ompt-tsan.cpp
30.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*
* ompt-tsan.cpp -- Archer runtime library, TSan annotations for Archer
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for details.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <inttypes.h>
#include <iostream>
#include <list>
#include <mutex>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <vector>
#if (defined __APPLE__ && defined __MACH__)
#include <dlfcn.h>
#endif
#include <sys/resource.h>
#include "omp-tools.h"
static int runOnTsan;
static int hasReductionCallback;
class ArcherFlags {
public:
#if (LLVM_VERSION) >= 40
int flush_shadow;
#endif
int print_max_rss;
int verbose;
int enabled;
ArcherFlags(const char *env)
:
#if (LLVM_VERSION) >= 40
flush_shadow(0),
#endif
print_max_rss(0), verbose(0), enabled(1) {
if (env) {
std::vector<std::string> tokens;
std::string token;
std::string str(env);
std::istringstream iss(str);
while (std::getline(iss, token, ' '))
tokens.push_back(token);
for (std::vector<std::string>::iterator it = tokens.begin();
it != tokens.end(); ++it) {
#if (LLVM_VERSION) >= 40
if (sscanf(it->c_str(), "flush_shadow=%d", &flush_shadow))
continue;
#endif
if (sscanf(it->c_str(), "print_max_rss=%d", &print_max_rss))
continue;
if (sscanf(it->c_str(), "verbose=%d", &verbose))
continue;
if (sscanf(it->c_str(), "enable=%d", &enabled))
continue;
std::cerr << "Illegal values for ARCHER_OPTIONS variable: " << token
<< std::endl;
}
}
}
};
class TsanFlags {
public:
int ignore_noninstrumented_modules;
TsanFlags(const char *env) : ignore_noninstrumented_modules(0) {
if (env) {
std::vector<std::string> tokens;
std::string str(env);
auto end = str.end();
auto it = str.begin();
auto is_sep = [](char c) {
return c == ' ' || c == ',' || c == ':' || c == '\n' || c == '\t' ||
c == '\r';
};
while (it != end) {
auto next_it = std::find_if(it, end, is_sep);
tokens.emplace_back(it, next_it);
it = next_it;
if (it != end) {
++it;
}
}
for (const auto &token : tokens) {
// we are interested in ignore_noninstrumented_modules to print a
// warning
if (sscanf(token.c_str(), "ignore_noninstrumented_modules=%d",
&ignore_noninstrumented_modules))
continue;
}
}
}
};
#if (LLVM_VERSION) >= 40
extern "C" {
int __attribute__((weak)) __archer_get_omp_status();
void __attribute__((weak)) __tsan_flush_memory() {}
}
#endif
ArcherFlags *archer_flags;
// The following definitions are pasted from "llvm/Support/Compiler.h" to allow
// the code
// to be compiled with other compilers like gcc:
#ifndef TsanHappensBefore
// Thread Sanitizer is a tool that finds races in code.
// See http://code.google.com/p/data-race-test/wiki/DynamicAnnotations .
// tsan detects these exact functions by name.
extern "C" {
#if (defined __APPLE__ && defined __MACH__)
static void AnnotateHappensAfter(const char *file, int line,
const volatile void *cv) {
void (*fptr)(const char *, int, const volatile void *);
fptr = (void (*)(const char *, int, const volatile void *))dlsym(
RTLD_DEFAULT, "AnnotateHappensAfter");
(*fptr)(file, line, cv);
}
static void AnnotateHappensBefore(const char *file, int line,
const volatile void *cv) {
void (*fptr)(const char *, int, const volatile void *);
fptr = (void (*)(const char *, int, const volatile void *))dlsym(
RTLD_DEFAULT, "AnnotateHappensBefore");
(*fptr)(file, line, cv);
}
static void AnnotateIgnoreWritesBegin(const char *file, int line) {
void (*fptr)(const char *, int);
fptr = (void (*)(const char *, int))dlsym(RTLD_DEFAULT,
"AnnotateIgnoreWritesBegin");
(*fptr)(file, line);
}
static void AnnotateIgnoreWritesEnd(const char *file, int line) {
