kmp_dispatch_hier.h
41.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
/*
* kmp_dispatch_hier.h -- hierarchical scheduling methods and data structures
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef KMP_DISPATCH_HIER_H
#define KMP_DISPATCH_HIER_H
#include "kmp.h"
#include "kmp_dispatch.h"
// Layer type for scheduling hierarchy
enum kmp_hier_layer_e {
LAYER_THREAD = -1,
LAYER_L1,
LAYER_L2,
LAYER_L3,
LAYER_NUMA,
LAYER_LOOP,
LAYER_LAST
};
// Convert hierarchy type (LAYER_L1, LAYER_L2, etc.) to C-style string
static inline const char *__kmp_get_hier_str(kmp_hier_layer_e type) {
switch (type) {
case kmp_hier_layer_e::LAYER_THREAD:
return "THREAD";
case kmp_hier_layer_e::LAYER_L1:
return "L1";
case kmp_hier_layer_e::LAYER_L2:
return "L2";
case kmp_hier_layer_e::LAYER_L3:
return "L3";
case kmp_hier_layer_e::LAYER_NUMA:
return "NUMA";
case kmp_hier_layer_e::LAYER_LOOP:
return "WHOLE_LOOP";
case kmp_hier_layer_e::LAYER_LAST:
return "LAST";
}
KMP_ASSERT(0);
// Appease compilers, should never get here
return "ERROR";
}
// Structure to store values parsed from OMP_SCHEDULE for scheduling hierarchy
typedef struct kmp_hier_sched_env_t {
int size;
int capacity;
enum sched_type *scheds;
kmp_int32 *small_chunks;
kmp_int64 *large_chunks;
kmp_hier_layer_e *layers;
// Append a level of the hierarchy
void append(enum sched_type sched, kmp_int32 chunk, kmp_hier_layer_e layer) {
if (capacity == 0) {
scheds = (enum sched_type *)__kmp_allocate(sizeof(enum sched_type) *
kmp_hier_layer_e::LAYER_LAST);
small_chunks = (kmp_int32 *)__kmp_allocate(sizeof(kmp_int32) *
kmp_hier_layer_e::LAYER_LAST);
large_chunks = (kmp_int64 *)__kmp_allocate(sizeof(kmp_int64) *
kmp_hier_layer_e::LAYER_LAST);
layers = (kmp_hier_layer_e *)__kmp_allocate(sizeof(kmp_hier_layer_e) *
kmp_hier_layer_e::LAYER_LAST);
capacity = kmp_hier_layer_e::LAYER_LAST;
}
int current_size = size;
KMP_DEBUG_ASSERT(current_size < kmp_hier_layer_e::LAYER_LAST);
scheds[current_size] = sched;
layers[current_size] = layer;
small_chunks[current_size] = chunk;
large_chunks[current_size] = (kmp_int64)chunk;
size++;
}
// Sort the hierarchy using selection sort, size will always be small
// (less than LAYER_LAST) so it is not necessary to use an nlog(n) algorithm
void sort() {
if (size <= 1)
return;
for (int i = 0; i < size; ++i) {
int switch_index = i;
for (int j = i + 1; j < size; ++j) {
if (layers[j] < layers[switch_index])
switch_index = j;
}
if (switch_index != i) {
kmp_hier_layer_e temp1 = layers[i];
enum sched_type temp2 = scheds[i];
kmp_int32 temp3 = small_chunks[i];
kmp_int64 temp4 = large_chunks[i];
layers[i] = layers[switch_index];
scheds[i] = scheds[switch_index];
small_chunks[i] = small_chunks[switch_index];
large_chunks[i] = large_chunks[switch_index];
layers[switch_index] = temp1;
scheds[switch_index] = temp2;
small_chunks[switch_index] = temp3;
large_chunks[switch_index] = temp4;
}
}
}
// Free all memory
void deallocate() {
if (capacity > 0) {
__kmp_free(scheds);
__kmp_free(layers);
__kmp_free(small_chunks);
__kmp_free(large_chunks);
scheds = NULL;
layers = NULL;
small_chunks = NULL;
large_chunks = NULL;
}
size = 0;
capacity = 0;
}
} kmp_hier_sched_env_t;
extern int __kmp_dispatch_hand_threading;
extern kmp_hier_sched_env_t __kmp_hier_scheds;
// Sizes of layer arrays bounded by max number of detected L1s, L2s, etc.
