kmp_tasking.cpp 179 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
/*
 * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "kmp.h"
#include "kmp_i18n.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#include "kmp_wait_release.h"
#include "kmp_taskdeps.h"

#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

#include "tsan_annotations.h"

/* forward declaration */
static void __kmp_enable_tasking(kmp_task_team_t *task_team,
                                 kmp_info_t *this_thr);
static void __kmp_alloc_task_deque(kmp_info_t *thread,
                                   kmp_thread_data_t *thread_data);
static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
                                           kmp_task_team_t *task_team);
static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);

#ifdef BUILD_TIED_TASK_STACK

//  __kmp_trace_task_stack: print the tied tasks from the task stack in order
//  from top do bottom
//
//  gtid: global thread identifier for thread containing stack
//  thread_data: thread data for task team thread containing stack
//  threshold: value above which the trace statement triggers
//  location: string identifying call site of this function (for trace)
static void __kmp_trace_task_stack(kmp_int32 gtid,
                                   kmp_thread_data_t *thread_data,
                                   int threshold, char *location) {
  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
  kmp_taskdata_t **stack_top = task_stack->ts_top;
  kmp_int32 entries = task_stack->ts_entries;
  kmp_taskdata_t *tied_task;

  KA_TRACE(
      threshold,
      ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
       "first_block = %p, stack_top = %p \n",
       location, gtid, entries, task_stack->ts_first_block, stack_top));

  KMP_DEBUG_ASSERT(stack_top != NULL);
  KMP_DEBUG_ASSERT(entries > 0);

  while (entries != 0) {
    KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
    // fix up ts_top if we need to pop from previous block
    if (entries & TASK_STACK_INDEX_MASK == 0) {
      kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);

      stack_block = stack_block->sb_prev;
      stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
    }

    // finish bookkeeping
    stack_top--;
    entries--;

    tied_task = *stack_top;

    KMP_DEBUG_ASSERT(tied_task != NULL);
    KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);

    KA_TRACE(threshold,
             ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
              "stack_top=%p, tied_task=%p\n",
              location, gtid, entries, stack_top, tied_task));
  }
  KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);

  KA_TRACE(threshold,
           ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
            location, gtid));
}

//  __kmp_init_task_stack: initialize the task stack for the first time
//  after a thread_data structure is created.
//  It should not be necessary to do this again (assuming the stack works).
//
//  gtid: global thread identifier of calling thread
//  thread_data: thread data for task team thread containing stack
static void __kmp_init_task_stack(kmp_int32 gtid,
                                  kmp_thread_data_t *thread_data) {
  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
  kmp_stack_block_t *first_block;

  // set up the first block of the stack
  first_block = &task_stack->ts_first_block;
  task_stack->ts_top = (kmp_taskdata_t **)first_block;
  memset((void *)first_block, '\0',
         TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));

  // initialize the stack to be empty
  task_stack->ts_entries = TASK_STACK_EMPTY;
  first_block->sb_next = NULL;
  first_block->sb_prev = NULL;
}

//  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
//
//  gtid: global thread identifier for calling thread
//  thread_data: thread info for thread containing stack
static void __kmp_free_task_stack(kmp_int32 gtid,
                                  kmp_thread_data_t *thread_data) {
  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
  kmp_stack_block_t *stack_block = &task_stack->ts_first_block;

  KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
  // free from the second block of the stack
  while (stack_block != NULL) {
    kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;

    stack_block->sb_next = NULL;
    stack_block->sb_prev = NULL;
    if (stack_block != &task_stack->ts_first_block) {
      __kmp_thread_free(thread,
                        stack_block); // free the block, if not the first
    }
    stack_block = next_block;
  }
  // initialize the stack to be empty
  task_stack->ts_entries = 0;
  task_stack->ts_top = NULL;
}

//  __kmp_push_task_stack: Push the tied task onto the task stack.
//     Grow the stack if necessary by allocating another block.
//
//  gtid: global thread identifier for calling thread
//  thread: thread info for thread containing stack
//  tied_task: the task to push on the stack
static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
                                  kmp_taskdata_t *tied_task) {
  // GEH - need to consider what to do if tt_threads_data not allocated yet
  kmp_thread_data_t *thread_data =
      &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;

  if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
    return; // Don't push anything on stack if team or team tasks are serialized
  }

  KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
  KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);

  KA_TRACE(20,
           ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
            gtid, thread, tied_task));
  // Store entry
  *(task_stack->ts_top) = tied_task;

  // Do bookkeeping for next push
  task_stack->ts_top++;
  task_stack->ts_entries++;

  if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
    // Find beginning of this task block
    kmp_stack_block_t *stack_block =
        (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);

    // Check if we already have a block
    if (stack_block->sb_next !=
        NULL) { // reset ts_top to beginning of next block
      task_stack->ts_top = &stack_block->sb_next->sb_block[0];
    } else { // Alloc new block and link it up
      kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
          thread, sizeof(kmp_stack_block_t));

      task_stack->ts_top = &new_block->sb_block[0];
      stack_block->sb_next = new_block;
      new_block->sb_prev = stack_block;
      new_block->sb_next = NULL;

      KA_TRACE(
          30,
          ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
           gtid, tied_task, new_block));
    }
  }
  KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
                tied_task));
}

//  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
//  the task, just check to make sure it matches the ending task passed in.
//
//  gtid: global thread identifier for the calling thread
//  thread: thread info structure containing stack
//  tied_task: the task popped off the stack
//  ending_task: the task that is ending (should match popped task)
static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
                                 kmp_taskdata_t *ending_task) {
  // GEH - need to consider what to do if tt_threads_data not allocated yet
  kmp_thread_data_t *thread_data =
      &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
  kmp_taskdata_t *tied_task;

  if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
    // Don't pop anything from stack if team or team tasks are serialized
    return;
  }

  KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
  KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);

  KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
                thread));

  // fix up ts_top if we need to pop from previous block
  if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
    kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);

    stack_block = stack_block->sb_prev;
    task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
  }

  // finish bookkeeping
  task_stack->ts_top--;
  task_stack->ts_entries--;

  tied_task = *(task_stack->ts_top);

  KMP_DEBUG_ASSERT(tied_task != NULL);
  KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
  KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly

  KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
                tied_task));
  return;
}
#endif /* BUILD_TIED_TASK_STACK */

// returns 1 if new task is allowed to execute, 0 otherwise
// checks Task Scheduling constraint (if requested) and
// mutexinoutset dependencies if any
static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
                                  const kmp_taskdata_t *tasknew,
                                  const kmp_taskdata_t *taskcurr) {
  if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
    // Check if the candidate obeys the Task Scheduling Constraints (TSC)
    // only descendant of all deferred tied tasks can be scheduled, checking
    // the last one is enough, as it in turn is the descendant of all others
    kmp_taskdata_t *current = taskcurr->td_last_tied;
    KMP_DEBUG_ASSERT(current != NULL);
    // check if the task is not suspended on barrier
    if (current->td_flags.tasktype == TASK_EXPLICIT ||
        current->td_taskwait_thread > 0) { // <= 0 on barrier
      kmp_int32 level = current->td_level;
      kmp_taskdata_t *parent = tasknew->td_parent;
      while (parent != current && parent->td_level > level) {
        // check generation up to the level of the current task
        parent = parent->td_parent;
        KMP_DEBUG_ASSERT(parent != NULL);
      }
      if (parent != current)
        return false;
    }
  }
  // Check mutexinoutset dependencies, acquire locks
  kmp_depnode_t *node = tasknew->td_depnode;
  if (node && (node->dn.mtx_num_locks > 0)) {
    for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
      KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
      if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
        continue;
      // could not get the lock, release previous locks
      for (int j = i - 1; j >= 0; --j)
        __kmp_release_lock(node->dn.mtx_locks[j], gtid);
      return false;
    }
    // negative num_locks means all locks acquired successfully
    node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
  }
  return true;
}

// __kmp_realloc_task_deque:
// Re-allocates a task deque for a particular thread, copies the content from
// the old deque and adjusts the necessary data structures relating to the
// deque. This operation must be done with the deque_lock being held
static void __kmp_realloc_task_deque(kmp_info_t *thread,
                                     kmp_thread_data_t *thread_data) {
  kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
  kmp_int32 new_size = 2 * size;

  KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
                "%d] for thread_data %p\n",
                __kmp_gtid_from_thread(thread), size, new_size, thread_data));

  kmp_taskdata_t **new_deque =
      (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));

  int i, j;
  for (i = thread_data->td.td_deque_head, j = 0; j < size;
       i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
    new_deque[j] = thread_data->td.td_deque[i];

  __kmp_free(thread_data->td.td_deque);

  thread_data->td.td_deque_head = 0;
  thread_data->td.td_deque_tail = size;
  thread_data->td.td_deque = new_deque;
  thread_data->td.td_deque_size = new_size;
}

//  __kmp_push_task: Add a task to the thread's deque
static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  kmp_task_team_t *task_team = thread->th.th_task_team;
  kmp_int32 tid = __kmp_tid_from_gtid(gtid);
  kmp_thread_data_t *thread_data;

  KA_TRACE(20,
           ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));

  if (taskdata->td_flags.tiedness == TASK_UNTIED) {
    // untied task needs to increment counter so that the task structure is not
    // freed prematurely
    kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
    KMP_DEBUG_USE_VAR(counter);
    KA_TRACE(
        20,
        ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
         gtid, counter, taskdata));
  }

  // The first check avoids building task_team thread data if serialized
  if (taskdata->td_flags.task_serial) {
    KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
                  "TASK_NOT_PUSHED for task %p\n",
                  gtid, taskdata));
    return TASK_NOT_PUSHED;
  }

  // Now that serialized tasks have returned, we can assume that we are not in
  // immediate exec mode
  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
  if (!KMP_TASKING_ENABLED(task_team)) {
    __kmp_enable_tasking(task_team, thread);
  }
  KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
  KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);

  // Find tasking deque specific to encountering thread
  thread_data = &task_team->tt.tt_threads_data[tid];

  // No lock needed since only owner can allocate
  if (thread_data->td.td_deque == NULL) {
    __kmp_alloc_task_deque(thread, thread_data);
  }

  int locked = 0;
  // Check if deque is full
  if (TCR_4(thread_data->td.td_deque_ntasks) >=
      TASK_DEQUE_SIZE(thread_data->td)) {
    if (__kmp_enable_task_throttling &&
        __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
                              thread->th.th_current_task)) {
      KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
                    "TASK_NOT_PUSHED for task %p\n",
                    gtid, taskdata));
      return TASK_NOT_PUSHED;
    } else {
      __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
      locked = 1;
      if (TCR_4(thread_data->td.td_deque_ntasks) >=
          TASK_DEQUE_SIZE(thread_data->td)) {
        // expand deque to push the task which is not allowed to execute
        __kmp_realloc_task_deque(thread, thread_data);
      }
    }
  }
  // Lock the deque for the task push operation
  if (!locked) {
    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
    // Need to recheck as we can get a proxy task from thread outside of OpenMP
    if (TCR_4(thread_data->td.td_deque_ntasks) >=
        TASK_DEQUE_SIZE(thread_data->td)) {
      if (__kmp_enable_task_throttling &&
          __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
                                thread->th.th_current_task)) {
        __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
        KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
                      "returning TASK_NOT_PUSHED for task %p\n",
                      gtid, taskdata));
        return TASK_NOT_PUSHED;
      } else {
        // expand deque to push the task which is not allowed to execute
        __kmp_realloc_task_deque(thread, thread_data);
      }
    }
  }
  // Must have room since no thread can add tasks but calling thread
  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
                   TASK_DEQUE_SIZE(thread_data->td));

  thread_data->td.td_deque[thread_data->td.td_deque_tail] =
      taskdata; // Push taskdata
  // Wrap index.
  thread_data->td.td_deque_tail =
      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
  TCW_4(thread_data->td.td_deque_ntasks,
        TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
  KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
  KMP_FSYNC_RELEASING(taskdata); // releasing child
  KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
                "task=%p ntasks=%d head=%u tail=%u\n",
                gtid, taskdata, thread_data->td.td_deque_ntasks,
                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));

  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);

  return TASK_SUCCESSFULLY_PUSHED;
}

// __kmp_pop_current_task_from_thread: set up current task from called thread
// when team ends
//
// this_thr: thread structure to set current_task in.
void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
  KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
                "this_thread=%p, curtask=%p, "
                "curtask_parent=%p\n",
                0, this_thr, this_thr->th.th_current_task,
                this_thr->th.th_current_task->td_parent));

  this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;

  KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
                "this_thread=%p, curtask=%p, "
                "curtask_parent=%p\n",
                0, this_thr, this_thr->th.th_current_task,
                this_thr->th.th_current_task->td_parent));
}

// __kmp_push_current_task_to_thread: set up current task in called thread for a
// new team
//
// this_thr: thread structure to set up
// team: team for implicit task data
// tid: thread within team to set up
void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
                                       int tid) {
  // current task of the thread is a parent of the new just created implicit
  // tasks of new team
  KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
                "curtask=%p "
                "parent_task=%p\n",
                tid, this_thr, this_thr->th.th_current_task,
                team->t.t_implicit_task_taskdata[tid].td_parent));

  KMP_DEBUG_ASSERT(this_thr != NULL);

  if (tid == 0) {
    if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
      team->t.t_implicit_task_taskdata[0].td_parent =
          this_thr->th.th_current_task;
      this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
    }
  } else {
    team->t.t_implicit_task_taskdata[tid].td_parent =
        team->t.t_implicit_task_taskdata[0].td_parent;
    this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
  }

  KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
                "curtask=%p "
                "parent_task=%p\n",
                tid, this_thr, this_thr->th.th_current_task,
                team->t.t_implicit_task_taskdata[tid].td_parent));
}

// __kmp_task_start: bookkeeping for a task starting execution
//
// GTID: global thread id of calling thread
// task: task starting execution
// current_task: task suspending
static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
                             kmp_taskdata_t *current_task) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  kmp_info_t *thread = __kmp_threads[gtid];

  KA_TRACE(10,
           ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
            gtid, taskdata, current_task));

  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);

  // mark currently executing task as suspended
  // TODO: GEH - make sure root team implicit task is initialized properly.
  // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
  current_task->td_flags.executing = 0;

// Add task to stack if tied
#ifdef BUILD_TIED_TASK_STACK
  if (taskdata->td_flags.tiedness == TASK_TIED) {
    __kmp_push_task_stack(gtid, thread, taskdata);
  }
#endif /* BUILD_TIED_TASK_STACK */

  // mark starting task as executing and as current task
  thread->th.th_current_task = taskdata;

  KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
                   taskdata->td_flags.tiedness == TASK_UNTIED);
  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
                   taskdata->td_flags.tiedness == TASK_UNTIED);
  taskdata->td_flags.started = 1;
  taskdata->td_flags.executing = 1;
  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);

  // GEH TODO: shouldn't we pass some sort of location identifier here?
  // APT: yes, we will pass location here.
  // need to store current thread state (in a thread or taskdata structure)
  // before setting work_state, otherwise wrong state is set after end of task

  KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));

  return;
}

#if OMPT_SUPPORT
//------------------------------------------------------------------------------
// __ompt_task_init:
//   Initialize OMPT fields maintained by a task. This will only be called after
//   ompt_start_tool, so we already know whether ompt is enabled or not.

static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
  // The calls to __ompt_task_init already have the ompt_enabled condition.
  task->ompt_task_info.task_data.value = 0;
  task->ompt_task_info.frame.exit_frame = ompt_data_none;
  task->ompt_task_info.frame.enter_frame = ompt_data_none;
  task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
  task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
}

// __ompt_task_start:
//   Build and trigger task-begin event
static inline void __ompt_task_start(kmp_task_t *task,
                                     kmp_taskdata_t *current_task,
                                     kmp_int32 gtid) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  ompt_task_status_t status = ompt_task_switch;
  if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
    status = ompt_task_yield;
    __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
  }
  /* let OMPT know that we're about to run this task */
  if (ompt_enabled.ompt_callback_task_schedule) {
    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
        &(current_task->ompt_task_info.task_data), status,
        &(taskdata->ompt_task_info.task_data));
  }
  taskdata->ompt_task_info.scheduling_parent = current_task;
}

// __ompt_task_finish:
//   Build and trigger final task-schedule event
static inline void __ompt_task_finish(kmp_task_t *task,
                                      kmp_taskdata_t *resumed_task,
                                      ompt_task_status_t status) {
  if (ompt_enabled.ompt_callback_task_schedule) {
    kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
    if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
        taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
      status = ompt_task_cancel;
    }