void (*fptr)(const char *, int);
fptr = (void (*)(const char *, int))dlsym(RTLD_DEFAULT,
"AnnotateIgnoreWritesEnd");
(*fptr)(file, line);
}
static void AnnotateNewMemory(const char *file, int line,
const volatile void *cv, size_t size) {
void (*fptr)(const char *, int, const volatile void *, size_t);
fptr = (void (*)(const char *, int, const volatile void *, size_t))dlsym(
RTLD_DEFAULT, "AnnotateNewMemory");
(*fptr)(file, line, cv, size);
}
static int RunningOnValgrind() {
int (*fptr)();
fptr = (int (*)())dlsym(RTLD_DEFAULT, "RunningOnValgrind");
if (fptr && fptr != RunningOnValgrind)
runOnTsan = 0;
return 0;
}
#else
void __attribute__((weak))
AnnotateHappensAfter(const char *file, int line, const volatile void *cv) {}
void __attribute__((weak))
AnnotateHappensBefore(const char *file, int line, const volatile void *cv) {}
void __attribute__((weak))
AnnotateIgnoreWritesBegin(const char *file, int line) {}
void __attribute__((weak)) AnnotateIgnoreWritesEnd(const char *file, int line) {
}
void __attribute__((weak))
AnnotateNewMemory(const char *file, int line, const volatile void *cv,
size_t size) {}
int __attribute__((weak)) RunningOnValgrind() {
runOnTsan = 0;
return 0;
}
void __attribute__((weak)) __tsan_func_entry(const void *call_pc) {}
void __attribute__((weak)) __tsan_func_exit(void) {}
#endif
}
// This marker is used to define a happens-before arc. The race detector will
// infer an arc from the begin to the end when they share the same pointer
// argument.
#define TsanHappensBefore(cv) AnnotateHappensBefore(__FILE__, __LINE__, cv)
// This marker defines the destination of a happens-before arc.
#define TsanHappensAfter(cv) AnnotateHappensAfter(__FILE__, __LINE__, cv)
// Ignore any races on writes between here and the next TsanIgnoreWritesEnd.
#define TsanIgnoreWritesBegin() AnnotateIgnoreWritesBegin(__FILE__, __LINE__)
// Resume checking for racy writes.
#define TsanIgnoreWritesEnd() AnnotateIgnoreWritesEnd(__FILE__, __LINE__)
// We don't really delete the clock for now
#define TsanDeleteClock(cv)
// newMemory
#define TsanNewMemory(addr, size) \
AnnotateNewMemory(__FILE__, __LINE__, addr, size)
#define TsanFreeMemory(addr, size) \
AnnotateNewMemory(__FILE__, __LINE__, addr, size)
#endif
// Function entry/exit
#define TsanFuncEntry(pc) __tsan_func_entry(pc)
#define TsanFuncExit() __tsan_func_exit()
/// Required OMPT inquiry functions.
static ompt_get_parallel_info_t ompt_get_parallel_info;
static ompt_get_thread_data_t ompt_get_thread_data;
typedef uint64_t ompt_tsan_clockid;
static uint64_t my_next_id() {
static uint64_t ID = 0;
uint64_t ret = __sync_fetch_and_add(&ID, 1);
return ret;
}
// Data structure to provide a threadsafe pool of reusable objects.
// DataPool<Type of objects, Size of blockalloc>
template <typename T, int N> struct DataPool {
std::mutex DPMutex;
std::stack<T *> DataPointer;
std::list<void *> memory;
int total;
void newDatas() {
// prefix the Data with a pointer to 'this', allows to return memory to
// 'this',
// without explicitly knowing the source.
//
// To reduce lock contention, we use thread local DataPools, but Data
// objects move to other threads.
// The strategy is to get objects from local pool. Only if the object moved
// to another
// thread, we might see a penalty on release (returnData).
// For "single producer" pattern, a single thread creates tasks, these are
// executed by other threads.
// The master will have a high demand on TaskData, so return after use.
struct pooldata {
DataPool<T, N> *dp;
T data;
};
// We alloc without initialize the memory. We cannot call constructors.