extern int __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LAST + 1];
extern int __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LAST + 1];
extern int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type);
extern int __kmp_dispatch_get_id(int gtid, kmp_hier_layer_e type);
extern int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,
kmp_hier_layer_e t2);
extern void __kmp_dispatch_free_hierarchies(kmp_team_t *team);
template <typename T> struct kmp_hier_shared_bdata_t {
typedef typename traits_t<T>::signed_t ST;
volatile kmp_uint64 val[2];
kmp_int32 status[2];
T lb[2];
T ub[2];
ST st[2];
dispatch_shared_info_template<T> sh[2];
void zero() {
val[0] = val[1] = 0;
status[0] = status[1] = 0;
lb[0] = lb[1] = 0;
ub[0] = ub[1] = 0;
st[0] = st[1] = 0;
sh[0].u.s.iteration = sh[1].u.s.iteration = 0;
}
void set_next_hand_thread(T nlb, T nub, ST nst, kmp_int32 nstatus,
kmp_uint64 index) {
lb[1 - index] = nlb;
ub[1 - index] = nub;
st[1 - index] = nst;
status[1 - index] = nstatus;
}
void set_next(T nlb, T nub, ST nst, kmp_int32 nstatus, kmp_uint64 index) {
lb[1 - index] = nlb;
ub[1 - index] = nub;
st[1 - index] = nst;
status[1 - index] = nstatus;
sh[1 - index].u.s.iteration = 0;
}
kmp_int32 get_next_status(kmp_uint64 index) const {
return status[1 - index];
}
T get_next_lb(kmp_uint64 index) const { return lb[1 - index]; }
T get_next_ub(kmp_uint64 index) const { return ub[1 - index]; }
ST get_next_st(kmp_uint64 index) const { return st[1 - index]; }
dispatch_shared_info_template<T> volatile *get_next_sh(kmp_uint64 index) {
return &(sh[1 - index]);
}
kmp_int32 get_curr_status(kmp_uint64 index) const { return status[index]; }
T get_curr_lb(kmp_uint64 index) const { return lb[index]; }
T get_curr_ub(kmp_uint64 index) const { return ub[index]; }
ST get_curr_st(kmp_uint64 index) const { return st[index]; }
dispatch_shared_info_template<T> volatile *get_curr_sh(kmp_uint64 index) {
return &(sh[index]);
}
};
/*
* In the barrier implementations, num_active is the number of threads that are
* attached to the kmp_hier_top_unit_t structure in the scheduling hierarchy.
* bdata is the shared barrier data that resides on the kmp_hier_top_unit_t
* structure. tdata is the thread private data that resides on the thread
* data structure.
*
* The reset_shared() method is used to initialize the barrier data on the
* kmp_hier_top_unit_t hierarchy structure
*
* The reset_private() method is used to initialize the barrier data on the
* thread's private dispatch buffer structure
*
* The barrier() method takes an id, which is that thread's id for the
* kmp_hier_top_unit_t structure, and implements the barrier. All threads wait
* inside barrier() until all fellow threads who are attached to that
* kmp_hier_top_unit_t structure have arrived.
*/
// Core barrier implementation
// Can be used in a unit with between 2 to 8 threads
template <typename T> class core_barrier_impl {
static inline kmp_uint64 get_wait_val(int num_active) {
kmp_uint64 wait_val = 0LL;
switch (num_active) {
case 2:
wait_val = 0x0101LL;
break;
case 3:
wait_val = 0x010101LL;
break;
case 4:
wait_val = 0x01010101LL;
break;
case 5:
wait_val = 0x0101010101LL;
break;
case 6:
wait_val = 0x010101010101LL;
break;
case 7:
wait_val = 0x01010101010101LL;
break;
case 8:
wait_val = 0x0101010101010101LL;
break;
default:
// don't use the core_barrier_impl for more than 8 threads
KMP_ASSERT(0);
}
return wait_val;
}
public:
static void reset_private(kmp_int32 num_active,
kmp_hier_private_bdata_t *tdata);
static void reset_shared(kmp_int32 num_active,
kmp_hier_shared_bdata_t<T> *bdata);
static void barrier(kmp_int32 id, kmp_hier_shared_bdata_t<T> *bdata,
kmp_hier_private_bdata_t *tdata);
};
template <typename T>
void core_barrier_impl<T>::reset_private(kmp_int32 num_active,
kmp_hier_private_bdata_t *tdata) {
tdata->num_active = num_active;
tdata->index = 0;
tdata->wait_val[0] = tdata->wait_val[1] = get_wait_val(num_active);
}
template <typename T>
void core_barrier_impl<T>::reset_shared(kmp_int32 num_active,
kmp_hier_shared_bdata_t<T> *bdata) {
bdata->val[0] = bdata->val[1] = 0LL;
bdata->status[0] = bdata->status[1] = 0LL;
}
template <typename T>
void core_barrier_impl<T>::barrier(kmp_int32 id,
kmp_hier_shared_bdata_t<T> *bdata,
kmp_hier_private_bdata_t *tdata) {
kmp_uint64 current_index = tdata->index;
kmp_uint64 next_index = 1 - current_index;
kmp_uint64 current_wait_value = tdata->wait_val[current_index];
kmp_uint64 next_wait_value =
(current_wait_value ? 0 : get_wait_val(tdata->num_active));
KD_TRACE(10, ("core_barrier_impl::barrier(): T#%d current_index:%llu "
"next_index:%llu curr_wait:%llu next_wait:%llu\n",
__kmp_get_gtid(), current_index, next_index, current_wait_value,
next_wait_value));
char v = (current_wait_value ? 0x1 : 0x0);
(RCAST(volatile char *, &(bdata->val[current_index])))[id] = v;
__kmp_wait<kmp_uint64>(&(bdata->val[current_index]), current_wait_value,
__kmp_eq<kmp_uint64> USE_ITT_BUILD_ARG(NULL));
tdata->wait_val[current_index] = next_wait_value;
tdata->index = next_index;
}
// Counter barrier implementation
// Can be used in a unit with arbitrary number of active threads
template <typename T> class counter_barrier_impl {
