kmp_stats.cpp
29.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/** @file kmp_stats.cpp
* Statistics gathering and processing.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_lock.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#include <algorithm>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <stdlib.h> // for atexit
#include <cmath>
#define STRINGIZE2(x) #x
#define STRINGIZE(x) STRINGIZE2(x)
#define expandName(name, flags, ignore) {STRINGIZE(name), flags},
statInfo timeStat::timerInfo[] = {
KMP_FOREACH_TIMER(expandName, 0){"TIMER_LAST", 0}};
const statInfo counter::counterInfo[] = {
KMP_FOREACH_COUNTER(expandName, 0){"COUNTER_LAST", 0}};
#undef expandName
#define expandName(ignore1, ignore2, ignore3) {0.0, 0.0, 0.0},
kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
KMP_FOREACH_TIMER(expandName, 0){0.0, 0.0, 0.0}};
#undef expandName
const kmp_stats_output_module::rgb_color
kmp_stats_output_module::globalColorArray[] = {
{1.0, 0.0, 0.0}, // red
{1.0, 0.6, 0.0}, // orange
{1.0, 1.0, 0.0}, // yellow
{0.0, 1.0, 0.0}, // green
{0.0, 0.0, 1.0}, // blue
{0.6, 0.2, 0.8}, // purple
{1.0, 0.0, 1.0}, // magenta
{0.0, 0.4, 0.2}, // dark green
{1.0, 1.0, 0.6}, // light yellow
{0.6, 0.4, 0.6}, // dirty purple
{0.0, 1.0, 1.0}, // cyan
{1.0, 0.4, 0.8}, // pink
{0.5, 0.5, 0.5}, // grey
{0.8, 0.7, 0.5}, // brown
{0.6, 0.6, 1.0}, // light blue
{1.0, 0.7, 0.5}, // peach
{0.8, 0.5, 1.0}, // lavender
{0.6, 0.0, 0.0}, // dark red
{0.7, 0.6, 0.0}, // gold
{0.0, 0.0, 0.0} // black
};
// Ensure that the atexit handler only runs once.
static uint32_t statsPrinted = 0;
// output interface
static kmp_stats_output_module *__kmp_stats_global_output = NULL;
double logHistogram::binMax[] = {
1.e1l, 1.e2l, 1.e3l, 1.e4l, 1.e5l, 1.e6l, 1.e7l, 1.e8l,
1.e9l, 1.e10l, 1.e11l, 1.e12l, 1.e13l, 1.e14l, 1.e15l, 1.e16l,
1.e17l, 1.e18l, 1.e19l, 1.e20l, 1.e21l, 1.e22l, 1.e23l, 1.e24l,
1.e25l, 1.e26l, 1.e27l, 1.e28l, 1.e29l, 1.e30l};
/* ************* statistic member functions ************* */
void statistic::addSample(double sample) {
sample -= offset;
KMP_DEBUG_ASSERT(std::isfinite(sample));
double delta = sample - meanVal;
sampleCount = sampleCount + 1;
meanVal = meanVal + delta / sampleCount;
m2 = m2 + delta * (sample - meanVal);
minVal = std::min(minVal, sample);
maxVal = std::max(maxVal, sample);
if (collectingHist)
hist.addSample(sample);
}
statistic &statistic::operator+=(const statistic &other) {
if (other.sampleCount == 0)
return *this;
if (sampleCount == 0) {
*this = other;
return *this;
}
uint64_t newSampleCount = sampleCount + other.sampleCount;
double dnsc = double(newSampleCount);
double dsc = double(sampleCount);
double dscBydnsc = dsc / dnsc;
double dosc = double(other.sampleCount);
double delta = other.meanVal - meanVal;
// Try to order these calculations to avoid overflows. If this were Fortran,
// then the compiler would not be able to re-order over brackets. In C++ it
// may be legal to do that (we certainly hope it doesn't, and CC+ Programming
// Language 2nd edition suggests it shouldn't, since it says that exploitation
// of associativity can only be made if the operation really is associative
// (which floating addition isn't...)).