// Therefore use malloc!
pooldata *datas = (pooldata *)malloc(sizeof(pooldata) * N);
memory.push_back(datas);
for (int i = 0; i < N; i++) {
datas[i].dp = this;
DataPointer.push(&(datas[i].data));
}
total += N;
}
T *getData() {
T *ret;
DPMutex.lock();
if (DataPointer.empty())
newDatas();
ret = DataPointer.top();
DataPointer.pop();
DPMutex.unlock();
return ret;
}
void returnData(T *data) {
DPMutex.lock();
DataPointer.push(data);
DPMutex.unlock();
}
void getDatas(int n, T **datas) {
DPMutex.lock();
for (int i = 0; i < n; i++) {
if (DataPointer.empty())
newDatas();
datas[i] = DataPointer.top();
DataPointer.pop();
}
DPMutex.unlock();
}
void returnDatas(int n, T **datas) {
DPMutex.lock();
for (int i = 0; i < n; i++) {
DataPointer.push(datas[i]);
}
DPMutex.unlock();
}
DataPool() : DPMutex(), DataPointer(), total(0) {}
~DataPool() {
// we assume all memory is returned when the thread finished / destructor is
// called
for (auto i : memory)
if (i)
free(i);
}
};
// This function takes care to return the data to the originating DataPool
// A pointer to the originating DataPool is stored just before the actual data.
template <typename T, int N> static void retData(void *data) {
((DataPool<T, N> **)data)[-1]->returnData((T *)data);
}
struct ParallelData;
__thread DataPool<ParallelData, 4> *pdp;
/// Data structure to store additional information for parallel regions.
struct ParallelData {
// Parallel fork is just another barrier, use Barrier[1]
/// Two addresses for relationships with barriers.
ompt_tsan_clockid Barrier[2];
const void *codePtr;
void *GetParallelPtr() { return &(Barrier[1]); }
void *GetBarrierPtr(unsigned Index) { return &(Barrier[Index]); }
ParallelData(const void *codeptr) : codePtr(codeptr) {}
~ParallelData() {
TsanDeleteClock(&(Barrier[0]));
TsanDeleteClock(&(Barrier[1]));
}
// overload new/delete to use DataPool for memory management.
void *operator new(size_t size) { return pdp->getData(); }
void operator delete(void *p, size_t) { retData<ParallelData, 4>(p); }
};
static inline ParallelData *ToParallelData(ompt_data_t *parallel_data) {
return reinterpret_cast<ParallelData *>(parallel_data->ptr);
}
struct Taskgroup;
__thread DataPool<Taskgroup, 4> *tgp;
/// Data structure to support stacking of taskgroups and allow synchronization.
struct Taskgroup {
/// Its address is used for relationships of the taskgroup's task set.
ompt_tsan_clockid Ptr;
/// Reference to the parent taskgroup.
Taskgroup *Parent;
Taskgroup(Taskgroup *Parent) : Parent(Parent) {}
~Taskgroup() { TsanDeleteClock(&Ptr); }
void *GetPtr() { return &Ptr; }
// overload new/delete to use DataPool for memory management.
void *operator new(size_t size) { return tgp->getData(); }
void operator delete(void *p, size_t) { retData<Taskgroup, 4>(p); }
};
struct TaskData;
__thread DataPool<TaskData, 4> *tdp;
/// Data structure to store additional information for tasks.
struct TaskData {
/// Its address is used for relationships of this task.
ompt_tsan_clockid Task;
/// Child tasks use its address to declare a relationship to a taskwait in
/// this task.
ompt_tsan_clockid Taskwait;
/// Whether this task is currently executing a barrier.
bool InBarrier;
/// Whether this task is an included task.
bool Included;
/// Index of which barrier to use next.
char BarrierIndex;
/// Count how often this structure has been put into child tasks + 1.
std::atomic_int RefCount;
/// Reference to the parent that created this task.
TaskData *Parent;
/// Reference to the implicit task in the stack above this task.
TaskData *ImplicitTask;
/// Reference to the team of this task.
ParallelData *Team;
/// Reference to the current taskgroup that this task either belongs to or
/// that it just created.
Taskgroup *TaskGroup;
/// Dependency information for this task.
ompt_dependence_t *Dependencies;
/// Number of dependency entries.
unsigned DependencyCount;
void *PrivateData;
size_t PrivateDataSize;
int execution;
int freed;
TaskData(TaskData *Parent)
: InBarrier(false), Included(false), BarrierIndex(0), RefCount(1),
Parent(Parent), ImplicitTask(nullptr), Team(Parent->Team),
TaskGroup(nullptr), DependencyCount(0), execution(0), freed(0) {
if (Parent != nullptr) {
Parent->RefCount++;
// Copy over pointer to taskgroup. This task may set up its own stack
// but for now belongs to its parent's taskgroup.