public:
static void reset_private(kmp_int32 num_active,
kmp_hier_private_bdata_t *tdata);
static void reset_shared(kmp_int32 num_active,
kmp_hier_shared_bdata_t<T> *bdata);
static void barrier(kmp_int32 id, kmp_hier_shared_bdata_t<T> *bdata,
kmp_hier_private_bdata_t *tdata);
};
template <typename T>
void counter_barrier_impl<T>::reset_private(kmp_int32 num_active,
kmp_hier_private_bdata_t *tdata) {
tdata->num_active = num_active;
tdata->index = 0;
tdata->wait_val[0] = tdata->wait_val[1] = (kmp_uint64)num_active;
}
template <typename T>
void counter_barrier_impl<T>::reset_shared(kmp_int32 num_active,
kmp_hier_shared_bdata_t<T> *bdata) {
bdata->val[0] = bdata->val[1] = 0LL;
bdata->status[0] = bdata->status[1] = 0LL;
}
template <typename T>
void counter_barrier_impl<T>::barrier(kmp_int32 id,
kmp_hier_shared_bdata_t<T> *bdata,
kmp_hier_private_bdata_t *tdata) {
volatile kmp_int64 *val;
kmp_uint64 current_index = tdata->index;
kmp_uint64 next_index = 1 - current_index;
kmp_uint64 current_wait_value = tdata->wait_val[current_index];
kmp_uint64 next_wait_value = current_wait_value + tdata->num_active;
KD_TRACE(10, ("counter_barrier_impl::barrier(): T#%d current_index:%llu "
"next_index:%llu curr_wait:%llu next_wait:%llu\n",
__kmp_get_gtid(), current_index, next_index, current_wait_value,
next_wait_value));
val = RCAST(volatile kmp_int64 *, &(bdata->val[current_index]));
KMP_TEST_THEN_INC64(val);
__kmp_wait<kmp_uint64>(&(bdata->val[current_index]), current_wait_value,
__kmp_ge<kmp_uint64> USE_ITT_BUILD_ARG(NULL));
tdata->wait_val[current_index] = next_wait_value;
tdata->index = next_index;
}
// Data associated with topology unit within a layer
// For example, one kmp_hier_top_unit_t corresponds to one L1 cache
template <typename T> struct kmp_hier_top_unit_t {
typedef typename traits_t<T>::signed_t ST;
typedef typename traits_t<T>::unsigned_t UT;
kmp_int32 active; // number of topology units that communicate with this unit
// chunk information (lower/upper bound, stride, etc.)
dispatch_private_info_template<T> hier_pr;
kmp_hier_top_unit_t<T> *hier_parent; // pointer to parent unit
kmp_hier_shared_bdata_t<T> hier_barrier; // shared barrier data for this unit
kmp_int32 get_hier_id() const { return hier_pr.hier_id; }
void reset_shared_barrier() {
KMP_DEBUG_ASSERT(active > 0);
if (active == 1)
return;
hier_barrier.zero();
if (active >= 2 && active <= 8) {
core_barrier_impl<T>::reset_shared(active, &hier_barrier);
} else {
counter_barrier_impl<T>::reset_shared(active, &hier_barrier);
}
}
void reset_private_barrier(kmp_hier_private_bdata_t *tdata) {
KMP_DEBUG_ASSERT(tdata);
KMP_DEBUG_ASSERT(active > 0);
if (active == 1)
return;
if (active >= 2 && active <= 8) {
core_barrier_impl<T>::reset_private(active, tdata);
} else {
counter_barrier_impl<T>::reset_private(active, tdata);
}
}
void barrier(kmp_int32 id, kmp_hier_private_bdata_t *tdata) {
KMP_DEBUG_ASSERT(tdata);
KMP_DEBUG_ASSERT(active > 0);
KMP_DEBUG_ASSERT(id >= 0 && id < active);
if (active == 1) {
tdata->index = 1 - tdata->index;
return;
}
if (active >= 2 && active <= 8) {
core_barrier_impl<T>::barrier(id, &hier_barrier, tdata);
} else {
counter_barrier_impl<T>::barrier(id, &hier_barrier, tdata);
}
}
kmp_int32 get_next_status(kmp_uint64 index) const {
return hier_barrier.get_next_status(index);
}
T get_next_lb(kmp_uint64 index) const {
return hier_barrier.get_next_lb(index);
}
T get_next_ub(kmp_uint64 index) const {
return hier_barrier.get_next_ub(index);
}
ST get_next_st(kmp_uint64 index) const {
return hier_barrier.get_next_st(index);
}
dispatch_shared_info_template<T> volatile *get_next_sh(kmp_uint64 index) {
return hier_barrier.get_next_sh(index);
}
kmp_int32 get_curr_status(kmp_uint64 index) const {
return hier_barrier.get_curr_status(index);
}
T get_curr_lb(kmp_uint64 index) const {
return hier_barrier.get_curr_lb(index);
}
T get_curr_ub(kmp_uint64 index) const {
return hier_barrier.get_curr_ub(index);
}
ST get_curr_st(kmp_uint64 index) const {
return hier_barrier.get_curr_st(index);
}
dispatch_shared_info_template<T> volatile *get_curr_sh(kmp_uint64 index) {
return hier_barrier.get_curr_sh(index);
}
void set_next_hand_thread(T lb, T ub, ST st, kmp_int32 status,
kmp_uint64 index) {
hier_barrier.set_next_hand_thread(lb, ub, st, status, index);
}
void set_next(T lb, T ub, ST st, kmp_int32 status, kmp_uint64 index) {
hier_barrier.set_next(lb, ub, st, status, index);
}
dispatch_private_info_template<T> *get_my_pr() { return &hier_pr; }
kmp_hier_top_unit_t<T> *get_parent() { return hier_parent; }
dispatch_private_info_template<T> *get_parent_pr() {
return &(hier_parent->hier_pr);
}
kmp_int32 is_active() const { return active; }
kmp_int32 get_num_active() const { return active; }
#ifdef KMP_DEBUG
void print() {
KD_TRACE(
10,
(" kmp_hier_top_unit_t: active:%d pr:%p lb:%d ub:%d st:%d tc:%d\n",
active, &hier_pr, hier_pr.u.p.lb, hier_pr.u.p.ub, hier_pr.u.p.st,
hier_pr.u.p.tc));
}
#endif
};
// Information regarding a single layer within the scheduling hierarchy
template <typename T> struct kmp_hier_layer_info_t {
int num_active; // number of threads active in this level
kmp_hier_layer_e type; // LAYER_L1, LAYER_L2, etc.
