DomTreeUpdaterTest.cpp 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
//===- DomTreeUpdaterTest.cpp - DomTreeUpdater unit tests -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
#include <algorithm>

using namespace llvm;

static std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
                                              StringRef ModuleStr) {
  SMDiagnostic Err;
  std::unique_ptr<Module> M = parseAssemblyString(ModuleStr, Err, Context);
  assert(M && "Bad LLVM IR?");
  return M;
}

TEST(DomTreeUpdater, EagerUpdateBasicOperations) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                          define i32 @f(i32 %i, i32 *%p) {
                          bb0:
                             store i32 %i, i32 *%p
                             switch i32 %i, label %bb1 [
                               i32 1, label %bb2
                               i32 2, label %bb3
                             ]
                          bb1:
                             ret i32 1
                          bb2:
                             ret i32 2
                          bb3:
                             ret i32 3
                          })";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DomTreeUpdater.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);

  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_TRUE(DTU.isEager());
  ASSERT_FALSE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;
  SwitchInst *SI = dyn_cast<SwitchInst>(BB0->getTerminator());
  ASSERT_NE(SI, nullptr) << "Couldn't get SwitchInst.";

  DTU.applyUpdatesPermissive(
      {{DominatorTree::Insert, BB0, BB0}, {DominatorTree::Delete, BB0, BB0}});
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Delete edge bb0 -> bb3 and push the update twice to verify duplicate
  // entries are discarded.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // Invalid Insert: no edge bb1 -> bb2 after change to bb0.
  Updates.push_back({DominatorTree::Insert, BB1, BB2});
  // Invalid Delete: edge exists bb0 -> bb1 after change to bb0.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});

  // CFG Change: remove edge bb0 -> bb3.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 3u);
  BB3->removePredecessor(BB0);
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
    if (i->getCaseSuccessor() == BB3) {
      SI->removeCase(i);
      break;
    }
  }
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion.
  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Invalid Insert: no edge bb1 -> bb2 after change to bb0.
  // Invalid Delete: edge exists bb0 -> bb1 after change to bb0.
  DTU.applyUpdatesPermissive(
      {{DominatorTree::Insert, BB1, BB2}, {DominatorTree::Delete, BB0, BB1}});

  // DTU working with Eager UpdateStrategy does not need to flush.
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // Test callback utils.
  ASSERT_EQ(BB3->getParent(), F);
  DTU.callbackDeleteBB(BB3,
                       [&F](BasicBlock *BB) { ASSERT_NE(BB->getParent(), F); });

  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Unnecessary flush() test
  DTU.flush();
  EXPECT_TRUE(DT.verify());
  EXPECT_TRUE(PDT.verify());

  // Remove all case branch to BB2 to test Eager recalculation.
  // Code section from llvm::ConstantFoldTerminator
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
    if (i->getCaseSuccessor() == BB2) {
      // Remove this entry.
      BB2->removePredecessor(BB0);
      i = SI->removeCase(i);
      e = SI->case_end();
    } else
      ++i;
  }
  ASSERT_FALSE(DT.verify());
  ASSERT_FALSE(PDT.verify());
  DTU.recalculate(*F);
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());
}

TEST(DomTreeUpdater, EagerUpdateReplaceEntryBB) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              br label %bb1
                            bb1:
                              ret i32 1
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_TRUE(DTU.isEager());
  ASSERT_FALSE(DTU.isLazy());
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;

  // Add a block as the new function entry BB. We also link it to BB0.
  BasicBlock *NewEntry =
      BasicBlock::Create(F->getContext(), "new_entry", F, BB0);
  BranchInst::Create(BB0, NewEntry);
  EXPECT_EQ(F->begin()->getName(), NewEntry->getName());
  EXPECT_TRUE(&F->getEntryBlock() == NewEntry);

  DTU.applyUpdates({{DominatorTree::Insert, NewEntry, BB0}});