meanVal = meanVal * dscBydnsc + other.meanVal * (1 - dscBydnsc);
m2 = m2 + other.m2 + dscBydnsc * dosc * delta * delta;
minVal = std::min(minVal, other.minVal);
maxVal = std::max(maxVal, other.maxVal);
sampleCount = newSampleCount;
if (collectingHist)
hist += other.hist;
return *this;
}
void statistic::scale(double factor) {
minVal = minVal * factor;
maxVal = maxVal * factor;
meanVal = meanVal * factor;
m2 = m2 * factor * factor;
return;
}
std::string statistic::format(char unit, bool total) const {
std::string result = formatSI(sampleCount, 9, ' ');
if (sampleCount == 0) {
result = result + std::string(", ") + formatSI(0.0, 9, unit);
result = result + std::string(", ") + formatSI(0.0, 9, unit);
result = result + std::string(", ") + formatSI(0.0, 9, unit);
if (total)
result = result + std::string(", ") + formatSI(0.0, 9, unit);
result = result + std::string(", ") + formatSI(0.0, 9, unit);
} else {
result = result + std::string(", ") + formatSI(minVal, 9, unit);
result = result + std::string(", ") + formatSI(meanVal, 9, unit);
result = result + std::string(", ") + formatSI(maxVal, 9, unit);
if (total)
result =
result + std::string(", ") + formatSI(meanVal * sampleCount, 9, unit);
result = result + std::string(", ") + formatSI(getSD(), 9, unit);
}
return result;
}
/* ************* histogram member functions ************* */
// Lowest bin that has anything in it
int logHistogram::minBin() const {
for (int i = 0; i < numBins; i++) {
if (bins[i].count != 0)
return i - logOffset;
}
return -logOffset;
}
// Highest bin that has anything in it
int logHistogram::maxBin() const {
for (int i = numBins - 1; i >= 0; i--) {
if (bins[i].count != 0)
return i - logOffset;
}
return -logOffset;
}
// Which bin does this sample belong in ?
uint32_t logHistogram::findBin(double sample) {
double v = std::fabs(sample);
// Simply loop up looking which bin to put it in.
// According to a micro-architect this is likely to be faster than a binary
// search, since
// it will only have one branch mis-predict
for (int b = 0; b < numBins; b++)
if (binMax[b] > v)
return b;
fprintf(stderr,
"Trying to add a sample that is too large into a histogram\n");
KMP_ASSERT(0);
return -1;
}
void logHistogram::addSample(double sample) {
if (sample == 0.0) {
zeroCount += 1;
#ifdef KMP_DEBUG
_total++;
check();
#endif
return;
}
KMP_DEBUG_ASSERT(std::isfinite(sample));
uint32_t bin = findBin(sample);
KMP_DEBUG_ASSERT(0 <= bin && bin < numBins);
bins[bin].count += 1;
bins[bin].total += sample;
#ifdef KMP_DEBUG
_total++;
check();
#endif
}
// This may not be the format we want, but it'll do for now
std::string logHistogram::format(char unit) const {
std::stringstream result;
result << "Bin, Count, Total\n";
if (zeroCount) {
result << "0, " << formatSI(zeroCount, 9, ' ') << ", ",
formatSI(0.0, 9, unit);
if (count(minBin()) == 0)
return result.str();
result << "\n";
}
for (int i = minBin(); i <= maxBin(); i++) {
result << "10**" << i << "<=v<10**" << (i + 1) << ", "
<< formatSI(count(i), 9, ' ') << ", " << formatSI(total(i), 9, unit);
if (i != maxBin())
result << "\n";
}
return result.str();
}
/* ************* explicitTimer member functions ************* */
void explicitTimer::start(tsc_tick_count tick) {
startTime = tick;
totalPauseTime = 0;
if (timeStat::logEvent(timerEnumValue)) {
__kmp_stats_thread_ptr->incrementNestValue();
}
return;
}
void explicitTimer::stop(tsc_tick_count tick,
kmp_stats_list *stats_ptr /* = nullptr */) {
if (startTime.getValue() == 0)
return;
stat->addSample(((tick - startTime) - totalPauseTime).ticks());
if (timeStat::logEvent(timerEnumValue)) {
if (!stats_ptr)
stats_ptr = __kmp_stats_thread_ptr;
stats_ptr->push_event(
startTime.getValue() - __kmp_stats_start_time.getValue(),
tick.getValue() - __kmp_stats_start_time.getValue(),
__kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
stats_ptr->decrementNestValue();
}
/* We accept the risk that we drop a sample because it really did start at
t==0. */
startTime = 0;
return;
}
/* ************* partitionedTimers member functions ************* */
partitionedTimers::partitionedTimers() { timer_stack.reserve(8); }
// initialize the partitioned timers to an initial timer
void partitionedTimers::init(explicitTimer timer) {
KMP_DEBUG_ASSERT(this->timer_stack.size() == 0);
timer_stack.push_back(timer);
timer_stack.back().start(tsc_tick_count::now());
}
// stop/save the current timer, and start the new timer (timer_pair)
// There is a special condition where if the current timer is equal to
// the one you are trying to push, then it only manipulates the stack,
// and it won't stop/start the currently running timer.