enum sched_type sched; // static, dynamic, guided, etc.
typename traits_t<T>::signed_t chunk; // chunk size associated with schedule
int length; // length of the kmp_hier_top_unit_t array
#ifdef KMP_DEBUG
// Print this layer's information
void print() {
const char *t = __kmp_get_hier_str(type);
KD_TRACE(
10,
(" kmp_hier_layer_info_t: num_active:%d type:%s sched:%d chunk:%d "
"length:%d\n",
num_active, t, sched, chunk, length));
}
#endif
};
/*
* Structure to implement entire hierarchy
*
* The hierarchy is kept as an array of arrays to represent the different
* layers. Layer 0 is the lowest layer to layer num_layers - 1 which is the
* highest layer.
* Example:
* [ 2 ] -> [ L3 | L3 ]
* [ 1 ] -> [ L2 | L2 | L2 | L2 ]
* [ 0 ] -> [ L1 | L1 | L1 | L1 | L1 | L1 | L1 | L1 ]
* There is also an array of layer_info_t which has information regarding
* each layer
*/
template <typename T> struct kmp_hier_t {
public:
typedef typename traits_t<T>::unsigned_t UT;
typedef typename traits_t<T>::signed_t ST;
private:
int next_recurse(ident_t *loc, int gtid, kmp_hier_top_unit_t<T> *current,
kmp_int32 *p_last, T *p_lb, T *p_ub, ST *p_st,
kmp_int32 previous_id, int hier_level) {
int status;
kmp_info_t *th = __kmp_threads[gtid];
auto parent = current->get_parent();
bool last_layer = (hier_level == get_num_layers() - 1);
KMP_DEBUG_ASSERT(th);
kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[hier_level]);
KMP_DEBUG_ASSERT(current);
KMP_DEBUG_ASSERT(hier_level >= 0);
KMP_DEBUG_ASSERT(hier_level < get_num_layers());
KMP_DEBUG_ASSERT(tdata);
KMP_DEBUG_ASSERT(parent || last_layer);
KD_TRACE(
1, ("kmp_hier_t.next_recurse(): T#%d (%d) called\n", gtid, hier_level));
T hier_id = (T)current->get_hier_id();
// Attempt to grab next iteration range for this level
if (previous_id == 0) {
KD_TRACE(1, ("kmp_hier_t.next_recurse(): T#%d (%d) is master of unit\n",
gtid, hier_level));
kmp_int32 contains_last;
T my_lb, my_ub;
ST my_st;
T nproc;
dispatch_shared_info_template<T> volatile *my_sh;
dispatch_private_info_template<T> *my_pr;
if (last_layer) {
// last layer below the very top uses the single shared buffer
// from the team struct.
