCondition(), ReductionOps[0]);
propagateIRFlags(Op, ReductionOps[1]);
return Op;
case RK_None:
break;
}
llvm_unreachable("Unknown reduction operation.");
}
/// Creates reduction operation with the current opcode with the IR flags
/// from \p I.
Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
const Twine &Name, Instruction *I) const {
assert(isVectorizable() &&
"Expected add|fadd or min/max reduction operation.");
auto *Op = createOp(Builder, LHS, RHS, Name);
switch (Kind) {
case RK_Arithmetic:
propagateIRFlags(Op, I);
return Op;
case RK_SMin:
case RK_SMax:
case RK_UMin:
case RK_UMax:
if (auto *SI = dyn_cast<SelectInst>(Op)) {
propagateIRFlags(SI->getCondition(),
cast<SelectInst>(I)->getCondition());
}
propagateIRFlags(Op, I);
return Op;
case RK_None:
break;
}
llvm_unreachable("Unknown reduction operation.");
}
TargetTransformInfo::ReductionFlags getFlags() const {
TargetTransformInfo::ReductionFlags Flags;
switch (Kind) {
case RK_Arithmetic:
break;
case RK_SMin:
Flags.IsSigned = true;
Flags.IsMaxOp = false;
break;
case RK_SMax:
Flags.IsSigned = true;
Flags.IsMaxOp = true;
break;
case RK_UMin:
Flags.IsSigned = false;
Flags.IsMaxOp = false;
break;
case RK_UMax:
Flags.IsSigned = false;
Flags.IsMaxOp = true;
break;
case RK_None:
llvm_unreachable("Reduction kind is not set");
}
return Flags;
}
};
WeakTrackingVH ReductionRoot;
/// The operation data of the reduction operation.
OperationData ReductionData;
/// The operation data of the values we perform a reduction on.
OperationData ReducedValueData;
/// Should we model this reduction as a pairwise reduction tree or a tree that
/// splits the vector in halves and adds those halves.
bool IsPairwiseReduction = false;
/// Checks if the ParentStackElem.first should be marked as a reduction
/// operation with an extra argument or as extra argument itself.
void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
Value *ExtraArg) {
if (ExtraArgs.count(ParentStackElem.first)) {
ExtraArgs[ParentStackElem.first] = nullptr;
// We ran into something like:
// ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
// The whole ParentStackElem.first should be considered as an extra value
// in this case.
// Do not perform analysis of remaining operands of ParentStackElem.first
// instruction, this whole instruction is an extra argument.
ParentStackElem.second = ParentStackElem.first->getNumOperands();
} else {
// We ran into something like:
// ParentStackElem.first += ... + ExtraArg + ...
ExtraArgs[ParentStackElem.first] = ExtraArg;
}
}
static OperationData getOperationData(Instruction *I) {
if (!I)
return OperationData();
Value *LHS;
Value *RHS;
if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) {
return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic);
}
if (auto *Select = dyn_cast<SelectInst>(I)) {
// Look for a min/max pattern.
if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, RK_UMin);
} else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, RK_SMin);
} else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, RK_UMax);
} else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, RK_SMax);
} else {
// Try harder: look for min/max pattern based on instructions producing
// same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
// During the intermediate stages of SLP, it's very common to have
// pattern like this (since optimizeGatherSequence is run only once
// at the end):
// %1 = extractelement <2 x i32> %a, i32 0
// %2 = extractelement <2 x i32> %a, i32 1
// %cond = icmp sgt i32 %1, %2
// %3 = extractelement <2 x i32> %a, i32 0
// %4 = extractelement <2 x i32> %a, i32 1
// %select = select i1 %cond, i32 %3, i32 %4
CmpInst::Predicate Pred;
Instruction *L1;
Instruction *L2;
LHS = Select->getTrueValue();
RHS = Select->getFalseValue();
Value *Cond = Select->getCondition();
// TODO: Support inverse predicates.
