ELFDumper.cpp 242 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the ELF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//

#include "ARMEHABIPrinter.h"
#include "DwarfCFIEHPrinter.h"
#include "ObjDumper.h"
#include "StackMapPrinter.h"
#include "llvm-readobj.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocationResolver.h"
#include "llvm/Object/StackMapParser.h"
#include "llvm/Support/AMDGPUMetadata.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MipsABIFlags.h"
#include "llvm/Support/RISCVAttributeParser.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <string>
#include <system_error>
#include <unordered_set>
#include <vector>

using namespace llvm;
using namespace llvm::object;
using namespace ELF;

#define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
  case ns::enum:                                                               \
    return #enum;

#define ENUM_ENT(enum, altName)                                                \
  { #enum, altName, ELF::enum }

#define ENUM_ENT_1(enum)                                                       \
  { #enum, #enum, ELF::enum }

#define TYPEDEF_ELF_TYPES(ELFT)                                                \
  using ELFO = ELFFile<ELFT>;                                                  \
  using Elf_Addr = typename ELFT::Addr;                                        \
  using Elf_Shdr = typename ELFT::Shdr;                                        \
  using Elf_Sym = typename ELFT::Sym;                                          \
  using Elf_Dyn = typename ELFT::Dyn;                                          \
  using Elf_Dyn_Range = typename ELFT::DynRange;                               \
  using Elf_Rel = typename ELFT::Rel;                                          \
  using Elf_Rela = typename ELFT::Rela;                                        \
  using Elf_Relr = typename ELFT::Relr;                                        \
  using Elf_Rel_Range = typename ELFT::RelRange;                               \
  using Elf_Rela_Range = typename ELFT::RelaRange;                             \
  using Elf_Relr_Range = typename ELFT::RelrRange;                             \
  using Elf_Phdr = typename ELFT::Phdr;                                        \
  using Elf_Half = typename ELFT::Half;                                        \
  using Elf_Ehdr = typename ELFT::Ehdr;                                        \
  using Elf_Word = typename ELFT::Word;                                        \
  using Elf_Hash = typename ELFT::Hash;                                        \
  using Elf_GnuHash = typename ELFT::GnuHash;                                  \
  using Elf_Note  = typename ELFT::Note;                                       \
  using Elf_Sym_Range = typename ELFT::SymRange;                               \
  using Elf_Versym = typename ELFT::Versym;                                    \
  using Elf_Verneed = typename ELFT::Verneed;                                  \
  using Elf_Vernaux = typename ELFT::Vernaux;                                  \
  using Elf_Verdef = typename ELFT::Verdef;                                    \
  using Elf_Verdaux = typename ELFT::Verdaux;                                  \
  using Elf_CGProfile = typename ELFT::CGProfile;                              \
  using uintX_t = typename ELFT::uint;

namespace {

template <class ELFT> class DumpStyle;

template <class ELFT> struct RelSymbol {
  RelSymbol(const typename ELFT::Sym *S, StringRef N)
      : Sym(S), Name(N.str()) {}
  const typename ELFT::Sym *Sym;
  std::string Name;
};

/// Represents a contiguous uniform range in the file. We cannot just create a
/// range directly because when creating one of these from the .dynamic table
/// the size, entity size and virtual address are different entries in arbitrary
/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
struct DynRegionInfo {
  DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
  DynRegionInfo(const uint8_t *A, uint64_t S, uint64_t ES, StringRef ObjName)
      : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}

  /// Address in current address space.
  const uint8_t *Addr = nullptr;
  /// Size in bytes of the region.
  uint64_t Size = 0;
  /// Size of each entity in the region.
  uint64_t EntSize = 0;

  /// Name of the file. Used for error reporting.
  StringRef FileName;
  /// Error prefix. Used for error reporting to provide more information.
  std::string Context;
  /// Region size name. Used for error reporting.
  StringRef SizePrintName = "size";
  /// Entry size name. Used for error reporting. If this field is empty, errors
  /// will not mention the entry size.
  StringRef EntSizePrintName = "entry size";

  template <typename Type> ArrayRef<Type> getAsArrayRef() const {
    const Type *Start = reinterpret_cast<const Type *>(Addr);
    if (!Start)
      return {Start, Start};
    if (EntSize == sizeof(Type) && (Size % EntSize == 0))
      return {Start, Start + (Size / EntSize)};

    std::string Msg;
    if (!Context.empty())
      Msg += Context + " has ";

    Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
               .str();
    if (!EntSizePrintName.empty())
      Msg +=
          (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
              .str();

    reportWarning(createError(Msg.c_str()), FileName);
    return {Start, Start};
  }
};

namespace {
struct VerdAux {
  unsigned Offset;
  std::string Name;
};

struct VerDef {
  unsigned Offset;
  unsigned Version;
  unsigned Flags;
  unsigned Ndx;
  unsigned Cnt;
  unsigned Hash;
  std::string Name;
  std::vector<VerdAux> AuxV;
};

struct VernAux {
  unsigned Hash;
  unsigned Flags;
  unsigned Other;
  unsigned Offset;
  std::string Name;
};

struct VerNeed {
  unsigned Version;
  unsigned Cnt;
  unsigned Offset;
  std::string File;
  std::vector<VernAux> AuxV;
};

struct NoteType {
  uint32_t ID;
  StringRef Name;
};

} // namespace

template <class ELFT> class Relocation {
public:
  Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
      : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
        Offset(R.r_offset), Info(R.r_info) {}

  Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
      : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
    Addend = R.r_addend;
  }

  uint32_t Type;
  uint32_t Symbol;
  typename ELFT::uint Offset;
  typename ELFT::uint Info;
  Optional<int64_t> Addend;
};

template <typename ELFT> class ELFDumper : public ObjDumper {
public:
  ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);

  void printFileHeaders() override;
  void printSectionHeaders() override;
  void printRelocations() override;
  void printDependentLibs() override;
  void printDynamicRelocations() override;
  void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
  void printHashSymbols() override;
  void printUnwindInfo() override;

  void printDynamicTable() override;
  void printNeededLibraries() override;
  void printProgramHeaders(bool PrintProgramHeaders,
                           cl::boolOrDefault PrintSectionMapping) override;
  void printHashTable() override;
  void printGnuHashTable() override;
  void printLoadName() override;
  void printVersionInfo() override;
  void printGroupSections() override;

  void printArchSpecificInfo() override;

  void printStackMap() const override;

  void printHashHistograms() override;

  void printCGProfile() override;
  void printAddrsig() override;

  void printNotes() override;

  void printELFLinkerOptions() override;
  void printStackSizes() override;

  const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };

private:
  std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;

  TYPEDEF_ELF_TYPES(ELFT)

  Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
                                    uint64_t EntSize) {
    if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
      return createError("offset (0x" + Twine::utohexstr(Offset) +
                         ") + size (0x" + Twine::utohexstr(Size) +
                         ") is greater than the file size (0x" +
                         Twine::utohexstr(Obj.getBufSize()) + ")");
    return DynRegionInfo(Obj.base() + Offset, Size, EntSize,
                         ObjF.getFileName());
  }

  void printAttributes();
  void printMipsReginfo();
  void printMipsOptions();

  std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
  void loadDynamicTable();
  void parseDynamicTable();

  Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
                                       bool &IsDefault) const;
  Error LoadVersionMap() const;

  const object::ELFObjectFile<ELFT> &ObjF;
  const ELFFile<ELFT> &Obj;
  DynRegionInfo DynRelRegion;
  DynRegionInfo DynRelaRegion;
  DynRegionInfo DynRelrRegion;
  DynRegionInfo DynPLTRelRegion;
  Optional<DynRegionInfo> DynSymRegion;
  DynRegionInfo DynamicTable;
  StringRef DynamicStringTable;
  StringRef SOName = "<Not found>";
  const Elf_Hash *HashTable = nullptr;
  const Elf_GnuHash *GnuHashTable = nullptr;
  const Elf_Shdr *DotSymtabSec = nullptr;
  const Elf_Shdr *DotDynsymSec = nullptr;
  const Elf_Shdr *DotCGProfileSec = nullptr;
  const Elf_Shdr *DotAddrsigSec = nullptr;
  ArrayRef<Elf_Word> ShndxTable;

  const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
  const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
  const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d

  struct VersionEntry {
    std::string Name;
    bool IsVerDef;
  };
  mutable SmallVector<Optional<VersionEntry>, 16> VersionMap;

  std::unordered_set<std::string> Warnings;

  std::string describe(const Elf_Shdr &Sec) const;

public:
  Elf_Dyn_Range dynamic_table() const {
    // A valid .dynamic section contains an array of entries terminated
    // with a DT_NULL entry. However, sometimes the section content may
    // continue past the DT_NULL entry, so to dump the section correctly,
    // we first find the end of the entries by iterating over them.
    Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();

    size_t Size = 0;
    while (Size < Table.size())
      if (Table[Size++].getTag() == DT_NULL)
        break;

    return Table.slice(0, Size);
  }

  Optional<DynRegionInfo> getDynSymRegion() const { return DynSymRegion; }

  Elf_Sym_Range dynamic_symbols() const {
    if (!DynSymRegion)
      return Elf_Sym_Range();
    return DynSymRegion->getAsArrayRef<Elf_Sym>();
  }

  Elf_Rel_Range dyn_rels() const;
  Elf_Rela_Range dyn_relas() const;
  Elf_Relr_Range dyn_relrs() const;
  std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
                                Optional<StringRef> StrTable,
                                bool IsDynamic) const;
  Expected<unsigned> getSymbolSectionIndex(const Elf_Sym &Symbol,
                                           unsigned SymIndex) const;
  Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
                                           unsigned SectionIndex) const;
  std::string getStaticSymbolName(uint32_t Index) const;
  StringRef getDynamicString(uint64_t Value) const;
  Expected<StringRef> getSymbolVersionByIndex(uint32_t VersionSymbolIndex,
                                              bool &IsDefault) const;

  void printSymbolsHelper(bool IsDynamic) const;
  std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;

  const Elf_Shdr *findSectionByName(StringRef Name) const;

  const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
  const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
  const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
  ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
  StringRef getDynamicStringTable() const { return DynamicStringTable; }
  const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
  const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
  const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
  const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
  const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
  const Elf_Hash *getHashTable() const { return HashTable; }
  const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }

  Expected<ArrayRef<Elf_Versym>> getVersionTable(const Elf_Shdr &Sec,
                                                 ArrayRef<Elf_Sym> *SymTab,
                                                 StringRef *StrTab) const;
  Expected<std::vector<VerDef>>
  getVersionDefinitions(const Elf_Shdr &Sec) const;
  Expected<std::vector<VerNeed>>
  getVersionDependencies(const Elf_Shdr &Sec) const;

  Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
                                                const Elf_Shdr *SymTab) const;

  std::function<Error(const Twine &Msg)> WarningHandler;
  void reportUniqueWarning(Error Err) const;
};

template <class ELFT>
static std::string describe(const ELFFile<ELFT> &Obj,
                            const typename ELFT::Shdr &Sec) {
  unsigned SecNdx = &Sec - &cantFail(Obj.sections()).front();
  return (object::getELFSectionTypeName(Obj.getHeader().e_machine,
                                        Sec.sh_type) +
          " section with index " + Twine(SecNdx))
      .str();
}

template <class ELFT>
std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
  return ::describe(Obj, Sec);
}

template <class ELFT>
static Expected<StringRef> getLinkAsStrtab(const ELFFile<ELFT> &Obj,
                                           const typename ELFT::Shdr &Sec) {
  Expected<const typename ELFT::Shdr *> StrTabSecOrErr =
      Obj.getSection(Sec.sh_link);
  if (!StrTabSecOrErr)
    return createError("invalid section linked to " + describe(Obj, Sec) +
                       ": " + toString(StrTabSecOrErr.takeError()));

  Expected<StringRef> StrTabOrErr = Obj.getStringTable(**StrTabSecOrErr);
  if (!StrTabOrErr)
    return createError("invalid string table linked to " + describe(Obj, Sec) +
                       ": " + toString(StrTabOrErr.takeError()));
  return *StrTabOrErr;
}

// Returns the linked symbol table and associated string table for a given section.
template <class ELFT>
static Expected<std::pair<typename ELFT::SymRange, StringRef>>
getLinkAsSymtab(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec,
                unsigned ExpectedType) {
  Expected<const typename ELFT::Shdr *> SymtabOrErr =
      Obj.getSection(Sec.sh_link);
  if (!SymtabOrErr)
    return createError("invalid section linked to " + describe(Obj, Sec) +
                       ": " + toString(SymtabOrErr.takeError()));

  if ((*SymtabOrErr)->sh_type != ExpectedType)
    return createError(
        "invalid section linked to " + describe(Obj, Sec) + ": expected " +
        object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
        ", but got " +
        object::getELFSectionTypeName(Obj.getHeader().e_machine,
                                      (*SymtabOrErr)->sh_type));

  Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, **SymtabOrErr);
  if (!StrTabOrErr)
    return createError(
        "can't get a string table for the symbol table linked to " +
        describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));

  Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
  if (!SymsOrErr)
    return createError("unable to read symbols from the " + describe(Obj, Sec) +
                       ": " + toString(SymsOrErr.takeError()));

  return std::make_pair(*SymsOrErr, *StrTabOrErr);
}

template <class ELFT>
Expected<ArrayRef<typename ELFT::Versym>>
ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
                                 StringRef *StrTab) const {
  assert((!SymTab && !StrTab) || (SymTab && StrTab));
  if (uintptr_t(Obj.base() + Sec.sh_offset) % sizeof(uint16_t) != 0)
    return createError("the " + describe(Sec) + " is misaligned");

  Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
      Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
  if (!VersionsOrErr)
    return createError("cannot read content of " + describe(Sec) + ": " +
                       toString(VersionsOrErr.takeError()));

  Expected<std::pair<ArrayRef<Elf_Sym>, StringRef>> SymTabOrErr =
      getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
  if (!SymTabOrErr) {
    reportUniqueWarning(SymTabOrErr.takeError());
    return *VersionsOrErr;
  }

  if (SymTabOrErr->first.size() != VersionsOrErr->size())
    reportUniqueWarning(
        createError(describe(Sec) + ": the number of entries (" +
                    Twine(VersionsOrErr->size()) +
                    ") does not match the number of symbols (" +
                    Twine(SymTabOrErr->first.size()) +
                    ") in the symbol table with index " + Twine(Sec.sh_link)));

  if (SymTab)
    std::tie(*SymTab, *StrTab) = *SymTabOrErr;
  return *VersionsOrErr;
}

template <class ELFT>
Expected<std::vector<VerDef>>
ELFDumper<ELFT>::getVersionDefinitions(const Elf_Shdr &Sec) const {
  Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec);
  if (!StrTabOrErr)
    return StrTabOrErr.takeError();

  Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
  if (!ContentsOrErr)
    return createError("cannot read content of " + describe(Sec) + ": " +
                       toString(ContentsOrErr.takeError()));

  const uint8_t *Start = ContentsOrErr->data();
  const uint8_t *End = Start + ContentsOrErr->size();

  auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf,
                            unsigned VerDefNdx) -> Expected<VerdAux> {
    if (VerdauxBuf + sizeof(Elf_Verdaux) > End)
      return createError("invalid " + describe(Sec) + ": version definition " +
                         Twine(VerDefNdx) +
                         " refers to an auxiliary entry that goes past the end "
                         "of the section");

    auto *Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
    VerdauxBuf += Verdaux->vda_next;

    VerdAux Aux;
    Aux.Offset = VerdauxBuf - Start;
    if (Verdaux->vda_name <= StrTabOrErr->size())
      Aux.Name = std::string(StrTabOrErr->drop_front(Verdaux->vda_name));
    else
      Aux.Name = "<invalid vda_name: " + to_string(Verdaux->vda_name) + ">";
    return Aux;
  };

  std::vector<VerDef> Ret;
  const uint8_t *VerdefBuf = Start;
  for (unsigned I = 1; I <= /*VerDefsNum=*/Sec.sh_info; ++I) {
    if (VerdefBuf + sizeof(Elf_Verdef) > End)
      return createError("invalid " + describe(Sec) + ": version definition " +
                         Twine(I) + " goes past the end of the section");

    if (uintptr_t(VerdefBuf) % sizeof(uint32_t) != 0)
      return createError(
          "invalid " + describe(Sec) +
          ": found a misaligned version definition entry at offset 0x" +
          Twine::utohexstr(VerdefBuf - Start));

    unsigned Version = *reinterpret_cast<const Elf_Half *>(VerdefBuf);
    if (Version != 1)
      return createError("unable to dump " + describe(Sec) + ": version " +
                         Twine(Version) + " is not yet supported");

    const Elf_Verdef *D = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
    VerDef &VD = *Ret.emplace(Ret.end());
    VD.Offset = VerdefBuf - Start;
    VD.Version = D->vd_version;
    VD.Flags = D->vd_flags;
    VD.Ndx = D->vd_ndx;
    VD.Cnt = D->vd_cnt;
    VD.Hash = D->vd_hash;

    const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux;
    for (unsigned J = 0; J < D->vd_cnt; ++J) {
      if (uintptr_t(VerdauxBuf) % sizeof(uint32_t) != 0)
        return createError("invalid " + describe(Sec) +
                           ": found a misaligned auxiliary entry at offset 0x" +
                           Twine::utohexstr(VerdauxBuf - Start));

      Expected<VerdAux> AuxOrErr = ExtractNextAux(VerdauxBuf, I);
      if (!AuxOrErr)
        return AuxOrErr.takeError();

      if (J == 0)
        VD.Name = AuxOrErr->Name;
      else
        VD.AuxV.push_back(*AuxOrErr);
    }

    VerdefBuf += D->vd_next;
  }

  return Ret;
}

template <class ELFT>
Expected<std::vector<VerNeed>>
ELFDumper<ELFT>::getVersionDependencies(const Elf_Shdr &Sec) const {
  StringRef StrTab;
  Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec);
  if (!StrTabOrErr)
    reportUniqueWarning(StrTabOrErr.takeError());
  else
    StrTab = *StrTabOrErr;

  Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
  if (!ContentsOrErr)
    return createError("cannot read content of " + describe(Sec) + ": " +
                       toString(ContentsOrErr.takeError()));

  const uint8_t *Start = ContentsOrErr->data();
  const uint8_t *End = Start + ContentsOrErr->size();
  const uint8_t *VerneedBuf = Start;

  std::vector<VerNeed> Ret;
  for (unsigned I = 1; I <= /*VerneedNum=*/Sec.sh_info; ++I) {
    if (VerneedBuf + sizeof(Elf_Verdef) > End)
      return createError("invalid " + describe(Sec) + ": version dependency " +
                         Twine(I) + " goes past the end of the section");

    if (uintptr_t(VerneedBuf) % sizeof(uint32_t) != 0)
      return createError(
          "invalid " + describe(Sec) +
          ": found a misaligned version dependency entry at offset 0x" +
          Twine::utohexstr(VerneedBuf - Start));

    unsigned Version = *reinterpret_cast<const Elf_Half *>(VerneedBuf);
    if (Version != 1)
      return createError("unable to dump " + describe(Sec) + ": version " +
                         Twine(Version) + " is not yet supported");

    const Elf_Verneed *Verneed =
        reinterpret_cast<const Elf_Verneed *>(VerneedBuf);

    VerNeed &VN = *Ret.emplace(Ret.end());
    VN.Version = Verneed->vn_version;
    VN.Cnt = Verneed->vn_cnt;
    VN.Offset = VerneedBuf - Start;

    if (Verneed->vn_file < StrTab.size())
      VN.File = std::string(StrTab.drop_front(Verneed->vn_file));
    else
      VN.File = "<corrupt vn_file: " + to_string(Verneed->vn_file) + ">";

    const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
    for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
      if (uintptr_t(VernauxBuf) % sizeof(uint32_t) != 0)
        return createError("invalid " + describe(Sec) +
                           ": found a misaligned auxiliary entry at offset 0x" +
                           Twine::utohexstr(VernauxBuf - Start));

      if (VernauxBuf + sizeof(Elf_Vernaux) > End)
        return createError(
            "invalid " + describe(Sec) + ": version dependency " + Twine(I) +
            " refers to an auxiliary entry that goes past the end "
            "of the section");

      const Elf_Vernaux *Vernaux =
          reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);

      VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end());
      Aux.Hash = Vernaux->vna_hash;
      Aux.Flags = Vernaux->vna_flags;
      Aux.Other = Vernaux->vna_other;
      Aux.Offset = VernauxBuf - Start;
      if (StrTab.size() <= Vernaux->vna_name)
        Aux.Name = "<corrupt>";
      else
        Aux.Name = std::string(StrTab.drop_front(Vernaux->vna_name));

      VernauxBuf += Vernaux->vna_next;
    }
    VerneedBuf += Verneed->vn_next;
  }
  return Ret;
}

template <class ELFT>
void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
  Optional<StringRef> StrTable;
  size_t Entries = 0;
  Elf_Sym_Range Syms(nullptr, nullptr);
  const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;

  if (IsDynamic) {
    StrTable = DynamicStringTable;
    Syms = dynamic_symbols();
    Entries = Syms.size();
  } else if (DotSymtabSec) {
    if (Expected<StringRef> StrTableOrErr =
            Obj.getStringTableForSymtab(*DotSymtabSec))
      StrTable = *StrTableOrErr;
    else
      reportUniqueWarning(createError(
          "unable to get the string table for the SHT_SYMTAB section: " +
          toString(StrTableOrErr.takeError())));

    if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
      Syms = *SymsOrErr;
    else
      reportUniqueWarning(
          createError("unable to read symbols from the SHT_SYMTAB section: " +
                      toString(SymsOrErr.takeError())));
    Entries = DotSymtabSec->getEntityCount();
  }
  if (Syms.begin() == Syms.end())
    return;

  // The st_other field has 2 logical parts. The first two bits hold the symbol
  // visibility (STV_*) and the remainder hold other platform-specific values.
  bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
                                 return S.st_other & ~0x3;
                               }) != Syms.end();

  ELFDumperStyle->printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
  for (const Elf_Sym &Sym : Syms)
    ELFDumperStyle->printSymbol(Sym, &Sym - Syms.begin(), StrTable, IsDynamic,
                                NonVisibilityBitsUsed);
}

template <class ELFT> class MipsGOTParser;

template <typename ELFT> class DumpStyle {
public:
  TYPEDEF_ELF_TYPES(ELFT)

  DumpStyle(const ELFDumper<ELFT> &Dumper)
      : Obj(*Dumper.getElfObject().getELFFile()), ElfObj(Dumper.getElfObject()),
        Dumper(Dumper) {
    FileName = ElfObj.getFileName();
  }

  virtual ~DumpStyle() = default;

  virtual void printFileHeaders() = 0;
  virtual void printGroupSections() = 0;
  virtual void printRelocations() = 0;
  virtual void printSectionHeaders() = 0;
  virtual void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) = 0;
  virtual void printHashSymbols() {}
  virtual void printDependentLibs() = 0;
  virtual void printDynamic() {}
  virtual void printDynamicRelocations() = 0;
  virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
                                  bool NonVisibilityBitsUsed) {}
  virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
                           Optional<StringRef> StrTable, bool IsDynamic,
                           bool NonVisibilityBitsUsed) = 0;
  virtual void printProgramHeaders(bool PrintProgramHeaders,
                                   cl::boolOrDefault PrintSectionMapping) = 0;
  virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
  virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
  virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
  virtual void printHashHistograms() = 0;
  virtual void printCGProfile() = 0;
  virtual void printAddrsig() = 0;
  virtual void printNotes() = 0;
  virtual void printELFLinkerOptions() = 0;
  virtual void printStackSizes() = 0;
  void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
  void printRelocatableStackSizes(std::function<void()> PrintHeader);
  void printFunctionStackSize(uint64_t SymValue,
                              Optional<const Elf_Shdr *> FunctionSec,
                              const Elf_Shdr &StackSizeSec, DataExtractor Data,
                              uint64_t *Offset);
  void printStackSize(RelocationRef Rel, const Elf_Shdr *FunctionSec,
                      const Elf_Shdr &StackSizeSec,
                      const RelocationResolver &Resolver, DataExtractor Data);
  virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
  virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
  virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
  virtual void printMipsABIFlags() = 0;
  const ELFDumper<ELFT> &dumper() const { return Dumper; }

protected:
  void printDependentLibsHelper(
      function_ref<void(const Elf_Shdr &)> OnSectionStart,
      function_ref<void(StringRef, uint64_t)> OnSectionEntry);

  virtual void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
                          const Elf_Shdr &Sec, const Elf_Shdr *SymTab) = 0;
  virtual void printRelrReloc(const Elf_Relr &R) = 0;
  virtual void printDynamicReloc(const Relocation<ELFT> &R) = 0;
  void printRelocationsHelper(const Elf_Shdr &Sec);
  void printDynamicRelocationsHelper();
  virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
                                       const DynRegionInfo &Reg){};

  StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;

  void reportUniqueWarning(Error Err) const;

  StringRef FileName;
  const ELFFile<ELFT> &Obj;
  const ELFObjectFile<ELFT> &ElfObj;

private:
  const ELFDumper<ELFT> &Dumper;
};

template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
  formatted_raw_ostream &OS;

public:
  TYPEDEF_ELF_TYPES(ELFT)

  GNUStyle(ScopedPrinter &W, const ELFDumper<ELFT> &Dumper)
      : DumpStyle<ELFT>(Dumper),
        OS(static_cast<formatted_raw_ostream &>(W.getOStream())) {
    assert(&W.getOStream() == &llvm::fouts());
  }

  void printFileHeaders() override;
  void printGroupSections() override;
  void printRelocations() override;
  void printSectionHeaders() override;
  void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
  void printHashSymbols() override;
  void printDependentLibs() override;
  void printDynamic() override;
  void printDynamicRelocations() override;
  void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
                          bool NonVisibilityBitsUsed) override;
  void printProgramHeaders(bool PrintProgramHeaders,
                           cl::boolOrDefault PrintSectionMapping) override;
  void printVersionSymbolSection(const Elf_Shdr *Sec) override;
  void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
  void printVersionDependencySection(const Elf_Shdr *Sec) override;
  void printHashHistograms() override;
  void printCGProfile() override;
  void printAddrsig() override;
  void printNotes() override;
  void printELFLinkerOptions() override;
  void printStackSizes() override;
  void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
  void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
  void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
  void printMipsABIFlags() override;

private:
  void printHashHistogram(const Elf_Hash &HashTable);
  void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);

  void printHashTableSymbols(const Elf_Hash &HashTable);
  void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);

  struct Field {
    std::string Str;
    unsigned Column;

    Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
    Field(unsigned Col) : Column(Col) {}
  };

  template <typename T, typename TEnum>
  std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
    for (const EnumEntry<TEnum> &EnumItem : EnumValues)
      if (EnumItem.Value == Value)
        return std::string(EnumItem.AltName);
    return to_hexString(Value, false);
  }

  template <typename T, typename TEnum>
  std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
                         TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
                         TEnum EnumMask3 = {}) {
    std::string Str;
    for (const EnumEntry<TEnum> &Flag : EnumValues) {
      if (Flag.Value == 0)
        continue;

      TEnum EnumMask{};
      if (Flag.Value & EnumMask1)
        EnumMask = EnumMask1;
      else if (Flag.Value & EnumMask2)
        EnumMask = EnumMask2;
      else if (Flag.Value & EnumMask3)
        EnumMask = EnumMask3;
      bool IsEnum = (Flag.Value & EnumMask) != 0;
      if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
          (IsEnum && (Value & EnumMask) == Flag.Value)) {
        if (!Str.empty())
          Str += ", ";
        Str += Flag.AltName;
      }
    }
    return Str;
  }

  formatted_raw_ostream &printField(struct Field F) {
    if (F.Column != 0)
      OS.PadToColumn(F.Column);
    OS << F.Str;
    OS.flush();
    return OS;
  }
  void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
                         StringRef StrTable, uint32_t Bucket);
  void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) override;
  void printRelrReloc(const Elf_Relr &R) override;

  void printRelRelaReloc(const Relocation<ELFT> &R,
                         const RelSymbol<ELFT> &RelSym);
  void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
                   Optional<StringRef> StrTable, bool IsDynamic,
                   bool NonVisibilityBitsUsed) override;
  void printDynamicRelocHeader(unsigned Type, StringRef Name,
                               const DynRegionInfo &Reg) override;
  void printDynamicReloc(const Relocation<ELFT> &R) override;

  std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex);
  void printProgramHeaders();
  void printSectionMapping();
  void printGNUVersionSectionProlog(const typename ELFT::Shdr *Sec,
                                    const Twine &Label, unsigned EntriesNum);
};

template <class ELFT>
void ELFDumper<ELFT>::reportUniqueWarning(Error Err) const {
  handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
    cantFail(WarningHandler(EI.message()),
             "WarningHandler should always return ErrorSuccess");
  });
}

template <class ELFT>
void DumpStyle<ELFT>::reportUniqueWarning(Error Err) const {
  this->dumper().reportUniqueWarning(std::move(Err));
}

template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
public:
  TYPEDEF_ELF_TYPES(ELFT)

  LLVMStyle(ScopedPrinter &W, const ELFDumper<ELFT> &Dumper)
      : DumpStyle<ELFT>(Dumper), W(W) {}

  void printFileHeaders() override;
  void printGroupSections() override;
  void printRelocations() override;
  void printSectionHeaders() override;
  void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
  void printDependentLibs() override;
  void printDynamic() override;
  void printDynamicRelocations() override;
  void printProgramHeaders(bool PrintProgramHeaders,
                           cl::boolOrDefault PrintSectionMapping) override;
  void printVersionSymbolSection(const Elf_Shdr *Sec) override;
  void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
  void printVersionDependencySection(const Elf_Shdr *Sec) override;
  void printHashHistograms() override;
  void printCGProfile() override;
  void printAddrsig() override;
  void printNotes() override;
  void printELFLinkerOptions() override;
  void printStackSizes() override;
  void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
  void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
  void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
  void printMipsABIFlags() override;

private:
  void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) override;
  void printRelrReloc(const Elf_Relr &R) override;
  void printDynamicReloc(const Relocation<ELFT> &R) override;

  void printRelRelaReloc(const Relocation<ELFT> &R, StringRef SymbolName);
  void printSymbols();
  void printDynamicSymbols();
  void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex);
  void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
                   Optional<StringRef> StrTable, bool IsDynamic,
                   bool /*NonVisibilityBitsUsed*/) override;
  void printProgramHeaders();
  void printSectionMapping() {}

  ScopedPrinter &W;
};

} // end anonymous namespace

namespace llvm {

template <class ELFT>
static std::unique_ptr<ObjDumper> createELFDumper(const ELFObjectFile<ELFT> &Obj,
                                           ScopedPrinter &Writer) {
  return std::make_unique<ELFDumper<ELFT>>(Obj, Writer);
}

std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
                                           ScopedPrinter &Writer) {
  // Little-endian 32-bit
  if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
    return createELFDumper(*ELFObj, Writer);

  // Big-endian 32-bit
  if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
    return createELFDumper(*ELFObj, Writer);

  // Little-endian 64-bit
  if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
    return createELFDumper(*ELFObj, Writer);

  // Big-endian 64-bit
  return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
}

} // end namespace llvm

template <class ELFT> Error ELFDumper<ELFT>::LoadVersionMap() const {
  // If there is no dynamic symtab or version table, there is nothing to do.
  if (!DynSymRegion || !SymbolVersionSection)
    return Error::success();

  // Has the VersionMap already been loaded?
  if (!VersionMap.empty())
    return Error::success();

  // The first two version indexes are reserved.
  // Index 0 is LOCAL, index 1 is GLOBAL.
  VersionMap.push_back(VersionEntry());
  VersionMap.push_back(VersionEntry());

  auto InsertEntry = [this](unsigned N, StringRef Version, bool IsVerdef) {
    if (N >= VersionMap.size())
      VersionMap.resize(N + 1);
    VersionMap[N] = {std::string(Version), IsVerdef};
  };

  if (SymbolVersionDefSection) {
    Expected<std::vector<VerDef>> Defs =
        this->getVersionDefinitions(*SymbolVersionDefSection);
    if (!Defs)
      return Defs.takeError();
    for (const VerDef &Def : *Defs)
      InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true);
  }

  if (SymbolVersionNeedSection) {
    Expected<std::vector<VerNeed>> Deps =
        this->getVersionDependencies(*SymbolVersionNeedSection);
    if (!Deps)
      return Deps.takeError();
    for (const VerNeed &Dep : *Deps)
      for (const VernAux &Aux : Dep.AuxV)
        InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false);
  }

  return Error::success();
}

template <typename ELFT>
Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
                                                      bool &IsDefault) const {
  // This is a dynamic symbol. Look in the GNU symbol version table.
  if (!SymbolVersionSection) {
    // No version table.
    IsDefault = false;
    return "";
  }

  assert(DynSymRegion && "DynSymRegion has not been initialised");
  // Determine the position in the symbol table of this entry.
  size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
                       reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
                      sizeof(Elf_Sym);

  // Get the corresponding version index entry.
  if (Expected<const Elf_Versym *> EntryOrErr =
          Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex))
    return this->getSymbolVersionByIndex((*EntryOrErr)->vs_index, IsDefault);
  else
    return EntryOrErr.takeError();
}

template <typename ELFT>
Expected<RelSymbol<ELFT>>
ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
                                     const Elf_Shdr *SymTab) const {
  if (R.Symbol == 0)
    return RelSymbol<ELFT>(nullptr, "");

  Expected<const Elf_Sym *> SymOrErr =
      Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
  if (!SymOrErr)
    return SymOrErr.takeError();
  const Elf_Sym *Sym = *SymOrErr;
  if (!Sym)
    return RelSymbol<ELFT>(nullptr, "");

  Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
  if (!StrTableOrErr)
    return StrTableOrErr.takeError();

  const Elf_Sym *FirstSym =
      cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
  std::string SymbolName = getFullSymbolName(
      *Sym, Sym - FirstSym, *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
  return RelSymbol<ELFT>(Sym, SymbolName);
}

static std::string maybeDemangle(StringRef Name) {
  return opts::Demangle ? demangle(std::string(Name)) : Name.str();
}

template <typename ELFT>
std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
  auto Warn = [&](Error E) -> std::string {
    this->reportUniqueWarning(
        createError("unable to read the name of symbol with index " +
                    Twine(Index) + ": " + toString(std::move(E))));
    return "<?>";
  };

  Expected<const typename ELFT::Sym *> SymOrErr =
      Obj.getSymbol(DotSymtabSec, Index);
  if (!SymOrErr)
    return Warn(SymOrErr.takeError());

  Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
  if (!StrTabOrErr)
    return Warn(StrTabOrErr.takeError());

  Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
  if (!NameOrErr)
    return Warn(NameOrErr.takeError());
  return maybeDemangle(*NameOrErr);
}

template <typename ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getSymbolVersionByIndex(uint32_t SymbolVersionIndex,
                                         bool &IsDefault) const {
  size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;

  // Special markers for unversioned symbols.
  if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
    IsDefault = false;
    return "";
  }

  // Lookup this symbol in the version table.
  if (Error E = LoadVersionMap())
    return std::move(E);
  if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex])
    return createError("SHT_GNU_versym section refers to a version index " +
                       Twine(VersionIndex) + " which is missing");

  const VersionEntry &Entry = *VersionMap[VersionIndex];
  if (Entry.IsVerDef)
    IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
  else
    IsDefault = false;
  return Entry.Name.c_str();
}

template <typename ELFT>
std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
                                               unsigned SymIndex,
                                               Optional<StringRef> StrTable,
                                               bool IsDynamic) const {
  if (!StrTable)
    return "<?>";

  std::string SymbolName;
  if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
    SymbolName = maybeDemangle(*NameOrErr);
  } else {
    reportUniqueWarning(NameOrErr.takeError());
    return "<?>";
  }

  if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
    Expected<unsigned> SectionIndex = getSymbolSectionIndex(Symbol, SymIndex);
    if (!SectionIndex) {
      reportUniqueWarning(SectionIndex.takeError());
      return "<?>";
    }
    Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
    if (!NameOrErr) {
      reportUniqueWarning(NameOrErr.takeError());
      return ("<section " + Twine(*SectionIndex) + ">").str();
    }
    return std::string(*NameOrErr);
  }

  if (!IsDynamic)
    return SymbolName;

  bool IsDefault;
  Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
  if (!VersionOrErr) {
    reportUniqueWarning(VersionOrErr.takeError());
    return SymbolName + "@<corrupt>";
  }

  if (!VersionOrErr->empty()) {
    SymbolName += (IsDefault ? "@@" : "@");
    SymbolName += *VersionOrErr;
  }
  return SymbolName;
}

template <typename ELFT>
Expected<unsigned>
ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol,
                                       unsigned SymIndex) const {
  unsigned Ndx = Symbol.st_shndx;
  if (Ndx == SHN_XINDEX)
    return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
                                                     ShndxTable);
  if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
    return Ndx;

  auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
    std::string Desc;
    if (Offset)
      Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
    else
      Desc = Name.str();
    return createError(
        "unable to get section index for symbol with st_shndx = 0x" +
        Twine::utohexstr(Ndx) + " (" + Desc + ")");
  };

  if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
    return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
  if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
    return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
  if (Ndx == ELF::SHN_UNDEF)
    return CreateErr("SHN_UNDEF");
  if (Ndx == ELF::SHN_ABS)
    return CreateErr("SHN_ABS");
  if (Ndx == ELF::SHN_COMMON)
    return CreateErr("SHN_COMMON");
  return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
}

template <typename ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
                                      unsigned SectionIndex) const {
  Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
  if (!SecOrErr)
    return SecOrErr.takeError();
  return Obj.getSectionName(**SecOrErr);
}

template <class ELFO>
static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
                             uint64_t Addr) {
  for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
    if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
      return &Shdr;
  return nullptr;
}

static const EnumEntry<unsigned> ElfClass[] = {
  {"None",   "none",   ELF::ELFCLASSNONE},
  {"32-bit", "ELF32",  ELF::ELFCLASS32},
  {"64-bit", "ELF64",  ELF::ELFCLASS64},
};

static const EnumEntry<unsigned> ElfDataEncoding[] = {
  {"None",         "none",                          ELF::ELFDATANONE},
  {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
  {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
};

static const EnumEntry<unsigned> ElfObjectFileType[] = {
  {"None",         "NONE (none)",              ELF::ET_NONE},
  {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
  {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
  {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
  {"Core",         "CORE (Core file)",         ELF::ET_CORE},
};

static const EnumEntry<unsigned> ElfOSABI[] = {
  {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
  {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
  {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
  {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
  {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
  {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
  {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
  {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
  {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
  {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
  {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
  {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
  {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
  {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
  {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
  {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
  {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
  {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
};

static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
  {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
  {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
  {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
};

static const EnumEntry<unsigned> ARMElfOSABI[] = {
  {"ARM", "ARM", ELF::ELFOSABI_ARM}
};

static const EnumEntry<unsigned> C6000ElfOSABI[] = {
  {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
  {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
};

static const EnumEntry<unsigned> ElfMachineType[] = {
  ENUM_ENT(EM_NONE,          "None"),
  ENUM_ENT(EM_M32,           "WE32100"),
  ENUM_ENT(EM_SPARC,         "Sparc"),
  ENUM_ENT(EM_386,           "Intel 80386"),
  ENUM_ENT(EM_68K,           "MC68000"),
  ENUM_ENT(EM_88K,           "MC88000"),
  ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
  ENUM_ENT(EM_860,           "Intel 80860"),
  ENUM_ENT(EM_MIPS,          "MIPS R3000"),
  ENUM_ENT(EM_S370,          "IBM System/370"),
  ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
  ENUM_ENT(EM_PARISC,        "HPPA"),
  ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
  ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
  ENUM_ENT(EM_960,           "Intel 80960"),
  ENUM_ENT(EM_PPC,           "PowerPC"),
  ENUM_ENT(EM_PPC64,         "PowerPC64"),
  ENUM_ENT(EM_S390,          "IBM S/390"),
  ENUM_ENT(EM_SPU,           "SPU"),
  ENUM_ENT(EM_V800,          "NEC V800 series"),
  ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
  ENUM_ENT(EM_RH32,          "TRW RH-32"),
  ENUM_ENT(EM_RCE,           "Motorola RCE"),
  ENUM_ENT(EM_ARM,           "ARM"),
  ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
  ENUM_ENT(EM_SH,            "Hitachi SH"),
  ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
  ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
  ENUM_ENT(EM_ARC,           "ARC"),
  ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
  ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
  ENUM_ENT(EM_H8S,           "Hitachi H8S"),
  ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
  ENUM_ENT(EM_IA_64,         "Intel IA-64"),
  ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
  ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
  ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
  ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
  ENUM_ENT(EM_PCP,           "Siemens PCP"),
  ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
  ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
  ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
  ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
  ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
  ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
  ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
  ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
  ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
  ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
  ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
  ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
  ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
  ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
  ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
  ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
  ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
  ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
  ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
  ENUM_ENT(EM_VAX,           "Digital VAX"),
  ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
  ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
  ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
  ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
  ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
  ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
  ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
  ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
  ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
  ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
  ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
  ENUM_ENT(EM_V850,          "NEC v850"),
  ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
  ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
  ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
  ENUM_ENT(EM_PJ,            "picoJava"),
  ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
  ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
  ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
  ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
  ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
  ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
  ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
  ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
  ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
  ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
  ENUM_ENT(EM_MAX,           "MAX Processor"),
  ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
  ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
  ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
  ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
  ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
  ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
  ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
  ENUM_ENT(EM_UNICORE,       "Unicore"),
  ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
  ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
  ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
  ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
  ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
  ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
  ENUM_ENT(EM_M16C,          "Renesas M16C"),
  ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
  ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
  ENUM_ENT(EM_M32C,          "Renesas M32C"),
  ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
  ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
  ENUM_ENT(EM_SHARC,         "EM_SHARC"),
  ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
  ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
  ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
  ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
  ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
  ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
  ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
  ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
  ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
  ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
  ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
  ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
  ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
  ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
  ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
  ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
  ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
  ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
  // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
  //        an identical number to EM_ECOG1.
  ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
  ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
  ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
  ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
  ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
  ENUM_ENT(EM_RX,            "Renesas RX"),
  ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
  ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
  ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
  ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
  ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
  ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
  ENUM_ENT(EM_L10M,          "EM_L10M"),
  ENUM_ENT(EM_K10M,          "EM_K10M"),
  ENUM_ENT(EM_AARCH64,       "AArch64"),
  ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
  ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
  ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
  ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
  ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
  ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
  ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
  ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
  ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
  ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
  ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
  ENUM_ENT(EM_RL78,          "Renesas RL78"),
  ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
  ENUM_ENT(EM_78KOR,         "EM_78KOR"),
  ENUM_ENT(EM_56800EX,       "EM_56800EX"),
  ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
  ENUM_ENT(EM_RISCV,         "RISC-V"),
  ENUM_ENT(EM_LANAI,         "EM_LANAI"),
  ENUM_ENT(EM_BPF,           "EM_BPF"),
  ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
};

static const EnumEntry<unsigned> ElfSymbolBindings[] = {
    {"Local",  "LOCAL",  ELF::STB_LOCAL},
    {"Global", "GLOBAL", ELF::STB_GLOBAL},
    {"Weak",   "WEAK",   ELF::STB_WEAK},
    {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};

static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
    {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
    {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
    {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
    {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};

static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
  { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
};

static const char *getGroupType(uint32_t Flag) {
  if (Flag & ELF::GRP_COMDAT)
    return "COMDAT";
  else
    return "(unknown)";
}

static const EnumEntry<unsigned> ElfSectionFlags[] = {
  ENUM_ENT(SHF_WRITE,            "W"),
  ENUM_ENT(SHF_ALLOC,            "A"),
  ENUM_ENT(SHF_EXECINSTR,        "X"),
  ENUM_ENT(SHF_MERGE,            "M"),
  ENUM_ENT(SHF_STRINGS,          "S"),
  ENUM_ENT(SHF_INFO_LINK,        "I"),
  ENUM_ENT(SHF_LINK_ORDER,       "L"),
  ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
  ENUM_ENT(SHF_GROUP,            "G"),
  ENUM_ENT(SHF_TLS,              "T"),
  ENUM_ENT(SHF_COMPRESSED,       "C"),
  ENUM_ENT(SHF_EXCLUDE,          "E"),
};

static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
  ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
  ENUM_ENT(XCORE_SHF_DP_SECTION, "")
};

static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
  ENUM_ENT(SHF_ARM_PURECODE, "y")
};

static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
  ENUM_ENT(SHF_HEX_GPREL, "")
};

static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
  ENUM_ENT(SHF_MIPS_NODUPES, ""),
  ENUM_ENT(SHF_MIPS_NAMES,   ""),
  ENUM_ENT(SHF_MIPS_LOCAL,   ""),
  ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
  ENUM_ENT(SHF_MIPS_GPREL,   ""),
  ENUM_ENT(SHF_MIPS_MERGE,   ""),
  ENUM_ENT(SHF_MIPS_ADDR,    ""),
  ENUM_ENT(SHF_MIPS_STRING,  "")
};

static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
  ENUM_ENT(SHF_X86_64_LARGE, "l")
};

static std::vector<EnumEntry<unsigned>>
getSectionFlagsForTarget(unsigned EMachine) {
  std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
                                       std::end(ElfSectionFlags));
  switch (EMachine) {
  case EM_ARM:
    Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
               std::end(ElfARMSectionFlags));
    break;
  case EM_HEXAGON:
    Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
               std::end(ElfHexagonSectionFlags));
    break;
  case EM_MIPS:
    Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
               std::end(ElfMipsSectionFlags));
    break;
  case EM_X86_64:
    Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
               std::end(ElfX86_64SectionFlags));
    break;
  case EM_XCORE:
    Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
               std::end(ElfXCoreSectionFlags));
    break;
  default:
    break;
  }
  return Ret;
}

static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
  // Here we are trying to build the flags string in the same way as GNU does.
  // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
  // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
  // GNU readelf will not print "E" or "Ep" in this case, but will print just
  // "p". It only will print "E" when no other processor flag is set.
  std::string Str;
  bool HasUnknownFlag = false;
  bool HasOSFlag = false;
  bool HasProcFlag = false;
  std::vector<EnumEntry<unsigned>> FlagsList =
      getSectionFlagsForTarget(EMachine);
  while (Flags) {
    // Take the least significant bit as a flag.
    uint64_t Flag = Flags & -Flags;
    Flags -= Flag;

    // Find the flag in the known flags list.
    auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
      // Flags with empty names are not printed in GNU style output.
      return E.Value == Flag && !E.AltName.empty();
    });
    if (I != FlagsList.end()) {
      Str += I->AltName;
      continue;
    }

    // If we did not find a matching regular flag, then we deal with an OS
    // specific flag, processor specific flag or an unknown flag.
    if (Flag & ELF::SHF_MASKOS) {
      HasOSFlag = true;
      Flags &= ~ELF::SHF_MASKOS;
    } else if (Flag & ELF::SHF_MASKPROC) {
      HasProcFlag = true;
      // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
      // bit if set so that it doesn't also get printed.
      Flags &= ~ELF::SHF_MASKPROC;
    } else {
      HasUnknownFlag = true;
    }
  }

  // "o", "p" and "x" are printed last.
  if (HasOSFlag)
    Str += "o";
  if (HasProcFlag)
    Str += "p";
  if (HasUnknownFlag)
    Str += "x";
  return Str;
}

static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
  // Check potentially overlapped processor-specific program header type.
  switch (Arch) {
  case ELF::EM_ARM:
    switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
    break;
  case ELF::EM_MIPS:
  case ELF::EM_MIPS_RS3_LE:
    switch (Type) {
      LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
      LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
      LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
      LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
    }
    break;
  }

  switch (Type) {
    LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);

    LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);

    LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);

    LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
  default:
    return "";
  }
}

static std::string getGNUPtType(unsigned Arch, unsigned Type) {
  StringRef Seg = segmentTypeToString(Arch, Type);
  if (Seg.empty())
    return std::string("<unknown>: ") + to_string(format_hex(Type, 1));

  // E.g. "PT_ARM_EXIDX" -> "EXIDX".
  if (Seg.startswith("PT_ARM_"))
    return Seg.drop_front(7).str();

  // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
  if (Seg.startswith("PT_MIPS_"))
    return Seg.drop_front(8).str();

  // E.g. "PT_LOAD" -> "LOAD".
  assert(Seg.startswith("PT_"));
  return Seg.drop_front(3).str();
}

static const EnumEntry<unsigned> ElfSegmentFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
  LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
  LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
};

static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
  ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
  ENUM_ENT(EF_MIPS_PIC, "pic"),
  ENUM_ENT(EF_MIPS_CPIC, "cpic"),
  ENUM_ENT(EF_MIPS_ABI2, "abi2"),
  ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
  ENUM_ENT(EF_MIPS_FP64, "fp64"),
  ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
  ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
  ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
  ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
  ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
  ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
  ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
  ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
  ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
  ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
  ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
  ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
  ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
  ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
  ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
  ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
  ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
  ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
  ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
  ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
  ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
  ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
  ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
  ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
  ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
  ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
  ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
  ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
  ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
  ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
  ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
  ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
  ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
  ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
  ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
  ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
  ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
};

static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
};

static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
  ENUM_ENT(EF_RISCV_RVC, "RVC"),
  ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
  ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
  ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
  ENUM_ENT(EF_RISCV_RVE, "RVE")
};

static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
  LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
  LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
};

static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
};

static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
};

static const char *getElfMipsOptionsOdkType(unsigned Odk) {
  switch (Odk) {
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
  LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
  default:
    return "Unknown";
  }
}

template <typename ELFT>
std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
ELFDumper<ELFT>::findDynamic() {
  // Try to locate the PT_DYNAMIC header.
  const Elf_Phdr *DynamicPhdr = nullptr;
  if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
    for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
      if (Phdr.p_type != ELF::PT_DYNAMIC)
        continue;
      DynamicPhdr = &Phdr;
      break;
    }
  } else {
    this->reportUniqueWarning(createError(
        "unable to read program headers to locate the PT_DYNAMIC segment: " +
        toString(PhdrsOrErr.takeError())));
  }

  // Try to locate the .dynamic section in the sections header table.
  const Elf_Shdr *DynamicSec = nullptr;
  for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
    if (Sec.sh_type != ELF::SHT_DYNAMIC)
      continue;
    DynamicSec = &Sec;
    break;
  }

  if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
                       ObjF.getMemoryBufferRef().getBufferSize()) ||
                      (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
                       DynamicPhdr->p_offset))) {
    reportUniqueWarning(createError(
        "PT_DYNAMIC segment offset (0x" +
        Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
        Twine::utohexstr(DynamicPhdr->p_filesz) +
        ") exceeds the size of the file (0x" +
        Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"));
    // Don't use the broken dynamic header.
    DynamicPhdr = nullptr;
  }

  if (DynamicPhdr && DynamicSec) {
    if (DynamicSec->sh_addr + DynamicSec->sh_size >
            DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
        DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
      reportUniqueWarning(createError(describe(*DynamicSec) +
                                      " is not contained within the "
                                      "PT_DYNAMIC segment"));

    if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
      reportUniqueWarning(createError(describe(*DynamicSec) +
                                      " is not at the start of "
                                      "PT_DYNAMIC segment"));
  }

  return std::make_pair(DynamicPhdr, DynamicSec);
}

template <typename ELFT>
void ELFDumper<ELFT>::loadDynamicTable() {
  const Elf_Phdr *DynamicPhdr;
  const Elf_Shdr *DynamicSec;
  std::tie(DynamicPhdr, DynamicSec) = findDynamic();
  if (!DynamicPhdr && !DynamicSec)
    return;

  DynRegionInfo FromPhdr(ObjF.getFileName());
  bool IsPhdrTableValid = false;
  if (DynamicPhdr) {
    // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
    // validated in findDynamic() and so createDRI() is not expected to fail.
    FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
                                  sizeof(Elf_Dyn)));
    FromPhdr.SizePrintName = "PT_DYNAMIC size";
    FromPhdr.EntSizePrintName = "";
    IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
  }

  // Locate the dynamic table described in a section header.
  // Ignore sh_entsize and use the expected value for entry size explicitly.
  // This allows us to dump dynamic sections with a broken sh_entsize
  // field.
  DynRegionInfo FromSec(ObjF.getFileName());
  bool IsSecTableValid = false;
  if (DynamicSec) {
    Expected<DynRegionInfo> RegOrErr =
        createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
    if (RegOrErr) {
      FromSec = *RegOrErr;
      FromSec.Context = describe(*DynamicSec);
      FromSec.EntSizePrintName = "";
      IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
    } else {
      reportUniqueWarning(createError("unable to read the dynamic table from " +
                                      describe(*DynamicSec) + ": " +
                                      toString(RegOrErr.takeError())));
    }
  }

  // When we only have information from one of the SHT_DYNAMIC section header or
  // PT_DYNAMIC program header, just use that.
  if (!DynamicPhdr || !DynamicSec) {
    if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
      DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
      parseDynamicTable();
    } else {
      reportUniqueWarning(createError("no valid dynamic table was found"));
    }
    return;
  }

  // At this point we have tables found from the section header and from the
  // dynamic segment. Usually they match, but we have to do sanity checks to
  // verify that.

  if (FromPhdr.Addr != FromSec.Addr)
    reportUniqueWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
                                    "program header disagree about "
                                    "the location of the dynamic table"));

  if (!IsPhdrTableValid && !IsSecTableValid) {
    reportUniqueWarning(createError("no valid dynamic table was found"));
    return;
  }

  // Information in the PT_DYNAMIC program header has priority over the information
  // in a section header.
  if (IsPhdrTableValid) {
    if (!IsSecTableValid)
      reportUniqueWarning(createError(
          "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"));
    DynamicTable = FromPhdr;
  } else {
    reportUniqueWarning(createError(
        "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"));
    DynamicTable = FromSec;
  }

  parseDynamicTable();
}

template <typename ELFT>
ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
                           ScopedPrinter &Writer)
    : ObjDumper(Writer), ObjF(O), Obj(*O.getELFFile()),
      DynRelRegion(O.getFileName()), DynRelaRegion(O.getFileName()),
      DynRelrRegion(O.getFileName()), DynPLTRelRegion(O.getFileName()),
      DynamicTable(O.getFileName()) {
  // Dumper reports all non-critical errors as warnings.
  // It does not print the same warning more than once.
  WarningHandler = [this](const Twine &Msg) {
    if (Warnings.insert(Msg.str()).second)
      reportWarning(createError(Msg), ObjF.getFileName());
    return Error::success();
  };

  if (opts::Output == opts::GNU)
    ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, *this));
  else
    ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, *this));

  typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
  for (const Elf_Shdr &Sec : Sections) {
    switch (Sec.sh_type) {
    case ELF::SHT_SYMTAB:
      if (!DotSymtabSec)
        DotSymtabSec = &Sec;
      break;
    case ELF::SHT_DYNSYM:
      if (!DotDynsymSec)
        DotDynsymSec = &Sec;

      if (!DynSymRegion) {
        Expected<DynRegionInfo> RegOrErr =
            createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
        if (RegOrErr) {
          DynSymRegion = *RegOrErr;
          DynSymRegion->Context = describe(Sec);

          if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
            DynamicStringTable = *E;
          else
            reportWarning(E.takeError(), ObjF.getFileName());
        } else {
          reportUniqueWarning(createError(
              "unable to read dynamic symbols from " + describe(Sec) + ": " +
              toString(RegOrErr.takeError())));
        }
      }
      break;
    case ELF::SHT_SYMTAB_SHNDX:
      ShndxTable = unwrapOrError(ObjF.getFileName(), Obj.getSHNDXTable(Sec));
      break;
    case ELF::SHT_GNU_versym:
      if (!SymbolVersionSection)
        SymbolVersionSection = &Sec;
      break;
    case ELF::SHT_GNU_verdef:
      if (!SymbolVersionDefSection)
        SymbolVersionDefSection = &Sec;
      break;
    case ELF::SHT_GNU_verneed:
      if (!SymbolVersionNeedSection)
        SymbolVersionNeedSection = &Sec;
      break;
    case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
      if (!DotCGProfileSec)
        DotCGProfileSec = &Sec;
      break;
    case ELF::SHT_LLVM_ADDRSIG:
      if (!DotAddrsigSec)
        DotAddrsigSec = &Sec;
      break;
    }
  }

  loadDynamicTable();
}

template <typename ELFT>
void ELFDumper<ELFT>::parseDynamicTable() {
  auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
    auto MappedAddrOrError = Obj.toMappedAddr(VAddr);
    if (!MappedAddrOrError) {
      Error Err =
          createError("Unable to parse DT_" + Obj.getDynamicTagAsString(Tag) +
                      ": " + llvm::toString(MappedAddrOrError.takeError()));

      reportWarning(std::move(Err), ObjF.getFileName());
      return nullptr;
    }
    return MappedAddrOrError.get();
  };

  uint64_t SONameOffset = 0;
  const char *StringTableBegin = nullptr;
  uint64_t StringTableSize = 0;
  Optional<DynRegionInfo> DynSymFromTable;
  for (const Elf_Dyn &Dyn : dynamic_table()) {
    switch (Dyn.d_tag) {
    case ELF::DT_HASH:
      HashTable = reinterpret_cast<const Elf_Hash *>(
          toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
      break;
    case ELF::DT_GNU_HASH:
      GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
          toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
      break;
    case ELF::DT_STRTAB:
      StringTableBegin = reinterpret_cast<const char *>(
          toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
      break;
    case ELF::DT_STRSZ:
      StringTableSize = Dyn.getVal();
      break;
    case ELF::DT_SYMTAB: {
      // If we can't map the DT_SYMTAB value to an address (e.g. when there are
      // no program headers), we ignore its value.
      if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
        DynSymFromTable.emplace(ObjF.getFileName());
        DynSymFromTable->Addr = VA;
        DynSymFromTable->EntSize = sizeof(Elf_Sym);
        DynSymFromTable->EntSizePrintName = "";
      }
      break;
    }
    case ELF::DT_SYMENT: {
      uint64_t Val = Dyn.getVal();
      if (Val != sizeof(Elf_Sym))
        reportWarning(createError("DT_SYMENT value of 0x" +
                                  Twine::utohexstr(Val) +
                                  " is not the size of a symbol (0x" +
                                  Twine::utohexstr(sizeof(Elf_Sym)) + ")"),
                      ObjF.getFileName());
      break;
    }
    case ELF::DT_RELA:
      DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
      break;
    case ELF::DT_RELASZ:
      DynRelaRegion.Size = Dyn.getVal();
      DynRelaRegion.SizePrintName = "DT_RELASZ value";
      break;
    case ELF::DT_RELAENT:
      DynRelaRegion.EntSize = Dyn.getVal();
      DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
      break;
    case ELF::DT_SONAME:
      SONameOffset = Dyn.getVal();
      break;
    case ELF::DT_REL:
      DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
      break;
    case ELF::DT_RELSZ:
      DynRelRegion.Size = Dyn.getVal();
      DynRelRegion.SizePrintName = "DT_RELSZ value";
      break;
    case ELF::DT_RELENT:
      DynRelRegion.EntSize = Dyn.getVal();
      DynRelRegion.EntSizePrintName = "DT_RELENT value";
      break;
    case ELF::DT_RELR:
    case ELF::DT_ANDROID_RELR:
      DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
      break;
    case ELF::DT_RELRSZ:
    case ELF::DT_ANDROID_RELRSZ:
      DynRelrRegion.Size = Dyn.getVal();
      DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
                                        ? "DT_RELRSZ value"
                                        : "DT_ANDROID_RELRSZ value";
      break;
    case ELF::DT_RELRENT:
    case ELF::DT_ANDROID_RELRENT:
      DynRelrRegion.EntSize = Dyn.getVal();
      DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
                                           ? "DT_RELRENT value"
                                           : "DT_ANDROID_RELRENT value";
      break;
    case ELF::DT_PLTREL:
      if (Dyn.getVal() == DT_REL)
        DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
      else if (Dyn.getVal() == DT_RELA)
        DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
      else
        reportError(createError(Twine("unknown DT_PLTREL value of ") +
                                Twine((uint64_t)Dyn.getVal())),
                    ObjF.getFileName());
      DynPLTRelRegion.EntSizePrintName = "";
      break;
    case ELF::DT_JMPREL:
      DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
      break;
    case ELF::DT_PLTRELSZ:
      DynPLTRelRegion.Size = Dyn.getVal();
      DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
      break;
    }
  }

  if (StringTableBegin) {
    const uint64_t FileSize = Obj.getBufSize();
    const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
    if (StringTableSize > FileSize - Offset)
      reportUniqueWarning(createError(
          "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
          " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
          ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)));
    else
      DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
  }

  SOName = getDynamicString(SONameOffset);

  if (DynSymRegion) {
    // Often we find the information about the dynamic symbol table
    // location in the SHT_DYNSYM section header. However, the value in
    // DT_SYMTAB has priority, because it is used by dynamic loaders to
    // locate .dynsym at runtime. The location we find in the section header
    // and the location we find here should match.
    if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
      reportUniqueWarning(
          createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
                      "the location of the dynamic symbol table"));

    // According to the ELF gABI: "The number of symbol table entries should
    // equal nchain". Check to see if the DT_HASH hash table nchain value
    // conflicts with the number of symbols in the dynamic symbol table
    // according to the section header.
    if (HashTable) {
      if (DynSymRegion->EntSize == 0)
        reportUniqueWarning(
            createError("SHT_DYNSYM section has sh_entsize == 0"));
      else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
        reportUniqueWarning(createError(
            "hash table nchain (" + Twine(HashTable->nchain) +
            ") differs from symbol count derived from SHT_DYNSYM section "
            "header (" +
            Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"));
    }
  }

  // Delay the creation of the actual dynamic symbol table until now, so that
  // checks can always be made against the section header-based properties,
  // without worrying about tag order.
  if (DynSymFromTable) {
    if (!DynSymRegion) {
      DynSymRegion = DynSymFromTable;
    } else {
      DynSymRegion->Addr = DynSymFromTable->Addr;
      DynSymRegion->EntSize = DynSymFromTable->EntSize;
      DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
    }
  }

  // Derive the dynamic symbol table size from the DT_HASH hash table, if
  // present.
  if (HashTable && DynSymRegion) {
    const uint64_t FileSize = Obj.getBufSize();
    const uint64_t DerivedSize =
        (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
    const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
    if (DerivedSize > FileSize - Offset)
      reportUniqueWarning(createError(
          "the size (0x" + Twine::utohexstr(DerivedSize) +
          ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
          ", derived from the hash table, goes past the end of the file (0x" +
          Twine::utohexstr(FileSize) + ") and will be ignored"));
    else
      DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
  }
}

template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
  return DynRelRegion.getAsArrayRef<Elf_Rel>();
}

template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
  return DynRelaRegion.getAsArrayRef<Elf_Rela>();
}

template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
  return DynRelrRegion.getAsArrayRef<Elf_Relr>();
}

template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
  ELFDumperStyle->printFileHeaders();
}

template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
  ELFDumperStyle->printSectionHeaders();
}

template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
  ELFDumperStyle->printRelocations();
}

template <class ELFT>
void ELFDumper<ELFT>::printProgramHeaders(
    bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
  ELFDumperStyle->printProgramHeaders(PrintProgramHeaders, PrintSectionMapping);
}

template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
  // Dump version symbol section.
  ELFDumperStyle->printVersionSymbolSection(SymbolVersionSection);

  // Dump version definition section.
  ELFDumperStyle->printVersionDefinitionSection(SymbolVersionDefSection);

  // Dump version dependency section.
  ELFDumperStyle->printVersionDependencySection(SymbolVersionNeedSection);
}

template <class ELFT> void ELFDumper<ELFT>::printDependentLibs() {
  ELFDumperStyle->printDependentLibs();
}

template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
  ELFDumperStyle->printDynamicRelocations();
}

template <class ELFT>
void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
                                   bool PrintDynamicSymbols) {
  ELFDumperStyle->printSymbols(PrintSymbols, PrintDynamicSymbols);
}

template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
  ELFDumperStyle->printHashSymbols();
}

template <class ELFT> void ELFDumper<ELFT>::printHashHistograms() {
  ELFDumperStyle->printHashHistograms();
}

template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
  ELFDumperStyle->printCGProfile();
}

template <class ELFT> void ELFDumper<ELFT>::printNotes() {
  ELFDumperStyle->printNotes();
}

template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
  ELFDumperStyle->printELFLinkerOptions();
}

template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
  ELFDumperStyle->printStackSizes();
}

#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
  { #enum, prefix##_##enum }

static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
  LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
  LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
  LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
  LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
  LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
};

static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
};

static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
  LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
};

#undef LLVM_READOBJ_DT_FLAG_ENT

template <typename T, typename TFlag>
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
  SmallVector<EnumEntry<TFlag>, 10> SetFlags;
  for (const EnumEntry<TFlag> &Flag : Flags)
    if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
      SetFlags.push_back(Flag);

  for (const EnumEntry<TFlag> &Flag : SetFlags)
    OS << Flag.Name << " ";
}

template <class ELFT>
const typename ELFT::Shdr *
ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
  for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
    if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
      if (*NameOrErr == Name)
        return &Shdr;
    } else {
      reportUniqueWarning(createError("unable to read the name of " +
                                      describe(Shdr) + ": " +
                                      toString(NameOrErr.takeError())));
    }
  }
  return nullptr;
}

template <class ELFT>
std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
                                             uint64_t Value) const {
  auto FormatHexValue = [](uint64_t V) {
    std::string Str;
    raw_string_ostream OS(Str);
    const char *ConvChar =
        (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
    OS << format(ConvChar, V);
    return OS.str();
  };

  auto FormatFlags = [](uint64_t V,
                        llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
    std::string Str;
    raw_string_ostream OS(Str);
    printFlags(V, Array, OS);
    return OS.str();
  };

  // Handle custom printing of architecture specific tags
  switch (Obj.getHeader().e_machine) {
  case EM_AARCH64:
    switch (Type) {
    case DT_AARCH64_BTI_PLT:
    case DT_AARCH64_PAC_PLT:
      return std::to_string(Value);
    default:
      break;
    }
    break;
  case EM_HEXAGON:
    switch (Type) {
    case DT_HEXAGON_VER:
      return std::to_string(Value);
    case DT_HEXAGON_SYMSZ:
    case DT_HEXAGON_PLT:
      return FormatHexValue(Value);
    default:
      break;
    }
    break;
  case EM_MIPS:
    switch (Type) {
    case DT_MIPS_RLD_VERSION:
    case DT_MIPS_LOCAL_GOTNO:
    case DT_MIPS_SYMTABNO:
    case DT_MIPS_UNREFEXTNO:
      return std::to_string(Value);
    case DT_MIPS_TIME_STAMP:
    case DT_MIPS_ICHECKSUM:
    case DT_MIPS_IVERSION:
    case DT_MIPS_BASE_ADDRESS:
    case DT_MIPS_MSYM:
    case DT_MIPS_CONFLICT:
    case DT_MIPS_LIBLIST:
    case DT_MIPS_CONFLICTNO:
    case DT_MIPS_LIBLISTNO:
    case DT_MIPS_GOTSYM:
    case DT_MIPS_HIPAGENO:
    case DT_MIPS_RLD_MAP:
    case DT_MIPS_DELTA_CLASS:
    case DT_MIPS_DELTA_CLASS_NO:
    case DT_MIPS_DELTA_INSTANCE:
    case DT_MIPS_DELTA_RELOC:
    case DT_MIPS_DELTA_RELOC_NO:
    case DT_MIPS_DELTA_SYM:
    case DT_MIPS_DELTA_SYM_NO:
    case DT_MIPS_DELTA_CLASSSYM:
    case DT_MIPS_DELTA_CLASSSYM_NO:
    case DT_MIPS_CXX_FLAGS:
    case DT_MIPS_PIXIE_INIT:
    case DT_MIPS_SYMBOL_LIB:
    case DT_MIPS_LOCALPAGE_GOTIDX:
    case DT_MIPS_LOCAL_GOTIDX:
    case DT_MIPS_HIDDEN_GOTIDX:
    case DT_MIPS_PROTECTED_GOTIDX:
    case DT_MIPS_OPTIONS:
    case DT_MIPS_INTERFACE:
    case DT_MIPS_DYNSTR_ALIGN:
    case DT_MIPS_INTERFACE_SIZE:
    case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
    case DT_MIPS_PERF_SUFFIX:
    case DT_MIPS_COMPACT_SIZE:
    case DT_MIPS_GP_VALUE:
    case DT_MIPS_AUX_DYNAMIC:
    case DT_MIPS_PLTGOT:
    case DT_MIPS_RWPLT:
    case DT_MIPS_RLD_MAP_REL:
      return FormatHexValue(Value);
    case DT_MIPS_FLAGS:
      return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
    default:
      break;
    }
    break;
  default:
    break;
  }

  switch (Type) {
  case DT_PLTREL:
    if (Value == DT_REL)
      return "REL";
    if (Value == DT_RELA)
      return "RELA";
    LLVM_FALLTHROUGH;
  case DT_PLTGOT:
  case DT_HASH:
  case DT_STRTAB:
  case DT_SYMTAB:
  case DT_RELA:
  case DT_INIT:
  case DT_FINI:
  case DT_REL:
  case DT_JMPREL:
  case DT_INIT_ARRAY:
  case DT_FINI_ARRAY:
  case DT_PREINIT_ARRAY:
  case DT_DEBUG:
  case DT_VERDEF:
  case DT_VERNEED:
  case DT_VERSYM:
  case DT_GNU_HASH:
  case DT_NULL:
    return FormatHexValue(Value);
  case DT_RELACOUNT:
  case DT_RELCOUNT:
  case DT_VERDEFNUM:
  case DT_VERNEEDNUM:
    return std::to_string(Value);
  case DT_PLTRELSZ:
  case DT_RELASZ:
  case DT_RELAENT:
  case DT_STRSZ:
  case DT_SYMENT:
  case DT_RELSZ:
  case DT_RELENT:
  case DT_INIT_ARRAYSZ:
  case DT_FINI_ARRAYSZ:
  case DT_PREINIT_ARRAYSZ:
  case DT_ANDROID_RELSZ:
  case DT_ANDROID_RELASZ:
    return std::to_string(Value) + " (bytes)";
  case DT_NEEDED:
  case DT_SONAME:
  case DT_AUXILIARY:
  case DT_USED:
  case DT_FILTER:
  case DT_RPATH:
  case DT_RUNPATH: {
    const std::map<uint64_t, const char *> TagNames = {
        {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
        {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
        {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
        {DT_RUNPATH, "Library runpath"},
    };

    return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
        .str();
  }
  case DT_FLAGS:
    return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
  case DT_FLAGS_1:
    return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
  default:
    return FormatHexValue(Value);
  }
}

template <class ELFT>
StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
  if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
    reportUniqueWarning(createError("string table was not found"));
    return "<?>";
  }

  auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
    reportUniqueWarning(createError("string table at offset 0x" +
                                    Twine::utohexstr(Offset) + Msg));
    return "<?>";
  };

  const uint64_t FileSize = Obj.getBufSize();
  const uint64_t Offset =
      (const uint8_t *)DynamicStringTable.data() - Obj.base();
  if (DynamicStringTable.size() > FileSize - Offset)
    return WarnAndReturn(" with size 0x" +
                             Twine::utohexstr(DynamicStringTable.size()) +
                             " goes past the end of the file (0x" +
                             Twine::utohexstr(FileSize) + ")",
                         Offset);

  if (Value >= DynamicStringTable.size())
    return WarnAndReturn(
        ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
            ": it goes past the end of the table (0x" +
            Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
        Offset);

  if (DynamicStringTable.back() != '\0')
    return WarnAndReturn(": unable to read the string at 0x" +
                             Twine::utohexstr(Offset + Value) +
                             ": the string table is not null-terminated",
                         Offset);

  return DynamicStringTable.data() + Value;
}

template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
  DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
  Ctx.printUnwindInformation();
}

namespace {

template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
  if (Obj.getHeader().e_machine == EM_ARM) {
    ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
                                            DotSymtabSec);
    Ctx.PrintUnwindInformation();
  }
  DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
  Ctx.printUnwindInformation();
}