    /* let OMPT know that we're returning to the callee task */
    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
        &(taskdata->ompt_task_info.task_data), status,
        (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
  }
}
#endif

template <bool ompt>
static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
                                               kmp_task_t *task,
                                               void *frame_address,
                                               void *return_address) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;

  KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
                "current_task=%p\n",
                gtid, loc_ref, taskdata, current_task));

  if (taskdata->td_flags.tiedness == TASK_UNTIED) {
    // untied task needs to increment counter so that the task structure is not
    // freed prematurely
    kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
    KMP_DEBUG_USE_VAR(counter);
    KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
                  "incremented for task %p\n",
                  gtid, counter, taskdata));
  }

  taskdata->td_flags.task_serial =
      1; // Execute this task immediately, not deferred.
  __kmp_task_start(gtid, task, current_task);

#if OMPT_SUPPORT
  if (ompt) {
    if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
      current_task->ompt_task_info.frame.enter_frame.ptr =
          taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
      current_task->ompt_task_info.frame.enter_frame_flags =
          taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer;
    }
    if (ompt_enabled.ompt_callback_task_create) {
      ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
          &(parent_info->task_data), &(parent_info->frame),
          &(taskdata->ompt_task_info.task_data),
          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
          return_address);
    }
    __ompt_task_start(task, current_task, gtid);
  }
#endif // OMPT_SUPPORT

  KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
                loc_ref, taskdata));
}

#if OMPT_SUPPORT
OMPT_NOINLINE
static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
                                           kmp_task_t *task,
                                           void *frame_address,
                                           void *return_address) {
  __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
                                           return_address);
}
#endif // OMPT_SUPPORT

// __kmpc_omp_task_begin_if0: report that a given serialized task has started
// execution
//
// loc_ref: source location information; points to beginning of task block.
// gtid: global thread number.
// task: task thunk for the started task.
void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
                               kmp_task_t *task) {
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled)) {
    OMPT_STORE_RETURN_ADDRESS(gtid);
    __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
                                   OMPT_GET_FRAME_ADDRESS(1),
                                   OMPT_LOAD_RETURN_ADDRESS(gtid));
    return;
  }
#endif
  __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
}

#ifdef TASK_UNUSED
// __kmpc_omp_task_begin: report that a given task has started execution
// NEVER GENERATED BY COMPILER, DEPRECATED!!!
void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
  kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;

  KA_TRACE(
      10,
      ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
       gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));

  __kmp_task_start(gtid, task, current_task);

  KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
                loc_ref, KMP_TASK_TO_TASKDATA(task)));
  return;
}
#endif // TASK_UNUSED

// __kmp_free_task: free the current task space and the space for shareds
//
// gtid: Global thread ID of calling thread
// taskdata: task to free
// thread: thread data structure of caller
static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
                            kmp_info_t *thread) {
  KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
                taskdata));

  // Check to make sure all flags and counters have the correct values
  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
  KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
                   taskdata->td_flags.task_serial == 1);
  KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);

  taskdata->td_flags.freed = 1;
  ANNOTATE_HAPPENS_BEFORE(taskdata);
// deallocate the taskdata and shared variable blocks associated with this task
#if USE_FAST_MEMORY
  __kmp_fast_free(thread, taskdata);
#else /* ! USE_FAST_MEMORY */
  __kmp_thread_free(thread, taskdata);
#endif

  KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
}

// __kmp_free_task_and_ancestors: free the current task and ancestors without
// children
//
// gtid: Global thread ID of calling thread
// taskdata: task to free
// thread: thread data structure of caller
static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
                                          kmp_taskdata_t *taskdata,
                                          kmp_info_t *thread) {
  // Proxy tasks must always be allowed to free their parents
  // because they can be run in background even in serial mode.
  kmp_int32 team_serial =
      (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
      !taskdata->td_flags.proxy;
  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);

  kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
  KMP_DEBUG_ASSERT(children >= 0);

  // Now, go up the ancestor tree to see if any ancestors can now be freed.
  while (children == 0) {
    kmp_taskdata_t *parent_taskdata = taskdata->td_parent;

    KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
                  "and freeing itself\n",
                  gtid, taskdata));

    // --- Deallocate my ancestor task ---
    __kmp_free_task(gtid, taskdata, thread);

    taskdata = parent_taskdata;

    if (team_serial)
      return;
    // Stop checking ancestors at implicit task instead of walking up ancestor
    // tree to avoid premature deallocation of ancestors.
    if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
      if (taskdata->td_dephash) { // do we need to cleanup dephash?
        int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
        kmp_tasking_flags_t flags_old = taskdata->td_flags;
        if (children == 0 && flags_old.complete == 1) {
          kmp_tasking_flags_t flags_new = flags_old;
          flags_new.complete = 0;
          if (KMP_COMPARE_AND_STORE_ACQ32(
                  RCAST(kmp_int32 *, &taskdata->td_flags),
                  *RCAST(kmp_int32 *, &flags_old),
                  *RCAST(kmp_int32 *, &flags_new))) {
            KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
                           "dephash of implicit task %p\n",
                           gtid, taskdata));
            // cleanup dephash of finished implicit task
            __kmp_dephash_free_entries(thread, taskdata->td_dephash);
          }
        }
      }
      return;
    }
    // Predecrement simulated by "- 1" calculation
    children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
    KMP_DEBUG_ASSERT(children >= 0);
  }

  KA_TRACE(
      20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
           "not freeing it yet\n",
           gtid, taskdata, children));
}

// __kmp_task_finish: bookkeeping to do when a task finishes execution
//
// gtid: global thread ID for calling thread
// task: task to be finished
// resumed_task: task to be resumed.  (may be NULL if task is serialized)
//
// template<ompt>: effectively ompt_enabled.enabled!=0
// the version with ompt=false is inlined, allowing to optimize away all ompt
// code in this case
template <bool ompt>
static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
                              kmp_taskdata_t *resumed_task) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_task_team_t *task_team =
      thread->th.th_task_team; // might be NULL for serial teams...
  kmp_int32 children = 0;

  KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
                "task %p\n",
                gtid, taskdata, resumed_task));

  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);

// Pop task from stack if tied
#ifdef BUILD_TIED_TASK_STACK
  if (taskdata->td_flags.tiedness == TASK_TIED) {
    __kmp_pop_task_stack(gtid, thread, taskdata);
  }
#endif /* BUILD_TIED_TASK_STACK */

  if (taskdata->td_flags.tiedness == TASK_UNTIED) {
    // untied task needs to check the counter so that the task structure is not
    // freed prematurely
    kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
    KA_TRACE(
        20,
        ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
         gtid, counter, taskdata));
    if (counter > 0) {
      // untied task is not done, to be continued possibly by other thread, do
      // not free it now
      if (resumed_task == NULL) {
        KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
        resumed_task = taskdata->td_parent; // In a serialized task, the resumed
        // task is the parent
      }
      thread->th.th_current_task = resumed_task; // restore current_task
      resumed_task->td_flags.executing = 1; // resume previous task
      KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
                    "resuming task %p\n",
                    gtid, taskdata, resumed_task));
      return;
    }
  }

  // Check mutexinoutset dependencies, release locks
  kmp_depnode_t *node = taskdata->td_depnode;
  if (node && (node->dn.mtx_num_locks < 0)) {
    // negative num_locks means all locks were acquired
    node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
    for (int i = node->dn.mtx_num_locks - 1; i >= 0; --i) {
      KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
      __kmp_release_lock(node->dn.mtx_locks[i], gtid);
    }
  }

  // bookkeeping for resuming task:
  // GEH - note tasking_ser => task_serial
  KMP_DEBUG_ASSERT(
      (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
      taskdata->td_flags.task_serial);
  if (taskdata->td_flags.task_serial) {
    if (resumed_task == NULL) {
      resumed_task = taskdata->td_parent; // In a serialized task, the resumed
      // task is the parent
    }
  } else {
    KMP_DEBUG_ASSERT(resumed_task !=
                     NULL); // verify that resumed task is passed as argument
  }

  /* If the tasks' destructor thunk flag has been set, we need to invoke the
     destructor thunk that has been generated by the compiler. The code is
     placed here, since at this point other tasks might have been released
     hence overlapping the destructor invocations with some other work in the
     released tasks.  The OpenMP spec is not specific on when the destructors
     are invoked, so we should be free to choose. */
  if (taskdata->td_flags.destructors_thunk) {
    kmp_routine_entry_t destr_thunk = task->data1.destructors;
    KMP_ASSERT(destr_thunk);
    destr_thunk(gtid, task);
  }

  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
  KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);

  bool detach = false;
  if (taskdata->td_flags.detachable == TASK_DETACHABLE) {
    if (taskdata->td_allow_completion_event.type ==
        KMP_EVENT_ALLOW_COMPLETION) {
      // event hasn't been fulfilled yet. Try to detach task.
      __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
      if (taskdata->td_allow_completion_event.type ==
          KMP_EVENT_ALLOW_COMPLETION) {
        // task finished execution
        KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
        taskdata->td_flags.executing = 0; // suspend the finishing task

#if OMPT_SUPPORT
        // For a detached task, which is not completed, we switch back
        // the omp_fulfill_event signals completion
        // locking is necessary to avoid a race with ompt_task_late_fulfill
        if (ompt)
          __ompt_task_finish(task, resumed_task, ompt_task_detach);
#endif

        // no access to taskdata after this point!
        // __kmp_fulfill_event might free taskdata at any time from now

        taskdata->td_flags.proxy = TASK_PROXY; // proxify!
        detach = true;
      }
      __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
    }
  }

  if (!detach) {
    taskdata->td_flags.complete = 1; // mark the task as completed

#if OMPT_SUPPORT
    // This is not a detached task, we are done here
    if (ompt)
      __ompt_task_finish(task, resumed_task, ompt_task_complete);
#endif

    // Only need to keep track of count if team parallel and tasking not
    // serialized, or task is detachable and event has already been fulfilled 
    if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) ||
        taskdata->td_flags.detachable == TASK_DETACHABLE) {
      // Predecrement simulated by "- 1" calculation
      children =
          KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
      KMP_DEBUG_ASSERT(children >= 0);
      if (taskdata->td_taskgroup)
        KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
      __kmp_release_deps(gtid, taskdata);
    } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
      // if we found proxy tasks there could exist a dependency chain
      // with the proxy task as origin
      __kmp_release_deps(gtid, taskdata);
    }
    // td_flags.executing must be marked as 0 after __kmp_release_deps has been
    // called. Othertwise, if a task is executed immediately from the
    // release_deps code, the flag will be reset to 1 again by this same
    // function
    KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
    taskdata->td_flags.executing = 0; // suspend the finishing task
  }


  KA_TRACE(
      20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
           gtid, taskdata, children));

  // Free this task and then ancestor tasks if they have no children.
  // Restore th_current_task first as suggested by John:
  // johnmc: if an asynchronous inquiry peers into the runtime system
  // it doesn't see the freed task as the current task.
  thread->th.th_current_task = resumed_task;
  if (!detach)
    __kmp_free_task_and_ancestors(gtid, taskdata, thread);

  // TODO: GEH - make sure root team implicit task is initialized properly.
  // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
  resumed_task->td_flags.executing = 1; // resume previous task

  KA_TRACE(
      10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
           gtid, taskdata, resumed_task));

  return;
}

template <bool ompt>
static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
                                                  kmp_int32 gtid,
                                                  kmp_task_t *task) {
  KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
                gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
  __kmp_assert_valid_gtid(gtid);
  // this routine will provide task to resume
  __kmp_task_finish<ompt>(gtid, task, NULL);

  KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
                gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));

#if OMPT_SUPPORT
  if (ompt) {
    ompt_frame_t *ompt_frame;
    __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
    ompt_frame->enter_frame = ompt_data_none;
    ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
  }
#endif

  return;
}

#if OMPT_SUPPORT
OMPT_NOINLINE
void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
                                       kmp_task_t *task) {
  __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
}
#endif // OMPT_SUPPORT

// __kmpc_omp_task_complete_if0: report that a task has completed execution
//
// loc_ref: source location information; points to end of task block.
// gtid: global thread number.
// task: task thunk for the completed task.
void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
                                  kmp_task_t *task) {
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled)) {
    __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
    return;
  }
#endif
  __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
}

#ifdef TASK_UNUSED
// __kmpc_omp_task_complete: report that a task has completed execution
// NEVER GENERATED BY COMPILER, DEPRECATED!!!
void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
                              kmp_task_t *task) {
  KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
                loc_ref, KMP_TASK_TO_TASKDATA(task)));

  __kmp_task_finish<false>(gtid, task,
                           NULL); // Not sure how to find task to resume

  KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
                loc_ref, KMP_TASK_TO_TASKDATA(task)));
  return;
}
#endif // TASK_UNUSED

// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
// task for a given thread
//
// loc_ref:  reference to source location of parallel region
// this_thr:  thread data structure corresponding to implicit task
// team: team for this_thr
// tid: thread id of given thread within team
// set_curr_task: TRUE if need to push current task to thread
// NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
// have already been done elsewhere.
// TODO: Get better loc_ref.  Value passed in may be NULL
void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
                              kmp_team_t *team, int tid, int set_curr_task) {
  kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];

  KF_TRACE(
      10,
      ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
       tid, team, task, set_curr_task ? "TRUE" : "FALSE"));

  task->td_task_id = KMP_GEN_TASK_ID();
  task->td_team = team;
  //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
  //    in debugger)
  task->td_ident = loc_ref;
  task->td_taskwait_ident = NULL;
  task->td_taskwait_counter = 0;
  task->td_taskwait_thread = 0;

  task->td_flags.tiedness = TASK_TIED;
  task->td_flags.tasktype = TASK_IMPLICIT;
  task->td_flags.proxy = TASK_FULL;

  // All implicit tasks are executed immediately, not deferred
  task->td_flags.task_serial = 1;
  task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
  task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;

  task->td_flags.started = 1;
  task->td_flags.executing = 1;
  task->td_flags.complete = 0;
  task->td_flags.freed = 0;

  task->td_depnode = NULL;
  task->td_last_tied = task;
  task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;

  if (set_curr_task) { // only do this init first time thread is created
    KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
    // Not used: don't need to deallocate implicit task
    KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
    task->td_taskgroup = NULL; // An implicit task does not have taskgroup
    task->td_dephash = NULL;
    __kmp_push_current_task_to_thread(this_thr, team, tid);
  } else {
    KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
    KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
  }

#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled))
    __ompt_task_init(task, tid);
#endif

  KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
                team, task));
}

// __kmp_finish_implicit_task: Release resources associated to implicit tasks
// at the end of parallel regions. Some resources are kept for reuse in the next
// parallel region.
//
// thread:  thread data structure corresponding to implicit task
void __kmp_finish_implicit_task(kmp_info_t *thread) {
  kmp_taskdata_t *task = thread->th.th_current_task;
  if (task->td_dephash) {
    int children;
    task->td_flags.complete = 1;
    children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
    kmp_tasking_flags_t flags_old = task->td_flags;
    if (children == 0 && flags_old.complete == 1) {
      kmp_tasking_flags_t flags_new = flags_old;
      flags_new.complete = 0;
      if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
                                      *RCAST(kmp_int32 *, &flags_old),
                                      *RCAST(kmp_int32 *, &flags_new))) {
        KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
                       "dephash of implicit task %p\n",
                       thread->th.th_info.ds.ds_gtid, task));
        __kmp_dephash_free_entries(thread, task->td_dephash);
      }
    }
  }
}

// __kmp_free_implicit_task: Release resources associated to implicit tasks
// when these are destroyed regions
//
// thread:  thread data structure corresponding to implicit task
void __kmp_free_implicit_task(kmp_info_t *thread) {
  kmp_taskdata_t *task = thread->th.th_current_task;
  if (task && task->td_dephash) {
    __kmp_dephash_free(thread, task->td_dephash);
    task->td_dephash = NULL;
  }
}

// Round up a size to a power of two specified by val: Used to insert padding
// between structures co-allocated using a single malloc() call
static size_t __kmp_round_up_to_val(size_t size, size_t val) {
  if (size & (val - 1)) {
    size &= ~(val - 1);
    if (size <= KMP_SIZE_T_MAX - val) {
      size += val; // Round up if there is no overflow.
    }
  }
  return size;
} // __kmp_round_up_to_va