KD_TRACE(10,
("kmp_hier_t.next_recurse(): T#%d (%d) using top level sh\n",
gtid, hier_level));
my_sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
th->th.th_dispatch->th_dispatch_sh_current);
nproc = (T)get_top_level_nproc();
} else {
// middle layers use the shared buffer inside the kmp_hier_top_unit_t
// structure
KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) using hier sh\n",
gtid, hier_level));
my_sh =
parent->get_curr_sh(th->th.th_hier_bar_data[hier_level + 1].index);
nproc = (T)parent->get_num_active();
}
my_pr = current->get_my_pr();
KMP_DEBUG_ASSERT(my_sh);
KMP_DEBUG_ASSERT(my_pr);
enum sched_type schedule = get_sched(hier_level);
ST chunk = (ST)get_chunk(hier_level);
status = __kmp_dispatch_next_algorithm<T>(gtid, my_pr, my_sh,
&contains_last, &my_lb, &my_ub,
&my_st, nproc, hier_id);
KD_TRACE(
10,
("kmp_hier_t.next_recurse(): T#%d (%d) next_pr_sh() returned %d\n",
gtid, hier_level, status));
// When no iterations are found (status == 0) and this is not the last
// layer, attempt to go up the hierarchy for more iterations
if (status == 0 && !last_layer) {
status = next_recurse(loc, gtid, parent, &contains_last, &my_lb, &my_ub,
&my_st, hier_id, hier_level + 1);
KD_TRACE(
10,
("kmp_hier_t.next_recurse(): T#%d (%d) hier_next() returned %d\n",
gtid, hier_level, status));
if (status == 1) {
kmp_hier_private_bdata_t *upper_tdata =
&(th->th.th_hier_bar_data[hier_level + 1]);
my_sh = parent->get_curr_sh(upper_tdata->index);
KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) about to init\n",
gtid, hier_level));
__kmp_dispatch_init_algorithm(loc, gtid, my_pr, schedule,
parent->get_curr_lb(upper_tdata->index),
parent->get_curr_ub(upper_tdata->index),
parent->get_curr_st(upper_tdata->index),
#if USE_ITT_BUILD
NULL,
#endif
chunk, nproc, hier_id);
status = __kmp_dispatch_next_algorithm<T>(
gtid, my_pr, my_sh, &contains_last, &my_lb, &my_ub, &my_st, nproc,
hier_id);
if (!status) {
KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) status not 1 "
"setting to 2!\n",
gtid, hier_level));
status = 2;
}
}
}
current->set_next(my_lb, my_ub, my_st, status, tdata->index);
// Propagate whether a unit holds the actual global last iteration
// The contains_last attribute is sent downwards from the top to the
// bottom of the hierarchy via the contains_last flag inside the
// private dispatch buffers in the hierarchy's middle layers
if (contains_last) {
// If the next_algorithm() method returns 1 for p_last and it is the
// last layer or our parent contains the last serial chunk, then the
// chunk must contain the last serial iteration.
if (last_layer || parent->hier_pr.flags.contains_last) {
KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) Setting this pr "
"to contain last.\n",
gtid, hier_level));
current->hier_pr.flags.contains_last = contains_last;
}
if (!current->hier_pr.flags.contains_last)
contains_last = FALSE;
}
if (p_last)
*p_last = contains_last;
} // if master thread of this unit
if (hier_level > 0 || !__kmp_dispatch_hand_threading) {
KD_TRACE(10,
("kmp_hier_t.next_recurse(): T#%d (%d) going into barrier.\n",
gtid, hier_level));
current->barrier(previous_id, tdata);
KD_TRACE(10,
("kmp_hier_t.next_recurse(): T#%d (%d) released and exit %d\n",
gtid, hier_level, current->get_curr_status(tdata->index)));
} else {
KMP_DEBUG_ASSERT(previous_id == 0);
return status;
}
return current->get_curr_status(tdata->index);
}
public:
int top_level_nproc;
int num_layers;
bool valid;
int type_size;
kmp_hier_layer_info_t<T> *info;
kmp_hier_top_unit_t<T> **layers;
// Deallocate all memory from this hierarchy
void deallocate() {
for (int i = 0; i < num_layers; ++i)
if (layers[i] != NULL) {
__kmp_free(layers[i]);
}
if (layers != NULL) {
__kmp_free(layers);
layers = NULL;
}
if (info != NULL) {
__kmp_free(info);
info = NULL;
}
num_layers = 0;
valid = false;
}
// Returns true if reallocation is needed else false
bool need_to_reallocate(int n, const kmp_hier_layer_e *new_layers,
const enum sched_type *new_scheds,
const ST *new_chunks) const {
if (!valid || layers == NULL || info == NULL ||
traits_t<T>::type_size != type_size || n != num_layers)
return true;
for (int i = 0; i < n; ++i) {
if (info[i].type != new_layers[i])
return true;
if (info[i].sched != new_scheds[i])
return true;
if (info[i].chunk != new_chunks[i])
return true;
}
return false;
}
// A single thread should call this function while the other threads wait
// create a new scheduling hierarchy consisting of new_layers, new_scheds
// and new_chunks. These should come pre-sorted according to
// kmp_hier_layer_e value. This function will try to avoid reallocation
// if it can
void allocate_hier(int n, const kmp_hier_layer_e *new_layers,
const enum sched_type *new_scheds, const ST *new_chunks) {
top_level_nproc = 0;
if (!need_to_reallocate(n, new_layers, new_scheds, new_chunks)) {
KD_TRACE(
10,
("kmp_hier_t<T>::allocate_hier: T#0 do not need to reallocate\n"));