} // end anonymous namespace

template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
  ELFDumperStyle->printDynamic();
}

template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
  ListScope D(W, "NeededLibraries");

  std::vector<StringRef> Libs;
  for (const auto &Entry : dynamic_table())
    if (Entry.d_tag == ELF::DT_NEEDED)
      Libs.push_back(getDynamicString(Entry.d_un.d_val));

  llvm::sort(Libs);

  for (StringRef L : Libs)
    W.startLine() << L << "\n";
}

template <class ELFT>
static Error checkHashTable(const ELFFile<ELFT> &Obj,
                            const typename ELFT::Hash *H,
                            bool *IsHeaderValid = nullptr) {
  auto MakeError = [&](uint64_t Off, const Twine &Msg = "") {
    return createError("the hash table at offset 0x" + Twine::utohexstr(Off) +
                       " goes past the end of the file (0x" +
                       Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
  };

  // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
  const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
  const uint64_t SecOffset = (const uint8_t *)H - Obj.base();

  if (IsHeaderValid)
    *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;

  if (Obj.getBufSize() - SecOffset < HeaderSize)
    return MakeError(SecOffset);

  if (Obj.getBufSize() - SecOffset - HeaderSize <
      ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
    return MakeError(SecOffset, ", nbucket = " + Twine(H->nbucket) +
                                    ", nchain = " + Twine(H->nchain));
  return Error::success();
}

template <class ELFT>
static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
                               const typename ELFT::GnuHash *GnuHashTable,
                               bool *IsHeaderValid = nullptr) {
  const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
  assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
         "GnuHashTable must always point to a location inside the file");

  uint64_t TableOffset = TableData - Obj.base();
  if (IsHeaderValid)
    *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
  if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
          (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
      Obj.getBufSize())
    return createError("unable to dump the SHT_GNU_HASH "
                       "section at 0x" +
                       Twine::utohexstr(TableOffset) +
                       ": it goes past the end of the file");
  return Error::success();
}

template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
  DictScope D(W, "HashTable");
  if (!HashTable)
    return;

  bool IsHeaderValid;
  Error Err = checkHashTable(Obj, HashTable, &IsHeaderValid);
  if (IsHeaderValid) {
    W.printNumber("Num Buckets", HashTable->nbucket);
    W.printNumber("Num Chains", HashTable->nchain);
  }

  if (Err) {
    reportUniqueWarning(std::move(Err));
    return;
  }

  W.printList("Buckets", HashTable->buckets());
  W.printList("Chains", HashTable->chains());
}

template <class ELFT>
static Expected<ArrayRef<typename ELFT::Word>>
getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
                      const typename ELFT::GnuHash *GnuHashTable) {
  if (!DynSymRegion)
    return createError("no dynamic symbol table found");

  ArrayRef<typename ELFT::Sym> DynSymTable =
      DynSymRegion->getAsArrayRef<typename ELFT::Sym>();
  size_t NumSyms = DynSymTable.size();
  if (!NumSyms)
    return createError("the dynamic symbol table is empty");

  if (GnuHashTable->symndx < NumSyms)
    return GnuHashTable->values(NumSyms);

  // A normal empty GNU hash table section produced by linker might have
  // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
  // and have dummy null values in the Bloom filter and in the buckets
  // vector (or no values at all). It happens because the value of symndx is not
  // important for dynamic loaders when the GNU hash table is empty. They just
  // skip the whole object during symbol lookup. In such cases, the symndx value
  // is irrelevant and we should not report a warning.
  ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
  if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
    return createError("the first hashed symbol index (" +
                       Twine(GnuHashTable->symndx) +
                       ") is larger than the number of dynamic symbols (" +
                       Twine(NumSyms) + ")");
  // There is no way to represent an array of (dynamic symbols count - symndx)
  // length.
  return ArrayRef<typename ELFT::Word>();
}

template <typename ELFT>
void ELFDumper<ELFT>::printGnuHashTable() {
  DictScope D(W, "GnuHashTable");
  if (!GnuHashTable)
    return;

  bool IsHeaderValid;
  Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
  if (IsHeaderValid) {
    W.printNumber("Num Buckets", GnuHashTable->nbuckets);
    W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
    W.printNumber("Num Mask Words", GnuHashTable->maskwords);
    W.printNumber("Shift Count", GnuHashTable->shift2);
  }

  if (Err) {
    reportUniqueWarning(std::move(Err));
    return;
  }

  ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
  W.printHexList("Bloom Filter", BloomFilter);

  ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
  W.printList("Buckets", Buckets);

  Expected<ArrayRef<Elf_Word>> Chains =
      getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
  if (!Chains) {
    reportUniqueWarning(
        createError("unable to dump 'Values' for the SHT_GNU_HASH "
                    "section: " +
                    toString(Chains.takeError())));
    return;
  }

  W.printHexList("Values", *Chains);
}

template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
  W.printString("LoadName", SOName);
}

template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
  switch (Obj.getHeader().e_machine) {
  case EM_ARM:
  case EM_RISCV:
    printAttributes();
    break;
  case EM_MIPS: {
    ELFDumperStyle->printMipsABIFlags();
    printMipsOptions();
    printMipsReginfo();
    MipsGOTParser<ELFT> Parser(*this);
    if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
      reportError(std::move(E), ObjF.getFileName());
    else if (!Parser.isGotEmpty())
      ELFDumperStyle->printMipsGOT(Parser);

    if (Error E = Parser.findPLT(dynamic_table()))
      reportError(std::move(E), ObjF.getFileName());
    else if (!Parser.isPltEmpty())
      ELFDumperStyle->printMipsPLT(Parser);
    break;
  }
  default:
    break;
  }
}

template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
  if (!Obj.isLE()) {
    W.startLine() << "Attributes not implemented.\n";
    return;
  }

  const unsigned Machine = Obj.getHeader().e_machine;
  assert((Machine == EM_ARM || Machine == EM_RISCV) &&
         "Attributes not implemented.");

  DictScope BA(W, "BuildAttributes");
  for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
    if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
        Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
      continue;

    ArrayRef<uint8_t> Contents =
        unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(Sec));
    if (Contents[0] != ELFAttrs::Format_Version) {
      reportWarning(createError(Twine("unrecognised FormatVersion: 0x") +
                                Twine::utohexstr(Contents[0])),
                    ObjF.getFileName());
      continue;
    }
    W.printHex("FormatVersion", Contents[0]);
    if (Contents.size() == 1)
      continue;

    // TODO: Delete the redundant FormatVersion check above.
    if (Machine == EM_ARM) {
      if (Error E = ARMAttributeParser(&W).parse(Contents, support::little))
        reportWarning(std::move(E), ObjF.getFileName());
    } else if (Machine == EM_RISCV) {
      if (Error E = RISCVAttributeParser(&W).parse(Contents, support::little))
        reportWarning(std::move(E), ObjF.getFileName());
    }
  }
}

namespace {

template <class ELFT> class MipsGOTParser {
public:
  TYPEDEF_ELF_TYPES(ELFT)
  using Entry = typename ELFO::Elf_Addr;
  using Entries = ArrayRef<Entry>;

  const bool IsStatic;
  const ELFO &Obj;
  const ELFDumper<ELFT> &Dumper;

  MipsGOTParser(const ELFDumper<ELFT> &D);
  Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
  Error findPLT(Elf_Dyn_Range DynTable);

  bool isGotEmpty() const { return GotEntries.empty(); }
  bool isPltEmpty() const { return PltEntries.empty(); }

  uint64_t getGp() const;

  const Entry *getGotLazyResolver() const;
  const Entry *getGotModulePointer() const;
  const Entry *getPltLazyResolver() const;
  const Entry *getPltModulePointer() const;

  Entries getLocalEntries() const;
  Entries getGlobalEntries() const;
  Entries getOtherEntries() const;
  Entries getPltEntries() const;

  uint64_t getGotAddress(const Entry * E) const;
  int64_t getGotOffset(const Entry * E) const;
  const Elf_Sym *getGotSym(const Entry *E) const;

  uint64_t getPltAddress(const Entry * E) const;
  const Elf_Sym *getPltSym(const Entry *E) const;

  StringRef getPltStrTable() const { return PltStrTable; }
  const Elf_Shdr *getPltSymTable() const { return PltSymTable; }

private:
  const Elf_Shdr *GotSec;
  size_t LocalNum;
  size_t GlobalNum;

  const Elf_Shdr *PltSec;
  const Elf_Shdr *PltRelSec;
  const Elf_Shdr *PltSymTable;
  StringRef FileName;

  Elf_Sym_Range GotDynSyms;
  StringRef PltStrTable;

  Entries GotEntries;
  Entries PltEntries;
};

} // end anonymous namespace

template <class ELFT>
MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
    : IsStatic(D.dynamic_table().empty()), Obj(*D.getElfObject().getELFFile()),
      Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
      PltRelSec(nullptr), PltSymTable(nullptr),
      FileName(D.getElfObject().getFileName()) {}

template <class ELFT>
Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
                                   Elf_Sym_Range DynSyms) {
  // See "Global Offset Table" in Chapter 5 in the following document
  // for detailed GOT description.
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf

  // Find static GOT secton.
  if (IsStatic) {
    GotSec = Dumper.findSectionByName(".got");
    if (!GotSec)
      return Error::success();

    ArrayRef<uint8_t> Content =
        unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
    GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
                         Content.size() / sizeof(Entry));
    LocalNum = GotEntries.size();
    return Error::success();
  }

  // Lookup dynamic table tags which define the GOT layout.
  Optional<uint64_t> DtPltGot;
  Optional<uint64_t> DtLocalGotNum;
  Optional<uint64_t> DtGotSym;
  for (const auto &Entry : DynTable) {
    switch (Entry.getTag()) {
    case ELF::DT_PLTGOT:
      DtPltGot = Entry.getVal();
      break;
    case ELF::DT_MIPS_LOCAL_GOTNO:
      DtLocalGotNum = Entry.getVal();
      break;
    case ELF::DT_MIPS_GOTSYM:
      DtGotSym = Entry.getVal();
      break;
    }
  }

  if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
    return Error::success();

  if (!DtPltGot)
    return createError("cannot find PLTGOT dynamic tag");
  if (!DtLocalGotNum)
    return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
  if (!DtGotSym)
    return createError("cannot find MIPS_GOTSYM dynamic tag");

  size_t DynSymTotal = DynSyms.size();
  if (*DtGotSym > DynSymTotal)
    return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
                       ") exceeds the number of dynamic symbols (" +
                       Twine(DynSymTotal) + ")");

  GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
  if (!GotSec)
    return createError("there is no non-empty GOT section at 0x" +
                       Twine::utohexstr(*DtPltGot));

  LocalNum = *DtLocalGotNum;
  GlobalNum = DynSymTotal - *DtGotSym;

  ArrayRef<uint8_t> Content =
      unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
  GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
                       Content.size() / sizeof(Entry));
  GotDynSyms = DynSyms.drop_front(*DtGotSym);

  return Error::success();
}

template <class ELFT>
Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
  // Lookup dynamic table tags which define the PLT layout.
  Optional<uint64_t> DtMipsPltGot;
  Optional<uint64_t> DtJmpRel;
  for (const auto &Entry : DynTable) {
    switch (Entry.getTag()) {
    case ELF::DT_MIPS_PLTGOT:
      DtMipsPltGot = Entry.getVal();
      break;
    case ELF::DT_JMPREL:
      DtJmpRel = Entry.getVal();
      break;
    }
  }

  if (!DtMipsPltGot && !DtJmpRel)
    return Error::success();

  // Find PLT section.
  if (!DtMipsPltGot)
    return createError("cannot find MIPS_PLTGOT dynamic tag");
  if (!DtJmpRel)
    return createError("cannot find JMPREL dynamic tag");

  PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
  if (!PltSec)
    return createError("there is no non-empty PLTGOT section at 0x" +
                       Twine::utohexstr(*DtMipsPltGot));

  PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
  if (!PltRelSec)
    return createError("there is no non-empty RELPLT section at 0x" +
                       Twine::utohexstr(*DtJmpRel));

  if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
          Obj.getSectionContents(*PltSec))
    PltEntries =
        Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
                PltContentOrErr->size() / sizeof(Entry));
  else
    return createError("unable to read PLTGOT section content: " +
                       toString(PltContentOrErr.takeError()));

  if (Expected<const Elf_Shdr *> PltSymTableOrErr =
          Obj.getSection(PltRelSec->sh_link))
    PltSymTable = *PltSymTableOrErr;
  else
    return createError("unable to get a symbol table linked to the " +
                       describe(Obj, *PltRelSec) + ": " +
                       toString(PltSymTableOrErr.takeError()));

  if (Expected<StringRef> StrTabOrErr =
          Obj.getStringTableForSymtab(*PltSymTable))
    PltStrTable = *StrTabOrErr;
  else
    return createError("unable to get a string table for the " +
                       describe(Obj, *PltSymTable) + ": " +
                       toString(StrTabOrErr.takeError()));

  return Error::success();
}

template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
  return GotSec->sh_addr + 0x7ff0;
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getGotLazyResolver() const {
  return LocalNum > 0 ? &GotEntries[0] : nullptr;
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getGotModulePointer() const {
  if (LocalNum < 2)
    return nullptr;
  const Entry &E = GotEntries[1];
  if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
    return nullptr;
  return &E;
}

template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getLocalEntries() const {
  size_t Skip = getGotModulePointer() ? 2 : 1;
  if (LocalNum - Skip <= 0)
    return Entries();
  return GotEntries.slice(Skip, LocalNum - Skip);
}

template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getGlobalEntries() const {
  if (GlobalNum == 0)
    return Entries();
  return GotEntries.slice(LocalNum, GlobalNum);
}

template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getOtherEntries() const {
  size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
  if (OtherNum == 0)
    return Entries();
  return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
}

template <class ELFT>
uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
  int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
  return GotSec->sh_addr + Offset;
}

template <class ELFT>
int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
  int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
  return Offset - 0x7ff0;
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::Elf_Sym *
MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
  int64_t Offset = std::distance(GotEntries.data(), E);
  return &GotDynSyms[Offset - LocalNum];
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getPltLazyResolver() const {
  return PltEntries.empty() ? nullptr : &PltEntries[0];
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getPltModulePointer() const {
  return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
}

template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getPltEntries() const {
  if (PltEntries.size() <= 2)
    return Entries();
  return PltEntries.slice(2, PltEntries.size() - 2);
}

template <class ELFT>
uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
  int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
  return PltSec->sh_addr + Offset;
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::Elf_Sym *
MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
  int64_t Offset = std::distance(getPltEntries().data(), E);
  if (PltRelSec->sh_type == ELF::SHT_REL) {
    Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
    return unwrapOrError(FileName,
                         Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
  } else {
    Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
    return unwrapOrError(FileName,
                         Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
  }
}

static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
  {"None",                    Mips::AFL_EXT_NONE},
  {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
  {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
  {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
  {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
  {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
  {"LSI R4010",               Mips::AFL_EXT_4010},
  {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
  {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
  {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
  {"MIPS R4650",              Mips::AFL_EXT_4650},
  {"MIPS R5900",              Mips::AFL_EXT_5900},
  {"MIPS R10000",             Mips::AFL_EXT_10000},
  {"NEC VR4100",              Mips::AFL_EXT_4100},
  {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
  {"NEC VR4120",              Mips::AFL_EXT_4120},
  {"NEC VR5400",              Mips::AFL_EXT_5400},
  {"NEC VR5500",              Mips::AFL_EXT_5500},
  {"RMI Xlr",                 Mips::AFL_EXT_XLR},
  {"Toshiba R3900",           Mips::AFL_EXT_3900}
};

static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
  {"DSP",                Mips::AFL_ASE_DSP},
  {"DSPR2",              Mips::AFL_ASE_DSPR2},
  {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
  {"MCU",                Mips::AFL_ASE_MCU},
  {"MDMX",               Mips::AFL_ASE_MDMX},
  {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
  {"MT",                 Mips::AFL_ASE_MT},
  {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
  {"VZ",                 Mips::AFL_ASE_VIRT},
  {"MSA",                Mips::AFL_ASE_MSA},
  {"MIPS16",             Mips::AFL_ASE_MIPS16},
  {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
  {"XPA",                Mips::AFL_ASE_XPA},
  {"CRC",                Mips::AFL_ASE_CRC},
  {"GINV",               Mips::AFL_ASE_GINV},
};

static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
  {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
  {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
  {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
  {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
  {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
   Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
  {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
  {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
  {"Hard float compat (32-bit CPU, 64-bit FPU)",
   Mips::Val_GNU_MIPS_ABI_FP_64A}
};

static const EnumEntry<unsigned> ElfMipsFlags1[] {
  {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
};

static int getMipsRegisterSize(uint8_t Flag) {
  switch (Flag) {
  case Mips::AFL_REG_NONE:
    return 0;
  case Mips::AFL_REG_32:
    return 32;
  case Mips::AFL_REG_64:
    return 64;
  case Mips::AFL_REG_128:
    return 128;
  default:
    return -1;
  }
}

template <class ELFT>
static void printMipsReginfoData(ScopedPrinter &W,
                                 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
  W.printHex("GP", Reginfo.ri_gp_value);
  W.printHex("General Mask", Reginfo.ri_gprmask);
  W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
  W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
  W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
  W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
}

template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
  const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
  if (!RegInfoSec) {
    W.startLine() << "There is no .reginfo section in the file.\n";
    return;
  }

  Expected<ArrayRef<uint8_t>> ContentsOrErr =
      Obj.getSectionContents(*RegInfoSec);
  if (!ContentsOrErr) {
    this->reportUniqueWarning(createError(
        "unable to read the content of the .reginfo section (" +
        describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())));
    return;
  }

  if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
    this->reportUniqueWarning(
        createError("the .reginfo section has an invalid size (0x" +
                    Twine::utohexstr(ContentsOrErr->size()) + ")"));
    return;
  }

  DictScope GS(W, "MIPS RegInfo");
  printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
                              ContentsOrErr->data()));
}

template <class ELFT>
static Expected<const Elf_Mips_Options<ELFT> *>
readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
                bool &IsSupported) {
  if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
    return createError("the .MIPS.options section has an invalid size (0x" +
                       Twine::utohexstr(SecData.size()) + ")");

  const Elf_Mips_Options<ELFT> *O =
      reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
  const uint8_t Size = O->size;
  if (Size > SecData.size()) {
    const uint64_t Offset = SecData.data() - SecBegin;
    const uint64_t SecSize = Offset + SecData.size();
    return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
                       " at offset 0x" + Twine::utohexstr(Offset) +
                       " goes past the end of the .MIPS.options "
                       "section of size 0x" +
                       Twine::utohexstr(SecSize));
  }

  IsSupported = O->kind == ODK_REGINFO;
  const size_t ExpectedSize =
      sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);

  if (IsSupported)
    if (Size < ExpectedSize)
      return createError(
          "a .MIPS.options entry of kind " +
          Twine(getElfMipsOptionsOdkType(O->kind)) +
          " has an invalid size (0x" + Twine::utohexstr(Size) +
          "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));

  SecData = SecData.drop_front(Size);
  return O;
}

template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
  const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
  if (!MipsOpts) {
    W.startLine() << "There is no .MIPS.options section in the file.\n";
    return;
  }

  DictScope GS(W, "MIPS Options");

  ArrayRef<uint8_t> Data =
      unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
  const uint8_t *const SecBegin = Data.begin();
  while (!Data.empty()) {
    bool IsSupported;
    Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
        readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
    if (!OptsOrErr) {
      reportUniqueWarning(OptsOrErr.takeError());
      break;
    }

    unsigned Kind = (*OptsOrErr)->kind;
    const char *Type = getElfMipsOptionsOdkType(Kind);
    if (!IsSupported) {
      W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
                    << ")\n";
      continue;
    }

    DictScope GS(W, Type);
    if (Kind == ODK_REGINFO)
      printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
    else
      llvm_unreachable("unexpected .MIPS.options section descriptor kind");
  }
}

template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
  const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
  if (!StackMapSection)
    return;

  auto Warn = [&](Error &&E) {
    this->reportUniqueWarning(createError("unable to read the stack map from " +
                                          describe(*StackMapSection) + ": " +
                                          toString(std::move(E))));
  };

  Expected<ArrayRef<uint8_t>> ContentOrErr =
      Obj.getSectionContents(*StackMapSection);
  if (!ContentOrErr) {
    Warn(ContentOrErr.takeError());
    return;
  }

  if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
          *ContentOrErr)) {
    Warn(std::move(E));
    return;
  }

  prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
}

template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
  ELFDumperStyle->printGroupSections();
}

template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
  ELFDumperStyle->printAddrsig();
}

static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
                               StringRef Str2) {
  OS.PadToColumn(2u);
  OS << Str1;
  OS.PadToColumn(37u);
  OS << Str2 << "\n";
  OS.flush();
}

template <class ELFT>
static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
                                              StringRef FileName) {
  const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
  if (ElfHeader.e_shnum != 0)
    return to_string(ElfHeader.e_shnum);

  ArrayRef<typename ELFT::Shdr> Arr = cantFail(Obj.sections());
  if (Arr.empty())
    return "0";
  return "0 (" + to_string(Arr[0].sh_size) + ")";
}

template <class ELFT>
static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
                                                    StringRef FileName) {
  const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
  if (ElfHeader.e_shstrndx != SHN_XINDEX)
    return to_string(ElfHeader.e_shstrndx);

  ArrayRef<typename ELFT::Shdr> Arr = cantFail(Obj.sections());
  if (Arr.empty())
    return "65535 (corrupt: out of range)";
  return to_string(ElfHeader.e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
         ")";
}

template <class ELFT> void GNUStyle<ELFT>::printFileHeaders() {
  const Elf_Ehdr &e = this->Obj.getHeader();
  OS << "ELF Header:\n";
  OS << "  Magic:  ";
  std::string Str;
  for (int i = 0; i < ELF::EI_NIDENT; i++)
    OS << format(" %02x", static_cast<int>(e.e_ident[i]));
  OS << "\n";
  Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
  printFields(OS, "Class:", Str);
  Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
  printFields(OS, "Data:", Str);
  OS.PadToColumn(2u);
  OS << "Version:";
  OS.PadToColumn(37u);
  OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
  if (e.e_version == ELF::EV_CURRENT)
    OS << " (current)";
  OS << "\n";
  Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
  printFields(OS, "OS/ABI:", Str);
  printFields(OS,
              "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
  Str = printEnum(e.e_type, makeArrayRef(ElfObjectFileType));
  printFields(OS, "Type:", Str);
  Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType));
  printFields(OS, "Machine:", Str);
  Str = "0x" + to_hexString(e.e_version);
  printFields(OS, "Version:", Str);
  Str = "0x" + to_hexString(e.e_entry);
  printFields(OS, "Entry point address:", Str);
  Str = to_string(e.e_phoff) + " (bytes into file)";
  printFields(OS, "Start of program headers:", Str);
  Str = to_string(e.e_shoff) + " (bytes into file)";
  printFields(OS, "Start of section headers:", Str);
  std::string ElfFlags;
  if (e.e_machine == EM_MIPS)
    ElfFlags =
        printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
                   unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
                   unsigned(ELF::EF_MIPS_MACH));
  else if (e.e_machine == EM_RISCV)
    ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
  Str = "0x" + to_hexString(e.e_flags);
  if (!ElfFlags.empty())
    Str = Str + ", " + ElfFlags;
  printFields(OS, "Flags:", Str);
  Str = to_string(e.e_ehsize) + " (bytes)";
  printFields(OS, "Size of this header:", Str);
  Str = to_string(e.e_phentsize) + " (bytes)";
  printFields(OS, "Size of program headers:", Str);
  Str = to_string(e.e_phnum);
  printFields(OS, "Number of program headers:", Str);
  Str = to_string(e.e_shentsize) + " (bytes)";
  printFields(OS, "Size of section headers:", Str);
  Str = getSectionHeadersNumString(this->Obj, this->FileName);
  printFields(OS, "Number of section headers:", Str);
  Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
  printFields(OS, "Section header string table index:", Str);
}

namespace {
struct GroupMember {
  StringRef Name;
  uint64_t Index;
};

struct GroupSection {
  StringRef Name;
  std::string Signature;
  uint64_t ShName;
  uint64_t Index;
  uint32_t Link;
  uint32_t Info;
  uint32_t Type;
  std::vector<GroupMember> Members;
};

template <class ELFT>
std::vector<GroupSection> getGroups(const ELFFile<ELFT> &Obj,
                                    StringRef FileName) {
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;
  using Elf_Word = typename ELFT::Word;

  std::vector<GroupSection> Ret;
  uint64_t I = 0;
  for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
    ++I;
    if (Sec.sh_type != ELF::SHT_GROUP)
      continue;

    const Elf_Shdr *Symtab =
        unwrapOrError(FileName, Obj.getSection(Sec.sh_link));
    StringRef StrTable =
        unwrapOrError(FileName, Obj.getStringTableForSymtab(*Symtab));
    const Elf_Sym *Sym = unwrapOrError(
        FileName, Obj.template getEntry<Elf_Sym>(*Symtab, Sec.sh_info));
    auto Data = unwrapOrError(
        FileName, Obj.template getSectionContentsAsArray<Elf_Word>(Sec));