if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
if (!isa<ExtractElementInst>(RHS) ||
!L2->isIdenticalTo(cast<Instruction>(RHS)))
return OperationData(*I);
} else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
if (!isa<ExtractElementInst>(LHS) ||
!L1->isIdenticalTo(cast<Instruction>(LHS)))
return OperationData(*I);
} else {
if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
return OperationData(*I);
if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
!L1->isIdenticalTo(cast<Instruction>(LHS)) ||
!L2->isIdenticalTo(cast<Instruction>(RHS)))
return OperationData(*I);
}
switch (Pred) {
default:
return OperationData(*I);
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
return OperationData(Instruction::ICmp, RK_UMin);
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return OperationData(Instruction::ICmp, RK_SMin);
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
return OperationData(Instruction::ICmp, RK_UMax);
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE:
return OperationData(Instruction::ICmp, RK_SMax);
}
}
}
return OperationData(*I);
}
public:
HorizontalReduction() = default;
/// Try to find a reduction tree.
bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
assert((!Phi || is_contained(Phi->operands(), B)) &&
"Thi phi needs to use the binary operator");
ReductionData = getOperationData(B);
// We could have a initial reductions that is not an add.
// r *= v1 + v2 + v3 + v4
// In such a case start looking for a tree rooted in the first '+'.
if (Phi) {
if (ReductionData.getLHS(B) == Phi) {
Phi = nullptr;
B = dyn_cast<Instruction>(ReductionData.getRHS(B));
ReductionData = getOperationData(B);
} else if (ReductionData.getRHS(B) == Phi) {
Phi = nullptr;
B = dyn_cast<Instruction>(ReductionData.getLHS(B));
ReductionData = getOperationData(B);
}
}
if (!ReductionData.isVectorizable(B))
return false;
Type *Ty = B->getType();
if (!isValidElementType(Ty))
return false;
if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
return false;
ReducedValueData.clear();
ReductionRoot = B;
// Post order traverse the reduction tree starting at B. We only handle true
// trees containing only binary operators.
SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
ReductionData.initReductionOps(ReductionOps);
while (!Stack.empty()) {
Instruction *TreeN = Stack.back().first;
unsigned EdgeToVist = Stack.back().second++;
OperationData OpData = getOperationData(TreeN);
bool IsReducedValue = OpData != ReductionData;
// Postorder vist.
if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
if (IsReducedValue)
ReducedVals.push_back(TreeN);
else {
auto I = ExtraArgs.find(TreeN);
if (I != ExtraArgs.end() && !I->second) {
// Check if TreeN is an extra argument of its parent operation.
if (Stack.size() <= 1) {
// TreeN can't be an extra argument as it is a root reduction
// operation.
return false;
}
// Yes, TreeN is an extra argument, do not add it to a list of
// reduction operations.
// Stack[Stack.size() - 2] always points to the parent operation.
markExtraArg(Stack[Stack.size() - 2], TreeN);
ExtraArgs.erase(TreeN);
} else
ReductionData.addReductionOps(TreeN, ReductionOps);
}
// Retract.
Stack.pop_back();
continue;
}
// Visit left or right.
Value *NextV = TreeN->getOperand(EdgeToVist);
if (NextV != Phi) {
auto *I = dyn_cast<Instruction>(NextV);
OpData = getOperationData(I);
// Continue analysis if the next operand is a reduction operation or
// (possibly) a reduced value. If the reduced value opcode is not set,
// the first met operation != reduction operation is considered as the
// reduced value class.
if (I && (!ReducedValueData || OpData == ReducedValueData ||
OpData == ReductionData)) {
const bool IsReductionOperation = OpData == ReductionData;
// Only handle trees in the current basic block.
if (!ReductionData.hasSameParent(I, B->getParent(),
IsReductionOperation)) {
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), I);
continue;
}
// Each tree node needs to have minimal number of users except for the
// ultimate reduction.
if (!ReductionData.hasRequiredNumberOfUses(I,
OpData == ReductionData) &&
I != B) {
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), I);
continue;
}
if (IsReductionOperation) {
// We need to be able to reassociate the reduction operations.
if (!OpData.isAssociative(I)) {
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), I);
continue;
}
} else if (ReducedValueData &&
ReducedValueData != OpData) {
// Make sure that the opcodes of the operations that we are going to
// reduce match.
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), I);
continue;
} else if (!ReducedValueData)
ReducedValueData = OpData;
Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
continue;
}
}
// NextV is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), NextV);
}
return true;
}
/// Attempt to vectorize the tree found by matchAssociativeReduction.