for (int i = 0; i < n; ++i) {
info[i].num_active = 0;
for (int j = 0; j < get_length(i); ++j)
layers[i][j].active = 0;
}
return;
}
KD_TRACE(10, ("kmp_hier_t<T>::allocate_hier: T#0 full alloc\n"));
deallocate();
type_size = traits_t<T>::type_size;
num_layers = n;
info = (kmp_hier_layer_info_t<T> *)__kmp_allocate(
sizeof(kmp_hier_layer_info_t<T>) * n);
layers = (kmp_hier_top_unit_t<T> **)__kmp_allocate(
sizeof(kmp_hier_top_unit_t<T> *) * n);
for (int i = 0; i < n; ++i) {
int max = 0;
kmp_hier_layer_e layer = new_layers[i];
info[i].num_active = 0;
info[i].type = layer;
info[i].sched = new_scheds[i];
info[i].chunk = new_chunks[i];
max = __kmp_hier_max_units[layer + 1];
if (max == 0) {
valid = false;
KMP_WARNING(HierSchedInvalid, __kmp_get_hier_str(layer));
deallocate();
return;
}
info[i].length = max;
layers[i] = (kmp_hier_top_unit_t<T> *)__kmp_allocate(
sizeof(kmp_hier_top_unit_t<T>) * max);
for (int j = 0; j < max; ++j) {
layers[i][j].active = 0;
layers[i][j].hier_pr.flags.use_hier = TRUE;
}
}
valid = true;
}
// loc - source file location
// gtid - global thread identifier
// pr - this thread's private dispatch buffer (corresponding with gtid)
// p_last (return value) - pointer to flag indicating this set of iterations
// contains last
// iteration
// p_lb (return value) - lower bound for this chunk of iterations
// p_ub (return value) - upper bound for this chunk of iterations
// p_st (return value) - stride for this chunk of iterations
//
// Returns 1 if there are more iterations to perform, 0 otherwise
int next(ident_t *loc, int gtid, dispatch_private_info_template<T> *pr,
kmp_int32 *p_last, T *p_lb, T *p_ub, ST *p_st) {
int status;
kmp_int32 contains_last = 0;
kmp_info_t *th = __kmp_threads[gtid];
kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[0]);
auto parent = pr->get_parent();
KMP_DEBUG_ASSERT(parent);
KMP_DEBUG_ASSERT(th);
KMP_DEBUG_ASSERT(tdata);
KMP_DEBUG_ASSERT(parent);
T nproc = (T)parent->get_num_active();
T unit_id = (T)pr->get_hier_id();
KD_TRACE(
10,
("kmp_hier_t.next(): T#%d THREAD LEVEL nproc:%d unit_id:%d called\n",
gtid, nproc, unit_id));
// Handthreading implementation
// Each iteration is performed by all threads on last unit (typically
// cores/tiles)
// e.g., threads 0,1,2,3 all execute iteration 0
// threads 0,1,2,3 all execute iteration 1
// threads 4,5,6,7 all execute iteration 2
// threads 4,5,6,7 all execute iteration 3
// ... etc.
if (__kmp_dispatch_hand_threading) {
KD_TRACE(10,
("kmp_hier_t.next(): T#%d THREAD LEVEL using hand threading\n",
gtid));
if (unit_id == 0) {
// For hand threading, the sh buffer on the lowest level is only ever
// modified and read by the master thread on that level. Because of
// this, we can always use the first sh buffer.
auto sh = &(parent->hier_barrier.sh[0]);
KMP_DEBUG_ASSERT(sh);
status = __kmp_dispatch_next_algorithm<T>(
gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
if (!status) {
bool done = false;
while (!done) {
done = true;
status = next_recurse(loc, gtid, parent, &contains_last, p_lb, p_ub,
p_st, unit_id, 0);
if (status == 1) {
__kmp_dispatch_init_algorithm(loc, gtid, pr, pr->schedule,
parent->get_next_lb(tdata->index),
parent->get_next_ub(tdata->index),
parent->get_next_st(tdata->index),
#if USE_ITT_BUILD
NULL,
#endif
pr->u.p.parm1, nproc, unit_id);
sh->u.s.iteration = 0;
status = __kmp_dispatch_next_algorithm<T>(
gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc,
unit_id);
if (!status) {
KD_TRACE(10,
("kmp_hier_t.next(): T#%d THREAD LEVEL status == 0 "
"after next_pr_sh()"
"trying again.\n",
gtid));
done = false;
}
} else if (status == 2) {
KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 2 "
"trying again.\n",
gtid));
done = false;
}
}
}
parent->set_next_hand_thread(*p_lb, *p_ub, *p_st, status, tdata->index);
} // if master thread of lowest unit level
parent->barrier(pr->get_hier_id(), tdata);
if (unit_id != 0) {
*p_lb = parent->get_curr_lb(tdata->index);
*p_ub = parent->get_curr_ub(tdata->index);
*p_st = parent->get_curr_st(tdata->index);
status = parent->get_curr_status(tdata->index);
}
} else {
// Normal implementation
// Each thread grabs an iteration chunk and executes it (no cooperation)
auto sh = parent->get_curr_sh(tdata->index);
KMP_DEBUG_ASSERT(sh);
status = __kmp_dispatch_next_algorithm<T>(
gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
KD_TRACE(10,
("kmp_hier_t.next(): T#%d THREAD LEVEL next_algorithm status:%d "
"contains_last:%d p_lb:%d p_ub:%d p_st:%d\n",
gtid, status, contains_last, *p_lb, *p_ub, *p_st));
if (!status) {
bool done = false;
while (!done) {
done = true;
status = next_recurse(loc, gtid, parent, &contains_last, p_lb, p_ub,
p_st, unit_id, 0);
if (status == 1) {
sh = parent->get_curr_sh(tdata->index);
__kmp_dispatch_init_algorithm(loc, gtid, pr, pr->schedule,
parent->get_curr_lb(tdata->index),
parent->get_curr_ub(tdata->index),
parent->get_curr_st(tdata->index),