void partitionedTimers::push(explicitTimer timer) {
// get the current timer
// pause current timer
// push new timer
// start the new timer
explicitTimer *current_timer, *new_timer;
size_t stack_size;
KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
timer_stack.push_back(timer);
stack_size = timer_stack.size();
current_timer = &(timer_stack[stack_size - 2]);
new_timer = &(timer_stack[stack_size - 1]);
tsc_tick_count tick = tsc_tick_count::now();
current_timer->pause(tick);
new_timer->start(tick);
}
// stop/discard the current timer, and start the previously saved timer
void partitionedTimers::pop() {
// get the current timer
// stop current timer (record event/sample)
// pop current timer
// get the new current timer and resume
explicitTimer *old_timer, *new_timer;
size_t stack_size = timer_stack.size();
KMP_DEBUG_ASSERT(stack_size > 1);
old_timer = &(timer_stack[stack_size - 1]);
new_timer = &(timer_stack[stack_size - 2]);
tsc_tick_count tick = tsc_tick_count::now();
old_timer->stop(tick);
new_timer->resume(tick);
timer_stack.pop_back();
}
void partitionedTimers::exchange(explicitTimer timer) {
// get the current timer
// stop current timer (record event/sample)
// push new timer
// start the new timer
explicitTimer *current_timer, *new_timer;
size_t stack_size;
KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
tsc_tick_count tick = tsc_tick_count::now();
stack_size = timer_stack.size();
current_timer = &(timer_stack[stack_size - 1]);
current_timer->stop(tick);
timer_stack.pop_back();
timer_stack.push_back(timer);
new_timer = &(timer_stack[stack_size - 1]);
new_timer->start(tick);
}
// Wind up all the currently running timers.
// This pops off all the timers from the stack and clears the stack
// After this is called, init() must be run again to initialize the
// stack of timers
void partitionedTimers::windup() {
while (timer_stack.size() > 1) {
this->pop();
}
// Pop the timer from the init() call
if (timer_stack.size() > 0) {
timer_stack.back().stop(tsc_tick_count::now());
timer_stack.pop_back();
}
}
/* ************* kmp_stats_event_vector member functions ************* */
void kmp_stats_event_vector::deallocate() {
__kmp_free(events);
internal_size = 0;
allocated_size = 0;
events = NULL;
}
// This function is for qsort() which requires the compare function to return
// either a negative number if event1 < event2, a positive number if event1 >
// event2 or zero if event1 == event2. This sorts by start time (lowest to
// highest).
int compare_two_events(const void *event1, const void *event2) {
const kmp_stats_event *ev1 = RCAST(const kmp_stats_event *, event1);
const kmp_stats_event *ev2 = RCAST(const kmp_stats_event *, event2);
if (ev1->getStart() < ev2->getStart())
return -1;
else if (ev1->getStart() > ev2->getStart())
return 1;
else
return 0;
}
void kmp_stats_event_vector::sort() {
qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
}
/* ************* kmp_stats_list member functions ************* */
// returns a pointer to newly created stats node
kmp_stats_list *kmp_stats_list::push_back(int gtid) {
kmp_stats_list *newnode =
(kmp_stats_list *)__kmp_allocate(sizeof(kmp_stats_list));
// placement new, only requires space and pointer and initializes (so
// __kmp_allocate instead of C++ new[] is used)
new (newnode) kmp_stats_list();
newnode->setGtid(gtid);
newnode->prev = this->prev;
newnode->next = this;
newnode->prev->next = newnode;
newnode->next->prev = newnode;
return newnode;
}
void kmp_stats_list::deallocate() {
kmp_stats_list *ptr = this->next;
kmp_stats_list *delptr = this->next;
while (ptr != this) {
delptr = ptr;
ptr = ptr->next;
// placement new means we have to explicitly call destructor.