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
// If there are a sufficient number of reduction values, reduce
// to a nearby power-of-2. We can safely generate oversized
// vectors and rely on the backend to split them to legal sizes.
unsigned NumReducedVals = ReducedVals.size();
if (NumReducedVals < 4)
return false;
// FIXME: Fast-math-flags should be set based on the instructions in the
// reduction (not all of 'fast' are required).
IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
FastMathFlags Unsafe;
Unsafe.setFast();
Builder.setFastMathFlags(Unsafe);
BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
// The same extra argument may be used several times, so log each attempt
// to use it.
for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
assert(Pair.first && "DebugLoc must be set.");
ExternallyUsedValues[Pair.second].push_back(Pair.first);
}
// The compare instruction of a min/max is the insertion point for new
// instructions and may be replaced with a new compare instruction.
auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
assert(isa<SelectInst>(RdxRootInst) &&
"Expected min/max reduction to have select root instruction");
Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
assert(isa<Instruction>(ScalarCond) &&
"Expected min/max reduction to have compare condition");
return cast<Instruction>(ScalarCond);
};
// The reduction root is used as the insertion point for new instructions,
// so set it as externally used to prevent it from being deleted.
ExternallyUsedValues[ReductionRoot];
SmallVector<Value *, 16> IgnoreList;
for (ReductionOpsType &RdxOp : ReductionOps)
IgnoreList.append(RdxOp.begin(), RdxOp.end());
unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
if (NumReducedVals > ReduxWidth) {
// In the loop below, we are building a tree based on a window of
// 'ReduxWidth' values.
// If the operands of those values have common traits (compare predicate,
// constant operand, etc), then we want to group those together to
// minimize the cost of the reduction.
// TODO: This should be extended to count common operands for
// compares and binops.
// Step 1: Count the number of times each compare predicate occurs.
SmallDenseMap<unsigned, unsigned> PredCountMap;
for (Value *RdxVal : ReducedVals) {
CmpInst::Predicate Pred;
if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
++PredCountMap[Pred];
}
// Step 2: Sort the values so the most common predicates come first.
stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
CmpInst::Predicate PredA, PredB;
if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
return PredCountMap[PredA] > PredCountMap[PredB];
}
return false;
});
}
Value *VectorizedTree = nullptr;
unsigned i = 0;
while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
V.buildTree(VL, ExternallyUsedValues, IgnoreList);
Optional<ArrayRef<unsigned>> Order = V.bestOrder();
if (Order) {
assert(Order->size() == VL.size() &&
"Order size must be the same as number of vectorized "
"instructions.");
// TODO: reorder tree nodes without tree rebuilding.
SmallVector<Value *, 4> ReorderedOps(VL.size());
llvm::transform(*Order, ReorderedOps.begin(),
[VL](const unsigned Idx) { return VL[Idx]; });
V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
}
if (V.isTreeTinyAndNotFullyVectorizable())
break;
if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
break;
V.computeMinimumValueSizes();
// Estimate cost.
int TreeCost = V.getTreeCost();
int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
int Cost = TreeCost + ReductionCost;
if (Cost >= -SLPCostThreshold) {
V.getORE()->emit([&]() {
return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
cast<Instruction>(VL[0]))
<< "Vectorizing horizontal reduction is possible"
<< "but not beneficial with cost " << ore::NV("Cost", Cost)
<< " and threshold "
<< ore::NV("Threshold", -SLPCostThreshold);
});
break;
}
LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n");
V.getORE()->emit([&]() {
return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
cast<Instruction>(VL[0]))
<< "Vectorized horizontal reduction with cost "
<< ore::NV("Cost", Cost) << " and with tree size "
<< ore::NV("TreeSize", V.getTreeSize());
});
// Vectorize a tree.
DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
// Emit a reduction. For min/max, the root is a select, but the insertion
// point is the compare condition of that select.
Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
if (ReductionData.isMinMax())
Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
else
Builder.SetInsertPoint(RdxRootInst);
Value *ReducedSubTree =
emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
if (!VectorizedTree) {
// Initialize the final value in the reduction.
VectorizedTree = ReducedSubTree;
} else {
// Update the final value in the reduction.