// __kmp_task_alloc: Allocate the taskdata and task data structures for a task
//
// loc_ref: source location information
// gtid: global thread number.
// flags: include tiedness & task type (explicit vs. implicit) of the ''new''
// task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
// sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
// private vars accessed in task.
// sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
// in task.
// task_entry: Pointer to task code entry point generated by compiler.
// returns: a pointer to the allocated kmp_task_t structure (task).
kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
                             kmp_tasking_flags_t *flags,
                             size_t sizeof_kmp_task_t, size_t sizeof_shareds,
                             kmp_routine_entry_t task_entry) {
  kmp_task_t *task;
  kmp_taskdata_t *taskdata;
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_team_t *team = thread->th.th_team;
  kmp_taskdata_t *parent_task = thread->th.th_current_task;
  size_t shareds_offset;

  if (!TCR_4(__kmp_init_middle))
    __kmp_middle_initialize();

  KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
                "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
                gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
                sizeof_shareds, task_entry));

  if (parent_task->td_flags.final) {
    if (flags->merged_if0) {
    }
    flags->final = 1;
  }
  if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
    // Untied task encountered causes the TSC algorithm to check entire deque of
    // the victim thread. If no untied task encountered, then checking the head
    // of the deque should be enough.
    KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
  }

  // Detachable tasks are not proxy tasks yet but could be in the future. Doing
  // the tasking setup
  // when that happens is too late.
  if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) {
    if (flags->proxy == TASK_PROXY) {
      flags->tiedness = TASK_UNTIED;
      flags->merged_if0 = 1;
    }
    /* are we running in a sequential parallel or tskm_immediate_exec... we need
       tasking support enabled */
    if ((thread->th.th_task_team) == NULL) {
      /* This should only happen if the team is serialized
          setup a task team and propagate it to the thread */
      KMP_DEBUG_ASSERT(team->t.t_serialized);
      KA_TRACE(30,
               ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
                gtid));
      __kmp_task_team_setup(
          thread, team,
          1); // 1 indicates setup the current team regardless of nthreads
      thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
    }
    kmp_task_team_t *task_team = thread->th.th_task_team;

    /* tasking must be enabled now as the task might not be pushed */
    if (!KMP_TASKING_ENABLED(task_team)) {
      KA_TRACE(
          30,
          ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
      __kmp_enable_tasking(task_team, thread);
      kmp_int32 tid = thread->th.th_info.ds.ds_tid;
      kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
      // No lock needed since only owner can allocate
      if (thread_data->td.td_deque == NULL) {
        __kmp_alloc_task_deque(thread, thread_data);
      }
    }

    if (task_team->tt.tt_found_proxy_tasks == FALSE)
      TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
  }

  // Calculate shared structure offset including padding after kmp_task_t struct
  // to align pointers in shared struct
  shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
  shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));

  // Allocate a kmp_taskdata_t block and a kmp_task_t block.
  KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
                shareds_offset));
  KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
                sizeof_shareds));

// Avoid double allocation here by combining shareds with taskdata
#if USE_FAST_MEMORY
  taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
                                                               sizeof_shareds);
#else /* ! USE_FAST_MEMORY */
  taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
                                                               sizeof_shareds);
#endif /* USE_FAST_MEMORY */
  ANNOTATE_HAPPENS_AFTER(taskdata);

  task = KMP_TASKDATA_TO_TASK(taskdata);

// Make sure task & taskdata are aligned appropriately
#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
  KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
  KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
#else
  KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
  KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
#endif
  if (sizeof_shareds > 0) {
    // Avoid double allocation here by combining shareds with taskdata
    task->shareds = &((char *)taskdata)[shareds_offset];
    // Make sure shareds struct is aligned to pointer size
    KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
                     0);
  } else {
    task->shareds = NULL;
  }
  task->routine = task_entry;
  task->part_id = 0; // AC: Always start with 0 part id

  taskdata->td_task_id = KMP_GEN_TASK_ID();
  taskdata->td_team = team;
  taskdata->td_alloc_thread = thread;
  taskdata->td_parent = parent_task;
  taskdata->td_level = parent_task->td_level + 1; // increment nesting level
  KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
  taskdata->td_ident = loc_ref;
  taskdata->td_taskwait_ident = NULL;
  taskdata->td_taskwait_counter = 0;
  taskdata->td_taskwait_thread = 0;
  KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
  // avoid copying icvs for proxy tasks
  if (flags->proxy == TASK_FULL)
    copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);

  taskdata->td_flags.tiedness = flags->tiedness;
  taskdata->td_flags.final = flags->final;
  taskdata->td_flags.merged_if0 = flags->merged_if0;
  taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
  taskdata->td_flags.proxy = flags->proxy;
  taskdata->td_flags.detachable = flags->detachable;
  taskdata->td_task_team = thread->th.th_task_team;
  taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
  taskdata->td_flags.tasktype = TASK_EXPLICIT;

  // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
  taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);

  // GEH - TODO: fix this to copy parent task's value of team_serial flag
  taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;

  // GEH - Note we serialize the task if the team is serialized to make sure
  // implicit parallel region tasks are not left until program termination to
  // execute. Also, it helps locality to execute immediately.

  taskdata->td_flags.task_serial =
      (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
       taskdata->td_flags.tasking_ser || flags->merged_if0);

  taskdata->td_flags.started = 0;
  taskdata->td_flags.executing = 0;
  taskdata->td_flags.complete = 0;
  taskdata->td_flags.freed = 0;

  taskdata->td_flags.native = flags->native;

  KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
  // start at one because counts current task and children
  KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
  taskdata->td_taskgroup =
      parent_task->td_taskgroup; // task inherits taskgroup from the parent task
  taskdata->td_dephash = NULL;
  taskdata->td_depnode = NULL;
  if (flags->tiedness == TASK_UNTIED)
    taskdata->td_last_tied = NULL; // will be set when the task is scheduled
  else
    taskdata->td_last_tied = taskdata;
  taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled))
    __ompt_task_init(taskdata, gtid);
#endif
// Only need to keep track of child task counts if team parallel and tasking not
// serialized or if it is a proxy or detachable task
  if (flags->proxy == TASK_PROXY ||
      flags->detachable == TASK_DETACHABLE ||
      !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser))
  {
    KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
    if (parent_task->td_taskgroup)
      KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
    // Only need to keep track of allocated child tasks for explicit tasks since
    // implicit not deallocated
    if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
      KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
    }
  }

  KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
                gtid, taskdata, taskdata->td_parent));
  ANNOTATE_HAPPENS_BEFORE(task);

  return task;
}

kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
                                  kmp_int32 flags, size_t sizeof_kmp_task_t,
                                  size_t sizeof_shareds,
                                  kmp_routine_entry_t task_entry) {
  kmp_task_t *retval;
  kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
  __kmp_assert_valid_gtid(gtid);
  input_flags->native = FALSE;
// __kmp_task_alloc() sets up all other runtime flags
  KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
                "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
                gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
                input_flags->proxy ? "proxy" : "",
                input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
                sizeof_shareds, task_entry));

  retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
                            sizeof_shareds, task_entry);

  KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));

  return retval;
}

kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
                                         kmp_int32 flags,
                                         size_t sizeof_kmp_task_t,
                                         size_t sizeof_shareds,
                                         kmp_routine_entry_t task_entry,
                                         kmp_int64 device_id) {
  return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
                               sizeof_shareds, task_entry);
}

/*!
@ingroup TASKING
@param loc_ref location of the original task directive
@param gtid Global Thread ID of encountering thread
@param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
task''
@param naffins Number of affinity items
@param affin_list List of affinity items
@return Returns non-zero if registering affinity information was not successful.
 Returns 0 if registration was successful
This entry registers the affinity information attached to a task with the task
thunk structure kmp_taskdata_t.
*/
kmp_int32
__kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
                                  kmp_task_t *new_task, kmp_int32 naffins,
                                  kmp_task_affinity_info_t *affin_list) {
  return 0;
}

//  __kmp_invoke_task: invoke the specified task
//
// gtid: global thread ID of caller
// task: the task to invoke
// current_task: the task to resume after task invocation
static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
                              kmp_taskdata_t *current_task) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  kmp_info_t *thread;
  int discard = 0 /* false */;
  KA_TRACE(
      30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
           gtid, taskdata, current_task));
  KMP_DEBUG_ASSERT(task);
  if (taskdata->td_flags.proxy == TASK_PROXY &&
      taskdata->td_flags.complete == 1) {
    // This is a proxy task that was already completed but it needs to run
    // its bottom-half finish
    KA_TRACE(
        30,
        ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
         gtid, taskdata));

    __kmp_bottom_half_finish_proxy(gtid, task);

    KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
                  "proxy task %p, resuming task %p\n",
                  gtid, taskdata, current_task));

    return;
  }

#if OMPT_SUPPORT
  // For untied tasks, the first task executed only calls __kmpc_omp_task and
  // does not execute code.
  ompt_thread_info_t oldInfo;
  if (UNLIKELY(ompt_enabled.enabled)) {
    // Store the threads states and restore them after the task
    thread = __kmp_threads[gtid];
    oldInfo = thread->th.ompt_thread_info;
    thread->th.ompt_thread_info.wait_id = 0;
    thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
                                            ? ompt_state_work_serial
                                            : ompt_state_work_parallel;
    taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
  }
#endif

  // Proxy tasks are not handled by the runtime
  if (taskdata->td_flags.proxy != TASK_PROXY) {
    ANNOTATE_HAPPENS_AFTER(task);
    __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
  }

  // TODO: cancel tasks if the parallel region has also been cancelled
  // TODO: check if this sequence can be hoisted above __kmp_task_start
  // if cancellation has been enabled for this run ...
  if (__kmp_omp_cancellation) {
    thread = __kmp_threads[gtid];
    kmp_team_t *this_team = thread->th.th_team;
    kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
    if ((taskgroup && taskgroup->cancel_request) ||
        (this_team->t.t_cancel_request == cancel_parallel)) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
      ompt_data_t *task_data;
      if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
        __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
        ompt_callbacks.ompt_callback(ompt_callback_cancel)(
            task_data,
            ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
                                                      : ompt_cancel_parallel) |
                ompt_cancel_discarded_task,
            NULL);
      }
#endif
      KMP_COUNT_BLOCK(TASK_cancelled);
      // this task belongs to a task group and we need to cancel it
      discard = 1 /* true */;
    }
  }

  // Invoke the task routine and pass in relevant data.
  // Thunks generated by gcc take a different argument list.
  if (!discard) {
    if (taskdata->td_flags.tiedness == TASK_UNTIED) {
      taskdata->td_last_tied = current_task->td_last_tied;
      KMP_DEBUG_ASSERT(taskdata->td_last_tied);
    }
#if KMP_STATS_ENABLED
    KMP_COUNT_BLOCK(TASK_executed);
    switch (KMP_GET_THREAD_STATE()) {
    case FORK_JOIN_BARRIER:
      KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
      break;
    case PLAIN_BARRIER:
      KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
      break;
    case TASKYIELD:
      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
      break;
    case TASKWAIT:
      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
      break;
    case TASKGROUP:
      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
      break;
    default:
      KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
      break;
    }
#endif // KMP_STATS_ENABLED

// OMPT task begin
#if OMPT_SUPPORT
    if (UNLIKELY(ompt_enabled.enabled))
      __ompt_task_start(task, current_task, gtid);
#endif

#if USE_ITT_BUILD && USE_ITT_NOTIFY
    kmp_uint64 cur_time;
    kmp_int32 kmp_itt_count_task =
        __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
        current_task->td_flags.tasktype == TASK_IMPLICIT;
    if (kmp_itt_count_task) {
      thread = __kmp_threads[gtid];
      // Time outer level explicit task on barrier for adjusting imbalance time
      if (thread->th.th_bar_arrive_time)
        cur_time = __itt_get_timestamp();
      else
        kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
    }
    KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
#endif

#ifdef KMP_GOMP_COMPAT
    if (taskdata->td_flags.native) {
      ((void (*)(void *))(*(task->routine)))(task->shareds);
    } else
#endif /* KMP_GOMP_COMPAT */
    {
      (*(task->routine))(gtid, task);
    }
    KMP_POP_PARTITIONED_TIMER();

#if USE_ITT_BUILD && USE_ITT_NOTIFY
    if (kmp_itt_count_task) {
      // Barrier imbalance - adjust arrive time with the task duration
      thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
    }
    KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
    KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
#endif

  }

  // Proxy tasks are not handled by the runtime
  if (taskdata->td_flags.proxy != TASK_PROXY) {
    ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
#if OMPT_SUPPORT
    if (UNLIKELY(ompt_enabled.enabled)) {
      thread->th.ompt_thread_info = oldInfo;
      if (taskdata->td_flags.tiedness == TASK_TIED) {
        taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
      }
      __kmp_task_finish<true>(gtid, task, current_task);
    } else
#endif
      __kmp_task_finish<false>(gtid, task, current_task);
  }

  KA_TRACE(
      30,
      ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
       gtid, taskdata, current_task));
  return;
}

// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
//
// loc_ref: location of original task pragma (ignored)
// gtid: Global Thread ID of encountering thread
// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
// Returns:
//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
//    be resumed later.
//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
//    resumed later.
kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
                                kmp_task_t *new_task) {
  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);

  KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
                loc_ref, new_taskdata));

#if OMPT_SUPPORT
  kmp_taskdata_t *parent;
  if (UNLIKELY(ompt_enabled.enabled)) {
    parent = new_taskdata->td_parent;
    if (ompt_enabled.ompt_callback_task_create) {
      ompt_data_t task_data = ompt_data_none;
      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
          parent ? &(parent->ompt_task_info.task_data) : &task_data,
          parent ? &(parent->ompt_task_info.frame) : NULL,
          &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
          OMPT_GET_RETURN_ADDRESS(0));
    }
  }
#endif

  /* Should we execute the new task or queue it? For now, let's just always try
     to queue it.  If the queue fills up, then we'll execute it.  */

  if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
  { // Execute this task immediately
    kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
    new_taskdata->td_flags.task_serial = 1;
    __kmp_invoke_task(gtid, new_task, current_task);
  }

  KA_TRACE(
      10,
      ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
       "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
       gtid, loc_ref, new_taskdata));

  ANNOTATE_HAPPENS_BEFORE(new_task);
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled)) {
    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
  }
#endif
  return TASK_CURRENT_NOT_QUEUED;
}

// __kmp_omp_task: Schedule a non-thread-switchable task for execution
//
// gtid: Global Thread ID of encountering thread
// new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
// serialize_immediate: if TRUE then if the task is executed immediately its
// execution will be serialized
// Returns:
//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
//    be resumed later.
//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
//    resumed later.
kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
                         bool serialize_immediate) {
  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);

  /* Should we execute the new task or queue it? For now, let's just always try
     to queue it.  If the queue fills up, then we'll execute it.  */
  if (new_taskdata->td_flags.proxy == TASK_PROXY ||
      __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
  { // Execute this task immediately
    kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
    if (serialize_immediate)
      new_taskdata->td_flags.task_serial = 1;
    __kmp_invoke_task(gtid, new_task, current_task);
  }

  ANNOTATE_HAPPENS_BEFORE(new_task);
  return TASK_CURRENT_NOT_QUEUED;
}

// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
// non-thread-switchable task from the parent thread only!
//
// loc_ref: location of original task pragma (ignored)
// gtid: Global Thread ID of encountering thread
// new_task: non-thread-switchable task thunk allocated by
// __kmp_omp_task_alloc()
// Returns:
//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
//    be resumed later.
//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
//    resumed later.
kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
                          kmp_task_t *new_task) {
  kmp_int32 res;
  KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);

#if KMP_DEBUG || OMPT_SUPPORT
  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
#endif
  KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
                new_taskdata));
  __kmp_assert_valid_gtid(gtid);

#if OMPT_SUPPORT
  kmp_taskdata_t *parent = NULL;
  if (UNLIKELY(ompt_enabled.enabled)) {
    if (!new_taskdata->td_flags.started) {
      OMPT_STORE_RETURN_ADDRESS(gtid);
      parent = new_taskdata->td_parent;
      if (!parent->ompt_task_info.frame.enter_frame.ptr) {
        parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
      }
      if (ompt_enabled.ompt_callback_task_create) {
        ompt_data_t task_data = ompt_data_none;
        ompt_callbacks.ompt_callback(ompt_callback_task_create)(
            parent ? &(parent->ompt_task_info.task_data) : &task_data,
            parent ? &(parent->ompt_task_info.frame) : NULL,
            &(new_taskdata->ompt_task_info.task_data),
            ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
            OMPT_LOAD_RETURN_ADDRESS(gtid));
      }
    } else {
      // We are scheduling the continuation of an UNTIED task.
      // Scheduling back to the parent task.
      __ompt_task_finish(new_task,
                         new_taskdata->ompt_task_info.scheduling_parent,
                         ompt_task_switch);
      new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
    }
  }
#endif

  res = __kmp_omp_task(gtid, new_task, true);

  KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
                "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
                gtid, loc_ref, new_taskdata));
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
  }
#endif
  return res;
}

// __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
// a taskloop task with the correct OMPT return address
//
// loc_ref: location of original task pragma (ignored)
// gtid: Global Thread ID of encountering thread
// new_task: non-thread-switchable task thunk allocated by
// __kmp_omp_task_alloc()
// codeptr_ra: return address for OMPT callback
// Returns:
//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
//    be resumed later.
//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
//    resumed later.
kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
                                  kmp_task_t *new_task, void *codeptr_ra) {
  kmp_int32 res;
  KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);

#if KMP_DEBUG || OMPT_SUPPORT
  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
#endif
  KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
                new_taskdata));

#if OMPT_SUPPORT
  kmp_taskdata_t *parent = NULL;
  if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
    parent = new_taskdata->td_parent;
    if (!parent->ompt_task_info.frame.enter_frame.ptr)
      parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
    if (ompt_enabled.ompt_callback_task_create) {
      ompt_data_t task_data = ompt_data_none;
      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
          parent ? &(parent->ompt_task_info.task_data) : &task_data,
          parent ? &(parent->ompt_task_info.frame) : NULL,
          &(new_taskdata->ompt_task_info.task_data),
          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
          codeptr_ra);
    }
  }
#endif

  res = __kmp_omp_task(gtid, new_task, true);

  KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
                "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
                gtid, loc_ref, new_taskdata));
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
  }
#endif
  return res;
}

template <bool ompt>
static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
                                              void *frame_address,
                                              void *return_address) {
  kmp_taskdata_t *taskdata;
  kmp_info_t *thread;
  int thread_finished = FALSE;
  KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);

  KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
  __kmp_assert_valid_gtid(gtid);

  if (__kmp_tasking_mode != tskm_immediate_exec) {
    thread = __kmp_threads[gtid];
    taskdata = thread->th.th_current_task;

#if OMPT_SUPPORT && OMPT_OPTIONAL
    ompt_data_t *my_task_data;
    ompt_data_t *my_parallel_data;

    if (ompt) {
      my_task_data = &(taskdata->ompt_task_info.task_data);
      my_parallel_data = OMPT_CUR_TEAM_DATA(thread);

      taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;

      if (ompt_enabled.ompt_callback_sync_region) {
        ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
            ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
            my_task_data, return_address);
      }

      if (ompt_enabled.ompt_callback_sync_region_wait) {
        ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
            ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
            my_task_data, return_address);
      }
    }
#endif // OMPT_SUPPORT && OMPT_OPTIONAL

// Debugger: The taskwait is active. Store location and thread encountered the
// taskwait.
#if USE_ITT_BUILD
// Note: These values are used by ITT events as well.
#endif /* USE_ITT_BUILD */
    taskdata->td_taskwait_counter += 1;
    taskdata->td_taskwait_ident = loc_ref;
    taskdata->td_taskwait_thread = gtid + 1;

#if USE_ITT_BUILD
    void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
    if (itt_sync_obj != NULL)
      __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */

    bool must_wait =
        !taskdata->td_flags.team_serial && !taskdata->td_flags.final;

    must_wait = must_wait || (thread->th.th_task_team != NULL &&
                              thread->th.th_task_team->tt.tt_found_proxy_tasks);
    if (must_wait) {
      kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
                             &(taskdata->td_incomplete_child_tasks)),
                       0U);
      while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
        flag.execute_tasks(thread, gtid, FALSE,
                           &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
                           __kmp_task_stealing_constraint);
      }
    }
#if USE_ITT_BUILD
    if (itt_sync_obj != NULL)
      __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
    KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
#endif /* USE_ITT_BUILD */

    // Debugger:  The taskwait is completed. Location remains, but thread is
    // negated.
    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;

#if OMPT_SUPPORT && OMPT_OPTIONAL
    if (ompt) {
      if (ompt_enabled.ompt_callback_sync_region_wait) {
        ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
            ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
            my_task_data, return_address);
      }
      if (ompt_enabled.ompt_callback_sync_region) {
        ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
            ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
            my_task_data, return_address);
      }
      taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
    }
#endif // OMPT_SUPPORT && OMPT_OPTIONAL

    ANNOTATE_HAPPENS_AFTER(taskdata);
  }

  KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
                "returning TASK_CURRENT_NOT_QUEUED\n",
                gtid, taskdata));

  return TASK_CURRENT_NOT_QUEUED;
}

#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_NOINLINE
static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
                                          void *frame_address,
                                          void *return_address) {
  return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
                                            return_address);
}
#endif // OMPT_SUPPORT && OMPT_OPTIONAL

// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
// complete
kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
  if (UNLIKELY(ompt_enabled.enabled)) {
    OMPT_STORE_RETURN_ADDRESS(gtid);
    return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
  }
#endif
  return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
}

// __kmpc_omp_taskyield: switch to a different task
kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
  kmp_taskdata_t *taskdata;
  kmp_info_t *thread;
  int thread_finished = FALSE;

  KMP_COUNT_BLOCK(OMP_TASKYIELD);
  KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);

  KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
                gtid, loc_ref, end_part));
  __kmp_assert_valid_gtid(gtid);

  if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
    thread = __kmp_threads[gtid];
    taskdata = thread->th.th_current_task;
// Should we model this as a task wait or not?
// Debugger: The taskwait is active. Store location and thread encountered the
// taskwait.
#if USE_ITT_BUILD
// Note: These values are used by ITT events as well.
#endif /* USE_ITT_BUILD */
    taskdata->td_taskwait_counter += 1;
    taskdata->td_taskwait_ident = loc_ref;
    taskdata->td_taskwait_thread = gtid + 1;

#if USE_ITT_BUILD
    void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
    if (itt_sync_obj != NULL)
      __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */
    if (!taskdata->td_flags.team_serial) {
      kmp_task_team_t *task_team = thread->th.th_task_team;
      if (task_team != NULL) {
        if (KMP_TASKING_ENABLED(task_team)) {
#if OMPT_SUPPORT
          if (UNLIKELY(ompt_enabled.enabled))
            thread->th.ompt_thread_info.ompt_task_yielded = 1;
#endif
          __kmp_execute_tasks_32(
              thread, gtid, NULL, FALSE,
              &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
              __kmp_task_stealing_constraint);
#if OMPT_SUPPORT
          if (UNLIKELY(ompt_enabled.enabled))
            thread->th.ompt_thread_info.ompt_task_yielded = 0;
#endif
        }
      }
    }
#if USE_ITT_BUILD
    if (itt_sync_obj != NULL)
      __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */

    // Debugger:  The taskwait is completed. Location remains, but thread is
    // negated.
    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
  }

  KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
                "returning TASK_CURRENT_NOT_QUEUED\n",
                gtid, taskdata));

  return TASK_CURRENT_NOT_QUEUED;
}

// Task Reduction implementation
//
// Note: initial implementation didn't take into account the possibility
// to specify omp_orig for initializer of the UDR (user defined reduction).
// Corrected implementation takes into account the omp_orig object.
// Compiler is free to use old implementation if omp_orig is not specified.

/*!
@ingroup BASIC_TYPES
@{
*/

/*!
Flags for special info per task reduction item.
*/
typedef struct kmp_taskred_flags {
  /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
  unsigned lazy_priv : 1;
  unsigned reserved31 : 31;
} kmp_taskred_flags_t;

/*!
Internal struct for reduction data item related info set up by compiler.
*/
typedef struct kmp_task_red_input {
  void *reduce_shar; /**< shared between tasks item to reduce into */
  size_t reduce_size; /**< size of data item in bytes */
  // three compiler-generated routines (init, fini are optional):
  void *reduce_init; /**< data initialization routine (single parameter) */
  void *reduce_fini; /**< data finalization routine */
  void *reduce_comb; /**< data combiner routine */
  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
} kmp_task_red_input_t;

/*!
Internal struct for reduction data item related info saved by the library.
*/
typedef struct kmp_taskred_data {
  void *reduce_shar; /**< shared between tasks item to reduce into */
  size_t reduce_size; /**< size of data item */
  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
  void *reduce_priv; /**< array of thread specific items */
  void *reduce_pend; /**< end of private data for faster comparison op */
  // three compiler-generated routines (init, fini are optional):
  void *reduce_comb; /**< data combiner routine */
  void *reduce_init; /**< data initialization routine (two parameters) */
  void *reduce_fini; /**< data finalization routine */
  void *reduce_orig; /**< original item (can be used in UDR initializer) */
} kmp_taskred_data_t;

/*!
Internal struct for reduction data item related info set up by compiler.

New interface: added reduce_orig field to provide omp_orig for UDR initializer.
*/
typedef struct kmp_taskred_input {
  void *reduce_shar; /**< shared between tasks item to reduce into */
  void *reduce_orig; /**< original reduction item used for initialization */
  size_t reduce_size; /**< size of data item */
  // three compiler-generated routines (init, fini are optional):
  void *reduce_init; /**< data initialization routine (two parameters) */
  void *reduce_fini; /**< data finalization routine */
  void *reduce_comb; /**< data combiner routine */
  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
} kmp_taskred_input_t;
/*!
@}
*/

template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
template <>
void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
                                             kmp_task_red_input_t &src) {
  item.reduce_orig = NULL;
}
template <>
void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
                                            kmp_taskred_input_t &src) {
  if (src.reduce_orig != NULL) {
    item.reduce_orig = src.reduce_orig;
  } else {
    item.reduce_orig = src.reduce_shar;
  } // non-NULL reduce_orig means new interface used
}

template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, int j);
template <>
void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
                                           int offset) {
  ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
}
template <>
void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
                                          int offset) {
  ((void (*)(void *, void *))item.reduce_init)(
      (char *)(item.reduce_priv) + offset, item.reduce_orig);
}

template <typename T>
void *__kmp_task_reduction_init(int gtid, int num, T *data) {
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
  kmp_int32 nth = thread->th.th_team_nproc;
  kmp_taskred_data_t *arr;

  // check input data just in case
  KMP_ASSERT(tg != NULL);
  KMP_ASSERT(data != NULL);
  KMP_ASSERT(num > 0);
  if (nth == 1) {
    KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
                  gtid, tg));
    return (void *)tg;
  }
  KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
                gtid, tg, num));
  arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
      thread, num * sizeof(kmp_taskred_data_t));
  for (int i = 0; i < num; ++i) {
    size_t size = data[i].reduce_size - 1;
    // round the size up to cache line per thread-specific item
    size += CACHE_LINE - size % CACHE_LINE;
    KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
    arr[i].reduce_shar = data[i].reduce_shar;
    arr[i].reduce_size = size;
    arr[i].flags = data[i].flags;
    arr[i].reduce_comb = data[i].reduce_comb;
    arr[i].reduce_init = data[i].reduce_init;
    arr[i].reduce_fini = data[i].reduce_fini;
    __kmp_assign_orig<T>(arr[i], data[i]);
    if (!arr[i].flags.lazy_priv) {
      // allocate cache-line aligned block and fill it with zeros
      arr[i].reduce_priv = __kmp_allocate(nth * size);
      arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
      if (arr[i].reduce_init != NULL) {
        // initialize all thread-specific items
        for (int j = 0; j < nth; ++j) {
          __kmp_call_init<T>(arr[i], j * size);
        }
      }
    } else {
      // only allocate space for pointers now,
      // objects will be lazily allocated/initialized if/when requested
      // note that __kmp_allocate zeroes the allocated memory
      arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
    }
  }
  tg->reduce_data = (void *)arr;
  tg->reduce_num_data = num;
  return (void *)tg;
}

/*!
@ingroup TASKING
@param gtid      Global thread ID
@param num       Number of data items to reduce
@param data      Array of data for reduction
@return The taskgroup identifier

Initialize task reduction for the taskgroup.

Note: this entry supposes the optional compiler-generated initializer routine
has single parameter - pointer to object to be initialized. That means
the reduction either does not use omp_orig object, or the omp_orig is accessible
without help of the runtime library.
*/
void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
  return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
}

/*!
@ingroup TASKING
@param gtid      Global thread ID
@param num       Number of data items to reduce
@param data      Array of data for reduction
@return The taskgroup identifier

Initialize task reduction for the taskgroup.

Note: this entry supposes the optional compiler-generated initializer routine
has two parameters, pointer to object to be initialized and pointer to omp_orig
*/
void *__kmpc_taskred_init(int gtid, int num, void *data) {
  return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
}

// Copy task reduction data (except for shared pointers).
template <typename T>
void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
                                    kmp_taskgroup_t *tg, void *reduce_data) {
  kmp_taskred_data_t *arr;
  KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
                " from data %p\n",
                thr, tg, reduce_data));
  arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
      thr, num * sizeof(kmp_taskred_data_t));
  // threads will share private copies, thunk routines, sizes, flags, etc.:
  KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
  for (int i = 0; i < num; ++i) {
    arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
  }
  tg->reduce_data = (void *)arr;
  tg->reduce_num_data = num;
}

/*!
@ingroup TASKING
@param gtid    Global thread ID
@param tskgrp  The taskgroup ID (optional)
@param data    Shared location of the item
@return The pointer to per-thread data

Get thread-specific location of data item
*/
void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_int32 nth = thread->th.th_team_nproc;
  if (nth == 1)
    return data; // nothing to do

  kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
  if (tg == NULL)
    tg = thread->th.th_current_task->td_taskgroup;
  KMP_ASSERT(tg != NULL);
  kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
  kmp_int32 num = tg->reduce_num_data;
  kmp_int32 tid = thread->th.th_info.ds.ds_tid;

  KMP_ASSERT(data != NULL);
  while (tg != NULL) {
    for (int i = 0; i < num; ++i) {
      if (!arr[i].flags.lazy_priv) {
        if (data == arr[i].reduce_shar ||
            (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
          return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
      } else {
        // check shared location first
        void **p_priv = (void **)(arr[i].reduce_priv);
        if (data == arr[i].reduce_shar)
          goto found;
        // check if we get some thread specific location as parameter
        for (int j = 0; j < nth; ++j)
          if (data == p_priv[j])
            goto found;
        continue; // not found, continue search
      found:
        if (p_priv[tid] == NULL) {
          // allocate thread specific object lazily
          p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
          if (arr[i].reduce_init != NULL) {
            if (arr[i].reduce_orig != NULL) { // new interface
              ((void (*)(void *, void *))arr[i].reduce_init)(
                  p_priv[tid], arr[i].reduce_orig);
            } else { // old interface (single parameter)
              ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
            }
          }
        }
        return p_priv[tid];
      }
    }
    tg = tg->parent;
    arr = (kmp_taskred_data_t *)(tg->reduce_data);
    num = tg->reduce_num_data;
  }
  KMP_ASSERT2(0, "Unknown task reduction item");
  return NULL; // ERROR, this line never executed
}

// Finalize task reduction.
// Called from __kmpc_end_taskgroup()
static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
  kmp_int32 nth = th->th.th_team_nproc;
  KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
  kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
  kmp_int32 num = tg->reduce_num_data;
  for (int i = 0; i < num; ++i) {
    void *sh_data = arr[i].reduce_shar;
    void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
    void (*f_comb)(void *, void *) =
        (void (*)(void *, void *))(arr[i].reduce_comb);
    if (!arr[i].flags.lazy_priv) {
      void *pr_data = arr[i].reduce_priv;
      size_t size = arr[i].reduce_size;
      for (int j = 0; j < nth; ++j) {
        void *priv_data = (char *)pr_data + j * size;
        f_comb(sh_data, priv_data); // combine results
        if (f_fini)
          f_fini(priv_data); // finalize if needed
      }
    } else {
      void **pr_data = (void **)(arr[i].reduce_priv);
      for (int j = 0; j < nth; ++j) {
        if (pr_data[j] != NULL) {
          f_comb(sh_data, pr_data[j]); // combine results
          if (f_fini)
            f_fini(pr_data[j]); // finalize if needed
          __kmp_free(pr_data[j]);
        }
      }
    }
    __kmp_free(arr[i].reduce_priv);
  }
  __kmp_thread_free(th, arr);
  tg->reduce_data = NULL;
  tg->reduce_num_data = 0;
}

// Cleanup task reduction data for parallel or worksharing,
// do not touch task private data other threads still working with.
// Called from __kmpc_end_taskgroup()
static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
  __kmp_thread_free(th, tg->reduce_data);
  tg->reduce_data = NULL;
  tg->reduce_num_data = 0;
}

template <typename T>
void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
                                         int num, T *data) {
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thr = __kmp_threads[gtid];
  kmp_int32 nth = thr->th.th_team_nproc;
  __kmpc_taskgroup(loc, gtid); // form new taskgroup first
  if (nth == 1) {
    KA_TRACE(10,
             ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
              gtid, thr->th.th_current_task->td_taskgroup));
    return (void *)thr->th.th_current_task->td_taskgroup;
  }
  kmp_team_t *team = thr->th.th_team;
  void *reduce_data;
  kmp_taskgroup_t *tg;
  reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
  if (reduce_data == NULL &&
      __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
                                 (void *)1)) {
    // single thread enters this block to initialize common reduction data
    KMP_DEBUG_ASSERT(reduce_data == NULL);
    // first initialize own data, then make a copy other threads can use
    tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
    reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
    KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
    // fini counters should be 0 at this point
    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
    KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
  } else {
    while (
        (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
        (void *)1) { // wait for task reduction initialization
      KMP_CPU_PAUSE();
    }
    KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
    tg = thr->th.th_current_task->td_taskgroup;
    __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
  }
  return tg;
}

/*!
@ingroup TASKING
@param loc       Source location info
@param gtid      Global thread ID
@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
@param num       Number of data items to reduce
@param data      Array of data for reduction
@return The taskgroup identifier

Initialize task reduction for a parallel or worksharing.