TaskGroup = Parent->TaskGroup;
}
}
TaskData(ParallelData *Team = nullptr)
: InBarrier(false), Included(false), BarrierIndex(0), RefCount(1),
Parent(nullptr), ImplicitTask(this), Team(Team), TaskGroup(nullptr),
DependencyCount(0), execution(1), freed(0) {}
~TaskData() {
TsanDeleteClock(&Task);
TsanDeleteClock(&Taskwait);
}
void *GetTaskPtr() { return &Task; }
void *GetTaskwaitPtr() { return &Taskwait; }
// overload new/delete to use DataPool for memory management.
void *operator new(size_t size) { return tdp->getData(); }
void operator delete(void *p, size_t) { retData<TaskData, 4>(p); }
};
static inline TaskData *ToTaskData(ompt_data_t *task_data) {
return reinterpret_cast<TaskData *>(task_data->ptr);
}
static inline void *ToInAddr(void *OutAddr) {
// FIXME: This will give false negatives when a second variable lays directly
// behind a variable that only has a width of 1 byte.
// Another approach would be to "negate" the address or to flip the
// first bit...
return reinterpret_cast<char *>(OutAddr) + 1;
}
/// Store a mutex for each wait_id to resolve race condition with callbacks.
std::unordered_map<ompt_wait_id_t, std::mutex> Locks;
std::mutex LocksMutex;
static void ompt_tsan_thread_begin(ompt_thread_t thread_type,
ompt_data_t *thread_data) {
pdp = new DataPool<ParallelData, 4>;
TsanNewMemory(pdp, sizeof(pdp));
tgp = new DataPool<Taskgroup, 4>;
TsanNewMemory(tgp, sizeof(tgp));
tdp = new DataPool<TaskData, 4>;
TsanNewMemory(tdp, sizeof(tdp));
thread_data->value = my_next_id();
}
static void ompt_tsan_thread_end(ompt_data_t *thread_data) {
delete pdp;
delete tgp;
delete tdp;
}
/// OMPT event callbacks for handling parallel regions.
static void ompt_tsan_parallel_begin(ompt_data_t *parent_task_data,
const ompt_frame_t *parent_task_frame,
ompt_data_t *parallel_data,
uint32_t requested_team_size,
int flag,
const void *codeptr_ra) {
ParallelData *Data = new ParallelData(codeptr_ra);
parallel_data->ptr = Data;
TsanHappensBefore(Data->GetParallelPtr());
}
static void ompt_tsan_parallel_end(ompt_data_t *parallel_data,
ompt_data_t *task_data,
int flag,
const void *codeptr_ra) {
ParallelData *Data = ToParallelData(parallel_data);
TsanHappensAfter(Data->GetBarrierPtr(0));
TsanHappensAfter(Data->GetBarrierPtr(1));
delete Data;
#if (LLVM_VERSION >= 40)
if (&__archer_get_omp_status) {
if (__archer_get_omp_status() == 0 && archer_flags->flush_shadow)
__tsan_flush_memory();
}
#endif
}
static void ompt_tsan_implicit_task(ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
unsigned int team_size,
unsigned int thread_num,
int type) {
switch (endpoint) {
case ompt_scope_begin:
if (type & ompt_task_initial) {
parallel_data->ptr = new ParallelData(nullptr);
}
task_data->ptr = new TaskData(ToParallelData(parallel_data));
TsanHappensAfter(ToParallelData(parallel_data)->GetParallelPtr());
TsanFuncEntry(ToParallelData(parallel_data)->codePtr);
break;
case ompt_scope_end:
TaskData *Data = ToTaskData(task_data);
assert(Data->freed == 0 && "Implicit task end should only be called once!");
Data->freed = 1;
assert(Data->RefCount == 1 &&
"All tasks should have finished at the implicit barrier!");
delete Data;
TsanFuncExit();
break;
}
}
static void ompt_tsan_sync_region(ompt_sync_region_t kind,
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
const void *codeptr_ra) {
TaskData *Data = ToTaskData(task_data);
switch (endpoint) {
case ompt_scope_begin:
TsanFuncEntry(codeptr_ra);
switch (kind) {
case ompt_sync_region_barrier_implementation:
case ompt_sync_region_barrier_implicit:
case ompt_sync_region_barrier_explicit:
case ompt_sync_region_barrier: {
char BarrierIndex = Data->BarrierIndex;
TsanHappensBefore(Data->Team->GetBarrierPtr(BarrierIndex));
if (hasReductionCallback < ompt_set_always) {
// We ignore writes inside the barrier. These would either occur during
// 1. reductions performed by the runtime which are guaranteed to be
// race-free.
