ConfigCompile.cpp
9.33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//===--- ConfigCompile.cpp - Translating Fragments into Config ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Fragments are applied to Configs in two steps:
//
// 1. (When the fragment is first loaded)
// FragmentCompiler::compile() traverses the Fragment and creates
// function objects that know how to apply the configuration.
// 2. (Every time a config is required)
// CompiledFragment() executes these functions to populate the Config.
//
// Work could be split between these steps in different ways. We try to
// do as much work as possible in the first step. For example, regexes are
// compiled in stage 1 and captured by the apply function. This is because:
//
// - it's more efficient, as the work done in stage 1 must only be done once
// - problems can be reported in stage 1, in stage 2 we must silently recover
//
//===----------------------------------------------------------------------===//
#include "CompileCommands.h"
#include "Config.h"
#include "ConfigFragment.h"
#include "support/Logger.h"
#include "support/Trace.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
namespace clang {
namespace clangd {
namespace config {
namespace {
struct CompiledFragmentImpl {
// The independent conditions to check before using settings from this config.
// The following fragment has *two* conditions:
// If: { Platform: [mac, linux], PathMatch: foo/.* }
// All of them must be satisfied: the platform and path conditions are ANDed.
// The OR logic for the platform condition is implemented inside the function.
std::vector<llvm::unique_function<bool(const Params &) const>> Conditions;
// Mutations that this fragment will apply to the configuration.
// These are invoked only if the conditions are satisfied.
std::vector<llvm::unique_function<void(Config &) const>> Apply;
bool operator()(const Params &P, Config &C) const {
for (const auto &C : Conditions) {
if (!C(P)) {
dlog("Config fragment {0}: condition not met", this);
return false;
}
}
dlog("Config fragment {0}: applying {1} rules", this, Apply.size());
for (const auto &A : Apply)
A(C);
return true;
}
};
// Wrapper around condition compile() functions to reduce arg-passing.
struct FragmentCompiler {
CompiledFragmentImpl &Out;
DiagnosticCallback Diagnostic;
llvm::SourceMgr *SourceMgr;
llvm::Optional<llvm::Regex> compileRegex(const Located<std::string> &Text) {
std::string Anchored = "^(" + *Text + ")$";
llvm::Regex Result(Anchored);
std::string RegexError;
if (!Result.isValid(RegexError)) {
diag(Error, "Invalid regex " + Anchored + ": " + RegexError, Text.Range);
return llvm::None;
}
return Result;
}
// Helper with similar API to StringSwitch, for parsing enum values.
template <typename T> class EnumSwitch {
FragmentCompiler &Outer;
llvm::StringRef EnumName;
const Located<std::string> &Input;
llvm::Optional<T> Result;
llvm::SmallVector<llvm::StringLiteral, 8> ValidValues;
public:
EnumSwitch(llvm::StringRef EnumName, const Located<std::string> &In,
FragmentCompiler &Outer)
: Outer(Outer), EnumName(EnumName), Input(In) {}
EnumSwitch &map(llvm::StringLiteral Name, T Value) {
assert(!llvm::is_contained(ValidValues, Name) && "Duplicate value!");
ValidValues.push_back(Name);
if (!Result && *Input == Name)
Result = Value;
return *this;
}
llvm::Optional<T> value() {
if (!Result)
Outer.diag(
Warning,
llvm::formatv("Invalid {0} value '{1}'. Valid values are {2}.",
EnumName, *Input, llvm::join(ValidValues, ", "))
.str(),
Input.Range);
return Result;
};
};
// Attempt to parse a specified string into an enum.
// Yields llvm::None and produces a diagnostic on failure.