  // Changing the Entry BB requires a full recalculation of DomTree.
  DTU.recalculate(*F);
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // CFG Change: remove new_edge -> bb0 and redirect to new_edge -> bb1.
  EXPECT_EQ(NewEntry->getTerminator()->getNumSuccessors(), 1u);
  NewEntry->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, NewEntry);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Update the DTU. At this point bb0 now has no predecessors but is still a
  // Child of F.
  DTU.applyUpdates({{DominatorTree::Delete, NewEntry, BB0},
                    {DominatorTree::Insert, NewEntry, BB1}});
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // Now remove bb0 from F.
  ASSERT_FALSE(isa<UnreachableInst>(BB0->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB0));
  DTU.deleteBB(BB0);
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());
}

TEST(DomTreeUpdater, LazyUpdateDTBasicOperations) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 0, label %bb2
                                i32 1, label %bb2
                                i32 2, label %bb3
                              ]
                            bb1:
                              ret i32 1
                            bb2:
                              ret i32 2
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree *PDT = nullptr;
  DomTreeUpdater DTU(&DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_FALSE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;

  // Test discards of self-domination update.
  DTU.applyUpdatesPermissive({{DominatorTree::Insert, BB0, BB0}});
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());

  // Delete edge bb0 -> bb3 and push the update twice to verify duplicate
  // entries are discarded.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // Invalid Insert: no edge bb1 -> bb2 after change to bb0.
  Updates.push_back({DominatorTree::Insert, BB1, BB2});
  // Invalid Delete: edge exists bb0 -> bb1 after change to bb0.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});

  // CFG Change: remove edge bb0 -> bb3 and one duplicate edge bb0 -> bb2.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB2, ConstantInt::getTrue(F->getContext()), BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);

  // Verify. Updates to DTU must be applied *after* all changes to the CFG
  // (including block deletion).
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_TRUE(DTU.getDomTree().verify());

  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion. Its parent is still F until all the pending updates
  // are applied to all trees held by the DomTreeUpdater (DomTree/PostDomTree).
  // We don't defer this action because it can cause problems for other
  // transforms or analysis as it's part of the actual CFG. We only defer
  // updates to the DominatorTrees. This code will crash if it is placed before
  // the BranchInst::Create() call above. After a deletion of a BasicBlock. Only
  // an explicit flush event can trigger the flushing of deleteBBs. Because some
  // passes using Lazy UpdateStrategy rely on this behavior.

  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  EXPECT_FALSE(DTU.hasPendingDeletedBB());
  DTU.deleteBB(BB3);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB3));
  EXPECT_TRUE(DTU.hasPendingDeletedBB());
  ASSERT_TRUE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_EQ(BB3->getParent(), F);
  DTU.recalculate(*F);
  EXPECT_FALSE(DTU.hasPendingDeletedBB());
}

TEST(DomTreeUpdater, LazyUpdateDTInheritedPreds) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 2, label %bb2
                                i32 3, label %bb3
                              ]
                            bb1:
                              br label %bb3
                            bb2:
                              br label %bb3
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree *PDT = nullptr;
  DomTreeUpdater DTU(&DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_FALSE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;

  // There are several CFG locations where we have:
  //
  //   pred1..predN
  //    |        |
  //    +> curr <+    converted into:   pred1..predN curr
  //        |                            |        |
  //        v                            +> succ <+
  //       succ
  //
  // There is a specific shape of this we have to be careful of:
  //
  //   pred1..predN
  //   ||        |
  //   |+> curr <+    converted into:   pred1..predN curr
  //   |    |                            |        |
  //   |    v                            +> succ <+
  //   +-> succ
  //
  // While the final CFG form is functionally identical the updates to
  // DTU are not. In the first case we must have
  // DTU.applyUpdates({{DominatorTree::Insert, Pred1, Succ}}) while in
  // the latter case we must *NOT* have
  // DTU.applyUpdates({{DominatorTree::Insert, Pred1, Succ}}).