    StringRef Name = unwrapOrError(FileName, Obj.getSectionName(Sec));
    StringRef Signature = StrTable.data() + Sym->st_name;
    Ret.push_back({Name,
                   maybeDemangle(Signature),
                   Sec.sh_name,
                   I - 1,
                   Sec.sh_link,
                   Sec.sh_info,
                   Data[0],
                   {}});

    std::vector<GroupMember> &GM = Ret.back().Members;
    for (uint32_t Ndx : Data.slice(1)) {
      const Elf_Shdr &Sec = *unwrapOrError(FileName, Obj.getSection(Ndx));
      const StringRef Name = unwrapOrError(FileName, Obj.getSectionName(Sec));
      GM.push_back({Name, Ndx});
    }
  }
  return Ret;
}

DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
  DenseMap<uint64_t, const GroupSection *> Ret;
  for (const GroupSection &G : Groups)
    for (const GroupMember &GM : G.Members)
      Ret.insert({GM.Index, &G});
  return Ret;
}

} // namespace

template <class ELFT> void GNUStyle<ELFT>::printGroupSections() {
  std::vector<GroupSection> V = getGroups<ELFT>(this->Obj, this->FileName);
  DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
  for (const GroupSection &G : V) {
    OS << "\n"
       << getGroupType(G.Type) << " group section ["
       << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
       << "] contains " << G.Members.size() << " sections:\n"
       << "   [Index]    Name\n";
    for (const GroupMember &GM : G.Members) {
      const GroupSection *MainGroup = Map[GM.Index];
      if (MainGroup != &G)
        this->reportUniqueWarning(
            createError("section with index " + Twine(GM.Index) +
                        ", included in the group section with index " +
                        Twine(MainGroup->Index) +
                        ", was also found in the group section with index " +
                        Twine(G.Index)));
      OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
    }
  }

  if (V.empty())
    OS << "There are no section groups in this file.\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
                                const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
  Expected<RelSymbol<ELFT>> Target =
      this->dumper().getRelocationTarget(R, SymTab);
  if (!Target)
    this->reportUniqueWarning(createError(
        "unable to print relocation " + Twine(RelIndex) + " in " +
        describe(this->Obj, Sec) + ": " + toString(Target.takeError())));
  else
    printRelRelaReloc(R, *Target);
}

template <class ELFT> void GNUStyle<ELFT>::printRelrReloc(const Elf_Relr &R) {
  OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
                                       const RelSymbol<ELFT> &RelSym) {
  // First two fields are bit width dependent. The rest of them are fixed width.
  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
  Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
  unsigned Width = ELFT::Is64Bits ? 16 : 8;

  Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
  Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));

  SmallString<32> RelocName;
  this->Obj.getRelocationTypeName(R.Type, RelocName);
  Fields[2].Str = RelocName.c_str();

  if (RelSym.Sym)
    Fields[3].Str =
        to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));

  Fields[4].Str = std::string(RelSym.Name);
  for (const Field &F : Fields)
    printField(F);

  std::string Addend;
  if (Optional<int64_t> A = R.Addend) {
    int64_t RelAddend = *A;
    if (!RelSym.Name.empty()) {
      if (RelAddend < 0) {
        Addend = " - ";
        RelAddend = std::abs(RelAddend);
      } else {
        Addend = " + ";
      }
    }
    Addend += to_hexString(RelAddend, false);
  }
  OS << Addend << "\n";
}

template <class ELFT>
static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
  bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
  bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
  if (ELFT::Is64Bits)
    OS << "    ";
  else
    OS << " ";
  if (IsRelr && opts::RawRelr)
    OS << "Data  ";
  else
    OS << "Offset";
  if (ELFT::Is64Bits)
    OS << "             Info             Type"
       << "               Symbol's Value  Symbol's Name";
  else
    OS << "     Info    Type                Sym. Value  Symbol's Name";
  if (IsRela)
    OS << " + Addend";
  OS << "\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
                                             const DynRegionInfo &Reg) {
  uint64_t Offset = Reg.Addr - this->Obj.base();
  OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
     << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
  printRelocHeaderFields<ELFT>(OS, Type);
}

template <class ELFT>
static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
  return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
         Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
         Sec.sh_type == ELF::SHT_ANDROID_RELA ||
         Sec.sh_type == ELF::SHT_ANDROID_RELR;
}

template <class ELFT> void GNUStyle<ELFT>::printRelocations() {
  auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
    // Android's packed relocation section needs to be unpacked first
    // to get the actual number of entries.
    if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
        Sec.sh_type == ELF::SHT_ANDROID_RELA) {
      Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
          this->Obj.android_relas(Sec);
      if (!RelasOrErr)
        return RelasOrErr.takeError();
      return RelasOrErr->size();
    }

    if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
                           Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
      Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
      if (!RelrsOrErr)
        return RelrsOrErr.takeError();
      return this->Obj.decode_relrs(*RelrsOrErr).size();
    }

    return Sec.getEntityCount();
  };

  bool HasRelocSections = false;
  for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
    if (!isRelocationSec<ELFT>(Sec))
      continue;
    HasRelocSections = true;

    std::string EntriesNum = "<?>";
    if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
      EntriesNum = std::to_string(*NumOrErr);
    else
      this->reportUniqueWarning(createError(
          "unable to get the number of relocations in " +
          describe(this->Obj, Sec) + ": " + toString(NumOrErr.takeError())));

    uintX_t Offset = Sec.sh_offset;
    StringRef Name = this->getPrintableSectionName(Sec);
    OS << "\nRelocation section '" << Name << "' at offset 0x"
       << to_hexString(Offset, false) << " contains " << EntriesNum
       << " entries:\n";
    printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
    this->printRelocationsHelper(Sec);
  }
  if (!HasRelocSections)
    OS << "\nThere are no relocations in this file.\n";
}

// Print the offset of a particular section from anyone of the ranges:
// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
// If 'Type' does not fall within any of those ranges, then a string is
// returned as '<unknown>' followed by the type value.
static std::string getSectionTypeOffsetString(unsigned Type) {
  if (Type >= SHT_LOOS && Type <= SHT_HIOS)
    return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
  else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
    return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
  else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
    return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
  return "0x" + to_hexString(Type) + ": <unknown>";
}

static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
  StringRef Name = getELFSectionTypeName(Machine, Type);

  // Handle SHT_GNU_* type names.
  if (Name.startswith("SHT_GNU_")) {
    if (Name == "SHT_GNU_HASH")
      return "GNU_HASH";
    // E.g. SHT_GNU_verneed -> VERNEED.
    return Name.drop_front(8).upper();
  }

  if (Name == "SHT_SYMTAB_SHNDX")
    return "SYMTAB SECTION INDICES";

  if (Name.startswith("SHT_"))
    return Name.drop_front(4).str();
  return getSectionTypeOffsetString(Type);
}

static void printSectionDescription(formatted_raw_ostream &OS,
                                    unsigned EMachine) {
  OS << "Key to Flags:\n";
  OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
        "(info),\n";
  OS << "  L (link order), O (extra OS processing required), G (group), T "
        "(TLS),\n";
  OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";

  if (EMachine == EM_X86_64)
    OS << "  l (large), ";
  else if (EMachine == EM_ARM)
    OS << "  y (purecode), ";
  else
    OS << "  ";

  OS << "p (processor specific)\n";
}

template <class ELFT> void GNUStyle<ELFT>::printSectionHeaders() {
  unsigned Bias = ELFT::Is64Bits ? 0 : 8;
  ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
  OS << "There are " << to_string(Sections.size())
     << " section headers, starting at offset "
     << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
  OS << "Section Headers:\n";
  Field Fields[11] = {
      {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
      {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
      {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
      {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
  for (const Field &F : Fields)
    printField(F);
  OS << "\n";

  StringRef SecStrTable;
  if (Expected<StringRef> SecStrTableOrErr = this->Obj.getSectionStringTable(
          Sections, this->dumper().WarningHandler))
    SecStrTable = *SecStrTableOrErr;
  else
    this->reportUniqueWarning(SecStrTableOrErr.takeError());

  size_t SectionIndex = 0;
  for (const Elf_Shdr &Sec : Sections) {
    Fields[0].Str = to_string(SectionIndex);
    if (SecStrTable.empty())
      Fields[1].Str = "<no-strings>";
    else
      Fields[1].Str = std::string(unwrapOrError<StringRef>(
          this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
    Fields[2].Str =
        getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
    Fields[3].Str =
        to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
    Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
    Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
    Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
    Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
    Fields[8].Str = to_string(Sec.sh_link);
    Fields[9].Str = to_string(Sec.sh_info);
    Fields[10].Str = to_string(Sec.sh_addralign);

    OS.PadToColumn(Fields[0].Column);
    OS << "[" << right_justify(Fields[0].Str, 2) << "]";
    for (int i = 1; i < 7; i++)
      printField(Fields[i]);
    OS.PadToColumn(Fields[7].Column);
    OS << right_justify(Fields[7].Str, 3);
    OS.PadToColumn(Fields[8].Column);
    OS << right_justify(Fields[8].Str, 2);
    OS.PadToColumn(Fields[9].Column);
    OS << right_justify(Fields[9].Str, 3);
    OS.PadToColumn(Fields[10].Column);
    OS << right_justify(Fields[10].Str, 2);
    OS << "\n";
    ++SectionIndex;
  }
  printSectionDescription(OS, this->Obj.getHeader().e_machine);
}

template <class ELFT>
void GNUStyle<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, size_t Entries,
                                        bool NonVisibilityBitsUsed) {
  StringRef Name;
  if (Symtab)
    Name = this->getPrintableSectionName(*Symtab);
  if (!Name.empty())
    OS << "\nSymbol table '" << Name << "'";
  else
    OS << "\nSymbol table for image";
  OS << " contains " << Entries << " entries:\n";

  if (ELFT::Is64Bits)
    OS << "   Num:    Value          Size Type    Bind   Vis";
  else
    OS << "   Num:    Value  Size Type    Bind   Vis";

  if (NonVisibilityBitsUsed)
    OS << "             ";
  OS << "       Ndx Name\n";
}

template <class ELFT>
std::string GNUStyle<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
                                                unsigned SymIndex) {
  unsigned SectionIndex = Symbol.st_shndx;
  switch (SectionIndex) {
  case ELF::SHN_UNDEF:
    return "UND";
  case ELF::SHN_ABS:
    return "ABS";
  case ELF::SHN_COMMON:
    return "COM";
  case ELF::SHN_XINDEX: {
    Expected<uint32_t> IndexOrErr = object::getExtendedSymbolTableIndex<ELFT>(
        Symbol, SymIndex, this->dumper().getShndxTable());
    if (!IndexOrErr) {
      assert(Symbol.st_shndx == SHN_XINDEX &&
             "getExtendedSymbolTableIndex should only fail due to an invalid "
             "SHT_SYMTAB_SHNDX table/reference");
      this->reportUniqueWarning(IndexOrErr.takeError());
      return "RSV[0xffff]";
    }
    return to_string(format_decimal(*IndexOrErr, 3));
  }
  default:
    // Find if:
    // Processor specific
    if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
      return std::string("PRC[0x") +
             to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
    // OS specific
    if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
      return std::string("OS[0x") +
             to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
    // Architecture reserved:
    if (SectionIndex >= ELF::SHN_LORESERVE &&
        SectionIndex <= ELF::SHN_HIRESERVE)
      return std::string("RSV[0x") +
             to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
    // A normal section with an index
    return to_string(format_decimal(SectionIndex, 3));
  }
}

template <class ELFT>
void GNUStyle<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
                                 Optional<StringRef> StrTable, bool IsDynamic,
                                 bool NonVisibilityBitsUsed) {
  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
  Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
                     31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
  Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
  Fields[1].Str =
      to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
  Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));

  unsigned char SymbolType = Symbol.getType();
  if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
      SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
    Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
  else
    Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));

  Fields[4].Str =
      printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
  Fields[5].Str =
      printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
  if (Symbol.st_other & ~0x3)
    Fields[5].Str +=
        " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";

  Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
  Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex);

  Fields[7].Str =
      this->dumper().getFullSymbolName(Symbol, SymIndex, StrTable, IsDynamic);
  for (const Field &Entry : Fields)
    printField(Entry);
  OS << "\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, unsigned SymIndex,
                                       StringRef StrTable, uint32_t Bucket) {
  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
  Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
                     34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
  Fields[0].Str = to_string(format_decimal(SymIndex, 5));
  Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";

  Fields[2].Str = to_string(
      format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
  Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));

  unsigned char SymbolType = Symbol->getType();
  if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
      SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
    Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
  else
    Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));

  Fields[5].Str =
      printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
  Fields[6].Str =
      printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
  Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex);
  Fields[8].Str =
      this->dumper().getFullSymbolName(*Symbol, SymIndex, StrTable, true);

  for (const Field &Entry : Fields)
    printField(Entry);
  OS << "\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) {
  if (!PrintSymbols && !PrintDynamicSymbols)
    return;
  // GNU readelf prints both the .dynsym and .symtab with --symbols.
  this->dumper().printSymbolsHelper(true);
  if (PrintSymbols)
    this->dumper().printSymbolsHelper(false);
}

template <class ELFT>
void GNUStyle<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
  StringRef StringTable = this->dumper().getDynamicStringTable();
  if (StringTable.empty())
    return;

  if (ELFT::Is64Bits)
    OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
  else
    OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
  OS << "\n";

  Elf_Sym_Range DynSyms = this->dumper().dynamic_symbols();
  const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
  if (!FirstSym) {
    Optional<DynRegionInfo> DynSymRegion = this->dumper().getDynSymRegion();
    this->reportUniqueWarning(
        createError(Twine("unable to print symbols for the .hash table: the "
                          "dynamic symbol table ") +
                    (DynSymRegion ? "is empty" : "was not found")));
    return;
  }

  auto Buckets = SysVHash.buckets();
  auto Chains = SysVHash.chains();
  for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
    if (Buckets[Buc] == ELF::STN_UNDEF)
      continue;
    std::vector<bool> Visited(SysVHash.nchain);
    for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
      if (Ch == ELF::STN_UNDEF)
        break;

      if (Visited[Ch]) {
        reportWarning(createError(".hash section is invalid: bucket " +
                                  Twine(Ch) +
                                  ": a cycle was detected in the linked chain"),
                      this->FileName);
        break;
      }

      printHashedSymbol(FirstSym + Ch, Ch, StringTable, Buc);
      Visited[Ch] = true;
    }
  }
}

template <class ELFT>
void GNUStyle<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
  StringRef StringTable = this->dumper().getDynamicStringTable();
  if (StringTable.empty())
    return;

  Elf_Sym_Range DynSyms = this->dumper().dynamic_symbols();
  const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
  if (!FirstSym) {
    Optional<DynRegionInfo> DynSymRegion = this->dumper().getDynSymRegion();
    this->reportUniqueWarning(createError(
        Twine("unable to print symbols for the .gnu.hash table: the "
              "dynamic symbol table ") +
        (DynSymRegion ? "is empty" : "was not found")));
    return;
  }

  ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
  for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
    if (Buckets[Buc] == ELF::STN_UNDEF)
      continue;
    uint32_t Index = Buckets[Buc];
    uint32_t GnuHashable = Index - GnuHash.symndx;
    // Print whole chain
    while (true) {
      uint32_t SymIndex = Index++;
      printHashedSymbol(FirstSym + SymIndex, SymIndex, StringTable, Buc);
      // Chain ends at symbol with stopper bit
      if ((GnuHash.values(DynSyms.size())[GnuHashable++] & 1) == 1)
        break;
    }
  }
}

template <class ELFT> void GNUStyle<ELFT>::printHashSymbols() {
  if (const Elf_Hash *SysVHash = this->dumper().getHashTable()) {
    OS << "\n Symbol table of .hash for image:\n";
    if (Error E = checkHashTable<ELFT>(this->Obj, SysVHash))
      this->reportUniqueWarning(std::move(E));
    else
      printHashTableSymbols(*SysVHash);
  }

  // Try printing the .gnu.hash table.
  if (const Elf_GnuHash *GnuHash = this->dumper().getGnuHashTable()) {
    OS << "\n Symbol table of .gnu.hash for image:\n";
    if (ELFT::Is64Bits)
      OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
    else
      OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
    OS << "\n";

    if (Error E = checkGNUHashTable<ELFT>(this->Obj, GnuHash))
      this->reportUniqueWarning(std::move(E));
    else
      printGnuHashTableSymbols(*GnuHash);
  }
}

static inline std::string printPhdrFlags(unsigned Flag) {
  std::string Str;
  Str = (Flag & PF_R) ? "R" : " ";
  Str += (Flag & PF_W) ? "W" : " ";
  Str += (Flag & PF_X) ? "E" : " ";
  return Str;
}

template <class ELFT>
static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
                             const typename ELFT::Shdr &Sec) {
  if (Sec.sh_flags & ELF::SHF_TLS) {
    // .tbss must only be shown in the PT_TLS segment.
    if (Sec.sh_type == ELF::SHT_NOBITS)
      return Phdr.p_type == ELF::PT_TLS;

    // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
    // segments.
    return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
           (Phdr.p_type == ELF::PT_GNU_RELRO);
  }

  // PT_TLS must only have SHF_TLS sections.
  return Phdr.p_type != ELF::PT_TLS;
}

template <class ELFT>
static bool checkOffsets(const typename ELFT::Phdr &Phdr,
                         const typename ELFT::Shdr &Sec) {
  // SHT_NOBITS sections don't need to have an offset inside the segment.
  if (Sec.sh_type == ELF::SHT_NOBITS)
    return true;

  if (Sec.sh_offset < Phdr.p_offset)
    return false;

  // Only non-empty sections can be at the end of a segment.
  if (Sec.sh_size == 0)
    return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
  return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
}

// Check that an allocatable section belongs to a virtual address
// space of a segment.
template <class ELFT>
static bool checkVMA(const typename ELFT::Phdr &Phdr,
                     const typename ELFT::Shdr &Sec) {
  if (!(Sec.sh_flags & ELF::SHF_ALLOC))
    return true;

  if (Sec.sh_addr < Phdr.p_vaddr)
    return false;

  bool IsTbss =
      (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
  // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
  bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
  // Only non-empty sections can be at the end of a segment.
  if (Sec.sh_size == 0 || IsTbssInNonTLS)
    return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
  return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
}

template <class ELFT>
static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
                           const typename ELFT::Shdr &Sec) {
  if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
    return true;

  // We get here when we have an empty section. Only non-empty sections can be
  // at the start or at the end of PT_DYNAMIC.
  // Is section within the phdr both based on offset and VMA?
  bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
                     (Sec.sh_offset > Phdr.p_offset &&
                      Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
  bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
                 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
  return CheckOffset && CheckVA;
}

template <class ELFT>
void GNUStyle<ELFT>::printProgramHeaders(
    bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
  if (PrintProgramHeaders)
    printProgramHeaders();

  // Display the section mapping along with the program headers, unless
  // -section-mapping is explicitly set to false.
  if (PrintSectionMapping != cl::BOU_FALSE)
    printSectionMapping();
}

template <class ELFT> void GNUStyle<ELFT>::printProgramHeaders() {
  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
  const Elf_Ehdr &Header = this->Obj.getHeader();
  Field Fields[8] = {2,         17,        26,        37 + Bias,
                     48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
  OS << "\nElf file type is "
     << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
     << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
     << "There are " << Header.e_phnum << " program headers,"
     << " starting at offset " << Header.e_phoff << "\n\n"
     << "Program Headers:\n";
  if (ELFT::Is64Bits)
    OS << "  Type           Offset   VirtAddr           PhysAddr         "
       << "  FileSiz  MemSiz   Flg Align\n";
  else
    OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
       << "MemSiz  Flg Align\n";

  unsigned Width = ELFT::Is64Bits ? 18 : 10;
  unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;

  Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
  if (!PhdrsOrErr) {
    this->reportUniqueWarning(createError("unable to dump program headers: " +
                                          toString(PhdrsOrErr.takeError())));
    return;
  }

  for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
    Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
    Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
    Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
    Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
    Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
    Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
    Fields[6].Str = printPhdrFlags(Phdr.p_flags);
    Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
    for (const Field &F : Fields)
      printField(F);
    if (Phdr.p_type == ELF::PT_INTERP) {
      OS << "\n";
      auto ReportBadInterp = [&](const Twine &Msg) {
        reportWarning(
            createError("unable to read program interpreter name at offset 0x" +
                        Twine::utohexstr(Phdr.p_offset) + ": " + Msg),
            this->FileName);
      };

      if (Phdr.p_offset >= this->Obj.getBufSize()) {
        ReportBadInterp("it goes past the end of the file (0x" +
                        Twine::utohexstr(this->Obj.getBufSize()) + ")");
        continue;
      }

      const char *Data =
          reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
      size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
      size_t Len = strnlen(Data, MaxSize);
      if (Len == MaxSize) {
        ReportBadInterp("it is not null-terminated");
        continue;
      }

      OS << "      [Requesting program interpreter: ";
      OS << StringRef(Data, Len) << "]";
    }
    OS << "\n";
  }
}

template <class ELFT> void GNUStyle<ELFT>::printSectionMapping() {
  OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
  DenseSet<const Elf_Shdr *> BelongsToSegment;
  int Phnum = 0;

  Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
  if (!PhdrsOrErr) {
    this->reportUniqueWarning(createError(
        "can't read program headers to build section to segment mapping: " +
        toString(PhdrsOrErr.takeError())));
    return;
  }

  for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
    std::string Sections;
    OS << format("   %2.2d     ", Phnum++);
    // Check if each section is in a segment and then print mapping.
    for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
      if (Sec.sh_type == ELF::SHT_NULL)
        continue;

      // readelf additionally makes sure it does not print zero sized sections
      // at end of segments and for PT_DYNAMIC both start and end of section
      // .tbss must only be shown in PT_TLS section.
      if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
          checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
        Sections +=
            unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
            " ";
        BelongsToSegment.insert(&Sec);
      }
    }
    OS << Sections << "\n";
    OS.flush();
  }

  // Display sections that do not belong to a segment.
  std::string Sections;
  for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
    if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
      Sections +=
          unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
          ' ';
  }
  if (!Sections.empty()) {
    OS << "   None  " << Sections << '\n';
    OS.flush();
  }
}

namespace {

template <class ELFT>
RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> &Obj, StringRef FileName,
                                  const ELFDumper<ELFT> &Dumper,
                                  const Relocation<ELFT> &Reloc) {
  auto WarnAndReturn = [&](const typename ELFT::Sym *Sym,
                           const Twine &Reason) -> RelSymbol<ELFT> {
    reportWarning(
        createError("unable to get name of the dynamic symbol with index " +
                    Twine(Reloc.Symbol) + ": " + Reason),
        FileName);
    return {Sym, "<corrupt>"};
  };

  ArrayRef<typename ELFT::Sym> Symbols = Dumper.dynamic_symbols();
  const typename ELFT::Sym *FirstSym = Symbols.begin();
  if (!FirstSym)
    return WarnAndReturn(nullptr, "no dynamic symbol table found");

  // We might have an object without a section header. In this case the size of
  // Symbols is zero, because there is no way to know the size of the dynamic
  // table. We should allow this case and not print a warning.
  if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
    return WarnAndReturn(
        nullptr,
        "index is greater than or equal to the number of dynamic symbols (" +
            Twine(Symbols.size()) + ")");

  const typename ELFT::Sym *Sym = FirstSym + Reloc.Symbol;
  Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
  if (!ErrOrName)
    return WarnAndReturn(Sym, toString(ErrOrName.takeError()));

  return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
}
} // namespace

template <class ELFT>
void GNUStyle<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
  printRelRelaReloc(
      R, getSymbolForReloc(this->Obj, this->FileName, this->dumper(), R));
}

template <class ELFT>
static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
                                   typename ELFT::DynRange Tags) {
  size_t Max = 0;
  for (const typename ELFT::Dyn &Dyn : Tags)
    Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
  return Max;
}

template <class ELFT> void GNUStyle<ELFT>::printDynamic() {
  Elf_Dyn_Range Table = this->dumper().dynamic_table();
  if (Table.empty())
    return;

  OS << "Dynamic section at offset "
     << format_hex(reinterpret_cast<const uint8_t *>(
                       this->dumper().getDynamicTableRegion().Addr) -
                       this->Obj.base(),
                   1)
     << " contains " << Table.size() << " entries:\n";

  // The type name is surrounded with round brackets, hence add 2.
  size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
  // The "Name/Value" column should be indented from the "Type" column by N
  // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
  // space (1) = 3.
  OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
     << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";

  std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
  for (auto Entry : Table) {
    uintX_t Tag = Entry.getTag();
    std::string Type =
        std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")";
    std::string Value = this->dumper().getDynamicEntry(Tag, Entry.getVal());
    OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
       << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
  }
}

template <class ELFT> void GNUStyle<ELFT>::printDynamicRelocations() {
  this->printDynamicRelocationsHelper();
}

template <class ELFT> void DumpStyle<ELFT>::printDynamicRelocationsHelper() {
  const bool IsMips64EL = this->Obj.isMips64EL();
  const DynRegionInfo &DynRelaRegion = this->dumper().getDynRelaRegion();
  if (DynRelaRegion.Size > 0) {
    printDynamicRelocHeader(ELF::SHT_RELA, "RELA", DynRelaRegion);
    for (const Elf_Rela &Rela : this->dumper().dyn_relas())
      printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
  }

  const DynRegionInfo &DynRelRegion = this->dumper().getDynRelRegion();
  if (DynRelRegion.Size > 0) {
    printDynamicRelocHeader(ELF::SHT_REL, "REL", DynRelRegion);
    for (const Elf_Rel &Rel : this->dumper().dyn_rels())
      printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
  }

  const DynRegionInfo &DynRelrRegion = this->dumper().getDynRelrRegion();
  if (DynRelrRegion.Size > 0) {
    printDynamicRelocHeader(ELF::SHT_REL, "RELR", DynRelrRegion);
    Elf_Relr_Range Relrs = this->dumper().dyn_relrs();
    for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
      printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
  }

  const DynRegionInfo &DynPLTRelRegion = this->dumper().getDynPLTRelRegion();
  if (DynPLTRelRegion.Size) {
    if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
      printDynamicRelocHeader(ELF::SHT_RELA, "PLT", DynPLTRelRegion);
      for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
        printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
    } else {
      printDynamicRelocHeader(ELF::SHT_REL, "PLT", DynPLTRelRegion);
      for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>())
        printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
    }
  }
}

template <class ELFT>
void GNUStyle<ELFT>::printGNUVersionSectionProlog(
    const typename ELFT::Shdr *Sec, const Twine &Label, unsigned EntriesNum) {
  StringRef SecName =
      unwrapOrError(this->FileName, this->Obj.getSectionName(*Sec));
  OS << Label << " section '" << SecName << "' "
     << "contains " << EntriesNum << " entries:\n";

  StringRef SymTabName = "<corrupt>";
  Expected<const typename ELFT::Shdr *> SymTabOrErr =
      this->Obj.getSection(Sec->sh_link);
  if (SymTabOrErr)
    SymTabName =
        unwrapOrError(this->FileName, this->Obj.getSectionName(**SymTabOrErr));
  else
    this->reportUniqueWarning(createError("invalid section linked to " +
                                          describe(this->Obj, *Sec) + ": " +
                                          toString(SymTabOrErr.takeError())));

  OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
     << "  Offset: " << format_hex(Sec->sh_offset, 8)
     << "  Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
  if (!Sec)
    return;

  printGNUVersionSectionProlog(Sec, "Version symbols",
                               Sec->sh_size / sizeof(Elf_Versym));
  Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
      this->dumper().getVersionTable(*Sec, /*SymTab=*/nullptr,
                                     /*StrTab=*/nullptr);
  if (!VerTableOrErr) {
    this->reportUniqueWarning(VerTableOrErr.takeError());
    return;
  }

  ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
  std::vector<StringRef> Versions;
  for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
    unsigned Ndx = VerTable[I].vs_index;
    if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
      Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
      continue;
    }

    bool IsDefault;
    Expected<StringRef> NameOrErr =
        this->dumper().getSymbolVersionByIndex(Ndx, IsDefault);
    if (!NameOrErr) {
      if (!NameOrErr)
        this->reportUniqueWarning(
            createError("unable to get a version for entry " + Twine(I) +
                        " of " + describe(this->Obj, *Sec) + ": " +
                        toString(NameOrErr.takeError())));
      Versions.emplace_back("<corrupt>");
      continue;
    }
    Versions.emplace_back(*NameOrErr);
  }

  // readelf prints 4 entries per line.
  uint64_t Entries = VerTable.size();
  for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
    OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
    for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
      unsigned Ndx = VerTable[VersymRow + I].vs_index;
      OS << format("%4x%c", Ndx & VERSYM_VERSION,
                   Ndx & VERSYM_HIDDEN ? 'h' : ' ');
      OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
    }
    OS << '\n';
  }
  OS << '\n';
}

static std::string versionFlagToString(unsigned Flags) {
  if (Flags == 0)
    return "none";

  std::string Ret;
  auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
    if (!(Flags & Flag))
      return;
    if (!Ret.empty())
      Ret += " | ";
    Ret += Name;
    Flags &= ~Flag;
  };

  AddFlag(VER_FLG_BASE, "BASE");
  AddFlag(VER_FLG_WEAK, "WEAK");
  AddFlag(VER_FLG_INFO, "INFO");
  AddFlag(~0, "<unknown>");
  return Ret;
}

template <class ELFT>
void GNUStyle<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
  if (!Sec)
    return;

  printGNUVersionSectionProlog(Sec, "Version definition", Sec->sh_info);

  Expected<std::vector<VerDef>> V = this->dumper().getVersionDefinitions(*Sec);
  if (!V) {
    this->reportUniqueWarning(V.takeError());
    return;
  }

  for (const VerDef &Def : *V) {
    OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
                 Def.Offset, Def.Version,
                 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
                 Def.Name.data());
    unsigned I = 0;
    for (const VerdAux &Aux : Def.AuxV)
      OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
                   Aux.Name.data());
  }

  OS << '\n';
}

template <class ELFT>
void GNUStyle<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
  if (!Sec)
    return;

  unsigned VerneedNum = Sec->sh_info;
  printGNUVersionSectionProlog(Sec, "Version needs", VerneedNum);

  Expected<std::vector<VerNeed>> V =
      this->dumper().getVersionDependencies(*Sec);
  if (!V) {
    this->reportUniqueWarning(V.takeError());
    return;
  }

  for (const VerNeed &VN : *V) {
    OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
                 VN.Version, VN.File.data(), VN.Cnt);
    for (const VernAux &Aux : VN.AuxV)
      OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
                   Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
                   Aux.Other);
  }
  OS << '\n';
}

template <class ELFT>
void GNUStyle<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
  size_t NBucket = HashTable.nbucket;
  size_t NChain = HashTable.nchain;
  ArrayRef<Elf_Word> Buckets = HashTable.buckets();
  ArrayRef<Elf_Word> Chains = HashTable.chains();
  size_t TotalSyms = 0;
  // If hash table is correct, we have at least chains with 0 length
  size_t MaxChain = 1;
  size_t CumulativeNonZero = 0;

  if (NChain == 0 || NBucket == 0)
    return;

  std::vector<size_t> ChainLen(NBucket, 0);
  // Go over all buckets and and note chain lengths of each bucket (total
  // unique chain lengths).
  for (size_t B = 0; B < NBucket; B++) {
    std::vector<bool> Visited(NChain);
    for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
      if (C == ELF::STN_UNDEF)
        break;
      if (Visited[C]) {
        reportWarning(createError(".hash section is invalid: bucket " +
                                  Twine(C) +
                                  ": a cycle was detected in the linked chain"),
                      this->FileName);
        break;
      }
      Visited[C] = true;
      if (MaxChain <= ++ChainLen[B])
        MaxChain++;
    }
    TotalSyms += ChainLen[B];
  }

  if (!TotalSyms)
    return;

  std::vector<size_t> Count(MaxChain, 0);
  // Count how long is the chain for each bucket
  for (size_t B = 0; B < NBucket; B++)
    ++Count[ChainLen[B]];
  // Print Number of buckets with each chain lengths and their cumulative
  // coverage of the symbols
  OS << "Histogram for bucket list length (total of " << NBucket
     << " buckets)\n"
     << " Length  Number     % of total  Coverage\n";
  for (size_t I = 0; I < MaxChain; I++) {
    CumulativeNonZero += Count[I] * I;
    OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
                 (Count[I] * 100.0) / NBucket,
                 (CumulativeNonZero * 100.0) / TotalSyms);
  }
}

template <class ELFT>
void GNUStyle<ELFT>::printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) {
  Expected<ArrayRef<Elf_Word>> ChainsOrErr = getGnuHashTableChains<ELFT>(
      this->dumper().getDynSymRegion(), &GnuHashTable);
  if (!ChainsOrErr) {
    this->reportUniqueWarning(
        createError("unable to print the GNU hash table histogram: " +
                    toString(ChainsOrErr.takeError())));
    return;
  }

  ArrayRef<Elf_Word> Chains = *ChainsOrErr;
  size_t Symndx = GnuHashTable.symndx;
  size_t TotalSyms = 0;
  size_t MaxChain = 1;
  size_t CumulativeNonZero = 0;

  size_t NBucket = GnuHashTable.nbuckets;
  if (Chains.empty() || NBucket == 0)
    return;

  ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
  std::vector<size_t> ChainLen(NBucket, 0);
  for (size_t B = 0; B < NBucket; B++) {
    if (!Buckets[B])
      continue;
    size_t Len = 1;
    for (size_t C = Buckets[B] - Symndx;
         C < Chains.size() && (Chains[C] & 1) == 0; C++)
      if (MaxChain < ++Len)
        MaxChain++;
    ChainLen[B] = Len;
    TotalSyms += Len;
  }
  MaxChain++;

  if (!TotalSyms)
    return;

  std::vector<size_t> Count(MaxChain, 0);
  for (size_t B = 0; B < NBucket; B++)
    ++Count[ChainLen[B]];
  // Print Number of buckets with each chain lengths and their cumulative
  // coverage of the symbols
  OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
     << " buckets)\n"
     << " Length  Number     % of total  Coverage\n";
  for (size_t I = 0; I < MaxChain; I++) {
    CumulativeNonZero += Count[I] * I;
    OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
                 (Count[I] * 100.0) / NBucket,
                 (CumulativeNonZero * 100.0) / TotalSyms);
  }
}

// Hash histogram shows statistics of how efficient the hash was for the
// dynamic symbol table. The table shows the number of hash buckets for
// different lengths of chains as an absolute number and percentage of the total
// buckets, and the cumulative coverage of symbols for each set of buckets.
template <class ELFT> void GNUStyle<ELFT>::printHashHistograms() {
  // Print histogram for the .hash section.
  if (const Elf_Hash *HashTable = this->dumper().getHashTable()) {
    if (Error E = checkHashTable<ELFT>(this->Obj, HashTable))
      this->reportUniqueWarning(std::move(E));
    else
      printHashHistogram(*HashTable);
  }

  // Print histogram for the .gnu.hash section.
  if (const Elf_GnuHash *GnuHashTable = this->dumper().getGnuHashTable()) {
    if (Error E = checkGNUHashTable<ELFT>(this->Obj, GnuHashTable))
      this->reportUniqueWarning(std::move(E));
    else
      printGnuHashHistogram(*GnuHashTable);
  }
}

template <class ELFT> void GNUStyle<ELFT>::printCGProfile() {
  OS << "GNUStyle::printCGProfile not implemented\n";
}

template <class ELFT> void GNUStyle<ELFT>::printAddrsig() {
  reportError(createError("--addrsig: not implemented"), this->FileName);
}

template <typename ELFT>
static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
                                  ArrayRef<uint8_t> Data) {
  std::string str;
  raw_string_ostream OS(str);
  uint32_t PrData;
  auto DumpBit = [&](uint32_t Flag, StringRef Name) {
    if (PrData & Flag) {
      PrData &= ~Flag;
      OS << Name;
      if (PrData)
        OS << ", ";
    }
  };

  switch (Type) {
  default:
    OS << format("<application-specific type 0x%x>", Type);
    return OS.str();
  case GNU_PROPERTY_STACK_SIZE: {
    OS << "stack size: ";
    if (DataSize == sizeof(typename ELFT::uint))
      OS << formatv("{0:x}",
                    (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
    else
      OS << format("<corrupt length: 0x%x>", DataSize);
    return OS.str();
  }
  case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
    OS << "no copy on protected";
    if (DataSize)
      OS << format(" <corrupt length: 0x%x>", DataSize);
    return OS.str();
  case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
  case GNU_PROPERTY_X86_FEATURE_1_AND:
    OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
                                                        : "x86 feature: ");
    if (DataSize != 4) {
      OS << format("<corrupt length: 0x%x>", DataSize);
      return OS.str();
    }
    PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
    if (PrData == 0) {
      OS << "<None>";
      return OS.str();
    }
    if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
      DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
      DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
    } else {
      DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
      DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
    }
    if (PrData)
      OS << format("<unknown flags: 0x%x>", PrData);
    return OS.str();
  case GNU_PROPERTY_X86_ISA_1_NEEDED:
  case GNU_PROPERTY_X86_ISA_1_USED:
    OS << "x86 ISA "
       << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
    if (DataSize != 4) {
      OS << format("<corrupt length: 0x%x>", DataSize);
      return OS.str();
    }
    PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
    if (PrData == 0) {
      OS << "<None>";
      return OS.str();
    }
    DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
    DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
    DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
    DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
    DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
    DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
    DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
    DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
    DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
    if (PrData)
      OS << format("<unknown flags: 0x%x>", PrData);
    return OS.str();
    break;
  case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
  case GNU_PROPERTY_X86_FEATURE_2_USED:
    OS << "x86 feature "
       << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
    if (DataSize != 4) {
      OS << format("<corrupt length: 0x%x>", DataSize);
      return OS.str();
    }
    PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
    if (PrData == 0) {
      OS << "<None>";
      return OS.str();
    }
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
    DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
    if (PrData)
      OS << format("<unknown flags: 0x%x>", PrData);
    return OS.str();
  }
}

template <typename ELFT>
static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
  using Elf_Word = typename ELFT::Word;

  SmallVector<std::string, 4> Properties;
  while (Arr.size() >= 8) {
    uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
    uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
    Arr = Arr.drop_front(8);

    // Take padding size into account if present.
    uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
    std::string str;
    raw_string_ostream OS(str);
    if (Arr.size() < PaddedSize) {
      OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
      Properties.push_back(OS.str());
      break;
    }
    Properties.push_back(
        getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
    Arr = Arr.drop_front(PaddedSize);
  }

  if (!Arr.empty())
    Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");

  return Properties;
}

struct GNUAbiTag {
  std::string OSName;
  std::string ABI;
  bool IsValid;
};

template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
  typedef typename ELFT::Word Elf_Word;

  ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
                           reinterpret_cast<const Elf_Word *>(Desc.end()));

  if (Words.size() < 4)
    return {"", "", /*IsValid=*/false};

  static const char *OSNames[] = {
      "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
  };
  StringRef OSName = "Unknown";
  if (Words[0] < array_lengthof(OSNames))
    OSName = OSNames[Words[0]];
  uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
  std::string str;
  raw_string_ostream ABI(str);
  ABI << Major << "." << Minor << "." << Patch;
  return {std::string(OSName), ABI.str(), /*IsValid=*/true};
}

static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
  std::string str;
  raw_string_ostream OS(str);
  for (uint8_t B : Desc)
    OS << format_hex_no_prefix(B, 2);
  return OS.str();
}

static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
  return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
}

template <typename ELFT>
static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
                         ArrayRef<uint8_t> Desc) {
  switch (NoteType) {
  default:
    return;
  case ELF::NT_GNU_ABI_TAG: {
    const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
    if (!AbiTag.IsValid)
      OS << "    <corrupt GNU_ABI_TAG>";
    else
      OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
    break;
  }
  case ELF::NT_GNU_BUILD_ID: {
    OS << "    Build ID: " << getGNUBuildId(Desc);
    break;
  }
  case ELF::NT_GNU_GOLD_VERSION:
    OS << "    Version: " << getGNUGoldVersion(Desc);
    break;
  case ELF::NT_GNU_PROPERTY_TYPE_0:
    OS << "    Properties:";
    for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
      OS << "    " << Property << "\n";
    break;
  }
  OS << '\n';
}

struct AMDNote {
  std::string Type;
  std::string Value;
};

template <typename ELFT>
static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
  switch (NoteType) {
  default:
    return {"", ""};
  case ELF::NT_AMD_AMDGPU_HSA_METADATA:
    return {
        "HSA Metadata",
        std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
  case ELF::NT_AMD_AMDGPU_ISA:
    return {
        "ISA Version",
        std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
  }
}

struct AMDGPUNote {
  std::string Type;
  std::string Value;
};

template <typename ELFT>
static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
  switch (NoteType) {
  default:
    return {"", ""};
  case ELF::NT_AMDGPU_METADATA: {
    StringRef MsgPackString =
        StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
    msgpack::Document MsgPackDoc;
    if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
      return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};

    AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
    if (!Verifier.verify(MsgPackDoc.getRoot()))
      return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};

    std::string HSAMetadataString;
    raw_string_ostream StrOS(HSAMetadataString);
    MsgPackDoc.toYAML(StrOS);

    return {"AMDGPU Metadata", StrOS.str()};
  }
  }
}

struct CoreFileMapping {
  uint64_t Start, End, Offset;
  StringRef Filename;
};

struct CoreNote {
  uint64_t PageSize;
  std::vector<CoreFileMapping> Mappings;
};

static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
  // Expected format of the NT_FILE note description:
  // 1. # of file mappings (call it N)
  // 2. Page size
  // 3. N (start, end, offset) triples
  // 4. N packed filenames (null delimited)
  // Each field is an Elf_Addr, except for filenames which are char* strings.

  CoreNote Ret;
  const int Bytes = Desc.getAddressSize();

  if (!Desc.isValidOffsetForAddress(2))
    return createStringError(object_error::parse_failed,
                             "malformed note: header too short");
  if (Desc.getData().back() != 0)
    return createStringError(object_error::parse_failed,
                             "malformed note: not NUL terminated");

  uint64_t DescOffset = 0;
  uint64_t FileCount = Desc.getAddress(&DescOffset);
  Ret.PageSize = Desc.getAddress(&DescOffset);

  if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
    return createStringError(object_error::parse_failed,
                             "malformed note: too short for number of files");

  uint64_t FilenamesOffset = 0;
  DataExtractor Filenames(
      Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
      Desc.isLittleEndian(), Desc.getAddressSize());

  Ret.Mappings.resize(FileCount);
  for (CoreFileMapping &Mapping : Ret.Mappings) {
    if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
      return createStringError(object_error::parse_failed,
                               "malformed note: too few filenames");
    Mapping.Start = Desc.getAddress(&DescOffset);
    Mapping.End = Desc.getAddress(&DescOffset);
    Mapping.Offset = Desc.getAddress(&DescOffset);
    Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
  }

  return Ret;
}

template <typename ELFT>
static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
  // Length of "0x<address>" string.
  const int FieldWidth = ELFT::Is64Bits ? 18 : 10;

  OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
  OS << "    " << right_justify("Start", FieldWidth) << "  "
     << right_justify("End", FieldWidth) << "  "
     << right_justify("Page Offset", FieldWidth) << '\n';
  for (const CoreFileMapping &Mapping : Note.Mappings) {
    OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
       << format_hex(Mapping.End, FieldWidth) << "  "
       << format_hex(Mapping.Offset, FieldWidth) << "\n        "
       << Mapping.Filename << '\n';
  }
}

static const NoteType GenericNoteTypes[] = {
    {ELF::NT_VERSION, "NT_VERSION (version)"},
    {ELF::NT_ARCH, "NT_ARCH (architecture)"},
    {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
    {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
};

static const NoteType GNUNoteTypes[] = {
    {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
    {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
    {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
    {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
    {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
};

static const NoteType FreeBSDNoteTypes[] = {
    {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
    {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
    {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
    {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
    {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
    {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
    {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
    {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
    {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
     "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
    {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
};

static const NoteType AMDNoteTypes[] = {
    {ELF::NT_AMD_AMDGPU_HSA_METADATA,
     "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
    {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
    {ELF::NT_AMD_AMDGPU_PAL_METADATA,
     "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"},
};

static const NoteType AMDGPUNoteTypes[] = {
    {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
};

static const NoteType CoreNoteTypes[] = {
    {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
    {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
    {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
    {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
    {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
    {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
    {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
    {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
    {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
    {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
    {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},

    {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
    {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
    {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
    {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
    {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
    {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
    {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
    {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
    {ELF::NT_PPC_TM_CFPR,
     "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
    {ELF::NT_PPC_TM_CVMX,
     "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
    {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
    {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
    {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
    {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
    {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},

    {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
    {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
    {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},

    {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
    {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
    {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
    {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
    {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
    {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
    {ELF::NT_S390_LAST_BREAK,
     "NT_S390_LAST_BREAK (s390 last breaking event address)"},
    {ELF::NT_S390_SYSTEM_CALL,
     "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
    {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
    {ELF::NT_S390_VXRS_LOW,
     "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
    {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
    {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
    {ELF::NT_S390_GS_BC,
     "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},

    {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
    {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
    {ELF::NT_ARM_HW_BREAK,
     "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
    {ELF::NT_ARM_HW_WATCH,
     "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},

    {ELF::NT_FILE, "NT_FILE (mapped files)"},
    {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
    {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
};

template <class ELFT>
const StringRef getNoteTypeName(const typename ELFT::Note &Note,
                                unsigned ELFType) {
  uint32_t Type = Note.getType();
  auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
    for (const NoteType &N : V)
      if (N.ID == Type)
        return N.Name;
    return "";
  };

  StringRef Name = Note.getName();
  if (Name == "GNU")
    return FindNote(GNUNoteTypes);
  if (Name == "FreeBSD")
    return FindNote(FreeBSDNoteTypes);
  if (Name == "AMD")
    return FindNote(AMDNoteTypes);
  if (Name == "AMDGPU")
    return FindNote(AMDGPUNoteTypes);

  if (ELFType == ELF::ET_CORE)
    return FindNote(CoreNoteTypes);
  return FindNote(GenericNoteTypes);
}

template <class ELFT> void GNUStyle<ELFT>::printNotes() {
  auto PrintHeader = [&](Optional<StringRef> SecName,
                         const typename ELFT::Off Offset,
                         const typename ELFT::Addr Size) {
    OS << "Displaying notes found ";

    if (SecName)
      OS << "in: " << *SecName << "\n";
    else
      OS << "at file offset " << format_hex(Offset, 10) << " with length "
         << format_hex(Size, 10) << ":\n";