Note: this entry supposes the optional compiler-generated initializer routine
has single parameter - pointer to object to be initialized. That means
the reduction either does not use omp_orig object, or the omp_orig is accessible
without help of the runtime library.
*/
void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
                                          int num, void *data) {
  return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
                                            (kmp_task_red_input_t *)data);
}

/*!
@ingroup TASKING
@param loc       Source location info
@param gtid      Global thread ID
@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
@param num       Number of data items to reduce
@param data      Array of data for reduction
@return The taskgroup identifier

Initialize task reduction for a parallel or worksharing.

Note: this entry supposes the optional compiler-generated initializer routine
has two parameters, pointer to object to be initialized and pointer to omp_orig
*/
void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
                                   void *data) {
  return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
                                            (kmp_taskred_input_t *)data);
}

/*!
@ingroup TASKING
@param loc       Source location info
@param gtid      Global thread ID
@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise

Finalize task reduction for a parallel or worksharing.
*/
void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
  __kmpc_end_taskgroup(loc, gtid);
}

// __kmpc_taskgroup: Start a new taskgroup
void __kmpc_taskgroup(ident_t *loc, int gtid) {
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *taskdata = thread->th.th_current_task;
  kmp_taskgroup_t *tg_new =
      (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
  KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
  KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
  KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
  tg_new->parent = taskdata->td_taskgroup;
  tg_new->reduce_data = NULL;
  tg_new->reduce_num_data = 0;
  taskdata->td_taskgroup = tg_new;

#if OMPT_SUPPORT && OMPT_OPTIONAL
  if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
    void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
    if (!codeptr)
      codeptr = OMPT_GET_RETURN_ADDRESS(0);
    kmp_team_t *team = thread->th.th_team;
    ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
    // FIXME: I think this is wrong for lwt!
    ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;

    ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
        ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
        &(my_task_data), codeptr);
  }
#endif
}

// __kmpc_end_taskgroup: Wait until all tasks generated by the current task
//                       and its descendants are complete
void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *taskdata = thread->th.th_current_task;
  kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
  int thread_finished = FALSE;

#if OMPT_SUPPORT && OMPT_OPTIONAL
  kmp_team_t *team;
  ompt_data_t my_task_data;
  ompt_data_t my_parallel_data;
  void *codeptr;
  if (UNLIKELY(ompt_enabled.enabled)) {
    team = thread->th.th_team;
    my_task_data = taskdata->ompt_task_info.task_data;
    // FIXME: I think this is wrong for lwt!
    my_parallel_data = team->t.ompt_team_info.parallel_data;
    codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
    if (!codeptr)
      codeptr = OMPT_GET_RETURN_ADDRESS(0);
  }
#endif

  KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
  KMP_DEBUG_ASSERT(taskgroup != NULL);
  KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);

  if (__kmp_tasking_mode != tskm_immediate_exec) {
    // mark task as waiting not on a barrier
    taskdata->td_taskwait_counter += 1;
    taskdata->td_taskwait_ident = loc;
    taskdata->td_taskwait_thread = gtid + 1;
#if USE_ITT_BUILD
    // For ITT the taskgroup wait is similar to taskwait until we need to
    // distinguish them
    void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
    if (itt_sync_obj != NULL)
      __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
#endif /* USE_ITT_BUILD */

#if OMPT_SUPPORT && OMPT_OPTIONAL
    if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
          ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
          &(my_task_data), codeptr);
    }
#endif

    if (!taskdata->td_flags.team_serial ||
        (thread->th.th_task_team != NULL &&
         thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
      kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)),
                       0U);
      while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
        flag.execute_tasks(thread, gtid, FALSE,
                           &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
                           __kmp_task_stealing_constraint);
      }
    }
    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting

#if OMPT_SUPPORT && OMPT_OPTIONAL
    if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
          ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
          &(my_task_data), codeptr);
    }
#endif

#if USE_ITT_BUILD
    if (itt_sync_obj != NULL)
      __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
    KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
#endif /* USE_ITT_BUILD */
  }
  KMP_DEBUG_ASSERT(taskgroup->count == 0);

  if (taskgroup->reduce_data != NULL) { // need to reduce?
    int cnt;
    void *reduce_data;
    kmp_team_t *t = thread->th.th_team;
    kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
    // check if <priv> data of the first reduction variable shared for the team
    void *priv0 = arr[0].reduce_priv;
    if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
        ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
      // finishing task reduction on parallel
      cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
      if (cnt == thread->th.th_team_nproc - 1) {
        // we are the last thread passing __kmpc_reduction_modifier_fini()
        // finalize task reduction:
        __kmp_task_reduction_fini(thread, taskgroup);
        // cleanup fields in the team structure:
        // TODO: is relaxed store enough here (whole barrier should follow)?
        __kmp_thread_free(thread, reduce_data);
        KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
        KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
      } else {
        // we are not the last thread passing __kmpc_reduction_modifier_fini(),
        // so do not finalize reduction, just clean own copy of the data
        __kmp_task_reduction_clean(thread, taskgroup);
      }
    } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
                   NULL &&
               ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
      // finishing task reduction on worksharing
      cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
      if (cnt == thread->th.th_team_nproc - 1) {
        // we are the last thread passing __kmpc_reduction_modifier_fini()
        __kmp_task_reduction_fini(thread, taskgroup);
        // cleanup fields in team structure:
        // TODO: is relaxed store enough here (whole barrier should follow)?
        __kmp_thread_free(thread, reduce_data);
        KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
        KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
      } else {
        // we are not the last thread passing __kmpc_reduction_modifier_fini(),
        // so do not finalize reduction, just clean own copy of the data
        __kmp_task_reduction_clean(thread, taskgroup);
      }
    } else {
      // finishing task reduction on taskgroup
      __kmp_task_reduction_fini(thread, taskgroup);
    }
  }
  // Restore parent taskgroup for the current task
  taskdata->td_taskgroup = taskgroup->parent;
  __kmp_thread_free(thread, taskgroup);

  KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
                gtid, taskdata));
  ANNOTATE_HAPPENS_AFTER(taskdata);

#if OMPT_SUPPORT && OMPT_OPTIONAL
  if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
    ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
        ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
        &(my_task_data), codeptr);
  }
#endif
}

// __kmp_remove_my_task: remove a task from my own deque
static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
                                        kmp_task_team_t *task_team,
                                        kmp_int32 is_constrained) {
  kmp_task_t *task;
  kmp_taskdata_t *taskdata;
  kmp_thread_data_t *thread_data;
  kmp_uint32 tail;

  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
  KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
                   NULL); // Caller should check this condition

  thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];

  KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
                gtid, thread_data->td.td_deque_ntasks,
                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));

  if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
    KA_TRACE(10,
             ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
              "ntasks=%d head=%u tail=%u\n",
              gtid, thread_data->td.td_deque_ntasks,
              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
    return NULL;
  }

  __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);

  if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
    KA_TRACE(10,
             ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
              "ntasks=%d head=%u tail=%u\n",
              gtid, thread_data->td.td_deque_ntasks,
              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
    return NULL;
  }

  tail = (thread_data->td.td_deque_tail - 1) &
         TASK_DEQUE_MASK(thread_data->td); // Wrap index.
  taskdata = thread_data->td.td_deque[tail];

  if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
                             thread->th.th_current_task)) {
    // The TSC does not allow to steal victim task
    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
    KA_TRACE(10,
             ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
              "ntasks=%d head=%u tail=%u\n",
              gtid, thread_data->td.td_deque_ntasks,
              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
    return NULL;
  }

  thread_data->td.td_deque_tail = tail;
  TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);

  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);

  KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
                "ntasks=%d head=%u tail=%u\n",
                gtid, taskdata, thread_data->td.td_deque_ntasks,
                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));

  task = KMP_TASKDATA_TO_TASK(taskdata);
  return task;
}

// __kmp_steal_task: remove a task from another thread's deque
// Assume that calling thread has already checked existence of
// task_team thread_data before calling this routine.
static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
                                    kmp_task_team_t *task_team,
                                    std::atomic<kmp_int32> *unfinished_threads,
                                    int *thread_finished,
                                    kmp_int32 is_constrained) {
  kmp_task_t *task;
  kmp_taskdata_t *taskdata;
  kmp_taskdata_t *current;
  kmp_thread_data_t *victim_td, *threads_data;
  kmp_int32 target;
  kmp_int32 victim_tid;

  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);

  threads_data = task_team->tt.tt_threads_data;
  KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition

  victim_tid = victim_thr->th.th_info.ds.ds_tid;
  victim_td = &threads_data[victim_tid];

  KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
                "task_team=%p ntasks=%d head=%u tail=%u\n",
                gtid, __kmp_gtid_from_thread(victim_thr), task_team,
                victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
                victim_td->td.td_deque_tail));

  if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
    KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
                  "task_team=%p ntasks=%d head=%u tail=%u\n",
                  gtid, __kmp_gtid_from_thread(victim_thr), task_team,
                  victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
                  victim_td->td.td_deque_tail));
    return NULL;
  }

  __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);

  int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
  // Check again after we acquire the lock
  if (ntasks == 0) {
    __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
    KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
                  "task_team=%p ntasks=%d head=%u tail=%u\n",
                  gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
                  victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
    return NULL;
  }

  KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
  current = __kmp_threads[gtid]->th.th_current_task;
  taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
  if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
    // Bump head pointer and Wrap.
    victim_td->td.td_deque_head =
        (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
  } else {
    if (!task_team->tt.tt_untied_task_encountered) {
      // The TSC does not allow to steal victim task
      __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
      KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
                    "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
                    gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
                    victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
      return NULL;
    }
    int i;
    // walk through victim's deque trying to steal any task
    target = victim_td->td.td_deque_head;
    taskdata = NULL;
    for (i = 1; i < ntasks; ++i) {
      target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
      taskdata = victim_td->td.td_deque[target];
      if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
        break; // found victim task
      } else {
        taskdata = NULL;
      }
    }
    if (taskdata == NULL) {
      // No appropriate candidate to steal found
      __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
      KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
                    "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
                    gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
                    victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
      return NULL;
    }
    int prev = target;
    for (i = i + 1; i < ntasks; ++i) {
      // shift remaining tasks in the deque left by 1
      target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
      victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
      prev = target;
    }
    KMP_DEBUG_ASSERT(
        victim_td->td.td_deque_tail ==
        (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
    victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
  }
  if (*thread_finished) {
    // We need to un-mark this victim as a finished victim.  This must be done
    // before releasing the lock, or else other threads (starting with the
    // master victim) might be prematurely released from the barrier!!!
    kmp_int32 count;

    count = KMP_ATOMIC_INC(unfinished_threads);

    KA_TRACE(
        20,
        ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
         gtid, count + 1, task_team));

    *thread_finished = FALSE;
  }
  TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);

  __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);

  KMP_COUNT_BLOCK(TASK_stolen);
  KA_TRACE(10,
           ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
            "task_team=%p ntasks=%d head=%u tail=%u\n",
            gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
            ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));

  task = KMP_TASKDATA_TO_TASK(taskdata);
  return task;
}

// __kmp_execute_tasks_template: Choose and execute tasks until either the
// condition is statisfied (return true) or there are none left (return false).
//
// final_spin is TRUE if this is the spin at the release barrier.
// thread_finished indicates whether the thread is finished executing all
// the tasks it has on its deque, and is at the release barrier.
// spinner is the location on which to spin.
// spinner == NULL means only execute a single task and return.
// checker is the value to check to terminate the spin.
template <class C>
static inline int __kmp_execute_tasks_template(
    kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
    kmp_int32 is_constrained) {
  kmp_task_team_t *task_team = thread->th.th_task_team;
  kmp_thread_data_t *threads_data;
  kmp_task_t *task;
  kmp_info_t *other_thread;
  kmp_taskdata_t *current_task = thread->th.th_current_task;
  std::atomic<kmp_int32> *unfinished_threads;
  kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
                      tid = thread->th.th_info.ds.ds_tid;

  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
  KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);

  if (task_team == NULL || current_task == NULL)
    return FALSE;

  KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
                "*thread_finished=%d\n",
                gtid, final_spin, *thread_finished));

  thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
  threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
  KMP_DEBUG_ASSERT(threads_data != NULL);

  nthreads = task_team->tt.tt_nproc;
  unfinished_threads = &(task_team->tt.tt_unfinished_threads);
  KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks);
  KMP_DEBUG_ASSERT(*unfinished_threads >= 0);

  while (1) { // Outer loop keeps trying to find tasks in case of single thread
    // getting tasks from target constructs
    while (1) { // Inner loop to find a task and execute it
      task = NULL;
      if (use_own_tasks) { // check on own queue first
        task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
      }
      if ((task == NULL) && (nthreads > 1)) { // Steal a task
        int asleep = 1;
        use_own_tasks = 0;
        // Try to steal from the last place I stole from successfully.
        if (victim_tid == -2) { // haven't stolen anything yet
          victim_tid = threads_data[tid].td.td_deque_last_stolen;
          if (victim_tid !=
              -1) // if we have a last stolen from victim, get the thread
            other_thread = threads_data[victim_tid].td.td_thr;
        }
        if (victim_tid != -1) { // found last victim
          asleep = 0;
        } else if (!new_victim) { // no recent steals and we haven't already
          // used a new victim; select a random thread
          do { // Find a different thread to steal work from.
            // Pick a random thread. Initial plan was to cycle through all the
            // threads, and only return if we tried to steal from every thread,
            // and failed.  Arch says that's not such a great idea.
            victim_tid = __kmp_get_random(thread) % (nthreads - 1);
            if (victim_tid >= tid) {
              ++victim_tid; // Adjusts random distribution to exclude self
            }
            // Found a potential victim
            other_thread = threads_data[victim_tid].td.td_thr;
            // There is a slight chance that __kmp_enable_tasking() did not wake
            // up all threads waiting at the barrier.  If victim is sleeping,
            // then wake it up. Since we were going to pay the cache miss
            // penalty for referencing another thread's kmp_info_t struct
            // anyway,
            // the check shouldn't cost too much performance at this point. In
            // extra barrier mode, tasks do not sleep at the separate tasking
            // barrier, so this isn't a problem.
            asleep = 0;
            if ((__kmp_tasking_mode == tskm_task_teams) &&
                (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
                (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
                 NULL)) {
              asleep = 1;
              __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
                                        other_thread->th.th_sleep_loc);
              // A sleeping thread should not have any tasks on it's queue.
              // There is a slight possibility that it resumes, steals a task
              // from another thread, which spawns more tasks, all in the time
              // that it takes this thread to check => don't write an assertion
              // that the victim's queue is empty.  Try stealing from a
              // different thread.
            }
          } while (asleep);
        }

        if (!asleep) {
          // We have a victim to try to steal from
          task = __kmp_steal_task(other_thread, gtid, task_team,
                                  unfinished_threads, thread_finished,
                                  is_constrained);
        }
        if (task != NULL) { // set last stolen to victim
          if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
            threads_data[tid].td.td_deque_last_stolen = victim_tid;
            // The pre-refactored code did not try more than 1 successful new
            // vicitm, unless the last one generated more local tasks;
            // new_victim keeps track of this
            new_victim = 1;
          }
        } else { // No tasks found; unset last_stolen
          KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
          victim_tid = -2; // no successful victim found
        }
      }

      if (task == NULL) // break out of tasking loop
        break;