delptr->_event_vector.deallocate();
delptr->~kmp_stats_list();
__kmp_free(delptr);
}
}
kmp_stats_list::iterator kmp_stats_list::begin() {
kmp_stats_list::iterator it;
it.ptr = this->next;
return it;
}
kmp_stats_list::iterator kmp_stats_list::end() {
kmp_stats_list::iterator it;
it.ptr = this;
return it;
}
int kmp_stats_list::size() {
int retval;
kmp_stats_list::iterator it;
for (retval = 0, it = begin(); it != end(); it++, retval++) {
}
return retval;
}
/* ************* kmp_stats_list::iterator member functions ************* */
kmp_stats_list::iterator::iterator() : ptr(NULL) {}
kmp_stats_list::iterator::~iterator() {}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
this->ptr = this->ptr->next;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
this->ptr = this->ptr->next;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
this->ptr = this->ptr->prev;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
this->ptr = this->ptr->prev;
return *this;
}
bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator &rhs) {
return this->ptr != rhs.ptr;
}
bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator &rhs) {
return this->ptr == rhs.ptr;
}
kmp_stats_list *kmp_stats_list::iterator::operator*() const {
return this->ptr;
}
/* ************* kmp_stats_output_module functions ************** */
const char *kmp_stats_output_module::eventsFileName = NULL;
const char *kmp_stats_output_module::plotFileName = NULL;
int kmp_stats_output_module::printPerThreadFlag = 0;
int kmp_stats_output_module::printPerThreadEventsFlag = 0;
static char const *lastName(char *name) {
int l = strlen(name);
for (int i = l - 1; i >= 0; --i) {
if (name[i] == '.')
name[i] = '_';
if (name[i] == '/')
return name + i + 1;
}
return name;
}
/* Read the name of the executable from /proc/self/cmdline */
static char const *getImageName(char *buffer, size_t buflen) {
FILE *f = fopen("/proc/self/cmdline", "r");
buffer[0] = char(0);
if (!f)
return buffer;
// The file contains char(0) delimited words from the commandline.
// This just returns the last filename component of the first word on the
// line.
size_t n = fread(buffer, 1, buflen, f);
if (n == 0) {
fclose(f);
KMP_CHECK_SYSFAIL("fread", 1)
}
fclose(f);
buffer[buflen - 1] = char(0);
return lastName(buffer);
}
static void getTime(char *buffer, size_t buflen, bool underscores = false) {
time_t timer;
time(&timer);
struct tm *tm_info = localtime(&timer);
if (underscores)
strftime(buffer, buflen, "%Y-%m-%d_%H%M%S", tm_info);
else
strftime(buffer, buflen, "%Y-%m-%d %H%M%S", tm_info);
}
/* Generate a stats file name, expanding prototypes */
static std::string generateFilename(char const *prototype,
char const *imageName) {
std::string res;
for (int i = 0; prototype[i] != char(0); i++) {
char ch = prototype[i];
if (ch == '%') {
i++;
if (prototype[i] == char(0))
break;
switch (prototype[i]) {
case 't': // Insert time and date
{
char date[26];
getTime(date, sizeof(date), true);
res += date;
} break;
case 'e': // Insert executable name
res += imageName;
break;
case 'p': // Insert pid
{
std::stringstream ss;
ss << getpid();
res += ss.str();
} break;
default:
res += prototype[i];
break;
}
} else
res += ch;
}
return res;
}
// init() is called very near the beginning of execution time in the constructor
// of __kmp_stats_global_output
void kmp_stats_output_module::init() {
char *statsFileName = getenv("KMP_STATS_FILE");
eventsFileName = getenv("KMP_STATS_EVENTS_FILE");
plotFileName = getenv("KMP_STATS_PLOT_FILE");
char *threadStats = getenv("KMP_STATS_THREADS");
char *threadEvents = getenv("KMP_STATS_EVENTS");
// set the stats output filenames based on environment variables and defaults
if (statsFileName) {
char imageName[1024];
// Process any escapes (e.g., %p, %e, %t) in the name
outputFileName = generateFilename(
statsFileName, getImageName(&imageName[0], sizeof(imageName)));
}
eventsFileName = eventsFileName ? eventsFileName : "events.dat";
plotFileName = plotFileName ? plotFileName : "events.plt";
// set the flags based on environment variables matching: true, on, 1, .true.