#if USE_ITT_BUILD
NULL,
#endif
pr->u.p.parm1, nproc, unit_id);
status = __kmp_dispatch_next_algorithm<T>(
gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
if (!status) {
KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 0 "
"after next_pr_sh()"
"trying again.\n",
gtid));
done = false;
}
} else if (status == 2) {
KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 2 "
"trying again.\n",
gtid));
done = false;
}
}
}
}
if (contains_last && !parent->hier_pr.flags.contains_last) {
KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL resetting "
"contains_last to FALSE\n",
gtid));
contains_last = FALSE;
}
if (p_last)
*p_last = contains_last;
KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL exit status %d\n", gtid,
status));
return status;
}
// These functions probe the layer info structure
// Returns the type of topology unit given level
kmp_hier_layer_e get_type(int level) const {
KMP_DEBUG_ASSERT(level >= 0);
KMP_DEBUG_ASSERT(level < num_layers);
return info[level].type;
}
// Returns the schedule type at given level
enum sched_type get_sched(int level) const {
KMP_DEBUG_ASSERT(level >= 0);
KMP_DEBUG_ASSERT(level < num_layers);
return info[level].sched;
}
// Returns the chunk size at given level
ST get_chunk(int level) const {
KMP_DEBUG_ASSERT(level >= 0);
KMP_DEBUG_ASSERT(level < num_layers);
return info[level].chunk;
}
// Returns the number of active threads at given level
int get_num_active(int level) const {
KMP_DEBUG_ASSERT(level >= 0);
KMP_DEBUG_ASSERT(level < num_layers);
return info[level].num_active;
}
// Returns the length of topology unit array at given level
int get_length(int level) const {
KMP_DEBUG_ASSERT(level >= 0);
KMP_DEBUG_ASSERT(level < num_layers);
return info[level].length;
}
// Returns the topology unit given the level and index
kmp_hier_top_unit_t<T> *get_unit(int level, int index) {
KMP_DEBUG_ASSERT(level >= 0);
KMP_DEBUG_ASSERT(level < num_layers);
KMP_DEBUG_ASSERT(index >= 0);
KMP_DEBUG_ASSERT(index < get_length(level));
return &(layers[level][index]);
}
// Returns the number of layers in the hierarchy
int get_num_layers() const { return num_layers; }
// Returns the number of threads in the top layer
// This is necessary because we don't store a topology unit as
// the very top level and the scheduling algorithms need this information
int get_top_level_nproc() const { return top_level_nproc; }
// Return whether this hierarchy is valid or not
bool is_valid() const { return valid; }
#ifdef KMP_DEBUG
// Print the hierarchy
void print() {
KD_TRACE(10, ("kmp_hier_t:\n"));
for (int i = num_layers - 1; i >= 0; --i) {
KD_TRACE(10, ("Info[%d] = ", i));
info[i].print();
}
for (int i = num_layers - 1; i >= 0; --i) {
KD_TRACE(10, ("Layer[%d] =\n", i));
for (int j = 0; j < info[i].length; ++j) {
layers[i][j].print();
}
}
}
#endif
};
template <typename T>
void __kmp_dispatch_init_hierarchy(ident_t *loc, int n,
kmp_hier_layer_e *new_layers,
enum sched_type *new_scheds,
typename traits_t<T>::signed_t *new_chunks,
T lb, T ub,
typename traits_t<T>::signed_t st) {
int tid, gtid, num_hw_threads, num_threads_per_layer1, active;
int my_buffer_index;
kmp_info_t *th;
kmp_team_t *team;
dispatch_private_info_template<T> *pr;
dispatch_shared_info_template<T> volatile *sh;
gtid = __kmp_entry_gtid();
tid = __kmp_tid_from_gtid(gtid);
#ifdef KMP_DEBUG
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d called: %d layer(s)\n",
gtid, n));
for (int i = 0; i < n; ++i) {
const char *layer = __kmp_get_hier_str(new_layers[i]);
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d: new_layers[%d] = %s, "
"new_scheds[%d] = %d, new_chunks[%d] = %u\n",
gtid, i, layer, i, (int)new_scheds[i], i, new_chunks[i]));
}
#endif // KMP_DEBUG
KMP_DEBUG_ASSERT(n > 0);
KMP_DEBUG_ASSERT(new_layers);
KMP_DEBUG_ASSERT(new_scheds);
KMP_DEBUG_ASSERT(new_chunks);
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
th = __kmp_threads[gtid];
team = th->th.th_team;
active = !team->t.t_serialized;
th->th.th_ident = loc;
num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
KMP_DEBUG_ASSERT(th->th.th_dispatch ==
&th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
my_buffer_index = th->th.th_dispatch->th_disp_index;
pr = reinterpret_cast<dispatch_private_info_template<T> *>(
&th->th.th_dispatch
->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
&team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
if (!active) {
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d not active parallel. "
"Using normal dispatch functions.\n",
gtid));
KMP_DEBUG_ASSERT(pr);
pr->flags.use_hier = FALSE;
pr->flags.contains_last = FALSE;
return;
}
KMP_DEBUG_ASSERT(pr);
KMP_DEBUG_ASSERT(sh);
pr->flags.use_hier = TRUE;
pr->u.p.tc = 0;
// Have master allocate the hierarchy
if (__kmp_tid_from_gtid(gtid) == 0) {
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d pr:%p sh:%p allocating "
"hierarchy\n",
gtid, pr, sh));