// Found a task; execute it
#if USE_ITT_BUILD && USE_ITT_NOTIFY
      if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
        if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
          // get the object reliably
          itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
        }
        __kmp_itt_task_starting(itt_sync_obj);
      }
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
      __kmp_invoke_task(gtid, task, current_task);
#if USE_ITT_BUILD
      if (itt_sync_obj != NULL)
        __kmp_itt_task_finished(itt_sync_obj);
#endif /* USE_ITT_BUILD */
      // If this thread is only partway through the barrier and the condition is
      // met, then return now, so that the barrier gather/release pattern can
      // proceed. If this thread is in the last spin loop in the barrier,
      // waiting to be released, we know that the termination condition will not
      // be satisfied, so don't waste any cycles checking it.
      if (flag == NULL || (!final_spin && flag->done_check())) {
        KA_TRACE(
            15,
            ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
             gtid));
        return TRUE;
      }
      if (thread->th.th_task_team == NULL) {
        break;
      }
      KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
      // If execution of a stolen task results in more tasks being placed on our
      // run queue, reset use_own_tasks
      if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
        KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
                      "other tasks, restart\n",
                      gtid));
        use_own_tasks = 1;
        new_victim = 0;
      }
    }

    // The task source has been exhausted. If in final spin loop of barrier,
    // check if termination condition is satisfied. The work queue may be empty
    // but there might be proxy tasks still executing.
    if (final_spin &&
        KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
      // First, decrement the #unfinished threads, if that has not already been
      // done.  This decrement might be to the spin location, and result in the
      // termination condition being satisfied.
      if (!*thread_finished) {
        kmp_int32 count;

        count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
        KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
                      "unfinished_threads to %d task_team=%p\n",
                      gtid, count, task_team));
        *thread_finished = TRUE;
      }

      // It is now unsafe to reference thread->th.th_team !!!
      // Decrementing task_team->tt.tt_unfinished_threads can allow the master
      // thread to pass through the barrier, where it might reset each thread's
      // th.th_team field for the next parallel region. If we can steal more
      // work, we know that this has not happened yet.
      if (flag != NULL && flag->done_check()) {
        KA_TRACE(
            15,
            ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
             gtid));
        return TRUE;
      }
    }

    // If this thread's task team is NULL, master has recognized that there are
    // no more tasks; bail out
    if (thread->th.th_task_team == NULL) {
      KA_TRACE(15,
               ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
      return FALSE;
    }

    // We could be getting tasks from target constructs; if this is the only
    // thread, keep trying to execute tasks from own queue
    if (nthreads == 1)
      use_own_tasks = 1;
    else {
      KA_TRACE(15,
               ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
      return FALSE;
    }
  }
}

int __kmp_execute_tasks_32(
    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin,
    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
    kmp_int32 is_constrained) {
  return __kmp_execute_tasks_template(
      thread, gtid, flag, final_spin,
      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}

int __kmp_execute_tasks_64(
    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin,
    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
    kmp_int32 is_constrained) {
  return __kmp_execute_tasks_template(
      thread, gtid, flag, final_spin,
      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}

int __kmp_execute_tasks_oncore(
    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
    kmp_int32 is_constrained) {
  return __kmp_execute_tasks_template(
      thread, gtid, flag, final_spin,
      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}

// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
// next barrier so they can assist in executing enqueued tasks.
// First thread in allocates the task team atomically.
static void __kmp_enable_tasking(kmp_task_team_t *task_team,
                                 kmp_info_t *this_thr) {
  kmp_thread_data_t *threads_data;
  int nthreads, i, is_init_thread;

  KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
                __kmp_gtid_from_thread(this_thr)));

  KMP_DEBUG_ASSERT(task_team != NULL);
  KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);

  nthreads = task_team->tt.tt_nproc;
  KMP_DEBUG_ASSERT(nthreads > 0);
  KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);

  // Allocate or increase the size of threads_data if necessary
  is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);

  if (!is_init_thread) {
    // Some other thread already set up the array.
    KA_TRACE(
        20,
        ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
         __kmp_gtid_from_thread(this_thr)));
    return;
  }
  threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
  KMP_DEBUG_ASSERT(threads_data != NULL);

  if (__kmp_tasking_mode == tskm_task_teams &&
      (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
    // Release any threads sleeping at the barrier, so that they can steal
    // tasks and execute them.  In extra barrier mode, tasks do not sleep
    // at the separate tasking barrier, so this isn't a problem.
    for (i = 0; i < nthreads; i++) {
      volatile void *sleep_loc;
      kmp_info_t *thread = threads_data[i].td.td_thr;

      if (i == this_thr->th.th_info.ds.ds_tid) {
        continue;
      }
      // Since we haven't locked the thread's suspend mutex lock at this
      // point, there is a small window where a thread might be putting
      // itself to sleep, but hasn't set the th_sleep_loc field yet.
      // To work around this, __kmp_execute_tasks_template() periodically checks
      // see if other threads are sleeping (using the same random mechanism that
      // is used for task stealing) and awakens them if they are.
      if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
          NULL) {
        KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
                      __kmp_gtid_from_thread(this_thr),
                      __kmp_gtid_from_thread(thread)));
        __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
      } else {
        KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
                      __kmp_gtid_from_thread(this_thr),
                      __kmp_gtid_from_thread(thread)));
      }
    }
  }

  KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
                __kmp_gtid_from_thread(this_thr)));
}

/* // TODO: Check the comment consistency
 * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
 * like a shadow of the kmp_team_t data struct, with a different lifetime.
 * After a child * thread checks into a barrier and calls __kmp_release() from
 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
 * longer assume that the kmp_team_t structure is intact (at any moment, the
 * master thread may exit the barrier code and free the team data structure,
 * and return the threads to the thread pool).
 *
 * This does not work with the tasking code, as the thread is still
 * expected to participate in the execution of any tasks that may have been
 * spawned my a member of the team, and the thread still needs access to all
 * to each thread in the team, so that it can steal work from it.
 *
 * Enter the existence of the kmp_task_team_t struct.  It employs a reference
 * counting mechanism, and is allocated by the master thread before calling
 * __kmp_<barrier_kind>_release, and then is release by the last thread to
 * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
 * of the kmp_task_team_t structs for consecutive barriers can overlap
 * (and will, unless the master thread is the last thread to exit the barrier
 * release phase, which is not typical). The existence of such a struct is
 * useful outside the context of tasking.
 *
 * We currently use the existence of the threads array as an indicator that
 * tasks were spawned since the last barrier.  If the structure is to be
 * useful outside the context of tasking, then this will have to change, but
 * not setting the field minimizes the performance impact of tasking on
 * barriers, when no explicit tasks were spawned (pushed, actually).
 */

static kmp_task_team_t *__kmp_free_task_teams =
    NULL; // Free list for task_team data structures
// Lock for task team data structures
kmp_bootstrap_lock_t __kmp_task_team_lock =
    KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);

// __kmp_alloc_task_deque:
// Allocates a task deque for a particular thread, and initialize the necessary
// data structures relating to the deque.  This only happens once per thread
// per task team since task teams are recycled. No lock is needed during
// allocation since each thread allocates its own deque.
static void __kmp_alloc_task_deque(kmp_info_t *thread,
                                   kmp_thread_data_t *thread_data) {
  __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
  KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);

  // Initialize last stolen task field to "none"
  thread_data->td.td_deque_last_stolen = -1;

  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
  KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
  KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);

  KE_TRACE(
      10,
      ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
       __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
  // Allocate space for task deque, and zero the deque
  // Cannot use __kmp_thread_calloc() because threads not around for
  // kmp_reap_task_team( ).
  thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
      INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
  thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
}

// __kmp_free_task_deque:
// Deallocates a task deque for a particular thread. Happens at library
// deallocation so don't need to reset all thread data fields.
static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
  if (thread_data->td.td_deque != NULL) {
    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
    TCW_4(thread_data->td.td_deque_ntasks, 0);
    __kmp_free(thread_data->td.td_deque);
    thread_data->td.td_deque = NULL;
    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
  }

#ifdef BUILD_TIED_TASK_STACK
  // GEH: Figure out what to do here for td_susp_tied_tasks
  if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
    __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
  }
#endif // BUILD_TIED_TASK_STACK
}

// __kmp_realloc_task_threads_data:
// Allocates a threads_data array for a task team, either by allocating an
// initial array or enlarging an existing array.  Only the first thread to get
// the lock allocs or enlarges the array and re-initializes the array elements.
// That thread returns "TRUE", the rest return "FALSE".
// Assumes that the new array size is given by task_team -> tt.tt_nproc.
// The current size is given by task_team -> tt.tt_max_threads.
static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
                                           kmp_task_team_t *task_team) {
  kmp_thread_data_t **threads_data_p;
  kmp_int32 nthreads, maxthreads;
  int is_init_thread = FALSE;

  if (TCR_4(task_team->tt.tt_found_tasks)) {
    // Already reallocated and initialized.
    return FALSE;
  }

  threads_data_p = &task_team->tt.tt_threads_data;
  nthreads = task_team->tt.tt_nproc;
  maxthreads = task_team->tt.tt_max_threads;

  // All threads must lock when they encounter the first task of the implicit
  // task region to make sure threads_data fields are (re)initialized before
  // used.
  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);

  if (!TCR_4(task_team->tt.tt_found_tasks)) {
    // first thread to enable tasking
    kmp_team_t *team = thread->th.th_team;
    int i;

    is_init_thread = TRUE;
    if (maxthreads < nthreads) {

      if (*threads_data_p != NULL) {
        kmp_thread_data_t *old_data = *threads_data_p;
        kmp_thread_data_t *new_data = NULL;

        KE_TRACE(
            10,
            ("__kmp_realloc_task_threads_data: T#%d reallocating "
             "threads data for task_team %p, new_size = %d, old_size = %d\n",
             __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
        // Reallocate threads_data to have more elements than current array
        // Cannot use __kmp_thread_realloc() because threads not around for
        // kmp_reap_task_team( ).  Note all new array entries are initialized
        // to zero by __kmp_allocate().
        new_data = (kmp_thread_data_t *)__kmp_allocate(
            nthreads * sizeof(kmp_thread_data_t));
        // copy old data to new data
        KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
                     (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));

#ifdef BUILD_TIED_TASK_STACK
        // GEH: Figure out if this is the right thing to do
        for (i = maxthreads; i < nthreads; i++) {
          kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
          __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
        }
#endif // BUILD_TIED_TASK_STACK
        // Install the new data and free the old data
        (*threads_data_p) = new_data;
        __kmp_free(old_data);
      } else {
        KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
                      "threads data for task_team %p, size = %d\n",
                      __kmp_gtid_from_thread(thread), task_team, nthreads));
        // Make the initial allocate for threads_data array, and zero entries
        // Cannot use __kmp_thread_calloc() because threads not around for
        // kmp_reap_task_team( ).
        ANNOTATE_IGNORE_WRITES_BEGIN();
        *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
            nthreads * sizeof(kmp_thread_data_t));
        ANNOTATE_IGNORE_WRITES_END();
#ifdef BUILD_TIED_TASK_STACK
        // GEH: Figure out if this is the right thing to do
        for (i = 0; i < nthreads; i++) {
          kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
          __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
        }
#endif // BUILD_TIED_TASK_STACK
      }
      task_team->tt.tt_max_threads = nthreads;
    } else {
      // If array has (more than) enough elements, go ahead and use it
      KMP_DEBUG_ASSERT(*threads_data_p != NULL);
    }

    // initialize threads_data pointers back to thread_info structures
    for (i = 0; i < nthreads; i++) {
      kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
      thread_data->td.td_thr = team->t.t_threads[i];

      if (thread_data->td.td_deque_last_stolen >= nthreads) {
        // The last stolen field survives across teams / barrier, and the number
        // of threads may have changed.  It's possible (likely?) that a new
        // parallel region will exhibit the same behavior as previous region.
        thread_data->td.td_deque_last_stolen = -1;
      }
    }

    KMP_MB();
    TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
  }

  __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
  return is_init_thread;
}

// __kmp_free_task_threads_data:
// Deallocates a threads_data array for a task team, including any attached
// tasking deques.  Only occurs at library shutdown.
static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
  if (task_team->tt.tt_threads_data != NULL) {
    int i;
    for (i = 0; i < task_team->tt.tt_max_threads; i++) {
      __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
    }
    __kmp_free(task_team->tt.tt_threads_data);
    task_team->tt.tt_threads_data = NULL;
  }
  __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
}

// __kmp_allocate_task_team:
// Allocates a task team associated with a specific team, taking it from
// the global task team free list if possible.  Also initializes data
// structures.
static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
                                                 kmp_team_t *team) {
  kmp_task_team_t *task_team = NULL;
  int nthreads;

  KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
                (thread ? __kmp_gtid_from_thread(thread) : -1), team));

  if (TCR_PTR(__kmp_free_task_teams) != NULL) {
    // Take a task team from the task team pool
    __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
    if (__kmp_free_task_teams != NULL) {
      task_team = __kmp_free_task_teams;
      TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
      task_team->tt.tt_next = NULL;
    }
    __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
  }

  if (task_team == NULL) {
    KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
                  "task team for team %p\n",
                  __kmp_gtid_from_thread(thread), team));
    // Allocate a new task team if one is not available. Cannot use
    // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
    task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
    __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
#if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
    // suppress race conditions detection on synchronization flags in debug mode
    // this helps to analyze library internals eliminating false positives
    __itt_suppress_mark_range(
        __itt_suppress_range, __itt_suppress_threading_errors,
        &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
    __itt_suppress_mark_range(__itt_suppress_range,
                              __itt_suppress_threading_errors,
                              CCAST(kmp_uint32 *, &task_team->tt.tt_active),
                              sizeof(task_team->tt.tt_active));
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
    // Note: __kmp_allocate zeroes returned memory, othewise we would need:
    // task_team->tt.tt_threads_data = NULL;
    // task_team->tt.tt_max_threads = 0;
    // task_team->tt.tt_next = NULL;
  }

  TCW_4(task_team->tt.tt_found_tasks, FALSE);
  TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
  task_team->tt.tt_nproc = nthreads = team->t.t_nproc;

  KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
  TCW_4(task_team->tt.tt_active, TRUE);

  KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
                "unfinished_threads init'd to %d\n",
                (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
                KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
  return task_team;
}

// __kmp_free_task_team:
// Frees the task team associated with a specific thread, and adds it
// to the global task team free list.
void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
  KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
                thread ? __kmp_gtid_from_thread(thread) : -1, task_team));

  // Put task team back on free list
  __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);

  KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
  task_team->tt.tt_next = __kmp_free_task_teams;
  TCW_PTR(__kmp_free_task_teams, task_team);

  __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
}

// __kmp_reap_task_teams:
// Free all the task teams on the task team free list.
// Should only be done during library shutdown.
// Cannot do anything that needs a thread structure or gtid since they are
// already gone.
void __kmp_reap_task_teams(void) {
  kmp_task_team_t *task_team;

  if (TCR_PTR(__kmp_free_task_teams) != NULL) {
    // Free all task_teams on the free list
    __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
    while ((task_team = __kmp_free_task_teams) != NULL) {
      __kmp_free_task_teams = task_team->tt.tt_next;
      task_team->tt.tt_next = NULL;

      // Free threads_data if necessary
      if (task_team->tt.tt_threads_data != NULL) {
        __kmp_free_task_threads_data(task_team);
      }
      __kmp_free(task_team);
    }
    __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
  }
}

// __kmp_wait_to_unref_task_teams:
// Some threads could still be in the fork barrier release code, possibly
// trying to steal tasks.  Wait for each thread to unreference its task team.
void __kmp_wait_to_unref_task_teams(void) {
  kmp_info_t *thread;
  kmp_uint32 spins;
  int done;

  KMP_INIT_YIELD(spins);

  for (;;) {
    done = TRUE;

    // TODO: GEH - this may be is wrong because some sync would be necessary
    // in case threads are added to the pool during the traversal. Need to
    // verify that lock for thread pool is held when calling this routine.
    for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
         thread = thread->th.th_next_pool) {
#if KMP_OS_WINDOWS
      DWORD exit_val;
#endif
      if (TCR_PTR(thread->th.th_task_team) == NULL) {
        KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
                      __kmp_gtid_from_thread(thread)));
        continue;
      }
#if KMP_OS_WINDOWS
      // TODO: GEH - add this check for Linux* OS / OS X* as well?
      if (!__kmp_is_thread_alive(thread, &exit_val)) {
        thread->th.th_task_team = NULL;
        continue;
      }
#endif

      done = FALSE; // Because th_task_team pointer is not NULL for this thread

      KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
                    "unreference task_team\n",
                    __kmp_gtid_from_thread(thread)));

      if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
        volatile void *sleep_loc;
        // If the thread is sleeping, awaken it.
        if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
            NULL) {
          KA_TRACE(
              10,
              ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
               __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
          __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
        }
      }
    }
    if (done) {
      break;
    }