// , .t. , yes
printPerThreadFlag = __kmp_str_match_true(threadStats);
printPerThreadEventsFlag = __kmp_str_match_true(threadEvents);
if (printPerThreadEventsFlag) {
// assigns a color to each timer for printing
setupEventColors();
} else {
// will clear flag so that no event will be logged
timeStat::clearEventFlags();
}
}
void kmp_stats_output_module::setupEventColors() {
int i;
int globalColorIndex = 0;
int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
for (i = 0; i < TIMER_LAST; i++) {
if (timeStat::logEvent((timer_e)i)) {
timerColorInfo[i] = globalColorArray[globalColorIndex];
globalColorIndex = (globalColorIndex + 1) % numGlobalColors;
}
}
}
void kmp_stats_output_module::printTimerStats(FILE *statsOut,
statistic const *theStats,
statistic const *totalStats) {
fprintf(statsOut,
"Timer, SampleCount, Min, "
"Mean, Max, Total, SD\n");
for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
statistic const *stat = &theStats[s];
char tag = timeStat::noUnits(s) ? ' ' : 'T';
fprintf(statsOut, "%-35s, %s\n", timeStat::name(s),
stat->format(tag, true).c_str());
}
// Also print the Total_ versions of times.
for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
char tag = timeStat::noUnits(s) ? ' ' : 'T';
if (totalStats && !timeStat::noTotal(s))
fprintf(statsOut, "Total_%-29s, %s\n", timeStat::name(s),
totalStats[s].format(tag, true).c_str());
}
// Print histogram of statistics
if (theStats[0].haveHist()) {
fprintf(statsOut, "\nTimer distributions\n");
for (int s = 0; s < TIMER_LAST; s++) {
statistic const *stat = &theStats[s];
if (stat->getCount() != 0) {
char tag = timeStat::noUnits(timer_e(s)) ? ' ' : 'T';
fprintf(statsOut, "%s\n", timeStat::name(timer_e(s)));
fprintf(statsOut, "%s\n", stat->getHist()->format(tag).c_str());
}
}
}
}
void kmp_stats_output_module::printCounterStats(FILE *statsOut,
statistic const *theStats) {
fprintf(statsOut, "Counter, ThreadCount, Min, Mean, "
" Max, Total, SD\n");
for (int s = 0; s < COUNTER_LAST; s++) {
statistic const *stat = &theStats[s];
fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(s)),
stat->format(' ', true).c_str());
}
// Print histogram of counters
if (theStats[0].haveHist()) {
fprintf(statsOut, "\nCounter distributions\n");
for (int s = 0; s < COUNTER_LAST; s++) {
statistic const *stat = &theStats[s];
if (stat->getCount() != 0) {
fprintf(statsOut, "%s\n", counter::name(counter_e(s)));
fprintf(statsOut, "%s\n", stat->getHist()->format(' ').c_str());
}
}
}
}
void kmp_stats_output_module::printCounters(FILE *statsOut,
counter const *theCounters) {
// We print all the counters even if they are zero.