Builder.SetCurrentDebugLocation(Loc);
VectorizedTree = ReductionData.createOp(
Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps);
}
i += ReduxWidth;
ReduxWidth = PowerOf2Floor(NumReducedVals - i);
}
if (VectorizedTree) {
// Finish the reduction.
for (; i < NumReducedVals; ++i) {
auto *I = cast<Instruction>(ReducedVals[i]);
Builder.SetCurrentDebugLocation(I->getDebugLoc());
VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "",
ReductionOps);
}
for (auto &Pair : ExternallyUsedValues) {
// Add each externally used value to the final reduction.
for (auto *I : Pair.second) {
Builder.SetCurrentDebugLocation(I->getDebugLoc());
VectorizedTree = ReductionData.createOp(Builder, VectorizedTree,
Pair.first, "op.extra", I);
}
}
// Update users. For a min/max reduction that ends with a compare and
// select, we also have to RAUW for the compare instruction feeding the
// reduction root. That's because the original compare may have extra uses
// besides the final select of the reduction.
if (ReductionData.isMinMax()) {
if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
Instruction *ScalarCmp =
getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
}
}
ReductionRoot->replaceAllUsesWith(VectorizedTree);
// Mark all scalar reduction ops for deletion, they are replaced by the
// vector reductions.
V.eraseInstructions(IgnoreList);
}
return VectorizedTree != nullptr;
}
unsigned numReductionValues() const {
return ReducedVals.size();
}
private:
/// Calculate the cost of a reduction.
int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
unsigned ReduxWidth) {
Type *ScalarTy = FirstReducedVal->getType();
auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth);
int PairwiseRdxCost;
int SplittingRdxCost;
switch (ReductionData.getKind()) {
case RK_Arithmetic:
PairwiseRdxCost =
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
/*IsPairwiseForm=*/true);
SplittingRdxCost =
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
/*IsPairwiseForm=*/false);
break;
case RK_SMin:
case RK_SMax:
case RK_UMin:
case RK_UMax: {
auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy));
bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
ReductionData.getKind() == RK_UMax;
PairwiseRdxCost =
TTI->getMinMaxReductionCost(VecTy, VecCondTy,
/*IsPairwiseForm=*/true, IsUnsigned);
SplittingRdxCost =
TTI->getMinMaxReductionCost(VecTy, VecCondTy,
/*IsPairwiseForm=*/false, IsUnsigned);
break;
}
case RK_None:
llvm_unreachable("Expected arithmetic or min/max reduction operation");
}
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
int ScalarReduxCost = 0;
switch (ReductionData.getKind()) {
case RK_Arithmetic:
ScalarReduxCost =
TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
break;
case RK_SMin:
case RK_SMax:
case RK_UMin:
case RK_UMax:
ScalarReduxCost =
TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
break;
case RK_None:
llvm_unreachable("Expected arithmetic or min/max reduction operation");
}
ScalarReduxCost *= (ReduxWidth - 1);
LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
<< " for reduction that starts with " << *FirstReducedVal
<< " (It is a "
<< (IsPairwiseReduction ? "pairwise" : "splitting")
<< " reduction)\n");
return VecReduxCost - ScalarReduxCost;
}
/// Emit a horizontal reduction of the vectorized value.
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
unsigned ReduxWidth, const TargetTransformInfo *TTI) {
assert(VectorizedValue && "Need to have a vectorized tree node");
assert(isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now");
if (!IsPairwiseReduction) {
// FIXME: The builder should use an FMF guard. It should not be hard-coded
// to 'fast'.
assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
return createSimpleTargetReduction(
Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
ReductionData.getFlags(), ReductionOps.back());
}
Value *TmpVec = VectorizedValue;
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true);
auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false);
Value *LeftShuf =
Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l");
Value *RightShuf =
Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r");
TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx",
ReductionOps);
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
};
} // end anonymous namespace
static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
return cast<FixedVectorType>(IE->getType())->getNumElements();
unsigned AggregateSize = 1;
auto *IV = cast<InsertValueInst>(InsertInst);
Type *CurrentType = IV->getType();
do {
if (auto *ST = dyn_cast<StructType>(CurrentType)) {
for (auto *Elt : ST->elements())
if (Elt != ST->getElementType(0)) // check homogeneity
return None;
AggregateSize *= ST->getNumElements();
CurrentType = ST->getElementType(0);
} else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
AggregateSize *= AT->getNumElements();
CurrentType = AT->getElementType();
} else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
AggregateSize *= VT->getNumElements();
return AggregateSize;
} else if (CurrentType->isSingleValueType()) {
return AggregateSize;
} else {
return None;
}
} while (true);
}
static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
unsigned OperandOffset) {
unsigned OperandIndex = OperandOffset;
if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
auto *VT = cast<FixedVectorType>(IE->getType());
OperandIndex *= VT->getNumElements();
OperandIndex += CI->getZExtValue();
return OperandIndex;
}
return None;
}
auto *IV = cast<InsertValueInst>(InsertInst);
Type *CurrentType = IV->getType();
for (unsigned int Index : IV->indices()) {
if (auto *ST = dyn_cast<StructType>(CurrentType)) {
OperandIndex *= ST->getNumElements();
CurrentType = ST->getElementType(Index);
} else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
OperandIndex *= AT->getNumElements();
CurrentType = AT->getElementType();
} else {
return None;
}
OperandIndex += Index;
}
return OperandIndex;
}
static bool findBuildAggregate_rec(Instruction *LastInsertInst,
TargetTransformInfo *TTI,
SmallVectorImpl<Value *> &BuildVectorOpds,
SmallVectorImpl<Value *> &InsertElts,
unsigned OperandOffset) {
do {
Value *InsertedOperand = LastInsertInst->getOperand(1);
Optional<unsigned> OperandIndex =
getOperandIndex(LastInsertInst, OperandOffset);
if (!OperandIndex)
return false;
if (isa<InsertElementInst>(InsertedOperand) ||
isa<InsertValueInst>(InsertedOperand)) {
if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
BuildVectorOpds, InsertElts, *OperandIndex))
return false;
} else {
BuildVectorOpds[*OperandIndex] = InsertedOperand;
InsertElts[*OperandIndex] = LastInsertInst;
}
if (isa<UndefValue>(LastInsertInst->getOperand(0)))
return true;
LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
} while (LastInsertInst != nullptr &&
(isa<InsertValueInst>(LastInsertInst) ||
isa<InsertElementInst>(LastInsertInst)) &&
LastInsertInst->hasOneUse());
return false;
}
/// Recognize construction of vectors like
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
/// starting from the last insertelement or insertvalue instruction.
///
/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
///
/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
///
/// \return true if it matches.
static bool findBuildAggregate(Instruction *LastInsertInst,
TargetTransformInfo *TTI,
SmallVectorImpl<Value *> &BuildVectorOpds,
SmallVectorImpl<Value *> &InsertElts) {
assert((isa<InsertElementInst>(LastInsertInst) ||
isa<InsertValueInst>(LastInsertInst)) &&
"Expected insertelement or insertvalue instruction!");
assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
"Expected empty result vectors!");
Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
if (!AggregateSize)
return false;
BuildVectorOpds.resize(*AggregateSize);
InsertElts.resize(*AggregateSize);
if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
0)) {
llvm::erase_if(BuildVectorOpds,
[](const Value *V) { return V == nullptr; });
llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; });
if (BuildVectorOpds.size() >= 2)
return true;
}
return false;
}
static bool PhiTypeSorterFunc(Value *V, Value *V2) {
return V->getType() < V2->getType();
}
/// Try and get a reduction value from a phi node.
///
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
/// if they come from either \p ParentBB or a containing loop latch.
///
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
/// if not possible.
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
BasicBlock *ParentBB, LoopInfo *LI) {
// There are situations where the reduction value is not dominated by the
// reduction phi. Vectorizing such cases has been reported to cause
// miscompiles. See PR25787.
auto DominatedReduxValue = [&](Value *R) {
return isa<Instruction>(R) &&
DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
};
Value *Rdx = nullptr;
// Return the incoming value if it comes from the same BB as the phi node.
if (P->getIncomingBlock(0) == ParentBB) {
Rdx = P->getIncomingValue(0);
} else if (P->getIncomingBlock(1) == ParentBB) {
Rdx = P->getIncomingValue(1);
}
if (Rdx && DominatedReduxValue(Rdx))
return Rdx;
// Otherwise, check whether we have a loop latch to look at.