    // If oversubscribed or have waited a bit, yield.
    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
  }
}

// __kmp_task_team_setup:  Create a task_team for the current team, but use
// an already created, unused one if it already exists.
void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);

  // If this task_team hasn't been created yet, allocate it. It will be used in
  // the region after the next.
  // If it exists, it is the current task team and shouldn't be touched yet as
  // it may still be in use.
  if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
      (always || team->t.t_nproc > 1)) {
    team->t.t_task_team[this_thr->th.th_task_state] =
        __kmp_allocate_task_team(this_thr, team);
    KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
                  "for team %d at parity=%d\n",
                  __kmp_gtid_from_thread(this_thr),
                  team->t.t_task_team[this_thr->th.th_task_state],
                  ((team != NULL) ? team->t.t_id : -1),
                  this_thr->th.th_task_state));
  }

  // After threads exit the release, they will call sync, and then point to this
  // other task_team; make sure it is allocated and properly initialized. As
  // threads spin in the barrier release phase, they will continue to use the
  // previous task_team struct(above), until they receive the signal to stop
  // checking for tasks (they can't safely reference the kmp_team_t struct,
  // which could be reallocated by the master thread). No task teams are formed
  // for serialized teams.
  if (team->t.t_nproc > 1) {
    int other_team = 1 - this_thr->th.th_task_state;
    if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
      team->t.t_task_team[other_team] =
          __kmp_allocate_task_team(this_thr, team);
      KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
                    "task_team %p for team %d at parity=%d\n",
                    __kmp_gtid_from_thread(this_thr),
                    team->t.t_task_team[other_team],
                    ((team != NULL) ? team->t.t_id : -1), other_team));
    } else { // Leave the old task team struct in place for the upcoming region;
      // adjust as needed
      kmp_task_team_t *task_team = team->t.t_task_team[other_team];
      if (!task_team->tt.tt_active ||
          team->t.t_nproc != task_team->tt.tt_nproc) {
        TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
        TCW_4(task_team->tt.tt_found_tasks, FALSE);
        TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
        KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
                          team->t.t_nproc);
        TCW_4(task_team->tt.tt_active, TRUE);
      }
      // if team size has changed, the first thread to enable tasking will
      // realloc threads_data if necessary
      KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
                    "%p for team %d at parity=%d\n",
                    __kmp_gtid_from_thread(this_thr),
                    team->t.t_task_team[other_team],
                    ((team != NULL) ? team->t.t_id : -1), other_team));
    }
  }
}

// __kmp_task_team_sync: Propagation of task team data from team to threads
// which happens just after the release phase of a team barrier.  This may be
// called by any thread, but only for teams with # threads > 1.
void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);

  // Toggle the th_task_state field, to switch which task_team this thread
  // refers to
  this_thr->th.th_task_state = 1 - this_thr->th.th_task_state;
  // It is now safe to propagate the task team pointer from the team struct to
  // the current thread.
  TCW_PTR(this_thr->th.th_task_team,
          team->t.t_task_team[this_thr->th.th_task_state]);
  KA_TRACE(20,
           ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
            "%p from Team #%d (parity=%d)\n",
            __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
            ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
}

// __kmp_task_team_wait: Master thread waits for outstanding tasks after the
// barrier gather phase. Only called by master thread if #threads in team > 1 or
// if proxy tasks were created.
//
// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
// by passing in 0 optionally as the last argument. When wait is zero, master
// thread does not wait for unfinished_threads to reach 0.
void __kmp_task_team_wait(
    kmp_info_t *this_thr,
    kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
  kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];

  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
  KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);

  if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
    if (wait) {
      KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
                    "(for unfinished_threads to reach 0) on task_team = %p\n",
                    __kmp_gtid_from_thread(this_thr), task_team));
      // Worker threads may have dropped through to release phase, but could
      // still be executing tasks. Wait here for tasks to complete. To avoid
      // memory contention, only master thread checks termination condition.
      kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
                             &task_team->tt.tt_unfinished_threads),
                       0U);
      flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
    }
    // Deactivate the old task team, so that the worker threads will stop
    // referencing it while spinning.
    KA_TRACE(
        20,
        ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
         "setting active to false, setting local and team's pointer to NULL\n",
         __kmp_gtid_from_thread(this_thr), task_team));
    KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
                     task_team->tt.tt_found_proxy_tasks == TRUE);
    TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
    KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
    TCW_SYNC_4(task_team->tt.tt_active, FALSE);
    KMP_MB();

    TCW_PTR(this_thr->th.th_task_team, NULL);
  }
}

// __kmp_tasking_barrier:
// This routine may only called when __kmp_tasking_mode == tskm_extra_barrier.
// Internal function to execute all tasks prior to a regular barrier or a join
// barrier. It is a full barrier itself, which unfortunately turns regular
// barriers into double barriers and join barriers into 1 1/2 barriers.
void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
  std::atomic<kmp_uint32> *spin = RCAST(
      std::atomic<kmp_uint32> *,
      &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
  int flag = FALSE;
  KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);

#if USE_ITT_BUILD
  KMP_FSYNC_SPIN_INIT(spin, NULL);
#endif /* USE_ITT_BUILD */
  kmp_flag_32 spin_flag(spin, 0U);
  while (!spin_flag.execute_tasks(thread, gtid, TRUE,
                                  &flag USE_ITT_BUILD_ARG(NULL), 0)) {
#if USE_ITT_BUILD
    // TODO: What about itt_sync_obj??
    KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
#endif /* USE_ITT_BUILD */

    if (TCR_4(__kmp_global.g.g_done)) {
      if (__kmp_global.g.g_abort)
        __kmp_abort_thread();
      break;
    }
    KMP_YIELD(TRUE);
  }
#if USE_ITT_BUILD
  KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
#endif /* USE_ITT_BUILD */
}

// __kmp_give_task puts a task into a given thread queue if:
//  - the queue for that thread was created
//  - there's space in that queue
// Because of this, __kmp_push_task needs to check if there's space after
// getting the lock
static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
                            kmp_int32 pass) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  kmp_task_team_t *task_team = taskdata->td_task_team;

  KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
                taskdata, tid));

  // If task_team is NULL something went really bad...
  KMP_DEBUG_ASSERT(task_team != NULL);

  bool result = false;
  kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];

  if (thread_data->td.td_deque == NULL) {
    // There's no queue in this thread, go find another one
    // We're guaranteed that at least one thread has a queue
    KA_TRACE(30,
             ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
              tid, taskdata));
    return result;
  }

  if (TCR_4(thread_data->td.td_deque_ntasks) >=
      TASK_DEQUE_SIZE(thread_data->td)) {
    KA_TRACE(
        30,
        ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
         taskdata, tid));

    // if this deque is bigger than the pass ratio give a chance to another
    // thread
    if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
      return result;

    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
    if (TCR_4(thread_data->td.td_deque_ntasks) >=
        TASK_DEQUE_SIZE(thread_data->td)) {
      // expand deque to push the task which is not allowed to execute
      __kmp_realloc_task_deque(thread, thread_data);
    }

  } else {

    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);

    if (TCR_4(thread_data->td.td_deque_ntasks) >=
        TASK_DEQUE_SIZE(thread_data->td)) {
      KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
                    "thread %d.\n",
                    taskdata, tid));

      // if this deque is bigger than the pass ratio give a chance to another
      // thread
      if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
        goto release_and_exit;

      __kmp_realloc_task_deque(thread, thread_data);
    }
  }

  // lock is held here, and there is space in the deque

  thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
  // Wrap index.
  thread_data->td.td_deque_tail =
      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
  TCW_4(thread_data->td.td_deque_ntasks,
        TCR_4(thread_data->td.td_deque_ntasks) + 1);

  result = true;
  KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
                taskdata, tid));

release_and_exit:
  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);

  return result;
}

/* The finish of the proxy tasks is divided in two pieces:
    - the top half is the one that can be done from a thread outside the team
    - the bottom half must be run from a thread within the team

   In order to run the bottom half the task gets queued back into one of the
   threads of the team. Once the td_incomplete_child_task counter of the parent
   is decremented the threads can leave the barriers. So, the bottom half needs
   to be queued before the counter is decremented. The top half is therefore
   divided in two parts:
    - things that can be run before queuing the bottom half
    - things that must be run after queuing the bottom half

   This creates a second race as the bottom half can free the task before the
   second top half is executed. To avoid this we use the
   td_incomplete_child_task of the proxy task to synchronize the top and bottom
   half. */
static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);

  taskdata->td_flags.complete = 1; // mark the task as completed

  if (taskdata->td_taskgroup)
    KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);

  // Create an imaginary children for this task so the bottom half cannot
  // release the task before we have completed the second top half
  KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
}

static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
  kmp_int32 children = 0;

  // Predecrement simulated by "- 1" calculation
  children =
      KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
  KMP_DEBUG_ASSERT(children >= 0);

  // Remove the imaginary children
  KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
}

static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
  kmp_info_t *thread = __kmp_threads[gtid];

  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
  KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
                   1); // top half must run before bottom half

  // We need to wait to make sure the top half is finished
  // Spinning here should be ok as this should happen quickly
  while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
    ;

  __kmp_release_deps(gtid, taskdata);
  __kmp_free_task_and_ancestors(gtid, taskdata, thread);
}

/*!
@ingroup TASKING
@param gtid Global Thread ID of encountering thread
@param ptask Task which execution is completed

Execute the completion of a proxy task from a thread of that is part of the
team. Run first and bottom halves directly.
*/
void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
  KMP_DEBUG_ASSERT(ptask != NULL);
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
  KA_TRACE(
      10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
           gtid, taskdata));
  __kmp_assert_valid_gtid(gtid);
  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);

  __kmp_first_top_half_finish_proxy(taskdata);
  __kmp_second_top_half_finish_proxy(taskdata);
  __kmp_bottom_half_finish_proxy(gtid, ptask);

  KA_TRACE(10,
           ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
            gtid, taskdata));
}

/*!
@ingroup TASKING
@param ptask Task which execution is completed

Execute the completion of a proxy task from a thread that could not belong to
the team.
*/
void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
  KMP_DEBUG_ASSERT(ptask != NULL);
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);

  KA_TRACE(
      10,
      ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
       taskdata));

  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);

  __kmp_first_top_half_finish_proxy(taskdata);

  // Enqueue task to complete bottom half completion from a thread within the
  // corresponding team
  kmp_team_t *team = taskdata->td_team;
  kmp_int32 nthreads = team->t.t_nproc;
  kmp_info_t *thread;

  // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
  // but we cannot use __kmp_get_random here
  kmp_int32 start_k = 0;
  kmp_int32 pass = 1;
  kmp_int32 k = start_k;

  do {
    // For now we're just linearly trying to find a thread
    thread = team->t.t_threads[k];
    k = (k + 1) % nthreads;

    // we did a full pass through all the threads
    if (k == start_k)
      pass = pass << 1;

  } while (!__kmp_give_task(thread, k, ptask, pass));

  __kmp_second_top_half_finish_proxy(taskdata);

  KA_TRACE(
      10,
      ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
       taskdata));
}

kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
                                                kmp_task_t *task) {
  kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
  if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
    td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
    td->td_allow_completion_event.ed.task = task;
    __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
  }
  return &td->td_allow_completion_event;
}

void __kmp_fulfill_event(kmp_event_t *event) {
  if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
    kmp_task_t *ptask = event->ed.task;
    kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
    bool detached = false;
    int gtid = __kmp_get_gtid();

    // The associated task might have completed or could be completing at this
    // point.
    // We need to take the lock to avoid races
    __kmp_acquire_tas_lock(&event->lock, gtid);
    if (taskdata->td_flags.proxy == TASK_PROXY) {
      detached = true;
    } else {
#if OMPT_SUPPORT
      // The OMPT event must occur under mutual exclusion,
      // otherwise the tool might access ptask after free
      if (UNLIKELY(ompt_enabled.enabled))
        __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
#endif
    }
    event->type = KMP_EVENT_UNINITIALIZED;
    __kmp_release_tas_lock(&event->lock, gtid);

    if (detached) {
#if OMPT_SUPPORT
      // We free ptask afterwards and know the task is finished,
      // so locking is not necessary
      if (UNLIKELY(ompt_enabled.enabled))
        __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
#endif
      // If the task detached complete the proxy task
      if (gtid >= 0) {
        kmp_team_t *team = taskdata->td_team;
        kmp_info_t *thread = __kmp_get_thread();
        if (thread->th.th_team == team) {
          __kmpc_proxy_task_completed(gtid, ptask);
          return;
        }
      }

      // fallback
      __kmpc_proxy_task_completed_ooo(ptask);
    }
  }
}

// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
// for taskloop
//
// thread:   allocating thread
// task_src: pointer to source task to be duplicated
// returns:  a pointer to the allocated kmp_task_t structure (task).
kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
  kmp_task_t *task;
  kmp_taskdata_t *taskdata;
  kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
  kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
  size_t shareds_offset;
  size_t task_size;

  KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
                task_src));
  KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
                   TASK_FULL); // it should not be proxy task
  KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
  task_size = taskdata_src->td_size_alloc;

  // Allocate a kmp_taskdata_t block and a kmp_task_t block.
  KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
                task_size));
#if USE_FAST_MEMORY
  taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
#else
  taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
#endif /* USE_FAST_MEMORY */
  KMP_MEMCPY(taskdata, taskdata_src, task_size);

  task = KMP_TASKDATA_TO_TASK(taskdata);

  // Initialize new task (only specific fields not affected by memcpy)
  taskdata->td_task_id = KMP_GEN_TASK_ID();
  if (task->shareds != NULL) { // need setup shareds pointer
    shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
    task->shareds = &((char *)taskdata)[shareds_offset];
    KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
                     0);
  }
  taskdata->td_alloc_thread = thread;
  taskdata->td_parent = parent_task;
  // task inherits the taskgroup from the parent task
  taskdata->td_taskgroup = parent_task->td_taskgroup;
  // tied task needs to initialize the td_last_tied at creation,
  // untied one does this when it is scheduled for execution
  if (taskdata->td_flags.tiedness == TASK_TIED)
    taskdata->td_last_tied = taskdata;

  // Only need to keep track of child task counts if team parallel and tasking
  // not serialized
  if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
    KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
    if (parent_task->td_taskgroup)
      KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
    // Only need to keep track of allocated child tasks for explicit tasks since
    // implicit not deallocated
    if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
      KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
  }

  KA_TRACE(20,
           ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
            thread, taskdata, taskdata->td_parent));
#if OMPT_SUPPORT
  if (UNLIKELY(ompt_enabled.enabled))
    __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
#endif
  return task;
}

// Routine optionally generated by the compiler for setting the lastprivate flag
// and calling needed constructors for private/firstprivate objects
// (used to form taskloop tasks from pattern task)
// Parameters: dest task, src task, lastprivate flag.
typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);

KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);