// 2. execution of another task.
// For the latter case we will re-enable tracking in task_switch.
Data->InBarrier = true;
TsanIgnoreWritesBegin();
}
break;
}
case ompt_sync_region_taskwait:
break;
case ompt_sync_region_taskgroup:
Data->TaskGroup = new Taskgroup(Data->TaskGroup);
break;
default:
break;
}
break;
case ompt_scope_end:
TsanFuncExit();
switch (kind) {
case ompt_sync_region_barrier_implementation:
case ompt_sync_region_barrier_implicit:
case ompt_sync_region_barrier_explicit:
case ompt_sync_region_barrier: {
if (hasReductionCallback < ompt_set_always) {
// We want to track writes after the barrier again.
Data->InBarrier = false;
TsanIgnoreWritesEnd();
}
char BarrierIndex = Data->BarrierIndex;
// Barrier will end after it has been entered by all threads.
if (parallel_data)
TsanHappensAfter(Data->Team->GetBarrierPtr(BarrierIndex));
// It is not guaranteed that all threads have exited this barrier before
// we enter the next one. So we will use a different address.
// We are however guaranteed that this current barrier is finished
// by the time we exit the next one. So we can then reuse the first
// address.
Data->BarrierIndex = (BarrierIndex + 1) % 2;
break;
}
case ompt_sync_region_taskwait: {
if (Data->execution > 1)
TsanHappensAfter(Data->GetTaskwaitPtr());
break;
}
case ompt_sync_region_taskgroup: {
assert(Data->TaskGroup != nullptr &&
"Should have at least one taskgroup!");
TsanHappensAfter(Data->TaskGroup->GetPtr());
// Delete this allocated taskgroup, all descendent task are finished by
// now.
Taskgroup *Parent = Data->TaskGroup->Parent;
delete Data->TaskGroup;
Data->TaskGroup = Parent;
break;
}
default:
break;
}
break;
}
}
static void ompt_tsan_reduction(ompt_sync_region_t kind,
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
const void *codeptr_ra) {
switch (endpoint) {
case ompt_scope_begin:
switch (kind) {
case ompt_sync_region_reduction:
TsanIgnoreWritesBegin();
break;
default:
break;
}
break;
case ompt_scope_end:
switch (kind) {
case ompt_sync_region_reduction:
TsanIgnoreWritesEnd();
break;
default:
break;
}
break;
}
}
/// OMPT event callbacks for handling tasks.
static void ompt_tsan_task_create(
ompt_data_t *parent_task_data, /* id of parent task */
const ompt_frame_t *parent_frame, /* frame data for parent task */
ompt_data_t *new_task_data, /* id of created task */
int type, int has_dependences,
const void *codeptr_ra) /* pointer to outlined function */
{
TaskData *Data;
assert(new_task_data->ptr == NULL &&
"Task data should be initialized to NULL");
if (type & ompt_task_initial) {
ompt_data_t *parallel_data;
int team_size = 1;
ompt_get_parallel_info(0, ¶llel_data, &team_size);
ParallelData *PData = new ParallelData(nullptr);
parallel_data->ptr = PData;
Data = new TaskData(PData);
new_task_data->ptr = Data;
} else if (type & ompt_task_undeferred) {
Data = new TaskData(ToTaskData(parent_task_data));
new_task_data->ptr = Data;
Data->Included = true;
} else if (type & ompt_task_explicit || type & ompt_task_target) {
Data = new TaskData(ToTaskData(parent_task_data));
new_task_data->ptr = Data;
// Use the newly created address. We cannot use a single address from the
// parent because that would declare wrong relationships with other
// sibling tasks that may be created before this task is started!