Loop *BBL = LI->getLoopFor(ParentBB);
if (!BBL)
return nullptr;
BasicBlock *BBLatch = BBL->getLoopLatch();
if (!BBLatch)
return nullptr;
// There is a loop latch, return the incoming value if it comes from
// that. This reduction pattern occasionally turns up.
if (P->getIncomingBlock(0) == BBLatch) {
Rdx = P->getIncomingValue(0);
} else if (P->getIncomingBlock(1) == BBLatch) {
Rdx = P->getIncomingValue(1);
}
if (Rdx && DominatedReduxValue(Rdx))
return Rdx;
return nullptr;
}
/// Attempt to reduce a horizontal reduction.
/// If it is legal to match a horizontal reduction feeding the phi node \a P
/// with reduction operators \a Root (or one of its operands) in a basic block
/// \a BB, then check if it can be done. If horizontal reduction is not found
/// and root instruction is a binary operation, vectorization of the operands is
/// attempted.
/// \returns true if a horizontal reduction was matched and reduced or operands
/// of one of the binary instruction were vectorized.
/// \returns false if a horizontal reduction was not matched (or not possible)
/// or no vectorization of any binary operation feeding \a Root instruction was
/// performed.
static bool tryToVectorizeHorReductionOrInstOperands(
PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
TargetTransformInfo *TTI,
const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
if (!ShouldVectorizeHor)
return false;
if (!Root)
return false;
if (Root->getParent() != BB || isa<PHINode>(Root))
return false;
// Start analysis starting from Root instruction. If horizontal reduction is
// found, try to vectorize it. If it is not a horizontal reduction or
// vectorization is not possible or not effective, and currently analyzed
// instruction is a binary operation, try to vectorize the operands, using
// pre-order DFS traversal order. If the operands were not vectorized, repeat
// the same procedure considering each operand as a possible root of the
// horizontal reduction.
// Interrupt the process if the Root instruction itself was vectorized or all
// sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
SmallPtrSet<Value *, 8> VisitedInstrs;
bool Res = false;
while (!Stack.empty()) {
Instruction *Inst;
unsigned Level;
std::tie(Inst, Level) = Stack.pop_back_val();
auto *BI = dyn_cast<BinaryOperator>(Inst);
auto *SI = dyn_cast<SelectInst>(Inst);
if (BI || SI) {
HorizontalReduction HorRdx;
if (HorRdx.matchAssociativeReduction(P, Inst)) {
if (HorRdx.tryToReduce(R, TTI)) {
Res = true;
// Set P to nullptr to avoid re-analysis of phi node in
// matchAssociativeReduction function unless this is the root node.
P = nullptr;
continue;
}
}
if (P && BI) {
Inst = dyn_cast<Instruction>(BI->getOperand(0));
if (Inst == P)
Inst = dyn_cast<Instruction>(BI->getOperand(1));
if (!Inst) {
// Set P to nullptr to avoid re-analysis of phi node in
// matchAssociativeReduction function unless this is the root node.
P = nullptr;
continue;
}
}
}
// Set P to nullptr to avoid re-analysis of phi node in
// matchAssociativeReduction function unless this is the root node.
P = nullptr;
if (Vectorize(Inst, R)) {
Res = true;
continue;
}
// Try to vectorize operands.
// Continue analysis for the instruction from the same basic block only to
// save compile time.
if (++Level < RecursionMaxDepth)
for (auto *Op : Inst->operand_values())
if (VisitedInstrs.insert(Op).second)
if (auto *I = dyn_cast<Instruction>(Op))
if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
Stack.emplace_back(I, Level);
}
return Res;
}
bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
BasicBlock *BB, BoUpSLP &R,
TargetTransformInfo *TTI) {
auto *I = dyn_cast_or_null<Instruction>(V);
if (!I)
return false;
if (!isa<BinaryOperator>(I))
P = nullptr;
// Try to match and vectorize a horizontal reduction.
auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
return tryToVectorize(I, R);
};
return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
ExtraVectorization);
}
bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
BasicBlock *BB, BoUpSLP &R) {
const DataLayout &DL = BB->getModule()->getDataLayout();
if (!R.canMapToVector(IVI->getType(), DL))
return false;
SmallVector<Value *, 16> BuildVectorOpds;
SmallVector<Value *, 16> BuildVectorInsts;
if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
return false;
LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
// Aggregate value is unlikely to be processed in vector register, we need to
// extract scalars into scalar registers, so NeedExtraction is set true.