// That makes it easier to slice them into a spreadsheet if you need to.
fprintf(statsOut, "\nCounter, Count\n");
for (int c = 0; c < COUNTER_LAST; c++) {
counter const *stat = &theCounters[c];
fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(c)),
formatSI(stat->getValue(), 9, ' ').c_str());
}
}
void kmp_stats_output_module::printEvents(FILE *eventsOut,
kmp_stats_event_vector *theEvents,
int gtid) {
// sort by start time before printing
theEvents->sort();
for (int i = 0; i < theEvents->size(); i++) {
kmp_stats_event ev = theEvents->at(i);
rgb_color color = getEventColor(ev.getTimerName());
fprintf(eventsOut, "%d %llu %llu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n", gtid,
static_cast<unsigned long long>(ev.getStart()),
static_cast<unsigned long long>(ev.getStop()),
1.2 - (ev.getNestLevel() * 0.2), color.r, color.g, color.b,
timeStat::name(ev.getTimerName()));
}
return;
}
void kmp_stats_output_module::windupExplicitTimers() {
// Wind up any explicit timers. We assume that it's fair at this point to just
// walk all the explicit timers in all threads and say "it's over".
// If the timer wasn't running, this won't record anything anyway.
kmp_stats_list::iterator it;
for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
kmp_stats_list *ptr = *it;
ptr->getPartitionedTimers()->windup();
ptr->endLife();
}
}
void kmp_stats_output_module::printPloticusFile() {
int i;
int size = __kmp_stats_list->size();
FILE *plotOut = fopen(plotFileName, "w+");
fprintf(plotOut, "#proc page\n"
" pagesize: 15 10\n"
" scale: 1.0\n\n");
fprintf(plotOut, "#proc getdata\n"
" file: %s\n\n",
eventsFileName);
fprintf(plotOut, "#proc areadef\n"
" title: OpenMP Sampling Timeline\n"
" titledetails: align=center size=16\n"
" rectangle: 1 1 13 9\n"
" xautorange: datafield=2,3\n"
" yautorange: -1 %d\n\n",
size);
fprintf(plotOut, "#proc xaxis\n"
" stubs: inc\n"
" stubdetails: size=12\n"
" label: Time (ticks)\n"
" labeldetails: size=14\n\n");
fprintf(plotOut, "#proc yaxis\n"
" stubs: inc 1\n"
" stubrange: 0 %d\n"
" stubdetails: size=12\n"
" label: Thread #\n"
" labeldetails: size=14\n\n",
size - 1);
fprintf(plotOut, "#proc bars\n"
" exactcolorfield: 5\n"
" axis: x\n"
" locfield: 1\n"
" segmentfields: 2 3\n"
" barwidthfield: 4\n\n");
// create legend entries corresponding to the timer color
for (i = 0; i < TIMER_LAST; i++) {
if (timeStat::logEvent((timer_e)i)) {
rgb_color c = getEventColor((timer_e)i);
fprintf(plotOut, "#proc legendentry\n"
" sampletype: color\n"
" label: %s\n"
" details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
timeStat::name((timer_e)i), c.r, c.g, c.b);
}
}
fprintf(plotOut, "#proc legend\n"
" format: down\n"
" location: max max\n\n");
fclose(plotOut);
return;
}
static void outputEnvVariable(FILE *statsOut, char const *name) {
char const *value = getenv(name);
fprintf(statsOut, "# %s = %s\n", name, value ? value : "*unspecified*");
}
/* Print some useful information about
* the date and time this experiment ran.
* the machine on which it ran.
We output all of this as stylised comments, though we may decide to parse
some of it. */
void kmp_stats_output_module::printHeaderInfo(FILE *statsOut) {
std::time_t now = std::time(0);
char buffer[40];
char hostName[80];
std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now));
fprintf(statsOut, "# Time of run: %s\n", &buffer[0]);
if (gethostname(&hostName[0], sizeof(hostName)) == 0)
fprintf(statsOut, "# Hostname: %s\n", &hostName[0]);
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
fprintf(statsOut, "# CPU: %s\n", &__kmp_cpuinfo.name[0]);
fprintf(statsOut, "# Family: %d, Model: %d, Stepping: %d\n",
__kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping);
if (__kmp_cpuinfo.frequency == 0)
fprintf(statsOut, "# Nominal frequency: Unknown\n");
else
fprintf(statsOut, "# Nominal frequency: %sz\n",
formatSI(double(__kmp_cpuinfo.frequency), 9, 'H').c_str());
outputEnvVariable(statsOut, "KMP_HW_SUBSET");
outputEnvVariable(statsOut, "KMP_AFFINITY");
outputEnvVariable(statsOut, "KMP_BLOCKTIME");
outputEnvVariable(statsOut, "KMP_LIBRARY");
fprintf(statsOut, "# Production runtime built " __DATE__ " " __TIME__ "\n");
#endif
}
void kmp_stats_output_module::outputStats(const char *heading) {
// Stop all the explicit timers in all threads
// Do this before declaring the local statistics because thay have
// constructors so will take time to create.