TsanHappensBefore(Data->GetTaskPtr());
ToTaskData(parent_task_data)->execution++;
}
}
static void ompt_tsan_task_schedule(ompt_data_t *first_task_data,
ompt_task_status_t prior_task_status,
ompt_data_t *second_task_data) {
TaskData *FromTask = ToTaskData(first_task_data);
TaskData *ToTask = ToTaskData(second_task_data);
if (ToTask->Included && prior_task_status != ompt_task_complete)
return; // No further synchronization for begin included tasks
if (FromTask->Included && prior_task_status == ompt_task_complete) {
// Just delete the task:
while (FromTask != nullptr && --FromTask->RefCount == 0) {
TaskData *Parent = FromTask->Parent;
if (FromTask->DependencyCount > 0) {
delete[] FromTask->Dependencies;
}
delete FromTask;
FromTask = Parent;
}
return;
}
if (ToTask->execution == 0) {
ToTask->execution++;
// 1. Task will begin execution after it has been created.
TsanHappensAfter(ToTask->GetTaskPtr());
for (unsigned i = 0; i < ToTask->DependencyCount; i++) {
ompt_dependence_t *Dependency = &ToTask->Dependencies[i];
TsanHappensAfter(Dependency->variable.ptr);
// in and inout dependencies are also blocked by prior in dependencies!
if (Dependency->dependence_type == ompt_dependence_type_out || Dependency->dependence_type == ompt_dependence_type_inout) {
TsanHappensAfter(ToInAddr(Dependency->variable.ptr));
}
}
} else {
// 2. Task will resume after it has been switched away.
TsanHappensAfter(ToTask->GetTaskPtr());
}
if (prior_task_status != ompt_task_complete) {
ToTask->ImplicitTask = FromTask->ImplicitTask;
assert(ToTask->ImplicitTask != NULL &&
"A task belongs to a team and has an implicit task on the stack");
}
// Task may be resumed at a later point in time.
TsanHappensBefore(FromTask->GetTaskPtr());
if (hasReductionCallback < ompt_set_always && FromTask->InBarrier) {
// We want to ignore writes in the runtime code during barriers,
// but not when executing tasks with user code!
TsanIgnoreWritesEnd();
}
if (prior_task_status == ompt_task_complete) { // task finished
// Task will finish before a barrier in the surrounding parallel region ...
ParallelData *PData = FromTask->Team;
TsanHappensBefore(
PData->GetBarrierPtr(FromTask->ImplicitTask->BarrierIndex));
// ... and before an eventual taskwait by the parent thread.
TsanHappensBefore(FromTask->Parent->GetTaskwaitPtr());
if (FromTask->TaskGroup != nullptr) {
// This task is part of a taskgroup, so it will finish before the
// corresponding taskgroup_end.
TsanHappensBefore(FromTask->TaskGroup->GetPtr());
}
for (unsigned i = 0; i < FromTask->DependencyCount; i++) {
ompt_dependence_t *Dependency = &FromTask->Dependencies[i];
// in dependencies block following inout and out dependencies!
TsanHappensBefore(ToInAddr(Dependency->variable.ptr));
if (Dependency->dependence_type == ompt_dependence_type_out || Dependency->dependence_type == ompt_dependence_type_inout) {
TsanHappensBefore(Dependency->variable.ptr);
}
}
while (FromTask != nullptr && --FromTask->RefCount == 0) {
TaskData *Parent = FromTask->Parent;
if (FromTask->DependencyCount > 0) {
delete[] FromTask->Dependencies;
}
delete FromTask;
FromTask = Parent;
}
}
if (hasReductionCallback < ompt_set_always && ToTask->InBarrier) {
// We re-enter runtime code which currently performs a barrier.
TsanIgnoreWritesBegin();
}
}
static void ompt_tsan_dependences(ompt_data_t *task_data,
const ompt_dependence_t *deps,
int ndeps) {
if (ndeps > 0) {
// Copy the data to use it in task_switch and task_end.
TaskData *Data = ToTaskData(task_data);
Data->Dependencies = new ompt_dependence_t[ndeps];
std::memcpy(Data->Dependencies, deps,
sizeof(ompt_dependence_t) * ndeps);
Data->DependencyCount = ndeps;
// This callback is executed before this task is first started.
TsanHappensBefore(Data->GetTaskPtr());
}
}
/// OMPT event callbacks for handling locking.
static void ompt_tsan_mutex_acquired(ompt_mutex_t kind,
ompt_wait_id_t wait_id,
const void *codeptr_ra) {
// Acquire our own lock to make sure that
// 1. the previous release has finished.
// 2. the next acquire doesn't start before we have finished our release.