return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
BuildVectorInsts);
}
bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
BasicBlock *BB, BoUpSLP &R) {
SmallVector<Value *, 16> BuildVectorInsts;
SmallVector<Value *, 16> BuildVectorOpds;
if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
(llvm::all_of(BuildVectorOpds,
[](Value *V) { return isa<ExtractElementInst>(V); }) &&
isShuffle(BuildVectorOpds)))
return false;
// Vectorize starting with the build vector operands ignoring the BuildVector
// instructions for the purpose of scheduling and user extraction.
return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
BuildVectorInsts);
}
bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
BoUpSLP &R) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
return true;
bool OpsChanged = false;
for (int Idx = 0; Idx < 2; ++Idx) {
OpsChanged |=
vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
}
return OpsChanged;
}
bool SLPVectorizerPass::vectorizeSimpleInstructions(
SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
bool OpsChanged = false;
for (auto *I : reverse(Instructions)) {
if (R.isDeleted(I))
continue;
if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
else if (auto *CI = dyn_cast<CmpInst>(I))
OpsChanged |= vectorizeCmpInst(CI, BB, R);
}
Instructions.clear();
return OpsChanged;
}
bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
SmallVector<Value *, 4> Incoming;
SmallPtrSet<Value *, 16> VisitedInstrs;
unsigned MaxVecRegSize = R.getMaxVecRegSize();
bool HaveVectorizedPhiNodes = true;
while (HaveVectorizedPhiNodes) {
HaveVectorizedPhiNodes = false;
// Collect the incoming values from the PHIs.
Incoming.clear();
for (Instruction &I : *BB) {
PHINode *P = dyn_cast<PHINode>(&I);
if (!P)
break;
if (!VisitedInstrs.count(P) && !R.isDeleted(P))
Incoming.push_back(P);
}
// Sort by type.
llvm::stable_sort(Incoming, PhiTypeSorterFunc);
// Try to vectorize elements base on their type.
for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
E = Incoming.end();
IncIt != E;) {
// Look for the next elements with the same type.
SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
Type *EltTy = (*IncIt)->getType();
assert(EltTy->isSized() &&
"Instructions should all be sized at this point");
TypeSize EltTS = DL->getTypeSizeInBits(EltTy);
if (EltTS.isScalable()) {
// For now, just ignore vectorizing scalable types.
++IncIt;
continue;
}
unsigned EltSize = EltTS.getFixedSize();
unsigned MaxNumElts = MaxVecRegSize / EltSize;
if (MaxNumElts < 2) {
++IncIt;
continue;
}
while (SameTypeIt != E &&
(*SameTypeIt)->getType() == EltTy &&
static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) {
VisitedInstrs.insert(*SameTypeIt);
++SameTypeIt;
}
// Try to vectorize them.
unsigned NumElts = (SameTypeIt - IncIt);
LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n");
// The order in which the phi nodes appear in the program does not matter.
// So allow tryToVectorizeList to reorder them if it is beneficial. This
// is done when there are exactly two elements since tryToVectorizeList
// asserts that there are only two values when AllowReorder is true.
bool AllowReorder = NumElts == 2;
if (NumElts > 1 &&
tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
// Success start over because instructions might have been changed.
HaveVectorizedPhiNodes = true;
Changed = true;
break;
}
// Start over at the next instruction of a different type (or the end).
IncIt = SameTypeIt;
}
}
VisitedInstrs.clear();
SmallVector<Instruction *, 8> PostProcessInstructions;
SmallDenseSet<Instruction *, 4> KeyNodes;
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
// Skip instructions with scalable type. The num of elements is unknown at
// compile-time for scalable type.
if (isa<ScalableVectorType>(it->getType()))
continue;
// Skip instructions marked for the deletion.
if (R.isDeleted(&*it))
continue;
// We may go through BB multiple times so skip the one we have checked.
if (!VisitedInstrs.insert(&*it).second) {
if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
Changed = true;
it = BB->begin();
e = BB->end();
}
continue;
}
if (isa<DbgInfoIntrinsic>(it))
continue;
// Try to vectorize reductions that use PHINodes.