// class to encapsulate manipulating loop bounds in a taskloop task.
// this abstracts away the Intel vs GOMP taskloop interface for setting/getting
// the loop bound variables.
class kmp_taskloop_bounds_t {
  kmp_task_t *task;
  const kmp_taskdata_t *taskdata;
  size_t lower_offset;
  size_t upper_offset;

public:
  kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
      : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
        lower_offset((char *)lb - (char *)task),
        upper_offset((char *)ub - (char *)task) {
    KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
    KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
  }
  kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
      : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
        lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
  size_t get_lower_offset() const { return lower_offset; }
  size_t get_upper_offset() const { return upper_offset; }
  kmp_uint64 get_lb() const {
    kmp_int64 retval;
#if defined(KMP_GOMP_COMPAT)
    // Intel task just returns the lower bound normally
    if (!taskdata->td_flags.native) {
      retval = *(kmp_int64 *)((char *)task + lower_offset);
    } else {
      // GOMP task has to take into account the sizeof(long)
      if (taskdata->td_size_loop_bounds == 4) {
        kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
        retval = (kmp_int64)*lb;
      } else {
        kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
        retval = (kmp_int64)*lb;
      }
    }
#else
    retval = *(kmp_int64 *)((char *)task + lower_offset);
#endif // defined(KMP_GOMP_COMPAT)
    return retval;
  }
  kmp_uint64 get_ub() const {
    kmp_int64 retval;
#if defined(KMP_GOMP_COMPAT)
    // Intel task just returns the upper bound normally
    if (!taskdata->td_flags.native) {
      retval = *(kmp_int64 *)((char *)task + upper_offset);
    } else {
      // GOMP task has to take into account the sizeof(long)
      if (taskdata->td_size_loop_bounds == 4) {
        kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
        retval = (kmp_int64)*ub;
      } else {
        kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
        retval = (kmp_int64)*ub;
      }
    }
#else
    retval = *(kmp_int64 *)((char *)task + upper_offset);
#endif // defined(KMP_GOMP_COMPAT)
    return retval;
  }
  void set_lb(kmp_uint64 lb) {
#if defined(KMP_GOMP_COMPAT)
    // Intel task just sets the lower bound normally
    if (!taskdata->td_flags.native) {
      *(kmp_uint64 *)((char *)task + lower_offset) = lb;
    } else {
      // GOMP task has to take into account the sizeof(long)
      if (taskdata->td_size_loop_bounds == 4) {
        kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
        *lower = (kmp_uint32)lb;
      } else {
        kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
        *lower = (kmp_uint64)lb;
      }
    }
#else
    *(kmp_uint64 *)((char *)task + lower_offset) = lb;
#endif // defined(KMP_GOMP_COMPAT)
  }
  void set_ub(kmp_uint64 ub) {
#if defined(KMP_GOMP_COMPAT)
    // Intel task just sets the upper bound normally
    if (!taskdata->td_flags.native) {
      *(kmp_uint64 *)((char *)task + upper_offset) = ub;
    } else {
      // GOMP task has to take into account the sizeof(long)
      if (taskdata->td_size_loop_bounds == 4) {
        kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
        *upper = (kmp_uint32)ub;
      } else {
        kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
        *upper = (kmp_uint64)ub;
      }
    }
#else
    *(kmp_uint64 *)((char *)task + upper_offset) = ub;
#endif // defined(KMP_GOMP_COMPAT)
  }
};

// __kmp_taskloop_linear: Start tasks of the taskloop linearly
//
// loc        Source location information
// gtid       Global thread ID
// task       Pattern task, exposes the loop iteration range
// lb         Pointer to loop lower bound in task structure
// ub         Pointer to loop upper bound in task structure
// st         Loop stride
// ub_glob    Global upper bound (used for lastprivate check)
// num_tasks  Number of tasks to execute
// grainsize  Number of loop iterations per task
// extras     Number of chunks with grainsize+1 iterations
// tc         Iterations count
// task_dup   Tasks duplication routine
// codeptr_ra Return address for OMPT events
void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
                           kmp_uint64 grainsize, kmp_uint64 extras,
                           kmp_uint64 tc,
#if OMPT_SUPPORT
                           void *codeptr_ra,
#endif
                           void *task_dup) {
  KMP_COUNT_BLOCK(OMP_TASKLOOP);
  KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
  // compiler provides global bounds here
  kmp_taskloop_bounds_t task_bounds(task, lb, ub);
  kmp_uint64 lower = task_bounds.get_lb();
  kmp_uint64 upper = task_bounds.get_ub();
  kmp_uint64 i;
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *current_task = thread->th.th_current_task;
  kmp_task_t *next_task;
  kmp_int32 lastpriv = 0;

  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
  KMP_DEBUG_ASSERT(num_tasks > extras);
  KMP_DEBUG_ASSERT(num_tasks > 0);
  KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
                "extras %lld, i=%lld,%lld(%d)%lld, dup %p\n",
                gtid, num_tasks, grainsize, extras, lower, upper, ub_glob, st,
                task_dup));

  // Launch num_tasks tasks, assign grainsize iterations each task
  for (i = 0; i < num_tasks; ++i) {
    kmp_uint64 chunk_minus_1;
    if (extras == 0) {
      chunk_minus_1 = grainsize - 1;
    } else {
      chunk_minus_1 = grainsize;
      --extras; // first extras iterations get bigger chunk (grainsize+1)
    }
    upper = lower + st * chunk_minus_1;
    if (i == num_tasks - 1) {
      // schedule the last task, set lastprivate flag if needed
      if (st == 1) { // most common case
        KMP_DEBUG_ASSERT(upper == *ub);
        if (upper == ub_glob)
          lastpriv = 1;
      } else if (st > 0) { // positive loop stride
        KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
        if ((kmp_uint64)st > ub_glob - upper)
          lastpriv = 1;
      } else { // negative loop stride
        KMP_DEBUG_ASSERT(upper + st < *ub);
        if (upper - ub_glob < (kmp_uint64)(-st))
          lastpriv = 1;
      }
    }
    next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
    kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
    kmp_taskloop_bounds_t next_task_bounds =
        kmp_taskloop_bounds_t(next_task, task_bounds);

    // adjust task-specific bounds
    next_task_bounds.set_lb(lower);
    if (next_taskdata->td_flags.native) {
      next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
    } else {
      next_task_bounds.set_ub(upper);
    }
    if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
                           // etc.
      ptask_dup(next_task, task, lastpriv);
    KA_TRACE(40,
             ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
              "upper %lld stride %lld, (offsets %p %p)\n",
              gtid, i, next_task, lower, upper, st,
              next_task_bounds.get_lower_offset(),
              next_task_bounds.get_upper_offset()));
#if OMPT_SUPPORT
    __kmp_omp_taskloop_task(NULL, gtid, next_task,
                           codeptr_ra); // schedule new task
#else
    __kmp_omp_task(gtid, next_task, true); // schedule new task
#endif
    lower = upper + st; // adjust lower bound for the next iteration
  }
  // free the pattern task and exit
  __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
  // do not execute the pattern task, just do internal bookkeeping
  __kmp_task_finish<false>(gtid, task, current_task);
}

// Structure to keep taskloop parameters for auxiliary task
// kept in the shareds of the task structure.
typedef struct __taskloop_params {
  kmp_task_t *task;
  kmp_uint64 *lb;
  kmp_uint64 *ub;
  void *task_dup;
  kmp_int64 st;
  kmp_uint64 ub_glob;
  kmp_uint64 num_tasks;
  kmp_uint64 grainsize;
  kmp_uint64 extras;
  kmp_uint64 tc;
  kmp_uint64 num_t_min;
#if OMPT_SUPPORT
  void *codeptr_ra;
#endif
} __taskloop_params_t;

void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
                          kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
                          kmp_uint64, kmp_uint64, kmp_uint64, kmp_uint64,
#if OMPT_SUPPORT
                          void *,
#endif
                          void *);

// Execute part of the taskloop submitted as a task.
int __kmp_taskloop_task(int gtid, void *ptask) {
  __taskloop_params_t *p =
      (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
  kmp_task_t *task = p->task;
  kmp_uint64 *lb = p->lb;
  kmp_uint64 *ub = p->ub;
  void *task_dup = p->task_dup;
  //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
  kmp_int64 st = p->st;
  kmp_uint64 ub_glob = p->ub_glob;
  kmp_uint64 num_tasks = p->num_tasks;
  kmp_uint64 grainsize = p->grainsize;
  kmp_uint64 extras = p->extras;
  kmp_uint64 tc = p->tc;
  kmp_uint64 num_t_min = p->num_t_min;
#if OMPT_SUPPORT
  void *codeptr_ra = p->codeptr_ra;
#endif
#if KMP_DEBUG
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  KMP_DEBUG_ASSERT(task != NULL);
  KA_TRACE(20, ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
                " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
                gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
                task_dup));
#endif
  KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
  if (num_tasks > num_t_min)
    __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
                         grainsize, extras, tc, num_t_min,
#if OMPT_SUPPORT
                         codeptr_ra,
#endif
                         task_dup);
  else
    __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
                          grainsize, extras, tc,
#if OMPT_SUPPORT
                          codeptr_ra,
#endif
                          task_dup);

  KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
  return 0;
}

// Schedule part of the taskloop as a task,
// execute the rest of the taskloop.
//
// loc        Source location information
// gtid       Global thread ID
// task       Pattern task, exposes the loop iteration range
// lb         Pointer to loop lower bound in task structure
// ub         Pointer to loop upper bound in task structure
// st         Loop stride
// ub_glob    Global upper bound (used for lastprivate check)
// num_tasks  Number of tasks to execute
// grainsize  Number of loop iterations per task
// extras     Number of chunks with grainsize+1 iterations
// tc         Iterations count
// num_t_min  Threshold to launch tasks recursively
// task_dup   Tasks duplication routine
// codeptr_ra Return address for OMPT events
void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
                          kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
                          kmp_uint64 ub_glob, kmp_uint64 num_tasks,
                          kmp_uint64 grainsize, kmp_uint64 extras,
                          kmp_uint64 tc, kmp_uint64 num_t_min,
#if OMPT_SUPPORT
                          void *codeptr_ra,
#endif
                          void *task_dup) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  KMP_DEBUG_ASSERT(task != NULL);
  KMP_DEBUG_ASSERT(num_tasks > num_t_min);
  KA_TRACE(20, ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
                " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
                gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
                task_dup));
  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
  kmp_uint64 lower = *lb;
  kmp_info_t *thread = __kmp_threads[gtid];
  //  kmp_taskdata_t *current_task = thread->th.th_current_task;
  kmp_task_t *next_task;
  size_t lower_offset =
      (char *)lb - (char *)task; // remember offset of lb in the task structure
  size_t upper_offset =
      (char *)ub - (char *)task; // remember offset of ub in the task structure

  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
  KMP_DEBUG_ASSERT(num_tasks > extras);
  KMP_DEBUG_ASSERT(num_tasks > 0);

  // split the loop in two halves
  kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
  kmp_uint64 gr_size0 = grainsize;
  kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
  kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
  if (n_tsk0 <= extras) {
    gr_size0++; // integrate extras into grainsize
    ext0 = 0; // no extra iters in 1st half
    ext1 = extras - n_tsk0; // remaining extras
    tc0 = gr_size0 * n_tsk0;
    tc1 = tc - tc0;
  } else { // n_tsk0 > extras
    ext1 = 0; // no extra iters in 2nd half
    ext0 = extras;
    tc1 = grainsize * n_tsk1;
    tc0 = tc - tc1;
  }
  ub0 = lower + st * (tc0 - 1);
  lb1 = ub0 + st;

  // create pattern task for 2nd half of the loop
  next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
  // adjust lower bound (upper bound is not changed) for the 2nd half
  *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
  if (ptask_dup != NULL) // construct firstprivates, etc.
    ptask_dup(next_task, task, 0);
  *ub = ub0; // adjust upper bound for the 1st half

  // create auxiliary task for 2nd half of the loop
  // make sure new task has same parent task as the pattern task
  kmp_taskdata_t *current_task = thread->th.th_current_task;
  thread->th.th_current_task = taskdata->td_parent;
  kmp_task_t *new_task =
      __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
                            sizeof(__taskloop_params_t), &__kmp_taskloop_task);
  // restore current task
  thread->th.th_current_task = current_task;
  __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
  p->task = next_task;
  p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
  p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
  p->task_dup = task_dup;
  p->st = st;
  p->ub_glob = ub_glob;
  p->num_tasks = n_tsk1;
  p->grainsize = grainsize;
  p->extras = ext1;
  p->tc = tc1;
  p->num_t_min = num_t_min;
#if OMPT_SUPPORT
  p->codeptr_ra = codeptr_ra;
#endif

#if OMPT_SUPPORT
  // schedule new task with correct return address for OMPT events
  __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
#else
  __kmp_omp_task(gtid, new_task, true); // schedule new task
#endif

  // execute the 1st half of current subrange
  if (n_tsk0 > num_t_min)
    __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
                         ext0, tc0, num_t_min,
#if OMPT_SUPPORT
                         codeptr_ra,
#endif
                         task_dup);
  else
    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
                          gr_size0, ext0, tc0,
#if OMPT_SUPPORT
                          codeptr_ra,
#endif
                          task_dup);

  KA_TRACE(40, ("__kmpc_taskloop_recur(exit): T#%d\n", gtid));
}

/*!
@ingroup TASKING
@param loc       Source location information
@param gtid      Global thread ID
@param task      Task structure
@param if_val    Value of the if clause
@param lb        Pointer to loop lower bound in task structure
@param ub        Pointer to loop upper bound in task structure
@param st        Loop stride
@param nogroup   Flag, 1 if no taskgroup needs to be added, 0 otherwise
@param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
@param grainsize Schedule value if specified
@param task_dup  Tasks duplication routine

Execute the taskloop construct.
*/
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
                     kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
                     int sched, kmp_uint64 grainsize, void *task_dup) {
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
  KMP_DEBUG_ASSERT(task != NULL);
  __kmp_assert_valid_gtid(gtid);
  if (nogroup == 0) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
    OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
    __kmpc_taskgroup(loc, gtid);
  }

  // =========================================================================
  // calculate loop parameters
  kmp_taskloop_bounds_t task_bounds(task, lb, ub);
  kmp_uint64 tc;
  // compiler provides global bounds here
  kmp_uint64 lower = task_bounds.get_lb();
  kmp_uint64 upper = task_bounds.get_ub();
  kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
  kmp_uint64 num_tasks = 0, extras = 0;
  kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *current_task = thread->th.th_current_task;

  KA_TRACE(20, ("__kmpc_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
                "grain %llu(%d), dup %p\n",
                gtid, taskdata, lower, upper, st, grainsize, sched, task_dup));

  // compute trip count
  if (st == 1) { // most common case
    tc = upper - lower + 1;
  } else if (st < 0) {
    tc = (lower - upper) / (-st) + 1;
  } else { // st > 0
    tc = (upper - lower) / st + 1;
  }
  if (tc == 0) {
    KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid));
    // free the pattern task and exit
    __kmp_task_start(gtid, task, current_task);
    // do not execute anything for zero-trip loop
    __kmp_task_finish<false>(gtid, task, current_task);
    return;
  }

#if OMPT_SUPPORT && OMPT_OPTIONAL
  ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
  ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
  if (ompt_enabled.ompt_callback_work) {
    ompt_callbacks.ompt_callback(ompt_callback_work)(
        ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
        &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
  }
#endif

  if (num_tasks_min == 0)
    // TODO: can we choose better default heuristic?
    num_tasks_min =
        KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);

  // compute num_tasks/grainsize based on the input provided
  switch (sched) {
  case 0: // no schedule clause specified, we can choose the default
    // let's try to schedule (team_size*10) tasks
    grainsize = thread->th.th_team_nproc * 10;
    KMP_FALLTHROUGH();
  case 2: // num_tasks provided
    if (grainsize > tc) {
      num_tasks = tc; // too big num_tasks requested, adjust values
      grainsize = 1;
      extras = 0;
    } else {
      num_tasks = grainsize;
      grainsize = tc / num_tasks;
      extras = tc % num_tasks;
    }
    break;
  case 1: // grainsize provided
    if (grainsize > tc) {
      num_tasks = 1; // too big grainsize requested, adjust values
      grainsize = tc;
      extras = 0;
    } else {
      num_tasks = tc / grainsize;
      // adjust grainsize for balanced distribution of iterations
      grainsize = tc / num_tasks;
      extras = tc % num_tasks;
    }
    break;
  default:
    KMP_ASSERT2(0, "unknown scheduling of taskloop");
  }
  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
  KMP_DEBUG_ASSERT(num_tasks > extras);
  KMP_DEBUG_ASSERT(num_tasks > 0);
  // =========================================================================

  // check if clause value first
  // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
  if (if_val == 0) { // if(0) specified, mark task as serial
    taskdata->td_flags.task_serial = 1;
    taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
    // always start serial tasks linearly
    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
                          grainsize, extras, tc,
#if OMPT_SUPPORT
                          OMPT_GET_RETURN_ADDRESS(0),
#endif
                          task_dup);
    // !taskdata->td_flags.native => currently force linear spawning of tasks
    // for GOMP_taskloop
  } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
    KA_TRACE(20, ("__kmpc_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
                  "(%lld), grain %llu, extras %llu\n",
                  gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
    __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
                         grainsize, extras, tc, num_tasks_min,
#if OMPT_SUPPORT
                         OMPT_GET_RETURN_ADDRESS(0),
#endif
                         task_dup);
  } else {
    KA_TRACE(20, ("__kmpc_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
                  "(%lld), grain %llu, extras %llu\n",
                  gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
                          grainsize, extras, tc,
#if OMPT_SUPPORT
                          OMPT_GET_RETURN_ADDRESS(0),
#endif
                          task_dup);
  }

#if OMPT_SUPPORT && OMPT_OPTIONAL
  if (ompt_enabled.ompt_callback_work) {
    ompt_callbacks.ompt_callback(ompt_callback_work)(
        ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
        &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
  }
#endif

  if (nogroup == 0) {
#if OMPT_SUPPORT && OMPT_OPTIONAL
    OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
    __kmpc_end_taskgroup(loc, gtid);
  }
  KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
}