LocksMutex.lock();
std::mutex &Lock = Locks[wait_id];
LocksMutex.unlock();
Lock.lock();
TsanHappensAfter(&Lock);
}
static void ompt_tsan_mutex_released(ompt_mutex_t kind,
ompt_wait_id_t wait_id,
const void *codeptr_ra) {
LocksMutex.lock();
std::mutex &Lock = Locks[wait_id];
LocksMutex.unlock();
TsanHappensBefore(&Lock);
Lock.unlock();
}
// callback , signature , variable to store result , required support level
#define SET_OPTIONAL_CALLBACK_T(event, type, result, level) \
do { \
ompt_callback_##type##_t tsan_##event = &ompt_tsan_##event; \
result = ompt_set_callback(ompt_callback_##event, \
(ompt_callback_t)tsan_##event); \
if (result < level) \
printf("Registered callback '" #event "' is not supported at " #level " (%i)\n", \
result); \
} while (0)
#define SET_CALLBACK_T(event, type) \
do { \
int res; \
SET_OPTIONAL_CALLBACK_T(event, type, res, ompt_set_always); \
} while (0)
#define SET_CALLBACK(event) SET_CALLBACK_T(event, event)
static int ompt_tsan_initialize(ompt_function_lookup_t lookup,
int device_num,
ompt_data_t *tool_data) {
const char *options = getenv("TSAN_OPTIONS");
TsanFlags tsan_flags(options);
ompt_set_callback_t ompt_set_callback =
(ompt_set_callback_t)lookup("ompt_set_callback");
if (ompt_set_callback == NULL) {
std::cerr << "Could not set callback, exiting..." << std::endl;
std::exit(1);
}
ompt_get_parallel_info =
(ompt_get_parallel_info_t)lookup("ompt_get_parallel_info");
ompt_get_thread_data = (ompt_get_thread_data_t)lookup("ompt_get_thread_data");
if (ompt_get_parallel_info == NULL) {
fprintf(stderr, "Could not get inquiry function 'ompt_get_parallel_info', "
"exiting...\n");
exit(1);
}
SET_CALLBACK(thread_begin);
SET_CALLBACK(thread_end);
SET_CALLBACK(parallel_begin);
SET_CALLBACK(implicit_task);
SET_CALLBACK(sync_region);
SET_CALLBACK(parallel_end);
SET_CALLBACK(task_create);
SET_CALLBACK(task_schedule);
SET_CALLBACK(dependences);
SET_CALLBACK_T(mutex_acquired, mutex);
SET_CALLBACK_T(mutex_released, mutex);
SET_OPTIONAL_CALLBACK_T(reduction, sync_region, hasReductionCallback, ompt_set_never);
if (!tsan_flags.ignore_noninstrumented_modules)
fprintf(
stderr,
"Warning: please export TSAN_OPTIONS='ignore_noninstrumented_modules=1' "
"to avoid false positive reports from the OpenMP runtime!\n");
return 1; // success
}
static void ompt_tsan_finalize(ompt_data_t *tool_data) {
if (archer_flags->print_max_rss) {
struct rusage end;
getrusage(RUSAGE_SELF, &end);
printf("MAX RSS[KBytes] during execution: %ld\n", end.ru_maxrss);
}
if (archer_flags)
delete archer_flags;
}
extern "C"
ompt_start_tool_result_t *ompt_start_tool(unsigned int omp_version,
const char *runtime_version) {
const char *options = getenv("ARCHER_OPTIONS");
archer_flags = new ArcherFlags(options);
if (!archer_flags->enabled)
{
if (archer_flags->verbose)
std::cout << "Archer disabled, stopping operation"
<< std::endl;
delete archer_flags;
return NULL;
}
static ompt_start_tool_result_t ompt_start_tool_result = {
&ompt_tsan_initialize, &ompt_tsan_finalize, {0}};
runOnTsan=1;
RunningOnValgrind();
if (!runOnTsan) // if we are not running on TSAN, give a different tool the
// chance to be loaded
{
if (archer_flags->verbose)
std::cout << "Archer detected OpenMP application without TSan "
"stopping operation"
<< std::endl;
delete archer_flags;
return NULL;
}
if (archer_flags->verbose)
std::cout << "Archer detected OpenMP application with TSan, supplying "
"OpenMP synchronization semantics"
<< std::endl;
return &ompt_start_tool_result;
}