  // CFG Change: bb0 now only has bb0 -> bb1 and bb0 -> bb3. We are preparing to
  // remove bb2.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 3u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB3, ConstantInt::getTrue(F->getContext()), BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);

  // Test callback utils.
  std::vector<BasicBlock *> BasicBlocks;
  BasicBlocks.push_back(BB1);
  BasicBlocks.push_back(BB2);
  auto Eraser = [&](BasicBlock *BB) {
    BasicBlocks.erase(
        std::remove_if(BasicBlocks.begin(), BasicBlocks.end(),
                       [&](const BasicBlock *i) { return i == BB; }),
        BasicBlocks.end());
  };
  ASSERT_EQ(BasicBlocks.size(), static_cast<size_t>(2));
  // Remove bb2 from F. This has to happen before the call to
  // applyUpdates() for DTU to detect there is no longer an edge between
  // bb2 -> bb3. The deleteBB() method converts bb2's TI into "unreachable".
  ASSERT_FALSE(isa<UnreachableInst>(BB2->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB2));
  DTU.callbackDeleteBB(BB2, Eraser);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB2));
  ASSERT_TRUE(isa<UnreachableInst>(BB2->getTerminator()));
  EXPECT_EQ(BB2->getParent(), F);

  // Queue up the DTU updates.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB2});
  Updates.push_back({DominatorTree::Delete, BB2, BB3});

  // Handle the specific shape case next.
  // CFG Change: bb0 now only branches to bb3. We are preparing to remove bb1.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB3, BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Remove bb1 from F. This has to happen before the call to
  // applyUpdates() for DTU to detect there is no longer an edge between
  // bb1 -> bb3. The deleteBB() method converts bb1's TI into "unreachable".
  ASSERT_FALSE(isa<UnreachableInst>(BB1->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB1));
  DTU.callbackDeleteBB(BB1, Eraser);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB1));
  ASSERT_TRUE(isa<UnreachableInst>(BB1->getTerminator()));
  EXPECT_EQ(BB1->getParent(), F);

  // Update the DTU. In this case we don't submit {DominatorTree::Insert, BB0,
  // BB3} because the edge previously existed at the start of this test when DT
  // was first created.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});
  Updates.push_back({DominatorTree::Delete, BB1, BB3});

  // Verify everything.
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_EQ(BasicBlocks.size(), static_cast<size_t>(2));
  DTU.flush();
  ASSERT_EQ(BasicBlocks.size(), static_cast<size_t>(0));
  ASSERT_TRUE(DT.verify());
}

TEST(DomTreeUpdater, LazyUpdateBasicOperations) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 0, label %bb2
                                i32 1, label %bb2
                                i32 2, label %bb3
                              ]
                            bb1:
                              ret i32 1
                            bb2:
                              ret i32 2
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(&DT, &PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;
  // Test discards of self-domination update.
  DTU.applyUpdates({{DominatorTree::Delete, BB0, BB0}});

  // Delete edge bb0 -> bb3 and push the update twice to verify duplicate
  // entries are discarded.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(4);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // Unnecessary Insert: no edge bb1 -> bb2 after change to bb0.
  Updates.push_back({DominatorTree::Insert, BB1, BB2});
  // Unnecessary Delete: edge exists bb0 -> bb1 after change to bb0.
  Updates.push_back({DominatorTree::Delete, BB0, BB1});

  // CFG Change: remove edge bb0 -> bb3 and one duplicate edge bb0 -> bb2.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB2, ConstantInt::getTrue(F->getContext()), BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);

  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion. Its parent is still F until DTU.flushDomTree is
  // called. We don't defer this action because it can cause problems for other
  // transforms or analysis as it's part of the actual CFG. We only defer
  // updates to the DominatorTree. This code will crash if it is placed before
  // the BranchInst::Create() call above.
  bool CallbackFlag = false;
  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  DTU.callbackDeleteBB(BB3, [&](BasicBlock *) { CallbackFlag = true; });
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB3));
  ASSERT_TRUE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_EQ(BB3->getParent(), F);

  // Verify. Updates to DTU must be applied *after* all changes to the CFG
  // (including block deletion).
  DTU.applyUpdatesPermissive(Updates);
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.hasPendingUpdates());
  ASSERT_TRUE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());
  ASSERT_TRUE(DTU.hasPendingDeletedBB());
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());
  ASSERT_FALSE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDeletedBB());
  ASSERT_EQ(CallbackFlag, true);
}

TEST(DomTreeUpdater, LazyUpdateReplaceEntryBB) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              br label %bb1
                            bb1:
                              ret i32 1
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;

  // Add a block as the new function entry BB. We also link it to BB0.
  BasicBlock *NewEntry =
      BasicBlock::Create(F->getContext(), "new_entry", F, BB0);
  BranchInst::Create(BB0, NewEntry);
  EXPECT_EQ(F->begin()->getName(), NewEntry->getName());
  EXPECT_TRUE(&F->getEntryBlock() == NewEntry);

  // Insert the new edge between new_entry -> bb0. Without this the
  // recalculate() call below will not actually recalculate the DT as there
  // are no changes pending and no blocks deleted.
  DTU.applyUpdates({{DominatorTree::Insert, NewEntry, BB0}});

  // Changing the Entry BB requires a full recalculation.
  DTU.recalculate(*F);
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());

  // CFG Change: remove new_edge -> bb0 and redirect to new_edge -> bb1.
  EXPECT_EQ(NewEntry->getTerminator()->getNumSuccessors(), 1u);
  NewEntry->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, NewEntry);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Update the DTU. At this point bb0 now has no predecessors but is still a
  // Child of F.
  DTU.applyUpdates({{DominatorTree::Delete, NewEntry, BB0},
                    {DominatorTree::Insert, NewEntry, BB1}});
  DTU.flush();
  ASSERT_TRUE(DT.verify());
  ASSERT_TRUE(PDT.verify());

  // Now remove bb0 from F.
  ASSERT_FALSE(isa<UnreachableInst>(BB0->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB0));
  DTU.deleteBB(BB0);
  EXPECT_TRUE(DTU.isBBPendingDeletion(BB0));
  ASSERT_TRUE(isa<UnreachableInst>(BB0->getTerminator()));
  EXPECT_EQ(BB0->getParent(), F);

  // Perform a full recalculation of the DTU. It is not necessary here but we
  // do this to test the case when there are no pending DT updates but there are
  // pending deleted BBs.
  ASSERT_TRUE(DTU.hasPendingDeletedBB());
  DTU.recalculate(*F);
  ASSERT_FALSE(DTU.hasPendingDeletedBB());
}

TEST(DomTreeUpdater, LazyUpdateStepTest) {
  // This test focus on testing a DTU holding both trees applying multiple
  // updates and DT/PDT not flushed together.
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f(i32 %i, i32 *%p) {
                            bb0:
                              store i32 %i, i32 *%p
                              switch i32 %i, label %bb1 [
                                i32 0, label %bb1
                                i32 1, label %bb2
                                i32 2, label %bb3
                                i32 3, label %bb1
                              ]
                            bb1:
                              ret i32 1
                            bb2:
                              ret i32 2
                            bb3:
                              ret i32 3
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DomTreeUpdater.
  DominatorTree DT(*F);
  PostDominatorTree PDT(*F);
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);

  ASSERT_TRUE(DTU.hasDomTree());
  ASSERT_TRUE(DTU.hasPostDomTree());
  ASSERT_FALSE(DTU.isEager());
  ASSERT_TRUE(DTU.isLazy());
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingUpdates());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  FI++;
  BasicBlock *BB2 = &*FI++;
  BasicBlock *BB3 = &*FI++;
  SwitchInst *SI = dyn_cast<SwitchInst>(BB0->getTerminator());
  ASSERT_NE(SI, nullptr) << "Couldn't get SwitchInst.";

  // Delete edge bb0 -> bb3.
  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve(1);
  Updates.push_back({DominatorTree::Delete, BB0, BB3});

  // CFG Change: remove edge bb0 -> bb3.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 5u);
  BB3->removePredecessor(BB0);
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
    if (i->getCaseIndex() == 2) {
      SI->removeCase(i);
      break;
    }
  }
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
  // Deletion of a BasicBlock is an immediate event. We remove all uses to the
  // contained Instructions and change the Terminator to "unreachable" when
  // queued for deletion.
  ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
  EXPECT_FALSE(DTU.isBBPendingDeletion(BB3));
  DTU.applyUpdates(Updates);

  // Only flush DomTree.
  ASSERT_TRUE(DTU.getDomTree().verify());
  ASSERT_TRUE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_FALSE(DTU.hasPendingDomTreeUpdates());

  ASSERT_EQ(BB3->getParent(), F);
  DTU.deleteBB(BB3);

  Updates.clear();

  // Remove all case branch to BB2 to test Eager recalculation.
  // Code section from llvm::ConstantFoldTerminator
  for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
    if (i->getCaseSuccessor() == BB2) {
      // Remove this entry.
      BB2->removePredecessor(BB0);
      i = SI->removeCase(i);
      e = SI->case_end();
      Updates.push_back({DominatorTree::Delete, BB0, BB2});
    } else
      ++i;
  }

  DTU.applyUpdatesPermissive(Updates);
  // flush PostDomTree
  ASSERT_TRUE(DTU.getPostDomTree().verify());
  ASSERT_FALSE(DTU.hasPendingPostDomTreeUpdates());
  ASSERT_TRUE(DTU.hasPendingDomTreeUpdates());
  // flush both trees
  DTU.flush();
  ASSERT_TRUE(DT.verify());
}

TEST(DomTreeUpdater, NoTreeTest) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              ret i32 0
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DomTreeUpdater DTU(nullptr, nullptr, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_FALSE(DTU.hasDomTree());
  ASSERT_FALSE(DTU.hasPostDomTree());
  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  // Test whether PendingDeletedBB is flushed after the recalculation.
  DTU.deleteBB(BB0);
  ASSERT_TRUE(DTU.hasPendingDeletedBB());
  DTU.recalculate(*F);
  ASSERT_FALSE(DTU.hasPendingDeletedBB());
}

TEST(DomTreeUpdater, LazyUpdateDeduplicationTest) {
  StringRef FuncName = "f";
  StringRef ModuleString = R"(
                           define i32 @f() {
                           bb0:
                              br label %bb1
                           bb1:
                              ret i32 1
                           bb2:
                              ret i32 1
                           }
                           )";
  // Make the module.
  LLVMContext Context;
  std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
  Function *F = M->getFunction(FuncName);

  // Make the DTU.
  DominatorTree DT(*F);
  DomTreeUpdater DTU(&DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy);
  ASSERT_TRUE(DTU.getDomTree().verify());

  Function::iterator FI = F->begin();
  BasicBlock *BB0 = &*FI++;
  BasicBlock *BB1 = &*FI++;
  BasicBlock *BB2 = &*FI++;

  // CFG Change: remove bb0 -> bb1 and add back bb0 -> bb1.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
  BB0->getTerminator()->eraseFromParent();
  BranchInst::Create(BB1, BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);

  // Update the DTU and simulate duplicates.
  DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1}});

  // The above operations result in a no-op.
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // Update the DTU. Simulate an invalid update.
  DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB0, BB1}});
  ASSERT_FALSE(DTU.hasPendingUpdates());

  // CFG Change: remove bb0 -> bb1.
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
  BB0->getTerminator()->eraseFromParent();

  // Update the DTU and simulate invalid updates.
  DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Delete, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1},
                              {DominatorTree::Insert, BB0, BB1}});
  ASSERT_TRUE(DTU.hasPendingUpdates());

  // CFG Change: add bb0 -> bb2.
  BranchInst::Create(BB2, BB0);
  EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
  DTU.applyUpdates({{DominatorTree::Insert, BB0, BB2}});
  ASSERT_TRUE(DTU.getDomTree().verify());
}