    OS << "  Owner                Data size \tDescription\n";
  };

  auto ProcessNote = [&](const Elf_Note &Note) {
    StringRef Name = Note.getName();
    ArrayRef<uint8_t> Descriptor = Note.getDesc();
    Elf_Word Type = Note.getType();

    // Print the note owner/type.
    OS << "  " << left_justify(Name, 20) << ' '
       << format_hex(Descriptor.size(), 10) << '\t';

    StringRef NoteType =
        getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
    if (!NoteType.empty())
      OS << NoteType << '\n';
    else
      OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";

    // Print the description, or fallback to printing raw bytes for unknown
    // owners.
    if (Name == "GNU") {
      printGNUNote<ELFT>(OS, Type, Descriptor);
    } else if (Name == "AMD") {
      const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
      if (!N.Type.empty())
        OS << "    " << N.Type << ":\n        " << N.Value << '\n';
    } else if (Name == "AMDGPU") {
      const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
      if (!N.Type.empty())
        OS << "    " << N.Type << ":\n        " << N.Value << '\n';
    } else if (Name == "CORE") {
      if (Type == ELF::NT_FILE) {
        DataExtractor DescExtractor(Descriptor,
                                    ELFT::TargetEndianness == support::little,
                                    sizeof(Elf_Addr));
        Expected<CoreNote> Note = readCoreNote(DescExtractor);
        if (Note)
          printCoreNote<ELFT>(OS, *Note);
        else
          reportWarning(Note.takeError(), this->FileName);
      }
    } else if (!Descriptor.empty()) {
      OS << "   description data:";
      for (uint8_t B : Descriptor)
        OS << " " << format("%02x", B);
      OS << '\n';
    }
  };

  ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
  if (this->Obj.getHeader().e_type != ELF::ET_CORE && !Sections.empty()) {
    for (const Elf_Shdr &S : Sections) {
      if (S.sh_type != SHT_NOTE)
        continue;
      PrintHeader(expectedToOptional(this->Obj.getSectionName(S)), S.sh_offset,
                  S.sh_size);
      Error Err = Error::success();
      for (const Elf_Note Note : this->Obj.notes(S, Err))
        ProcessNote(Note);
      if (Err)
        reportError(std::move(Err), this->FileName);
    }
  } else {
    Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
    if (!PhdrsOrErr) {
      this->reportUniqueWarning(createError(
          "unable to read program headers to locate the PT_NOTE segment: " +
          toString(PhdrsOrErr.takeError())));
      return;
    }

    for (const Elf_Phdr &P : *PhdrsOrErr) {
      if (P.p_type != PT_NOTE)
        continue;
      PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz);
      Error Err = Error::success();
      for (const Elf_Note Note : this->Obj.notes(P, Err))
        ProcessNote(Note);
      if (Err)
        reportError(std::move(Err), this->FileName);
    }
  }
}

template <class ELFT> void GNUStyle<ELFT>::printELFLinkerOptions() {
  OS << "printELFLinkerOptions not implemented!\n";
}

template <class ELFT>
void DumpStyle<ELFT>::printDependentLibsHelper(
    function_ref<void(const Elf_Shdr &)> OnSectionStart,
    function_ref<void(StringRef, uint64_t)> OnLibEntry) {
  auto Warn = [this](unsigned SecNdx, StringRef Msg) {
    this->reportUniqueWarning(
        createError("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
                    Twine(SecNdx) + " is broken: " + Msg));
  };

  unsigned I = -1;
  for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
    ++I;
    if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
      continue;

    OnSectionStart(Shdr);

    Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
    if (!ContentsOrErr) {
      Warn(I, toString(ContentsOrErr.takeError()));
      continue;
    }

    ArrayRef<uint8_t> Contents = *ContentsOrErr;
    if (!Contents.empty() && Contents.back() != 0) {
      Warn(I, "the content is not null-terminated");
      continue;
    }

    for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
      StringRef Lib((const char *)I);
      OnLibEntry(Lib, I - Contents.begin());
      I += Lib.size() + 1;
    }
  }
}

template <class ELFT>
void DumpStyle<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
  auto Warn = [&](Error &&E,
                  const Twine &Prefix = "unable to read relocations from") {
    this->reportUniqueWarning(createError(Prefix + " " + describe(Obj, Sec) +
                                          ": " + toString(std::move(E))));
  };

  // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
  // For them we should not treat the value of the sh_link field as an index of
  // a symbol table.
  const Elf_Shdr *SymTab;
  if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
    Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
    if (!SymTabOrErr) {
      Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
      return;
    }
    SymTab = *SymTabOrErr;
  }

  unsigned RelNdx = 0;
  const bool IsMips64EL = this->Obj.isMips64EL();
  switch (Sec.sh_type) {
  case ELF::SHT_REL:
    if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
      for (const Elf_Rel &R : *RangeOrErr)
        printReloc(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec, SymTab);
    } else {
      Warn(RangeOrErr.takeError());
    }
    break;
  case ELF::SHT_RELA:
    if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
      for (const Elf_Rela &R : *RangeOrErr)
        printReloc(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec, SymTab);
    } else {
      Warn(RangeOrErr.takeError());
    }
    break;
  case ELF::SHT_RELR:
  case ELF::SHT_ANDROID_RELR: {
    Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
    if (!RangeOrErr) {
      Warn(RangeOrErr.takeError());
      break;
    }
    if (opts::RawRelr) {
      for (const Elf_Relr &R : *RangeOrErr)
        printRelrReloc(R);
      break;
    }

    for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
      printReloc(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec,
                 /*SymTab=*/nullptr);
    break;
  }
  case ELF::SHT_ANDROID_REL:
  case ELF::SHT_ANDROID_RELA:
    if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
      for (const Elf_Rela &R : *RelasOrErr)
        printReloc(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec, SymTab);
    } else {
      Warn(RelasOrErr.takeError());
    }
    break;
  }
}

template <class ELFT>
StringRef DumpStyle<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
  StringRef Name = "<?>";
  if (Expected<StringRef> SecNameOrErr =
          Obj.getSectionName(Sec, this->dumper().WarningHandler))
    Name = *SecNameOrErr;
  else
    this->reportUniqueWarning(createError("unable to get the name of " +
                                          describe(Obj, Sec) + ": " +
                                          toString(SecNameOrErr.takeError())));
  return Name;
}

template <class ELFT> void GNUStyle<ELFT>::printDependentLibs() {
  bool SectionStarted = false;
  struct NameOffset {
    StringRef Name;
    uint64_t Offset;
  };
  std::vector<NameOffset> SecEntries;
  NameOffset Current;
  auto PrintSection = [&]() {
    OS << "Dependent libraries section " << Current.Name << " at offset "
       << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
       << " entries:\n";
    for (NameOffset Entry : SecEntries)
      OS << "  [" << format("%6tx", Entry.Offset) << "]  " << Entry.Name
         << "\n";
    OS << "\n";
    SecEntries.clear();
  };

  auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
    if (SectionStarted)
      PrintSection();
    SectionStarted = true;
    Current.Offset = Shdr.sh_offset;
    Current.Name = this->getPrintableSectionName(Shdr);
  };
  auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
    SecEntries.push_back(NameOffset{Lib, Offset});
  };

  this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
  if (SectionStarted)
    PrintSection();
}

// Used for printing symbol names in places where possible errors can be
// ignored.
static std::string getSymbolName(const ELFSymbolRef &Sym) {
  Expected<StringRef> NameOrErr = Sym.getName();
  if (NameOrErr)
    return maybeDemangle(*NameOrErr);
  consumeError(NameOrErr.takeError());
  return "<?>";
}

template <class ELFT>
void DumpStyle<ELFT>::printFunctionStackSize(
    uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
    const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
  // This function ignores potentially erroneous input, unless it is directly
  // related to stack size reporting.
  SymbolRef FuncSym;
  for (const ELFSymbolRef &Symbol : ElfObj.symbols()) {
    Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
    if (!SymAddrOrErr) {
      consumeError(SymAddrOrErr.takeError());
      continue;
    }
    if (Expected<uint32_t> SymFlags = Symbol.getFlags()) {
      if (*SymFlags & SymbolRef::SF_Undefined)
        continue;
    } else
      consumeError(SymFlags.takeError());
    if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
      // Check if the symbol is in the right section. FunctionSec == None means
      // "any section".
      if (!FunctionSec ||
          ElfObj.toSectionRef(*FunctionSec).containsSymbol(Symbol)) {
        FuncSym = Symbol;
        break;
      }
    }
  }

  std::string FuncName = "?";
  // A valid SymbolRef has a non-null object file pointer.
  if (FuncSym.BasicSymbolRef::getObject())
    FuncName = getSymbolName(FuncSym);
  else
    reportWarning(
        createError("could not identify function symbol for stack size entry"),
        FileName);

  // Extract the size. The expectation is that Offset is pointing to the right
  // place, i.e. past the function address.
  uint64_t PrevOffset = *Offset;
  uint64_t StackSize = Data.getULEB128(Offset);
  // getULEB128() does not advance Offset if it is not able to extract a valid
  // integer.
  if (*Offset == PrevOffset) {
    reportWarning(createStringError(object_error::parse_failed,
                                    "could not extract a valid stack size in " +
                                        describe(Obj, StackSizeSec)),
                  FileName);
    return;
  }

  printStackSizeEntry(StackSize, FuncName);
}

template <class ELFT>
void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
  OS.PadToColumn(2);
  OS << format_decimal(Size, 11);
  OS.PadToColumn(18);
  OS << FuncName << "\n";
}

template <class ELFT>
void DumpStyle<ELFT>::printStackSize(RelocationRef Reloc,
                                     const Elf_Shdr *FunctionSec,
                                     const Elf_Shdr &StackSizeSec,
                                     const RelocationResolver &Resolver,
                                     DataExtractor Data) {
  // This function ignores potentially erroneous input, unless it is directly
  // related to stack size reporting.
  object::symbol_iterator RelocSym = Reloc.getSymbol();
  uint64_t RelocSymValue = 0;
  if (RelocSym != ElfObj.symbol_end()) {
    // Ensure that the relocation symbol is in the function section, i.e. the
    // section where the functions whose stack sizes we are reporting are
    // located.
    auto SectionOrErr = RelocSym->getSection();
    if (!SectionOrErr) {
      reportWarning(
          createError("cannot identify the section for relocation symbol '" +
                      getSymbolName(*RelocSym) + "'"),
          FileName);
      consumeError(SectionOrErr.takeError());
    } else if (*SectionOrErr != ElfObj.toSectionRef(FunctionSec)) {
      reportWarning(createError("relocation symbol '" +
                                getSymbolName(*RelocSym) +
                                "' is not in the expected section"),
                    FileName);
      // Pretend that the symbol is in the correct section and report its
      // stack size anyway.
      FunctionSec = ElfObj.getSection((*SectionOrErr)->getRawDataRefImpl());
    }

    Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
    if (RelocSymValueOrErr)
      RelocSymValue = *RelocSymValueOrErr;
    else
      consumeError(RelocSymValueOrErr.takeError());
  }

  uint64_t Offset = Reloc.getOffset();
  if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
    reportUniqueWarning(createStringError(
        object_error::parse_failed,
        "found invalid relocation offset (0x" + Twine::utohexstr(Offset) +
            ") into " + describe(Obj, StackSizeSec) +
            " while trying to extract a stack size entry"));
    return;
  }

  uint64_t Addend = Data.getAddress(&Offset);
  uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
  this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
                               &Offset);
}

template <class ELFT>
void DumpStyle<ELFT>::printNonRelocatableStackSizes(
    std::function<void()> PrintHeader) {
  // This function ignores potentially erroneous input, unless it is directly
  // related to stack size reporting.
  for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
    if (this->getPrintableSectionName(Sec) != ".stack_sizes")
      continue;
    PrintHeader();
    ArrayRef<uint8_t> Contents =
        unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
    DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
    uint64_t Offset = 0;
    while (Offset < Contents.size()) {
      // The function address is followed by a ULEB representing the stack
      // size. Check for an extra byte before we try to process the entry.
      if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
        reportUniqueWarning(createStringError(
            object_error::parse_failed,
            describe(Obj, Sec) +
                " ended while trying to extract a stack size entry"));
        break;
      }
      uint64_t SymValue = Data.getAddress(&Offset);
      printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
                             &Offset);
    }
  }
}

template <class ELFT>
void DumpStyle<ELFT>::printRelocatableStackSizes(
    std::function<void()> PrintHeader) {
  // Build a map between stack size sections and their corresponding relocation
  // sections.
  llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
  for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
    StringRef SectionName;
    if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
      SectionName = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

    // A stack size section that we haven't encountered yet is mapped to the
    // null section until we find its corresponding relocation section.
    if (SectionName == ".stack_sizes")
      if (StackSizeRelocMap
              .insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
              .second)
        continue;

    // Check relocation sections if they are relocating contents of a
    // stack sizes section.
    if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
      continue;

    Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
    if (!RelSecOrErr) {
      reportUniqueWarning(createStringError(
          object_error::parse_failed,
          describe(Obj, Sec) + ": failed to get a relocated section: " +
              toString(RelSecOrErr.takeError())));
      continue;
    }

    const Elf_Shdr *ContentsSec = *RelSecOrErr;
    if (this->getPrintableSectionName(**RelSecOrErr) != ".stack_sizes")
      continue;

    // Insert a mapping from the stack sizes section to its relocation section.
    StackSizeRelocMap[ContentsSec] = &Sec;
  }

  for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
    PrintHeader();
    const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
    const Elf_Shdr *RelocSec = StackSizeMapEntry.second;

    // Warn about stack size sections without a relocation section.
    if (!RelocSec) {
      reportWarning(createError(".stack_sizes (" +
                                describe(Obj, *StackSizesELFSec) +
                                ") does not have a corresponding "
                                "relocation section"),
                    FileName);
      continue;
    }

    // A .stack_sizes section header's sh_link field is supposed to point
    // to the section that contains the functions whose stack sizes are
    // described in it.
    const Elf_Shdr *FunctionSec = unwrapOrError(
        this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
    bool (*IsSupportedFn)(uint64_t);
    RelocationResolver Resolver;
    std::tie(IsSupportedFn, Resolver) = getRelocationResolver(ElfObj);
    ArrayRef<uint8_t> Contents =
        unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
    DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));

    size_t I = 0;
    for (const RelocationRef &Reloc :
         ElfObj.toSectionRef(RelocSec).relocations()) {
      ++I;
      if (!IsSupportedFn || !IsSupportedFn(Reloc.getType())) {
        reportUniqueWarning(createStringError(
            object_error::parse_failed,
            describe(Obj, *RelocSec) +
                " contains an unsupported relocation with index " + Twine(I) +
                ": " + Obj.getRelocationTypeName(Reloc.getType())));
        continue;
      }
      this->printStackSize(Reloc, FunctionSec, *StackSizesELFSec, Resolver,
                           Data);
    }
  }
}

template <class ELFT>
void GNUStyle<ELFT>::printStackSizes() {
  bool HeaderHasBeenPrinted = false;
  auto PrintHeader = [&]() {
    if (HeaderHasBeenPrinted)
      return;
    OS << "\nStack Sizes:\n";
    OS.PadToColumn(9);
    OS << "Size";
    OS.PadToColumn(18);
    OS << "Function\n";
    HeaderHasBeenPrinted = true;
  };

  // For non-relocatable objects, look directly for sections whose name starts
  // with .stack_sizes and process the contents.
  if (this->Obj.getHeader().e_type == ELF::ET_REL)
    this->printRelocatableStackSizes(PrintHeader);
  else
    this->printNonRelocatableStackSizes(PrintHeader);
}

template <class ELFT>
void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
  size_t Bias = ELFT::Is64Bits ? 8 : 0;
  auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
    OS.PadToColumn(2);
    OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
    OS.PadToColumn(11 + Bias);
    OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
    OS.PadToColumn(22 + Bias);
    OS << format_hex_no_prefix(*E, 8 + Bias);
    OS.PadToColumn(31 + 2 * Bias);
    OS << Purpose << "\n";
  };

  OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
  OS << " Canonical gp value: "
     << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";

  OS << " Reserved entries:\n";
  if (ELFT::Is64Bits)
    OS << "           Address     Access          Initial Purpose\n";
  else
    OS << "   Address     Access  Initial Purpose\n";
  PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
  if (Parser.getGotModulePointer())
    PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");

  if (!Parser.getLocalEntries().empty()) {
    OS << "\n";
    OS << " Local entries:\n";
    if (ELFT::Is64Bits)
      OS << "           Address     Access          Initial\n";
    else
      OS << "   Address     Access  Initial\n";
    for (auto &E : Parser.getLocalEntries())
      PrintEntry(&E, "");
  }

  if (Parser.IsStatic)
    return;

  if (!Parser.getGlobalEntries().empty()) {
    OS << "\n";
    OS << " Global entries:\n";
    if (ELFT::Is64Bits)
      OS << "           Address     Access          Initial         Sym.Val."
         << " Type    Ndx Name\n";
    else
      OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
    for (auto &E : Parser.getGlobalEntries()) {
      const Elf_Sym &Sym = *Parser.getGotSym(&E);
      const Elf_Sym &FirstSym = this->dumper().dynamic_symbols()[0];
      std::string SymName = this->dumper().getFullSymbolName(
          Sym, &Sym - &FirstSym, this->dumper().getDynamicStringTable(), false);

      OS.PadToColumn(2);
      OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
      OS.PadToColumn(11 + Bias);
      OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
      OS.PadToColumn(22 + Bias);
      OS << to_string(format_hex_no_prefix(E, 8 + Bias));
      OS.PadToColumn(31 + 2 * Bias);
      OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
      OS.PadToColumn(40 + 3 * Bias);
      OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
      OS.PadToColumn(48 + 3 * Bias);
      OS << getSymbolSectionNdx(
          Sym, &Sym - this->dumper().dynamic_symbols().begin());
      OS.PadToColumn(52 + 3 * Bias);
      OS << SymName << "\n";
    }
  }

  if (!Parser.getOtherEntries().empty())
    OS << "\n Number of TLS and multi-GOT entries "
       << Parser.getOtherEntries().size() << "\n";
}

template <class ELFT>
void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
  size_t Bias = ELFT::Is64Bits ? 8 : 0;
  auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
    OS.PadToColumn(2);
    OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
    OS.PadToColumn(11 + Bias);
    OS << format_hex_no_prefix(*E, 8 + Bias);
    OS.PadToColumn(20 + 2 * Bias);
    OS << Purpose << "\n";
  };

  OS << "PLT GOT:\n\n";

  OS << " Reserved entries:\n";
  OS << "   Address  Initial Purpose\n";
  PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
  if (Parser.getPltModulePointer())
    PrintEntry(Parser.getPltModulePointer(), "Module pointer");

  if (!Parser.getPltEntries().empty()) {
    OS << "\n";
    OS << " Entries:\n";
    OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
    for (auto &E : Parser.getPltEntries()) {
      const Elf_Sym &Sym = *Parser.getPltSym(&E);
      const Elf_Sym &FirstSym =
          *cantFail(this->Obj.template getEntry<const Elf_Sym>(
              *Parser.getPltSymTable(), 0));
      std::string SymName = this->dumper().getFullSymbolName(
          Sym, &Sym - &FirstSym, this->dumper().getDynamicStringTable(), false);

      OS.PadToColumn(2);
      OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
      OS.PadToColumn(11 + Bias);
      OS << to_string(format_hex_no_prefix(E, 8 + Bias));
      OS.PadToColumn(20 + 2 * Bias);
      OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
      OS.PadToColumn(29 + 3 * Bias);
      OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
      OS.PadToColumn(37 + 3 * Bias);
      OS << getSymbolSectionNdx(
          Sym, &Sym - this->dumper().dynamic_symbols().begin());
      OS.PadToColumn(41 + 3 * Bias);
      OS << SymName << "\n";
    }
  }
}

template <class ELFT>
Expected<const Elf_Mips_ABIFlags<ELFT> *>
getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
  const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
  if (Sec == nullptr)
    return nullptr;

  constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
  Expected<ArrayRef<uint8_t>> DataOrErr =
      Dumper.getElfObject().getELFFile()->getSectionContents(*Sec);
  if (!DataOrErr)
    return createError(ErrPrefix + toString(DataOrErr.takeError()));

  if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
    return createError(ErrPrefix + "it has a wrong size (" +
        Twine(DataOrErr->size()) + ")");
  return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
}

template <class ELFT> void GNUStyle<ELFT>::printMipsABIFlags() {
  const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
  if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
          getMipsAbiFlagsSection(this->dumper()))
    Flags = *SecOrErr;
  else
    this->reportUniqueWarning(SecOrErr.takeError());
  if (!Flags)
    return;

  OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
  OS << "ISA: MIPS" << int(Flags->isa_level);
  if (Flags->isa_rev > 1)
    OS << "r" << int(Flags->isa_rev);
  OS << "\n";
  OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
  OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
  OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
  OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
     << "\n";
  OS << "ISA Extension: "
     << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
  if (Flags->ases == 0)
    OS << "ASEs: None\n";
  else
    // FIXME: Print each flag on a separate line.
    OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
       << "\n";
  OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
  OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
  OS << "\n";
}

template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders() {
  const Elf_Ehdr &E = this->Obj.getHeader();
  {
    DictScope D(W, "ElfHeader");
    {
      DictScope D(W, "Ident");
      W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
      W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
      W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
                  makeArrayRef(ElfDataEncoding));
      W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);

      auto OSABI = makeArrayRef(ElfOSABI);
      if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
          E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
        switch (E.e_machine) {
        case ELF::EM_AMDGPU:
          OSABI = makeArrayRef(AMDGPUElfOSABI);
          break;
        case ELF::EM_ARM:
          OSABI = makeArrayRef(ARMElfOSABI);
          break;
        case ELF::EM_TI_C6000:
          OSABI = makeArrayRef(C6000ElfOSABI);
          break;
        }
      }
      W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
      W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
      W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
    }

    W.printEnum("Type", E.e_type, makeArrayRef(ElfObjectFileType));
    W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
    W.printNumber("Version", E.e_version);
    W.printHex("Entry", E.e_entry);
    W.printHex("ProgramHeaderOffset", E.e_phoff);
    W.printHex("SectionHeaderOffset", E.e_shoff);
    if (E.e_machine == EM_MIPS)
      W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
                   unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
                   unsigned(ELF::EF_MIPS_MACH));
    else if (E.e_machine == EM_AMDGPU)
      W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
                   unsigned(ELF::EF_AMDGPU_MACH));
    else if (E.e_machine == EM_RISCV)
      W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
    else
      W.printFlags("Flags", E.e_flags);
    W.printNumber("HeaderSize", E.e_ehsize);
    W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
    W.printNumber("ProgramHeaderCount", E.e_phnum);
    W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
    W.printString("SectionHeaderCount",
                  getSectionHeadersNumString(this->Obj, this->FileName));
    W.printString("StringTableSectionIndex",
                  getSectionHeaderTableIndexString(this->Obj, this->FileName));
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printGroupSections() {
  DictScope Lists(W, "Groups");
  std::vector<GroupSection> V = getGroups<ELFT>(this->Obj, this->FileName);
  DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
  for (const GroupSection &G : V) {
    DictScope D(W, "Group");
    W.printNumber("Name", G.Name, G.ShName);
    W.printNumber("Index", G.Index);
    W.printNumber("Link", G.Link);
    W.printNumber("Info", G.Info);
    W.printHex("Type", getGroupType(G.Type), G.Type);
    W.startLine() << "Signature: " << G.Signature << "\n";

    ListScope L(W, "Section(s) in group");
    for (const GroupMember &GM : G.Members) {
      const GroupSection *MainGroup = Map[GM.Index];
      if (MainGroup != &G)
        this->reportUniqueWarning(
            createError("section with index " + Twine(GM.Index) +
                        ", included in the group section with index " +
                        Twine(MainGroup->Index) +
                        ", was also found in the group section with index " +
                        Twine(G.Index)));
      W.startLine() << GM.Name << " (" << GM.Index << ")\n";
    }
  }

  if (V.empty())
    W.startLine() << "There are no group sections in the file.\n";
}

template <class ELFT> void LLVMStyle<ELFT>::printRelocations() {
  ListScope D(W, "Relocations");

  for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
    if (!isRelocationSec<ELFT>(Sec))
      continue;