if (PHINode *P = dyn_cast<PHINode>(it)) {
// Check that the PHI is a reduction PHI.
if (P->getNumIncomingValues() != 2)
return Changed;
// Try to match and vectorize a horizontal reduction.
if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
TTI)) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
continue;
}
// Ran into an instruction without users, like terminator, or function call
// with ignored return value, store. Ignore unused instructions (basing on
// instruction type, except for CallInst and InvokeInst).
if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
isa<InvokeInst>(it))) {
KeyNodes.insert(&*it);
bool OpsChanged = false;
if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
for (auto *V : it->operand_values()) {
// Try to match and vectorize a horizontal reduction.
OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
}
}
// Start vectorization of post-process list of instructions from the
// top-tree instructions to try to vectorize as many instructions as
// possible.
OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
if (OpsChanged) {
// We would like to start over since some instructions are deleted
// and the iterator may become invalid value.
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
}
if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
isa<InsertValueInst>(it))
PostProcessInstructions.push_back(&*it);
}
return Changed;
}
bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
auto Changed = false;
for (auto &Entry : GEPs) {
// If the getelementptr list has fewer than two elements, there's nothing
// to do.
if (Entry.second.size() < 2)
continue;
LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n");
// Process the GEP list in chunks suitable for the target's supported
// vector size. If a vector register can't hold 1 element, we are done. We
// are trying to vectorize the index computations, so the maximum number of
// elements is based on the size of the index expression, rather than the
// size of the GEP itself (the target's pointer size).
unsigned MaxVecRegSize = R.getMaxVecRegSize();
unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
if (MaxVecRegSize < EltSize)
continue;
unsigned MaxElts = MaxVecRegSize / EltSize;
for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
auto Len = std::min<unsigned>(BE - BI, MaxElts);
ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
// Initialize a set a candidate getelementptrs. Note that we use a
// SetVector here to preserve program order. If the index computations
// are vectorizable and begin with loads, we want to minimize the chance
// of having to reorder them later.
SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
// Some of the candidates may have already been vectorized after we
// initially collected them. If so, they are marked as deleted, so remove
// them from the set of candidates.
Candidates.remove_if(
[&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
// Remove from the set of candidates all pairs of getelementptrs with
// constant differences. Such getelementptrs are likely not good
// candidates for vectorization in a bottom-up phase since one can be
// computed from the other. We also ensure all candidate getelementptr
// indices are unique.
for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
auto *GEPI = GEPList[I];
if (!Candidates.count(GEPI))
continue;
auto *SCEVI = SE->getSCEV(GEPList[I]);
for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
auto *GEPJ = GEPList[J];
auto *SCEVJ = SE->getSCEV(GEPList[J]);
if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
Candidates.remove(GEPI);
Candidates.remove(GEPJ);
} else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
Candidates.remove(GEPJ);
}
}
}
// We break out of the above computation as soon as we know there are
// fewer than two candidates remaining.
if (Candidates.size() < 2)
continue;
// Add the single, non-constant index of each candidate to the bundle. We
// ensured the indices met these constraints when we originally collected
// the getelementptrs.
SmallVector<Value *, 16> Bundle(Candidates.size());
auto BundleIndex = 0u;
for (auto *V : Candidates) {
auto *GEP = cast<GetElementPtrInst>(V);
auto *GEPIdx = GEP->idx_begin()->get();
assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
Bundle[BundleIndex++] = GEPIdx;
}
// Try and vectorize the indices. We are currently only interested in
// gather-like cases of the form:
//
// ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
//
// where the loads of "a", the loads of "b", and the subtractions can be
// performed in parallel. It's likely that detecting this pattern in a
// bottom-up phase will be simpler and less costly than building a
// full-blown top-down phase beginning at the consecutive loads.
Changed |= tryToVectorizeList(Bundle, R);
}
}
return Changed;
}
bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
bool Changed = false;
// Attempt to sort and vectorize each of the store-groups.
for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
++it) {
if (it->second.size() < 2)
continue;
LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n");
Changed |= vectorizeStores(it->second, R);
}
return Changed;
}
char SLPVectorizer::ID = 0;
static const char lv_name[] = "SLP Vectorizer";
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }