BinaryStreamTest.cpp 30 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
//===- llvm/unittest/Support/BinaryStreamTest.cpp -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/Allocator.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryItemStream.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Testing/Support/Error.h"

#include "gtest/gtest.h"


using namespace llvm;
using namespace llvm::support;

namespace {

class BrokenStream : public WritableBinaryStream {
public:
  BrokenStream(MutableArrayRef<uint8_t> Data, endianness Endian,
                      uint32_t Align)
      : Data(Data), PartitionIndex(alignDown(Data.size() / 2, Align)),
        Endian(Endian) {}

  endianness getEndian() const override { return Endian; }

  Error readBytes(uint32_t Offset, uint32_t Size,
                  ArrayRef<uint8_t> &Buffer) override {
    if (auto EC = checkOffsetForRead(Offset, Size))
      return EC;
    uint32_t S = startIndex(Offset);
    auto Ref = Data.drop_front(S);
    if (Ref.size() >= Size) {
      Buffer = Ref.take_front(Size);
      return Error::success();
    }

    uint32_t BytesLeft = Size - Ref.size();
    uint8_t *Ptr = Allocator.Allocate<uint8_t>(Size);
    ::memcpy(Ptr, Ref.data(), Ref.size());
    ::memcpy(Ptr + Ref.size(), Data.data(), BytesLeft);
    Buffer = makeArrayRef<uint8_t>(Ptr, Size);
    return Error::success();
  }

  Error readLongestContiguousChunk(uint32_t Offset,
                                   ArrayRef<uint8_t> &Buffer) override {
    if (auto EC = checkOffsetForRead(Offset, 1))
      return EC;
    uint32_t S = startIndex(Offset);
    Buffer = Data.drop_front(S);
    return Error::success();
  }

  uint32_t getLength() override { return Data.size(); }

  Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override {
    if (auto EC = checkOffsetForWrite(Offset, SrcData.size()))
      return EC;
    if (SrcData.empty())
      return Error::success();

    uint32_t S = startIndex(Offset);
    MutableArrayRef<uint8_t> Ref(Data);
    Ref = Ref.drop_front(S);
    if (Ref.size() >= SrcData.size()) {
      ::memcpy(Ref.data(), SrcData.data(), SrcData.size());
      return Error::success();
    }

    uint32_t BytesLeft = SrcData.size() - Ref.size();
    ::memcpy(Ref.data(), SrcData.data(), Ref.size());
    ::memcpy(&Data[0], SrcData.data() + Ref.size(), BytesLeft);
    return Error::success();
  }
  Error commit() override { return Error::success(); }

private:
  uint32_t startIndex(uint32_t Offset) const {
    return (Offset + PartitionIndex) % Data.size();
  }

  uint32_t endIndex(uint32_t Offset, uint32_t Size) const {
    return (startIndex(Offset) + Size - 1) % Data.size();
  }

  // Buffer is organized like this:
  // -------------------------------------------------
  // | N/2 | N/2+1 | ... | N-1 | 0 | 1 | ... | N/2-1 |
  // -------------------------------------------------
  // So reads from the beginning actually come from the middle.
  MutableArrayRef<uint8_t> Data;
  uint32_t PartitionIndex = 0;
  endianness Endian;
  BumpPtrAllocator Allocator;
};

constexpr endianness Endians[] = {big, little, native};
constexpr uint32_t NumEndians = llvm::array_lengthof(Endians);
constexpr uint32_t NumStreams = 2 * NumEndians;

class BinaryStreamTest : public testing::Test {

public:
  BinaryStreamTest() {}

  void SetUp() override {
    Streams.clear();
    Streams.resize(NumStreams);
    for (uint32_t I = 0; I < NumStreams; ++I)
      Streams[I].IsContiguous = (I % 2 == 0);

    InputData.clear();
    OutputData.clear();
  }

protected:
  struct StreamPair {
    bool IsContiguous;
    std::unique_ptr<BinaryStream> Input;
    std::unique_ptr<WritableBinaryStream> Output;
  };

  void initializeInput(ArrayRef<uint8_t> Input, uint32_t Align) {
    InputData = Input;

    BrokenInputData.resize(InputData.size());
    if (!Input.empty()) {
      uint32_t PartitionIndex = alignDown(InputData.size() / 2, Align);
      uint32_t RightBytes = InputData.size() - PartitionIndex;
      uint32_t LeftBytes = PartitionIndex;
      if (RightBytes > 0)
        ::memcpy(&BrokenInputData[PartitionIndex], Input.data(), RightBytes);
      if (LeftBytes > 0)
        ::memcpy(&BrokenInputData[0], Input.data() + RightBytes, LeftBytes);
    }

    for (uint32_t I = 0; I < NumEndians; ++I) {
      auto InByteStream =
          std::make_unique<BinaryByteStream>(InputData, Endians[I]);
      auto InBrokenStream = std::make_unique<BrokenStream>(
          BrokenInputData, Endians[I], Align);

      Streams[I * 2].Input = std::move(InByteStream);
      Streams[I * 2 + 1].Input = std::move(InBrokenStream);
    }
  }

  void initializeOutput(uint32_t Size, uint32_t Align) {
    OutputData.resize(Size);
    BrokenOutputData.resize(Size);

    for (uint32_t I = 0; I < NumEndians; ++I) {
      Streams[I * 2].Output =
          std::make_unique<MutableBinaryByteStream>(OutputData, Endians[I]);
      Streams[I * 2 + 1].Output = std::make_unique<BrokenStream>(
          BrokenOutputData, Endians[I], Align);
    }
  }

  void initializeOutputFromInput(uint32_t Align) {
    for (uint32_t I = 0; I < NumEndians; ++I) {
      Streams[I * 2].Output =
          std::make_unique<MutableBinaryByteStream>(InputData, Endians[I]);
      Streams[I * 2 + 1].Output = std::make_unique<BrokenStream>(
          BrokenInputData, Endians[I], Align);
    }
  }

  void initializeInputFromOutput(uint32_t Align) {
    for (uint32_t I = 0; I < NumEndians; ++I) {
      Streams[I * 2].Input =
          std::make_unique<BinaryByteStream>(OutputData, Endians[I]);
      Streams[I * 2 + 1].Input = std::make_unique<BrokenStream>(
          BrokenOutputData, Endians[I], Align);
    }
  }

  std::vector<uint8_t> InputData;
  std::vector<uint8_t> BrokenInputData;

  std::vector<uint8_t> OutputData;
  std::vector<uint8_t> BrokenOutputData;

  std::vector<StreamPair> Streams;
};

// Tests that a we can read from a BinaryByteStream without a StreamReader.
TEST_F(BinaryStreamTest, BinaryByteStreamBounds) {
  std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
  initializeInput(InputData, 1);

  for (auto &Stream : Streams) {
    ArrayRef<uint8_t> Buffer;

    // 1. If the read fits it should work.
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());
    ASSERT_THAT_ERROR(Stream.Input->readBytes(2, 1, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
    ASSERT_THAT_ERROR(Stream.Input->readBytes(0, 4, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).slice(0, 4), Buffer);

    // 2. Reading past the bounds of the input should fail.
    EXPECT_THAT_ERROR(Stream.Input->readBytes(4, 2, Buffer), Failed());
  }
}

TEST_F(BinaryStreamTest, StreamRefBounds) {
  std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
  initializeInput(InputData, 1);

  for (const auto &Stream : Streams) {
    ArrayRef<uint8_t> Buffer;
    BinaryStreamRef Ref(*Stream.Input);

    // Read 1 byte from offset 2 should work
    ASSERT_EQ(InputData.size(), Ref.getLength());
    ASSERT_THAT_ERROR(Ref.readBytes(2, 1, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);

    // Reading everything from offset 2 on.
    ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
    if (Stream.IsContiguous)
      EXPECT_EQ(makeArrayRef(InputData).slice(2), Buffer);
    else
      EXPECT_FALSE(Buffer.empty());

    // Reading 6 bytes from offset 0 is too big.
    EXPECT_THAT_ERROR(Ref.readBytes(0, 6, Buffer), Failed());
    EXPECT_THAT_ERROR(Ref.readLongestContiguousChunk(6, Buffer), Failed());

    // Reading 1 byte from offset 2 after dropping 1 byte is the same as reading
    // 1 byte from offset 3.
    Ref = Ref.drop_front(1);
    ASSERT_THAT_ERROR(Ref.readBytes(2, 1, Buffer), Succeeded());
    if (Stream.IsContiguous)
      EXPECT_EQ(makeArrayRef(InputData).slice(3, 1), Buffer);
    else
      EXPECT_FALSE(Buffer.empty());

    // Reading everything from offset 2 on after dropping 1 byte.
    ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
    if (Stream.IsContiguous)
      EXPECT_EQ(makeArrayRef(InputData).slice(3), Buffer);
    else
      EXPECT_FALSE(Buffer.empty());

    // Reading 2 bytes from offset 2 after dropping 2 bytes is the same as
    // reading 2 bytes from offset 4, and should fail.
    Ref = Ref.drop_front(1);
    EXPECT_THAT_ERROR(Ref.readBytes(2, 2, Buffer), Failed());

    // But if we read the longest contiguous chunk instead, we should still
    // get the 1 byte at the end.
    ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).take_back(), Buffer);
  }
}

TEST_F(BinaryStreamTest, StreamRefDynamicSize) {
  StringRef Strings[] = {"1", "2", "3", "4"};
  AppendingBinaryByteStream Stream(support::little);

  BinaryStreamWriter Writer(Stream);
  BinaryStreamReader Reader(Stream);
  const uint8_t *Byte;
  StringRef Str;

  // When the stream is empty, it should report a 0 length and we should get an
  // error trying to read even 1 byte from it.
  BinaryStreamRef ConstRef(Stream);
  EXPECT_EQ(0U, ConstRef.getLength());
  EXPECT_THAT_ERROR(Reader.readObject(Byte), Failed());

  // But if we write to it, its size should increase and we should be able to
  // read not just a byte, but the string that was written.
  EXPECT_THAT_ERROR(Writer.writeCString(Strings[0]), Succeeded());
  EXPECT_EQ(2U, ConstRef.getLength());
  EXPECT_THAT_ERROR(Reader.readObject(Byte), Succeeded());

  Reader.setOffset(0);
  EXPECT_THAT_ERROR(Reader.readCString(Str), Succeeded());
  EXPECT_EQ(Str, Strings[0]);

  // If we drop some bytes from the front, we should still track the length as
  // the
  // underlying stream grows.
  BinaryStreamRef Dropped = ConstRef.drop_front(1);
  EXPECT_EQ(1U, Dropped.getLength());

  EXPECT_THAT_ERROR(Writer.writeCString(Strings[1]), Succeeded());
  EXPECT_EQ(4U, ConstRef.getLength());
  EXPECT_EQ(3U, Dropped.getLength());

  // If we drop zero bytes from the back, we should continue tracking the
  // length.
  Dropped = Dropped.drop_back(0);
  EXPECT_THAT_ERROR(Writer.writeCString(Strings[2]), Succeeded());
  EXPECT_EQ(6U, ConstRef.getLength());
  EXPECT_EQ(5U, Dropped.getLength());

  // If we drop non-zero bytes from the back, we should stop tracking the
  // length.
  Dropped = Dropped.drop_back(1);
  EXPECT_THAT_ERROR(Writer.writeCString(Strings[3]), Succeeded());
  EXPECT_EQ(8U, ConstRef.getLength());
  EXPECT_EQ(4U, Dropped.getLength());
}

TEST_F(BinaryStreamTest, DropOperations) {
  std::vector<uint8_t> InputData = {1, 2, 3, 4, 5, 4, 3, 2, 1};
  auto RefData = makeArrayRef(InputData);
  initializeInput(InputData, 1);

  ArrayRef<uint8_t> Result;
  BinaryStreamRef Original(InputData, support::little);
  ASSERT_EQ(InputData.size(), Original.getLength());

  EXPECT_THAT_ERROR(Original.readBytes(0, InputData.size(), Result),
                    Succeeded());
  EXPECT_EQ(RefData, Result);

  auto Dropped = Original.drop_front(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.drop_front(2), Result);

  Dropped = Original.drop_back(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.drop_back(2), Result);

  Dropped = Original.keep_front(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.take_front(2), Result);

  Dropped = Original.keep_back(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.take_back(2), Result);

  Dropped = Original.drop_symmetric(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.drop_front(2).drop_back(2), Result);
}

// Test that we can write to a BinaryStream without a StreamWriter.
TEST_F(BinaryStreamTest, MutableBinaryByteStreamBounds) {
  std::vector<uint8_t> InputData = {'T', 'e', 's', 't', '\0'};
  initializeInput(InputData, 1);
  initializeOutput(InputData.size(), 1);

  // For every combination of input stream and output stream.
  for (auto &Stream : Streams) {
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());

    // 1. Try two reads that are supposed to work.  One from offset 0, and one
    // from the middle.
    uint32_t Offsets[] = {0, 3};
    for (auto Offset : Offsets) {
      uint32_t ExpectedSize = Stream.Input->getLength() - Offset;

      // Read everything from Offset until the end of the input data.
      ArrayRef<uint8_t> Data;
      ASSERT_THAT_ERROR(Stream.Input->readBytes(Offset, ExpectedSize, Data),
                        Succeeded());
      ASSERT_EQ(ExpectedSize, Data.size());

      // Then write it to the destination.
      ASSERT_THAT_ERROR(Stream.Output->writeBytes(0, Data), Succeeded());

      // Then we read back what we wrote, it should match the corresponding
      // slice of the original input data.
      ArrayRef<uint8_t> Data2;
      ASSERT_THAT_ERROR(Stream.Output->readBytes(Offset, ExpectedSize, Data2),
                        Succeeded());
      EXPECT_EQ(makeArrayRef(InputData).drop_front(Offset), Data2);
    }

    std::vector<uint8_t> BigData = {0, 1, 2, 3, 4};
    // 2. If the write is too big, it should fail.
    EXPECT_THAT_ERROR(Stream.Output->writeBytes(3, BigData), Failed());
  }
}

TEST_F(BinaryStreamTest, AppendingStream) {
  AppendingBinaryByteStream Stream(llvm::support::little);
  EXPECT_EQ(0U, Stream.getLength());

  std::vector<uint8_t> InputData = {'T', 'e', 's', 't', 'T', 'e', 's', 't'};
  auto Test = makeArrayRef(InputData).take_front(4);
  // Writing past the end of the stream is an error.
  EXPECT_THAT_ERROR(Stream.writeBytes(4, Test), Failed());

  // Writing exactly at the end of the stream is ok.
  EXPECT_THAT_ERROR(Stream.writeBytes(0, Test), Succeeded());
  EXPECT_EQ(Test, Stream.data());

  // And now that the end of the stream is where we couldn't write before, now
  // we can write.
  EXPECT_THAT_ERROR(Stream.writeBytes(4, Test), Succeeded());
  EXPECT_EQ(MutableArrayRef<uint8_t>(InputData), Stream.data());
}

// Test that FixedStreamArray works correctly.
TEST_F(BinaryStreamTest, FixedStreamArray) {
  std::vector<uint32_t> Ints = {90823, 12908, 109823, 209823};
  ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(Ints.data()),
                             Ints.size() * sizeof(uint32_t));

  initializeInput(IntBytes, alignof(uint32_t));

  for (auto &Stream : Streams) {
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());

    FixedStreamArray<uint32_t> Array(*Stream.Input);
    auto Iter = Array.begin();
    ASSERT_EQ(Ints[0], *Iter++);
    ASSERT_EQ(Ints[1], *Iter++);
    ASSERT_EQ(Ints[2], *Iter++);
    ASSERT_EQ(Ints[3], *Iter++);
    ASSERT_EQ(Array.end(), Iter);
  }
}

// Ensure FixedStreamArrayIterator::operator-> works.
// Added for coverage of r302257.
TEST_F(BinaryStreamTest, FixedStreamArrayIteratorArrow) {
  std::vector<std::pair<uint32_t, uint32_t>> Pairs = {{867, 5309}, {555, 1212}};
  ArrayRef<uint8_t> PairBytes(reinterpret_cast<uint8_t *>(Pairs.data()),
    Pairs.size() * sizeof(Pairs[0]));

  initializeInput(PairBytes, alignof(uint32_t));

  for (auto &Stream : Streams) {
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());

    const FixedStreamArray<std::pair<uint32_t, uint32_t>> Array(*Stream.Input);
    auto Iter = Array.begin();
    ASSERT_EQ(Pairs[0].first, Iter->first);
    ASSERT_EQ(Pairs[0].second, Iter->second);
    ++Iter;
    ASSERT_EQ(Pairs[1].first, Iter->first);
    ASSERT_EQ(Pairs[1].second, Iter->second);
    ++Iter;
    ASSERT_EQ(Array.end(), Iter);
  }
}

// Test that VarStreamArray works correctly.
TEST_F(BinaryStreamTest, VarStreamArray) {
  StringLiteral Strings("1. Test2. Longer Test3. Really Long Test4. Super "
                        "Extra Longest Test Of All");
  ArrayRef<uint8_t> StringBytes(
      reinterpret_cast<const uint8_t *>(Strings.data()), Strings.size());
  initializeInput(StringBytes, 1);

  struct StringExtractor {
  public:
    Error operator()(BinaryStreamRef Stream, uint32_t &Len, StringRef &Item) {
      if (Index == 0)
        Len = strlen("1. Test");
      else if (Index == 1)
        Len = strlen("2. Longer Test");
      else if (Index == 2)
        Len = strlen("3. Really Long Test");
      else
        Len = strlen("4. Super Extra Longest Test Of All");
      ArrayRef<uint8_t> Bytes;
      if (auto EC = Stream.readBytes(0, Len, Bytes))
        return EC;
      Item =
          StringRef(reinterpret_cast<const char *>(Bytes.data()), Bytes.size());
      ++Index;
      return Error::success();
    }

    uint32_t Index = 0;
  };

  for (auto &Stream : Streams) {
    VarStreamArray<StringRef, StringExtractor> Array(*Stream.Input);
    auto Iter = Array.begin();
    ASSERT_EQ("1. Test", *Iter++);
    ASSERT_EQ("2. Longer Test", *Iter++);
    ASSERT_EQ("3. Really Long Test", *Iter++);
    ASSERT_EQ("4. Super Extra Longest Test Of All", *Iter++);
    ASSERT_EQ(Array.end(), Iter);
  }
}

TEST_F(BinaryStreamTest, StreamReaderBounds) {
  std::vector<uint8_t> Bytes;

  initializeInput(Bytes, 1);
  for (auto &Stream : Streams) {
    StringRef S;
    BinaryStreamReader Reader(*Stream.Input);
    EXPECT_EQ(0U, Reader.bytesRemaining());
    EXPECT_THAT_ERROR(Reader.readFixedString(S, 1), Failed());
  }

  Bytes.resize(5);
  initializeInput(Bytes, 1);
  for (auto &Stream : Streams) {
    StringRef S;
    BinaryStreamReader Reader(*Stream.Input);
    EXPECT_EQ(Bytes.size(), Reader.bytesRemaining());
    EXPECT_THAT_ERROR(Reader.readFixedString(S, 5), Succeeded());
    EXPECT_THAT_ERROR(Reader.readFixedString(S, 6), Failed());
  }
}

TEST_F(BinaryStreamTest, StreamReaderIntegers) {
  support::ulittle64_t Little{908234};
  support::ubig32_t Big{28907823};
  short NS = 2897;
  int NI = -89723;
  unsigned long NUL = 902309023UL;
  constexpr uint32_t Size =
      sizeof(Little) + sizeof(Big) + sizeof(NS) + sizeof(NI) + sizeof(NUL);

  initializeOutput(Size, alignof(support::ulittle64_t));
  initializeInputFromOutput(alignof(support::ulittle64_t));

  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);
    ASSERT_THAT_ERROR(Writer.writeObject(Little), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeObject(Big), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeInteger(NS), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeInteger(NI), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeInteger(NUL), Succeeded());

    const support::ulittle64_t *Little2;
    const support::ubig32_t *Big2;
    short NS2;
    int NI2;
    unsigned long NUL2;

    // 1. Reading fields individually.
    BinaryStreamReader Reader(*Stream.Input);
    ASSERT_THAT_ERROR(Reader.readObject(Little2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readObject(Big2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readInteger(NS2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readInteger(NI2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readInteger(NUL2), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());

    EXPECT_EQ(Little, *Little2);
    EXPECT_EQ(Big, *Big2);
    EXPECT_EQ(NS, NS2);
    EXPECT_EQ(NI, NI2);
    EXPECT_EQ(NUL, NUL2);
  }
}

TEST_F(BinaryStreamTest, StreamReaderIntegerArray) {
  // 1. Arrays of integers
  std::vector<int> Ints = {1, 2, 3, 4, 5};
  ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(&Ints[0]),
                             Ints.size() * sizeof(int));

  initializeInput(IntBytes, alignof(int));
  for (auto &Stream : Streams) {
    BinaryStreamReader Reader(*Stream.Input);
    ArrayRef<int> IntsRef;
    ASSERT_THAT_ERROR(Reader.readArray(IntsRef, Ints.size()), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());
    EXPECT_EQ(makeArrayRef(Ints), IntsRef);

    Reader.setOffset(0);
    FixedStreamArray<int> FixedIntsRef;
    ASSERT_THAT_ERROR(Reader.readArray(FixedIntsRef, Ints.size()), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());
    ASSERT_EQ(Ints, std::vector<int>(FixedIntsRef.begin(), FixedIntsRef.end()));
  }
}

TEST_F(BinaryStreamTest, StreamReaderEnum) {
  enum class MyEnum : int64_t { Foo = -10, Bar = 0, Baz = 10 };

  std::vector<MyEnum> Enums = {MyEnum::Bar, MyEnum::Baz, MyEnum::Foo};

  initializeOutput(Enums.size() * sizeof(MyEnum), alignof(MyEnum));
  initializeInputFromOutput(alignof(MyEnum));
  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);
    for (auto Value : Enums)
      ASSERT_THAT_ERROR(Writer.writeEnum(Value), Succeeded());

    BinaryStreamReader Reader(*Stream.Input);

    FixedStreamArray<MyEnum> FSA;

    for (size_t I = 0; I < Enums.size(); ++I) {
      MyEnum Value;
      ASSERT_THAT_ERROR(Reader.readEnum(Value), Succeeded());
      EXPECT_EQ(Enums[I], Value);
    }
    ASSERT_EQ(0U, Reader.bytesRemaining());
  }
}

TEST_F(BinaryStreamTest, StreamReaderULEB128) {
  std::vector<uint64_t> TestValues = {
      0,                  // Zero
      0x7F,               // One byte
      0xFF,               // One byte, all-ones
      0xAAAA,             // Two bytes
      0xAAAAAAAA,         // Four bytes
      0xAAAAAAAAAAAAAAAA, // Eight bytes
      0xffffffffffffffff  // Eight bytess, all-ones
  };

  // Conservatively assume a 10-byte encoding for each of our LEB128s, with no
  // alignment requirement.
  initializeOutput(10 * TestValues.size(), 1);
  initializeInputFromOutput(1);

  for (auto &Stream : Streams) {
    // Write fields.
    BinaryStreamWriter Writer(*Stream.Output);
    for (const auto &Value : TestValues)
      ASSERT_THAT_ERROR(Writer.writeULEB128(Value), Succeeded());

    // Read fields.
    BinaryStreamReader Reader(*Stream.Input);
    std::vector<uint64_t> Results;
    Results.resize(TestValues.size());
    for (unsigned I = 0; I != TestValues.size(); ++I)
      ASSERT_THAT_ERROR(Reader.readULEB128(Results[I]), Succeeded());

    for (unsigned I = 0; I != TestValues.size(); ++I)
      EXPECT_EQ(TestValues[I], Results[I]);
  }
}

TEST_F(BinaryStreamTest, StreamReaderSLEB128) {
  std::vector<int64_t> TestValues = {
      0,                  // Zero
      0x7F,               // One byte
      -0x7F,              // One byte, negative
      0xFF,               // One byte, all-ones
      0xAAAA,             // Two bytes
      -0xAAAA,            // Two bytes, negative
      0xAAAAAAAA,         // Four bytes
      -0xAAAAAAAA,        // Four bytes, negative
      0x2AAAAAAAAAAAAAAA, // Eight bytes
      -0x7ffffffffffffff  // Eight bytess, negative
  };

  // Conservatively assume a 10-byte encoding for each of our LEB128s, with no
  // alignment requirement.
  initializeOutput(10 * TestValues.size(), 1);
  initializeInputFromOutput(1);

  for (auto &Stream : Streams) {
    // Write fields.
    BinaryStreamWriter Writer(*Stream.Output);
    for (const auto &Value : TestValues)
      ASSERT_THAT_ERROR(Writer.writeSLEB128(Value), Succeeded());

    // Read fields.
    BinaryStreamReader Reader(*Stream.Input);
    std::vector<int64_t> Results;
    Results.resize(TestValues.size());
    for (unsigned I = 0; I != TestValues.size(); ++I)
      ASSERT_THAT_ERROR(Reader.readSLEB128(Results[I]), Succeeded());

    for (unsigned I = 0; I != TestValues.size(); ++I)
      EXPECT_EQ(TestValues[I], Results[I]);
  }
}

TEST_F(BinaryStreamTest, StreamReaderObject) {
  struct Foo {
    int X;
    double Y;
    char Z;

    bool operator==(const Foo &Other) const {
      return X == Other.X && Y == Other.Y && Z == Other.Z;
    }
  };

  std::vector<Foo> Foos;
  Foos.push_back({-42, 42.42, 42});
  Foos.push_back({100, 3.1415, static_cast<char>(-89)});
  Foos.push_back({200, 2.718, static_cast<char>(-12) });

  const uint8_t *Bytes = reinterpret_cast<const uint8_t *>(&Foos[0]);

  initializeInput(makeArrayRef(Bytes, 3 * sizeof(Foo)), alignof(Foo));

  for (auto &Stream : Streams) {
    // 1. Reading object pointers.
    BinaryStreamReader Reader(*Stream.Input);
    const Foo *FPtrOut = nullptr;
    const Foo *GPtrOut = nullptr;
    const Foo *HPtrOut = nullptr;
    ASSERT_THAT_ERROR(Reader.readObject(FPtrOut), Succeeded());
    ASSERT_THAT_ERROR(Reader.readObject(GPtrOut), Succeeded());
    ASSERT_THAT_ERROR(Reader.readObject(HPtrOut), Succeeded());
    EXPECT_EQ(0U, Reader.bytesRemaining());
    EXPECT_EQ(Foos[0], *FPtrOut);
    EXPECT_EQ(Foos[1], *GPtrOut);
    EXPECT_EQ(Foos[2], *HPtrOut);
  }
}

TEST_F(BinaryStreamTest, StreamReaderStrings) {
  std::vector<uint8_t> Bytes = {'O',  'n', 'e', '\0', 'T', 'w', 'o',
                                '\0', 'T', 'h', 'r',  'e', 'e', '\0',
                                'F',  'o', 'u', 'r',  '\0'};
  initializeInput(Bytes, 1);

  for (auto &Stream : Streams) {
    BinaryStreamReader Reader(*Stream.Input);

    StringRef S1;
    StringRef S2;
    StringRef S3;
    StringRef S4;
    ASSERT_THAT_ERROR(Reader.readCString(S1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readCString(S2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readCString(S3), Succeeded());
    ASSERT_THAT_ERROR(Reader.readCString(S4), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());

    EXPECT_EQ("One", S1);
    EXPECT_EQ("Two", S2);
    EXPECT_EQ("Three", S3);
    EXPECT_EQ("Four", S4);

    S1 = S2 = S3 = S4 = "";
    Reader.setOffset(0);
    ASSERT_THAT_ERROR(Reader.readFixedString(S1, 3), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readFixedString(S2, 3), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readFixedString(S3, 5), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readFixedString(S4, 4), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());

    EXPECT_EQ("One", S1);
    EXPECT_EQ("Two", S2);
    EXPECT_EQ("Three", S3);
    EXPECT_EQ("Four", S4);
  }
}

TEST_F(BinaryStreamTest, StreamWriterBounds) {
  initializeOutput(5, 1);

  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);

    // 1. Can write a string that exactly fills the buffer.
    EXPECT_EQ(5U, Writer.bytesRemaining());
    EXPECT_THAT_ERROR(Writer.writeFixedString("abcde"), Succeeded());
    EXPECT_EQ(0U, Writer.bytesRemaining());

    // 2. Can write an empty string even when you're full
    EXPECT_THAT_ERROR(Writer.writeFixedString(""), Succeeded());
    EXPECT_THAT_ERROR(Writer.writeFixedString("a"), Failed());

    // 3. Can't write a string that is one character too long.
    Writer.setOffset(0);
    EXPECT_THAT_ERROR(Writer.writeFixedString("abcdef"), Failed());
  }
}

TEST_F(BinaryStreamTest, StreamWriterIntegerArrays) {
  // 3. Arrays of integers
  std::vector<int> SourceInts = {1, 2, 3, 4, 5};
  ArrayRef<uint8_t> SourceBytes(reinterpret_cast<uint8_t *>(&SourceInts[0]),
                                SourceInts.size() * sizeof(int));

  initializeInput(SourceBytes, alignof(int));
  initializeOutputFromInput(alignof(int));

  for (auto &Stream : Streams) {
    BinaryStreamReader Reader(*Stream.Input);
    BinaryStreamWriter Writer(*Stream.Output);
    ArrayRef<int> Ints;
    ArrayRef<int> Ints2;
    // First read them, then write them, then read them back.
    ASSERT_THAT_ERROR(Reader.readArray(Ints, SourceInts.size()), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeArray(Ints), Succeeded());

    BinaryStreamReader ReaderBacker(*Stream.Output);
    ASSERT_THAT_ERROR(ReaderBacker.readArray(Ints2, SourceInts.size()),
                      Succeeded());

    EXPECT_EQ(makeArrayRef(SourceInts), Ints2);
  }
}

TEST_F(BinaryStreamTest, StringWriterStrings) {
  StringRef Strings[] = {"First", "Second", "Third", "Fourth"};

  size_t Length = 0;
  for (auto S : Strings)
    Length += S.size() + 1;
  initializeOutput(Length, 1);
  initializeInputFromOutput(1);

  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);
    for (auto S : Strings)
      ASSERT_THAT_ERROR(Writer.writeCString(S), Succeeded());
    std::vector<StringRef> InStrings;
    BinaryStreamReader Reader(*Stream.Input);
    while (!Reader.empty()) {
      StringRef S;
      ASSERT_THAT_ERROR(Reader.readCString(S), Succeeded());
      InStrings.push_back(S);
    }
    EXPECT_EQ(makeArrayRef(Strings), makeArrayRef(InStrings));
  }
}

TEST_F(BinaryStreamTest, StreamWriterAppend) {
  StringRef Strings[] = {"First", "Second", "Third", "Fourth"};
  AppendingBinaryByteStream Stream(support::little);
  BinaryStreamWriter Writer(Stream);

  for (auto &Str : Strings) {
    EXPECT_THAT_ERROR(Writer.writeCString(Str), Succeeded());
  }

  BinaryStreamReader Reader(Stream);
  for (auto &Str : Strings) {
    StringRef S;
    EXPECT_THAT_ERROR(Reader.readCString(S), Succeeded());
    EXPECT_EQ(Str, S);
  }
}
}

namespace {
struct BinaryItemStreamObject {
  explicit BinaryItemStreamObject(ArrayRef<uint8_t> Bytes) : Bytes(Bytes) {}

  ArrayRef<uint8_t> Bytes;
};
}

namespace llvm {
template <> struct BinaryItemTraits<BinaryItemStreamObject> {
  static size_t length(const BinaryItemStreamObject &Item) {
    return Item.Bytes.size();
  }

  static ArrayRef<uint8_t> bytes(const BinaryItemStreamObject &Item) {
    return Item.Bytes;
  }
};
}

namespace {

TEST_F(BinaryStreamTest, BinaryItemStream) {
  std::vector<BinaryItemStreamObject> Objects;

  struct Foo {
    int X;
    double Y;
  };
  std::vector<Foo> Foos = {{1, 1.0}, {2, 2.0}, {3, 3.0}};
  BumpPtrAllocator Allocator;
  for (const auto &F : Foos) {
    uint8_t *Ptr = static_cast<uint8_t *>(Allocator.Allocate(sizeof(Foo),
                                                             alignof(Foo)));
    MutableArrayRef<uint8_t> Buffer(Ptr, sizeof(Foo));
    MutableBinaryByteStream Stream(Buffer, llvm::support::big);
    BinaryStreamWriter Writer(Stream);
    ASSERT_THAT_ERROR(Writer.writeObject(F), Succeeded());
    Objects.push_back(BinaryItemStreamObject(Buffer));
  }

  BinaryItemStream<BinaryItemStreamObject> ItemStream(big);
  ItemStream.setItems(Objects);
  BinaryStreamReader Reader(ItemStream);

  for (const auto &F : Foos) {
    const Foo *F2;
    ASSERT_THAT_ERROR(Reader.readObject(F2), Succeeded());

    EXPECT_EQ(F.X, F2->X);
    EXPECT_DOUBLE_EQ(F.Y, F2->Y);
  }
}

} // end anonymous namespace