if (sh->hier == NULL) {
sh->hier = (kmp_hier_t<T> *)__kmp_allocate(sizeof(kmp_hier_t<T>));
}
sh->hier->allocate_hier(n, new_layers, new_scheds, new_chunks);
sh->u.s.iteration = 0;
}
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
// Check to make sure the hierarchy is valid
kmp_hier_t<T> *hier = sh->hier;
if (!sh->hier->is_valid()) {
pr->flags.use_hier = FALSE;
return;
}
// Have threads allocate their thread-private barrier data if it hasn't
// already been allocated
if (th->th.th_hier_bar_data == NULL) {
th->th.th_hier_bar_data = (kmp_hier_private_bdata_t *)__kmp_allocate(
sizeof(kmp_hier_private_bdata_t) * kmp_hier_layer_e::LAYER_LAST);
}
// Have threads "register" themselves by modifying the active count for each
// level they are involved in. The active count will act as nthreads for that
// level regarding the scheduling algorithms
for (int i = 0; i < n; ++i) {
int index = __kmp_dispatch_get_index(tid, hier->get_type(i));
kmp_hier_top_unit_t<T> *my_unit = hier->get_unit(i, index);
// Setup the thread's private dispatch buffer's hierarchy pointers
if (i == 0)
pr->hier_parent = my_unit;
// If this unit is already active, then increment active count and wait
if (my_unit->is_active()) {
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d my_unit (%p) "
"is already active (%d)\n",
gtid, my_unit, my_unit->active));
KMP_TEST_THEN_INC32(&(my_unit->active));
break;
}
// Flag that this unit is active
if (KMP_COMPARE_AND_STORE_ACQ32(&(my_unit->active), 0, 1)) {
// Do not setup parent pointer for top level unit since it has no parent
if (i < n - 1) {
// Setup middle layer pointers to parents
my_unit->get_my_pr()->hier_id =
index % __kmp_dispatch_get_t1_per_t2(hier->get_type(i),
hier->get_type(i + 1));
int parent_index = __kmp_dispatch_get_index(tid, hier->get_type(i + 1));
my_unit->hier_parent = hier->get_unit(i + 1, parent_index);
} else {
// Setup top layer information (no parent pointers are set)
my_unit->get_my_pr()->hier_id =
index % __kmp_dispatch_get_t1_per_t2(hier->get_type(i),
kmp_hier_layer_e::LAYER_LOOP);
KMP_TEST_THEN_INC32(&(hier->top_level_nproc));
my_unit->hier_parent = nullptr;
}
// Set trip count to 0 so that next() operation will initially climb up
// the hierarchy to get more iterations (early exit in next() for tc == 0)
my_unit->get_my_pr()->u.p.tc = 0;
// Increment this layer's number of active units
KMP_TEST_THEN_INC32(&(hier->info[i].num_active));
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d my_unit (%p) "
"incrementing num_active\n",
gtid, my_unit));
} else {
KMP_TEST_THEN_INC32(&(my_unit->active));
break;
}
}
// Set this thread's id
num_threads_per_layer1 = __kmp_dispatch_get_t1_per_t2(
kmp_hier_layer_e::LAYER_THREAD, hier->get_type(0));
pr->hier_id = tid % num_threads_per_layer1;
// For oversubscribed threads, increment their index within the lowest unit
// This is done to prevent having two or more threads with id 0, id 1, etc.
if (tid >= num_hw_threads)
pr->hier_id += ((tid / num_hw_threads) * num_threads_per_layer1);
KD_TRACE(
10, ("__kmp_dispatch_init_hierarchy: T#%d setting lowest hier_id to %d\n",
gtid, pr->hier_id));
pr->flags.contains_last = FALSE;
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
// Now that the number of active threads at each level is determined,
// the barrier data for each unit can be initialized and the last layer's
// loop information can be initialized.
int prev_id = pr->get_hier_id();
for (int i = 0; i < n; ++i) {
if (prev_id != 0)
break;
int index = __kmp_dispatch_get_index(tid, hier->get_type(i));
kmp_hier_top_unit_t<T> *my_unit = hier->get_unit(i, index);
// Only master threads of this unit within the hierarchy do initialization
KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d (%d) prev_id is 0\n",
gtid, i));
my_unit->reset_shared_barrier();
my_unit->hier_pr.flags.contains_last = FALSE;
// Last layer, initialize the private buffers with entire loop information
// Now the next next_algorithm() call will get the first chunk of
// iterations properly
if (i == n - 1) {
__kmp_dispatch_init_algorithm<T>(
loc, gtid, my_unit->get_my_pr(), hier->get_sched(i), lb, ub, st,
#if USE_ITT_BUILD
NULL,
#endif
hier->get_chunk(i), hier->get_num_active(i), my_unit->get_hier_id());
}
prev_id = my_unit->get_hier_id();
}
// Initialize each layer of the thread's private barrier data
kmp_hier_top_unit_t<T> *unit = pr->hier_parent;
for (int i = 0; i < n && unit; ++i, unit = unit->get_parent()) {
kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[i]);
unit->reset_private_barrier(tdata);
}
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#ifdef KMP_DEBUG
if (__kmp_tid_from_gtid(gtid) == 0) {
for (int i = 0; i < n; ++i) {
KD_TRACE(10,
("__kmp_dispatch_init_hierarchy: T#%d active count[%d] = %d\n",
gtid, i, hier->get_num_active(i)));
}
hier->print();
}
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#endif // KMP_DEBUG
}
#endif