//
// Optional<T> Value = compileEnum<En>("Foo", Frag.Foo)
// .map("Foo", Enum::Foo)
// .map("Bar", Enum::Bar)
// .value();
template <typename T>
EnumSwitch<T> compileEnum(llvm::StringRef EnumName,
const Located<std::string> &In) {
return EnumSwitch<T>(EnumName, In, *this);
}
void compile(Fragment &&F) {
compile(std::move(F.If));
compile(std::move(F.CompileFlags));
compile(std::move(F.Index));
}
void compile(Fragment::IfBlock &&F) {
if (F.HasUnrecognizedCondition)
Out.Conditions.push_back([&](const Params &) { return false; });
auto PathMatch = std::make_unique<std::vector<llvm::Regex>>();
for (auto &Entry : F.PathMatch) {
if (auto RE = compileRegex(Entry))
PathMatch->push_back(std::move(*RE));
}
if (!PathMatch->empty()) {
Out.Conditions.push_back(
[PathMatch(std::move(PathMatch))](const Params &P) {
if (P.Path.empty())
return false;
return llvm::any_of(*PathMatch, [&](const llvm::Regex &RE) {
return RE.match(P.Path);
});
});
}
auto PathExclude = std::make_unique<std::vector<llvm::Regex>>();
for (auto &Entry : F.PathExclude) {
if (auto RE = compileRegex(Entry))
PathExclude->push_back(std::move(*RE));
}
if (!PathExclude->empty()) {
Out.Conditions.push_back(
[PathExclude(std::move(PathExclude))](const Params &P) {
if (P.Path.empty())
return false;
return llvm::none_of(*PathExclude, [&](const llvm::Regex &RE) {
return RE.match(P.Path);
});
});
}
}
void compile(Fragment::CompileFlagsBlock &&F) {
if (!F.Remove.empty()) {
auto Remove = std::make_shared<ArgStripper>();
for (auto &A : F.Remove)
Remove->strip(*A);
Out.Apply.push_back([Remove(std::shared_ptr<const ArgStripper>(
std::move(Remove)))](Config &C) {
C.CompileFlags.Edits.push_back(
[Remove](std::vector<std::string> &Args) {
Remove->process(Args);
});
});
}
if (!F.Add.empty()) {
std::vector<std::string> Add;
for (auto &A : F.Add)
Add.push_back(std::move(*A));
Out.Apply.push_back([Add(std::move(Add))](Config &C) {
C.CompileFlags.Edits.push_back([Add](std::vector<std::string> &Args) {
Args.insert(Args.end(), Add.begin(), Add.end());
});
});
}
}
void compile(Fragment::IndexBlock &&F) {
if (F.Background) {
if (auto Val = compileEnum<Config::BackgroundPolicy>("Background",
**F.Background)
.map("Build", Config::BackgroundPolicy::Build)
.map("Skip", Config::BackgroundPolicy::Skip)
.value())
Out.Apply.push_back([Val](Config &C) { C.Index.Background = *Val; });
}
}
void compile(Fragment::StyleBlock &&F) {
if (!F.FullyQualifiedNamespaces.empty()) {
std::vector<std::string> FullyQualifiedNamespaces;
for (auto &N : F.FullyQualifiedNamespaces) {
// Normalize the data by dropping both leading and trailing ::
StringRef Namespace(*N);
Namespace.consume_front("::");
Namespace.consume_back("::");
FullyQualifiedNamespaces.push_back(Namespace.str());
}
Out.Apply.push_back([FullyQualifiedNamespaces(
std::move(FullyQualifiedNamespaces))](Config &C) {
C.Style.FullyQualifiedNamespaces.insert(
C.Style.FullyQualifiedNamespaces.begin(),
FullyQualifiedNamespaces.begin(), FullyQualifiedNamespaces.end());
});
}
}
constexpr static llvm::SourceMgr::DiagKind Error = llvm::SourceMgr::DK_Error;
constexpr static llvm::SourceMgr::DiagKind Warning =
llvm::SourceMgr::DK_Warning;
void diag(llvm::SourceMgr::DiagKind Kind, llvm::StringRef Message,
llvm::SMRange Range) {
if (Range.isValid() && SourceMgr != nullptr)
Diagnostic(SourceMgr->GetMessage(Range.Start, Kind, Message, Range));
else
Diagnostic(llvm::SMDiagnostic("", Kind, Message));
}
};
} // namespace
CompiledFragment Fragment::compile(DiagnosticCallback D) && {
llvm::StringRef ConfigFile = "<unknown>";
std::pair<unsigned, unsigned> LineCol = {0, 0};
if (auto *SM = Source.Manager.get()) {
unsigned BufID = SM->getMainFileID();
LineCol = SM->getLineAndColumn(Source.Location, BufID);
ConfigFile = SM->getBufferInfo(BufID).Buffer->getBufferIdentifier();
}
trace::Span Tracer("ConfigCompile");
SPAN_ATTACH(Tracer, "ConfigFile", ConfigFile);
auto Result = std::make_shared<CompiledFragmentImpl>();
vlog("Config fragment: compiling {0}:{1} -> {2}", ConfigFile, LineCol.first,
Result.get());
FragmentCompiler{*Result, D, Source.Manager.get()}.compile(std::move(*this));
// Return as cheaply-copyable wrapper.
return [Result(std::move(Result))](const Params &P, Config &C) {
return (*Result)(P, C);
};
}
} // namespace config
} // namespace clangd
} // namespace clang