    StringRef Name = this->getPrintableSectionName(Sec);
    unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
    W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
    W.indent();
    this->printRelocationsHelper(Sec);
    W.unindent();
    W.startLine() << "}\n";
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printRelrReloc(const Elf_Relr &R) {
  W.startLine() << W.hex(R) << "\n";
}

template <class ELFT>
void LLVMStyle<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
                                 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
  Expected<RelSymbol<ELFT>> Target =
      this->dumper().getRelocationTarget(R, SymTab);
  if (!Target) {
    this->reportUniqueWarning(createError(
        "unable to print relocation " + Twine(RelIndex) + " in " +
        describe(this->Obj, Sec) + ": " + toString(Target.takeError())));
    return;
  }

  printRelRelaReloc(R, Target->Name);
}

template <class ELFT>
void LLVMStyle<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
                                        StringRef SymbolName) {
  SmallString<32> RelocName;
  this->Obj.getRelocationTypeName(R.Type, RelocName);

  uintX_t Addend = R.Addend.getValueOr(0);
  if (opts::ExpandRelocs) {
    DictScope Group(W, "Relocation");
    W.printHex("Offset", R.Offset);
    W.printNumber("Type", RelocName, R.Type);
    W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
    W.printHex("Addend", Addend);
  } else {
    raw_ostream &OS = W.startLine();
    OS << W.hex(R.Offset) << " " << RelocName << " "
       << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Addend)
       << "\n";
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printSectionHeaders() {
  ListScope SectionsD(W, "Sections");

  int SectionIndex = -1;
  std::vector<EnumEntry<unsigned>> FlagsList =
      getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
  for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
    DictScope SectionD(W, "Section");
    W.printNumber("Index", ++SectionIndex);
    W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
    W.printHex("Type",
               object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
                                             Sec.sh_type),
               Sec.sh_type);
    W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
    W.printHex("Address", Sec.sh_addr);
    W.printHex("Offset", Sec.sh_offset);
    W.printNumber("Size", Sec.sh_size);
    W.printNumber("Link", Sec.sh_link);
    W.printNumber("Info", Sec.sh_info);
    W.printNumber("AddressAlignment", Sec.sh_addralign);
    W.printNumber("EntrySize", Sec.sh_entsize);

    if (opts::SectionRelocations) {
      ListScope D(W, "Relocations");
      this->printRelocationsHelper(Sec);
    }

    if (opts::SectionSymbols) {
      ListScope D(W, "Symbols");
      if (const Elf_Shdr *Symtab = this->dumper().getDotSymtabSec()) {
        StringRef StrTable = unwrapOrError(
            this->FileName, this->Obj.getStringTableForSymtab(*Symtab));

        typename ELFT::SymRange Symbols =
            unwrapOrError(this->FileName, this->Obj.symbols(Symtab));
        for (const Elf_Sym &Sym : Symbols) {
          const Elf_Shdr *SymSec = unwrapOrError(
              this->FileName, this->Obj.getSection(
                                  Sym, Symtab, this->dumper().getShndxTable()));
          if (SymSec == &Sec)
            printSymbol(Sym, &Sym - &Symbols[0], StrTable, false, false);
        }
      }
    }

    if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
      ArrayRef<uint8_t> Data =
          unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
      W.printBinaryBlock(
          "SectionData",
          StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
    }
  }
}

template <class ELFT>
void LLVMStyle<ELFT>::printSymbolSection(const Elf_Sym &Symbol,
                                         unsigned SymIndex) {
  auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
    if (Symbol.isUndefined())
      return StringRef("Undefined");
    if (Symbol.isProcessorSpecific())
      return StringRef("Processor Specific");
    if (Symbol.isOSSpecific())
      return StringRef("Operating System Specific");
    if (Symbol.isAbsolute())
      return StringRef("Absolute");
    if (Symbol.isCommon())
      return StringRef("Common");
    if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
      return StringRef("Reserved");
    return None;
  };

  if (Optional<StringRef> Type = GetSectionSpecialType()) {
    W.printHex("Section", *Type, Symbol.st_shndx);
    return;
  }

  Expected<unsigned> SectionIndex =
      this->dumper().getSymbolSectionIndex(Symbol, SymIndex);
  if (!SectionIndex) {
    assert(Symbol.st_shndx == SHN_XINDEX &&
           "getSymbolSectionIndex should only fail due to an invalid "
           "SHT_SYMTAB_SHNDX table/reference");
    this->reportUniqueWarning(SectionIndex.takeError());
    W.printHex("Section", "Reserved", SHN_XINDEX);
    return;
  }

  Expected<StringRef> SectionName =
      this->dumper().getSymbolSectionName(Symbol, *SectionIndex);
  if (!SectionName) {
    // Don't report an invalid section name if the section headers are missing.
    // In such situations, all sections will be "invalid".
    if (!this->dumper().getElfObject().sections().empty())
      this->reportUniqueWarning(SectionName.takeError());
    else
      consumeError(SectionName.takeError());
    W.printHex("Section", "<?>", *SectionIndex);
  } else {
    W.printHex("Section", *SectionName, *SectionIndex);
  }
}

template <class ELFT>
void LLVMStyle<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
                                  Optional<StringRef> StrTable, bool IsDynamic,
                                  bool /*NonVisibilityBitsUsed*/) {
  std::string FullSymbolName =
      this->dumper().getFullSymbolName(Symbol, SymIndex, StrTable, IsDynamic);
  unsigned char SymbolType = Symbol.getType();

  DictScope D(W, "Symbol");
  W.printNumber("Name", FullSymbolName, Symbol.st_name);
  W.printHex("Value", Symbol.st_value);
  W.printNumber("Size", Symbol.st_size);
  W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
  if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
      SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
    W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
  else
    W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
  if (Symbol.st_other == 0)
    // Usually st_other flag is zero. Do not pollute the output
    // by flags enumeration in that case.
    W.printNumber("Other", 0);
  else {
    std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
                                                   std::end(ElfSymOtherFlags));
    if (this->Obj.getHeader().e_machine == EM_MIPS) {
      // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
      // flag overlapped with other ST_MIPS_xxx flags. So consider both
      // cases separately.
      if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
        SymOtherFlags.insert(SymOtherFlags.end(),
                             std::begin(ElfMips16SymOtherFlags),
                             std::end(ElfMips16SymOtherFlags));
      else
        SymOtherFlags.insert(SymOtherFlags.end(),
                             std::begin(ElfMipsSymOtherFlags),
                             std::end(ElfMipsSymOtherFlags));
    }
    W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
  }
  printSymbolSection(Symbol, SymIndex);
}

template <class ELFT>
void LLVMStyle<ELFT>::printSymbols(bool PrintSymbols,
                                   bool PrintDynamicSymbols) {
  if (PrintSymbols)
    printSymbols();
  if (PrintDynamicSymbols)
    printDynamicSymbols();
}

template <class ELFT> void LLVMStyle<ELFT>::printSymbols() {
  ListScope Group(W, "Symbols");
  this->dumper().printSymbolsHelper(false);
}

template <class ELFT> void LLVMStyle<ELFT>::printDynamicSymbols() {
  ListScope Group(W, "DynamicSymbols");
  this->dumper().printSymbolsHelper(true);
}

template <class ELFT> void LLVMStyle<ELFT>::printDynamic() {
  Elf_Dyn_Range Table = this->dumper().dynamic_table();
  if (Table.empty())
    return;

  W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";

  size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
  // The "Name/Value" column should be indented from the "Type" column by N
  // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
  // space (1) = -3.
  W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
                << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";

  std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
  for (auto Entry : Table) {
    uintX_t Tag = Entry.getTag();
    std::string Value = this->dumper().getDynamicEntry(Tag, Entry.getVal());
    W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
                  << " "
                  << format(ValueFmt.c_str(),
                            this->Obj.getDynamicTagAsString(Tag).c_str())
                  << Value << "\n";
  }
  W.startLine() << "]\n";
}

template <class ELFT> void LLVMStyle<ELFT>::printDynamicRelocations() {
  W.startLine() << "Dynamic Relocations {\n";
  W.indent();
  this->printDynamicRelocationsHelper();
  W.unindent();
  W.startLine() << "}\n";
}

template <class ELFT>
void LLVMStyle<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
  RelSymbol<ELFT> S =
      getSymbolForReloc(this->Obj, this->FileName, this->dumper(), R);
  printRelRelaReloc(R, S.Name);
}

template <class ELFT>
void LLVMStyle<ELFT>::printProgramHeaders(
    bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
  if (PrintProgramHeaders)
    printProgramHeaders();
  if (PrintSectionMapping == cl::BOU_TRUE)
    printSectionMapping();
}

template <class ELFT> void LLVMStyle<ELFT>::printProgramHeaders() {
  ListScope L(W, "ProgramHeaders");

  Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
  if (!PhdrsOrErr) {
    this->reportUniqueWarning(createError("unable to dump program headers: " +
                                          toString(PhdrsOrErr.takeError())));
    return;
  }

  for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
    DictScope P(W, "ProgramHeader");
    StringRef Type =
        segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);

    W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
    W.printHex("Offset", Phdr.p_offset);
    W.printHex("VirtualAddress", Phdr.p_vaddr);
    W.printHex("PhysicalAddress", Phdr.p_paddr);
    W.printNumber("FileSize", Phdr.p_filesz);
    W.printNumber("MemSize", Phdr.p_memsz);
    W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
    W.printNumber("Alignment", Phdr.p_align);
  }
}

template <class ELFT>
void LLVMStyle<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
  ListScope SS(W, "VersionSymbols");
  if (!Sec)
    return;

  StringRef StrTable;
  ArrayRef<Elf_Sym> Syms;
  Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
      this->dumper().getVersionTable(*Sec, &Syms, &StrTable);
  if (!VerTableOrErr) {
    this->reportUniqueWarning(VerTableOrErr.takeError());
    return;
  }

  if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
    return;

  for (size_t I = 0, E = Syms.size(); I < E; ++I) {
    DictScope S(W, "Symbol");
    W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
    W.printString("Name", this->dumper().getFullSymbolName(Syms[I], I, StrTable,
                                                           /*IsDynamic=*/true));
  }
}

static const EnumEntry<unsigned> SymVersionFlags[] = {
    {"Base", "BASE", VER_FLG_BASE},
    {"Weak", "WEAK", VER_FLG_WEAK},
    {"Info", "INFO", VER_FLG_INFO}};

template <class ELFT>
void LLVMStyle<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
  ListScope SD(W, "VersionDefinitions");
  if (!Sec)
    return;

  Expected<std::vector<VerDef>> V = this->dumper().getVersionDefinitions(*Sec);
  if (!V) {
    this->reportUniqueWarning(V.takeError());
    return;
  }

  for (const VerDef &D : *V) {
    DictScope Def(W, "Definition");
    W.printNumber("Version", D.Version);
    W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
    W.printNumber("Index", D.Ndx);
    W.printNumber("Hash", D.Hash);
    W.printString("Name", D.Name.c_str());
    W.printList(
        "Predecessors", D.AuxV,
        [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
  }
}

template <class ELFT>
void LLVMStyle<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
  ListScope SD(W, "VersionRequirements");
  if (!Sec)
    return;

  Expected<std::vector<VerNeed>> V = this->dumper().getVersionDependencies(*Sec);
  if (!V) {
    this->reportUniqueWarning(V.takeError());
    return;
  }

  for (const VerNeed &VN : *V) {
    DictScope Entry(W, "Dependency");
    W.printNumber("Version", VN.Version);
    W.printNumber("Count", VN.Cnt);
    W.printString("FileName", VN.File.c_str());

    ListScope L(W, "Entries");
    for (const VernAux &Aux : VN.AuxV) {
      DictScope Entry(W, "Entry");
      W.printNumber("Hash", Aux.Hash);
      W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
      W.printNumber("Index", Aux.Other);
      W.printString("Name", Aux.Name.c_str());
    }
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printHashHistograms() {
  W.startLine() << "Hash Histogram not implemented!\n";
}

template <class ELFT> void LLVMStyle<ELFT>::printCGProfile() {
  ListScope L(W, "CGProfile");
  if (!this->dumper().getDotCGProfileSec())
    return;

  Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
      this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(
          *this->dumper().getDotCGProfileSec());
  if (!CGProfileOrErr) {
    this->reportUniqueWarning(
        createError("unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
                    toString(CGProfileOrErr.takeError())));
    return;
  }

  for (const Elf_CGProfile &CGPE : *CGProfileOrErr) {
    DictScope D(W, "CGProfileEntry");
    W.printNumber("From", this->dumper().getStaticSymbolName(CGPE.cgp_from),
                  CGPE.cgp_from);
    W.printNumber("To", this->dumper().getStaticSymbolName(CGPE.cgp_to),
                  CGPE.cgp_to);
    W.printNumber("Weight", CGPE.cgp_weight);
  }
}

static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
  std::vector<uint64_t> Ret;
  const uint8_t *Cur = Data.begin();
  const uint8_t *End = Data.end();
  while (Cur != End) {
    unsigned Size;
    const char *Err;
    Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
    if (Err)
      return createError(Err);
    Cur += Size;
  }
  return Ret;
}

template <class ELFT> void LLVMStyle<ELFT>::printAddrsig() {
  ListScope L(W, "Addrsig");
  const Elf_Shdr *Sec = this->dumper().getDotAddrsigSec();
  if (!Sec)
    return;

  Expected<ArrayRef<uint8_t>> ContentsOrErr =
      this->Obj.getSectionContents(*Sec);
  if (!ContentsOrErr) {
    this->reportUniqueWarning(ContentsOrErr.takeError());
    return;
  }

  Expected<std::vector<uint64_t>> SymsOrErr = toULEB128Array(*ContentsOrErr);
  if (!SymsOrErr) {
    this->reportUniqueWarning(createError("unable to decode " +
                                          describe(this->Obj, *Sec) + ": " +
                                          toString(SymsOrErr.takeError())));
    return;
  }

  for (uint64_t Sym : *SymsOrErr)
    W.printNumber("Sym", this->dumper().getStaticSymbolName(Sym), Sym);
}

template <typename ELFT>
static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
                                  ScopedPrinter &W) {
  switch (NoteType) {
  default:
    return;
  case ELF::NT_GNU_ABI_TAG: {
    const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
    if (!AbiTag.IsValid) {
      W.printString("ABI", "<corrupt GNU_ABI_TAG>");
    } else {
      W.printString("OS", AbiTag.OSName);
      W.printString("ABI", AbiTag.ABI);
    }
    break;
  }
  case ELF::NT_GNU_BUILD_ID: {
    W.printString("Build ID", getGNUBuildId(Desc));
    break;
  }
  case ELF::NT_GNU_GOLD_VERSION:
    W.printString("Version", getGNUGoldVersion(Desc));
    break;
  case ELF::NT_GNU_PROPERTY_TYPE_0:
    ListScope D(W, "Property");
    for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
      W.printString(Property);
    break;
  }
}

static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
  W.printNumber("Page Size", Note.PageSize);
  for (const CoreFileMapping &Mapping : Note.Mappings) {
    ListScope D(W, "Mapping");
    W.printHex("Start", Mapping.Start);
    W.printHex("End", Mapping.End);
    W.printHex("Offset", Mapping.Offset);
    W.printString("Filename", Mapping.Filename);
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printNotes() {
  ListScope L(W, "Notes");

  auto PrintHeader = [&](Optional<StringRef> SecName,
                         const typename ELFT::Off Offset,
                         const typename ELFT::Addr Size) {
    W.printString("Name", SecName ? *SecName : "<?>");
    W.printHex("Offset", Offset);
    W.printHex("Size", Size);
  };

  auto ProcessNote = [&](const Elf_Note &Note) {
    DictScope D2(W, "Note");
    StringRef Name = Note.getName();
    ArrayRef<uint8_t> Descriptor = Note.getDesc();
    Elf_Word Type = Note.getType();

    // Print the note owner/type.
    W.printString("Owner", Name);
    W.printHex("Data size", Descriptor.size());

    StringRef NoteType =
        getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
    if (!NoteType.empty())
      W.printString("Type", NoteType);
    else
      W.printString("Type",
                    "Unknown (" + to_string(format_hex(Type, 10)) + ")");

    // Print the description, or fallback to printing raw bytes for unknown
    // owners.
    if (Name == "GNU") {
      printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
    } else if (Name == "AMD") {
      const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
      if (!N.Type.empty())
        W.printString(N.Type, N.Value);
    } else if (Name == "AMDGPU") {
      const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
      if (!N.Type.empty())
        W.printString(N.Type, N.Value);
    } else if (Name == "CORE") {
      if (Type == ELF::NT_FILE) {
        DataExtractor DescExtractor(Descriptor,
                                    ELFT::TargetEndianness == support::little,
                                    sizeof(Elf_Addr));
        Expected<CoreNote> Note = readCoreNote(DescExtractor);
        if (Note)
          printCoreNoteLLVMStyle(*Note, W);
        else
          reportWarning(Note.takeError(), this->FileName);
      }
    } else if (!Descriptor.empty()) {
      W.printBinaryBlock("Description data", Descriptor);
    }
  };

  ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
  if (this->Obj.getHeader().e_type != ELF::ET_CORE && !Sections.empty()) {
    for (const Elf_Shdr &S : Sections) {
      if (S.sh_type != SHT_NOTE)
        continue;
      DictScope D(W, "NoteSection");
      PrintHeader(expectedToOptional(this->Obj.getSectionName(S)), S.sh_offset,
                  S.sh_size);
      Error Err = Error::success();
      for (auto Note : this->Obj.notes(S, Err))
        ProcessNote(Note);
      if (Err)
        reportError(std::move(Err), this->FileName);
    }
  } else {
    Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
    if (!PhdrsOrErr) {
      this->reportUniqueWarning(createError(
          "unable to read program headers to locate the PT_NOTE segment: " +
          toString(PhdrsOrErr.takeError())));
      return;
    }

    for (const Elf_Phdr &P : *PhdrsOrErr) {
      if (P.p_type != PT_NOTE)
        continue;
      DictScope D(W, "NoteSection");
      PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz);
      Error Err = Error::success();
      for (auto Note : this->Obj.notes(P, Err))
        ProcessNote(Note);
      if (Err)
        reportError(std::move(Err), this->FileName);
    }
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printELFLinkerOptions() {
  ListScope L(W, "LinkerOptions");

  unsigned I = -1;
  for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
    ++I;
    if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
      continue;

    Expected<ArrayRef<uint8_t>> ContentsOrErr =
        this->Obj.getSectionContents(Shdr);
    if (!ContentsOrErr) {
      this->reportUniqueWarning(
          createError("unable to read the content of the "
                      "SHT_LLVM_LINKER_OPTIONS section: " +
                      toString(ContentsOrErr.takeError())));
      continue;
    }
    if (ContentsOrErr->empty())
      continue;

    if (ContentsOrErr->back() != 0) {
      this->reportUniqueWarning(
          createError("SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
                      " is broken: the "
                      "content is not null-terminated"));
      continue;
    }

    SmallVector<StringRef, 16> Strings;
    toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
    if (Strings.size() % 2 != 0) {
      this->reportUniqueWarning(createError(
          "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
          " is broken: an incomplete "
          "key-value pair was found. The last possible key was: \"" +
          Strings.back() + "\""));
      continue;
    }

    for (size_t I = 0; I < Strings.size(); I += 2)
      W.printString(Strings[I], Strings[I + 1]);
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printDependentLibs() {
  ListScope L(W, "DependentLibs");
  this->printDependentLibsHelper(
      [](const Elf_Shdr &) {},
      [this](StringRef Lib, uint64_t) { W.printString(Lib); });
}

template <class ELFT>
void LLVMStyle<ELFT>::printStackSizes() {
  ListScope L(W, "StackSizes");
  if (this->Obj.getHeader().e_type == ELF::ET_REL)
    this->printRelocatableStackSizes([]() {});
  else
    this->printNonRelocatableStackSizes([]() {});
}

template <class ELFT>
void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
  DictScope D(W, "Entry");
  W.printString("Function", FuncName);
  W.printHex("Size", Size);
}

template <class ELFT>
void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
  auto PrintEntry = [&](const Elf_Addr *E) {
    W.printHex("Address", Parser.getGotAddress(E));
    W.printNumber("Access", Parser.getGotOffset(E));
    W.printHex("Initial", *E);
  };

  DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");

  W.printHex("Canonical gp value", Parser.getGp());
  {
    ListScope RS(W, "Reserved entries");
    {
      DictScope D(W, "Entry");
      PrintEntry(Parser.getGotLazyResolver());
      W.printString("Purpose", StringRef("Lazy resolver"));
    }

    if (Parser.getGotModulePointer()) {
      DictScope D(W, "Entry");
      PrintEntry(Parser.getGotModulePointer());
      W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
    }
  }
  {
    ListScope LS(W, "Local entries");
    for (auto &E : Parser.getLocalEntries()) {
      DictScope D(W, "Entry");
      PrintEntry(&E);
    }
  }

  if (Parser.IsStatic)
    return;

  {
    ListScope GS(W, "Global entries");
    for (auto &E : Parser.getGlobalEntries()) {
      DictScope D(W, "Entry");

      PrintEntry(&E);

      const Elf_Sym &Sym = *Parser.getGotSym(&E);
      W.printHex("Value", Sym.st_value);
      W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));

      const unsigned SymIndex = &Sym - this->dumper().dynamic_symbols().begin();
      printSymbolSection(Sym, SymIndex);

      std::string SymName = this->dumper().getFullSymbolName(
          Sym, SymIndex, this->dumper().getDynamicStringTable(), true);
      W.printNumber("Name", SymName, Sym.st_name);
    }
  }

  W.printNumber("Number of TLS and multi-GOT entries",
                uint64_t(Parser.getOtherEntries().size()));
}

template <class ELFT>
void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
  auto PrintEntry = [&](const Elf_Addr *E) {
    W.printHex("Address", Parser.getPltAddress(E));
    W.printHex("Initial", *E);
  };

  DictScope GS(W, "PLT GOT");

  {
    ListScope RS(W, "Reserved entries");
    {
      DictScope D(W, "Entry");
      PrintEntry(Parser.getPltLazyResolver());
      W.printString("Purpose", StringRef("PLT lazy resolver"));
    }

    if (auto E = Parser.getPltModulePointer()) {
      DictScope D(W, "Entry");
      PrintEntry(E);
      W.printString("Purpose", StringRef("Module pointer"));
    }
  }
  {
    ListScope LS(W, "Entries");
    for (auto &E : Parser.getPltEntries()) {
      DictScope D(W, "Entry");
      PrintEntry(&E);

      const Elf_Sym &Sym = *Parser.getPltSym(&E);
      W.printHex("Value", Sym.st_value);
      W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
      printSymbolSection(Sym, &Sym - this->dumper().dynamic_symbols().begin());

      const Elf_Sym *FirstSym =
          cantFail(this->Obj.template getEntry<const Elf_Sym>(
              *Parser.getPltSymTable(), 0));
      std::string SymName = this->dumper().getFullSymbolName(
          Sym, &Sym - FirstSym, Parser.getPltStrTable(), true);
      W.printNumber("Name", SymName, Sym.st_name);
    }
  }
}

template <class ELFT> void LLVMStyle<ELFT>::printMipsABIFlags() {
  const Elf_Mips_ABIFlags<ELFT> *Flags;
  if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
          getMipsAbiFlagsSection(this->dumper())) {
    Flags = *SecOrErr;
    if (!Flags) {
      W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
      return;
    }
  } else {
    this->reportUniqueWarning(SecOrErr.takeError());
    return;
  }

  raw_ostream &OS = W.getOStream();
  DictScope GS(W, "MIPS ABI Flags");

  W.printNumber("Version", Flags->version);
  W.startLine() << "ISA: ";
  if (Flags->isa_rev <= 1)
    OS << format("MIPS%u", Flags->isa_level);
  else
    OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
  OS << "\n";
  W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
  W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
  W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
  W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
  W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
  W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
  W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
  W.printHex("Flags 2", Flags->flags2);
}