windupExplicitTimers();
statistic allStats[TIMER_LAST];
statistic totalStats[TIMER_LAST]; /* Synthesized, cross threads versions of
normal timer stats */
statistic allCounters[COUNTER_LAST];
FILE *statsOut =
!outputFileName.empty() ? fopen(outputFileName.c_str(), "a+") : stderr;
if (!statsOut)
statsOut = stderr;
FILE *eventsOut;
if (eventPrintingEnabled()) {
eventsOut = fopen(eventsFileName, "w+");
}
printHeaderInfo(statsOut);
fprintf(statsOut, "%s\n", heading);
// Accumulate across threads.
kmp_stats_list::iterator it;
for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
int t = (*it)->getGtid();
// Output per thread stats if requested.
if (printPerThreadFlag) {
fprintf(statsOut, "Thread %d\n", t);
printTimerStats(statsOut, (*it)->getTimers(), 0);
printCounters(statsOut, (*it)->getCounters());
fprintf(statsOut, "\n");
}
// Output per thread events if requested.
if (eventPrintingEnabled()) {
kmp_stats_event_vector events = (*it)->getEventVector();
printEvents(eventsOut, &events, t);
}
// Accumulate timers.
for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
// See if we should ignore this timer when aggregating
if ((timeStat::masterOnly(s) && (t != 0)) || // Timer only valid on master
// and this thread is worker
(timeStat::workerOnly(s) && (t == 0)) // Timer only valid on worker
// and this thread is the master
) {
continue;
}
statistic *threadStat = (*it)->getTimer(s);
allStats[s] += *threadStat;
// Add Total stats for timers that are valid in more than one thread
if (!timeStat::noTotal(s))
totalStats[s].addSample(threadStat->getTotal());
}
// Accumulate counters.
for (counter_e c = counter_e(0); c < COUNTER_LAST; c = counter_e(c + 1)) {
if (counter::masterOnly(c) && t != 0)
continue;
allCounters[c].addSample((*it)->getCounter(c)->getValue());
}
}
if (eventPrintingEnabled()) {
printPloticusFile();
fclose(eventsOut);
}
fprintf(statsOut, "Aggregate for all threads\n");
printTimerStats(statsOut, &allStats[0], &totalStats[0]);
fprintf(statsOut, "\n");
printCounterStats(statsOut, &allCounters[0]);
if (statsOut != stderr)
fclose(statsOut);
}
/* ************* exported C functions ************** */
// no name mangling for these functions, we want the c files to be able to get
// at these functions
extern "C" {
void __kmp_reset_stats() {
kmp_stats_list::iterator it;
for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
timeStat *timers = (*it)->getTimers();
counter *counters = (*it)->getCounters();
for (int t = 0; t < TIMER_LAST; t++)
timers[t].reset();
for (int c = 0; c < COUNTER_LAST; c++)
counters[c].reset();
// reset the event vector so all previous events are "erased"
(*it)->resetEventVector();
}
}
// This function will reset all stats and stop all threads' explicit timers if
// they haven't been stopped already.
void __kmp_output_stats(const char *heading) {
__kmp_stats_global_output->outputStats(heading);
__kmp_reset_stats();
}
void __kmp_accumulate_stats_at_exit(void) {
// Only do this once.
if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
return;
__kmp_output_stats("Statistics on exit");
}
void __kmp_stats_init(void) {
__kmp_init_tas_lock(&__kmp_stats_lock);
__kmp_stats_start_time = tsc_tick_count::now();
__kmp_stats_global_output = new kmp_stats_output_module();
__kmp_stats_list = new kmp_stats_list();
}
void __kmp_stats_fini(void) {
__kmp_accumulate_stats_at_exit();
__kmp_stats_list->deallocate();
delete __kmp_stats_global_output;
delete __kmp_stats_list;
}
} // extern "C"