ScopInfo.cpp 96.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
//===- ScopInfo.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//

#include "polly/ScopInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopBuilder.h"
#include "polly/ScopDetection.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVAffinator.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/aff.h"
#include "isl/local_space.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/set.h"
#include <cassert>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scops"

STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken.");
STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken.");
STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken.");
STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken.");
STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs.");
STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs.");
STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken.");
STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken.");
STATISTIC(AssumptionsInvariantLoad,
          "Number of invariant loads assumptions taken.");
STATISTIC(AssumptionsDelinearization,
          "Number of delinearization assumptions taken.");

STATISTIC(NumScops, "Number of feasible SCoPs after ScopInfo");
STATISTIC(NumLoopsInScop, "Number of loops in scops");
STATISTIC(NumBoxedLoops, "Number of boxed loops in SCoPs after ScopInfo");
STATISTIC(NumAffineLoops, "Number of affine loops in SCoPs after ScopInfo");

STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
STATISTIC(NumScopsDepthLarger,
          "Number of scops with maximal loop depth 6 and larger");
STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");

STATISTIC(NumValueWrites, "Number of scalar value writes after ScopInfo");
STATISTIC(
    NumValueWritesInLoops,
    "Number of scalar value writes nested in affine loops after ScopInfo");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after ScopInfo");
STATISTIC(NumPHIWritesInLoops,
          "Number of scalar phi writes nested in affine loops after ScopInfo");
STATISTIC(NumSingletonWrites, "Number of singleton writes after ScopInfo");
STATISTIC(NumSingletonWritesInLoops,
          "Number of singleton writes nested in affine loops after ScopInfo");

int const polly::MaxDisjunctsInDomain = 20;

// The number of disjunct in the context after which we stop to add more
// disjuncts. This parameter is there to avoid exponential growth in the
// number of disjunct when adding non-convex sets to the context.
static int const MaxDisjunctsInContext = 4;

static cl::opt<bool> PollyRemarksMinimal(
    "polly-remarks-minimal",
    cl::desc("Do not emit remarks about assumptions that are known"),
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool>
    IslOnErrorAbort("polly-on-isl-error-abort",
                    cl::desc("Abort if an isl error is encountered"),
                    cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool> PollyPreciseInbounds(
    "polly-precise-inbounds",
    cl::desc("Take more precise inbounds assumptions (do not scale well)"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool> PollyIgnoreParamBounds(
    "polly-ignore-parameter-bounds",
    cl::desc(
        "Do not add parameter bounds and do no gist simplify sets accordingly"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool> PollyPreciseFoldAccesses(
    "polly-precise-fold-accesses",
    cl::desc("Fold memory accesses to model more possible delinearizations "
             "(does not scale well)"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

bool polly::UseInstructionNames;

static cl::opt<bool, true> XUseInstructionNames(
    "polly-use-llvm-names",
    cl::desc("Use LLVM-IR names when deriving statement names"),
    cl::location(UseInstructionNames), cl::Hidden, cl::init(false),
    cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> PollyPrintInstructions(
    "polly-print-instructions", cl::desc("Output instructions per ScopStmt"),
    cl::Hidden, cl::Optional, cl::init(false), cl::cat(PollyCategory));

static cl::list<std::string> IslArgs("polly-isl-arg",
                                     cl::value_desc("argument"),
                                     cl::desc("Option passed to ISL"),
                                     cl::ZeroOrMore, cl::cat(PollyCategory));

//===----------------------------------------------------------------------===//

static isl::set addRangeBoundsToSet(isl::set S, const ConstantRange &Range,
                                    int dim, isl::dim type) {
  isl::val V;
  isl::ctx Ctx = S.get_ctx();

  // The upper and lower bound for a parameter value is derived either from
  // the data type of the parameter or from the - possibly more restrictive -
  // range metadata.
  V = valFromAPInt(Ctx.get(), Range.getSignedMin(), true);
  S = S.lower_bound_val(type, dim, V);
  V = valFromAPInt(Ctx.get(), Range.getSignedMax(), true);
  S = S.upper_bound_val(type, dim, V);

  if (Range.isFullSet())
    return S;

  if (S.n_basic_set() > MaxDisjunctsInContext)
    return S;

  // In case of signed wrapping, we can refine the set of valid values by
  // excluding the part not covered by the wrapping range.
  if (Range.isSignWrappedSet()) {
    V = valFromAPInt(Ctx.get(), Range.getLower(), true);
    isl::set SLB = S.lower_bound_val(type, dim, V);

    V = valFromAPInt(Ctx.get(), Range.getUpper(), true);
    V = V.sub_ui(1);
    isl::set SUB = S.upper_bound_val(type, dim, V);
    S = SLB.unite(SUB);
  }

  return S;
}

static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
  LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
  if (!BasePtrLI)
    return nullptr;

  if (!S->contains(BasePtrLI))
    return nullptr;

  ScalarEvolution &SE = *S->getSE();

  auto *OriginBaseSCEV =
      SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
  if (!OriginBaseSCEV)
    return nullptr;

  auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
  if (!OriginBaseSCEVUnknown)
    return nullptr;

  return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
                             MemoryKind::Array);
}

ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx Ctx,
                             ArrayRef<const SCEV *> Sizes, MemoryKind Kind,
                             const DataLayout &DL, Scop *S,
                             const char *BaseName)
    : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
  std::string BasePtrName =
      BaseName ? BaseName
               : getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(),
                                      Kind == MemoryKind::PHI ? "__phi" : "",
                                      UseInstructionNames);
  Id = isl::id::alloc(Ctx, BasePtrName, this);

  updateSizes(Sizes);

  if (!BasePtr || Kind != MemoryKind::Array) {
    BasePtrOriginSAI = nullptr;
    return;
  }

  BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
  if (BasePtrOriginSAI)
    const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
}

ScopArrayInfo::~ScopArrayInfo() = default;

isl::space ScopArrayInfo::getSpace() const {
  auto Space = isl::space(Id.get_ctx(), 0, getNumberOfDimensions());
  Space = Space.set_tuple_id(isl::dim::set, Id);
  return Space;
}

bool ScopArrayInfo::isReadOnly() {
  isl::union_set WriteSet = S.getWrites().range();
  isl::space Space = getSpace();
  WriteSet = WriteSet.extract_set(Space);

  return bool(WriteSet.is_empty());
}

bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const {
  if (Array->getElementType() != getElementType())
    return false;

  if (Array->getNumberOfDimensions() != getNumberOfDimensions())
    return false;

  for (unsigned i = 0; i < getNumberOfDimensions(); i++)
    if (Array->getDimensionSize(i) != getDimensionSize(i))
      return false;

  return true;
}

void ScopArrayInfo::updateElementType(Type *NewElementType) {
  if (NewElementType == ElementType)
    return;

  auto OldElementSize = DL.getTypeAllocSizeInBits(ElementType);
  auto NewElementSize = DL.getTypeAllocSizeInBits(NewElementType);

  if (NewElementSize == OldElementSize || NewElementSize == 0)
    return;

  if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) {
    ElementType = NewElementType;
  } else {
    auto GCD = GreatestCommonDivisor64(NewElementSize, OldElementSize);
    ElementType = IntegerType::get(ElementType->getContext(), GCD);
  }
}

/// Make the ScopArrayInfo model a Fortran Array
void ScopArrayInfo::applyAndSetFAD(Value *FAD) {
  assert(FAD && "got invalid Fortran array descriptor");
  if (this->FAD) {
    assert(this->FAD == FAD &&
           "receiving different array descriptors for same array");
    return;
  }

  assert(DimensionSizesPw.size() > 0 && !DimensionSizesPw[0]);
  assert(!this->FAD);
  this->FAD = FAD;

  isl::space Space(S.getIslCtx(), 1, 0);

  std::string param_name = getName();
  param_name += "_fortranarr_size";
  isl::id IdPwAff = isl::id::alloc(S.getIslCtx(), param_name, this);

  Space = Space.set_dim_id(isl::dim::param, 0, IdPwAff);
  isl::pw_aff PwAff =
      isl::aff::var_on_domain(isl::local_space(Space), isl::dim::param, 0);

  DimensionSizesPw[0] = PwAff;
}

bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes,
                                bool CheckConsistency) {
  int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
  int ExtraDimsNew = NewSizes.size() - SharedDims;
  int ExtraDimsOld = DimensionSizes.size() - SharedDims;

  if (CheckConsistency) {
    for (int i = 0; i < SharedDims; i++) {
      auto *NewSize = NewSizes[i + ExtraDimsNew];
      auto *KnownSize = DimensionSizes[i + ExtraDimsOld];
      if (NewSize && KnownSize && NewSize != KnownSize)
        return false;
    }

    if (DimensionSizes.size() >= NewSizes.size())
      return true;
  }

  DimensionSizes.clear();
  DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
                        NewSizes.end());
  DimensionSizesPw.clear();
  for (const SCEV *Expr : DimensionSizes) {
    if (!Expr) {
      DimensionSizesPw.push_back(nullptr);
      continue;
    }
    isl::pw_aff Size = S.getPwAffOnly(Expr);
    DimensionSizesPw.push_back(Size);
  }
  return true;
}

std::string ScopArrayInfo::getName() const { return Id.get_name(); }

int ScopArrayInfo::getElemSizeInBytes() const {
  return DL.getTypeAllocSize(ElementType);
}

isl::id ScopArrayInfo::getBasePtrId() const { return Id; }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ScopArrayInfo::dump() const { print(errs()); }
#endif

void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
  OS.indent(8) << *getElementType() << " " << getName();
  unsigned u = 0;
  // If this is a Fortran array, then we can print the outermost dimension
  // as a isl_pw_aff even though there is no SCEV information.
  bool IsOutermostSizeKnown = SizeAsPwAff && FAD;

  if (!IsOutermostSizeKnown && getNumberOfDimensions() > 0 &&
      !getDimensionSize(0)) {
    OS << "[*]";
    u++;
  }
  for (; u < getNumberOfDimensions(); u++) {
    OS << "[";

    if (SizeAsPwAff) {
      isl::pw_aff Size = getDimensionSizePw(u);
      OS << " " << Size << " ";
    } else {
      OS << *getDimensionSize(u);
    }

    OS << "]";
  }

  OS << ";";

  if (BasePtrOriginSAI)
    OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";

  OS << " // Element size " << getElemSizeInBytes() << "\n";
}

const ScopArrayInfo *
ScopArrayInfo::getFromAccessFunction(isl::pw_multi_aff PMA) {
  isl::id Id = PMA.get_tuple_id(isl::dim::out);
  assert(!Id.is_null() && "Output dimension didn't have an ID");
  return getFromId(Id);
}

const ScopArrayInfo *ScopArrayInfo::getFromId(isl::id Id) {
  void *User = Id.get_user();
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
  return SAI;
}

void MemoryAccess::wrapConstantDimensions() {
  auto *SAI = getScopArrayInfo();
  isl::space ArraySpace = SAI->getSpace();
  isl::ctx Ctx = ArraySpace.get_ctx();
  unsigned DimsArray = SAI->getNumberOfDimensions();

  isl::multi_aff DivModAff = isl::multi_aff::identity(
      ArraySpace.map_from_domain_and_range(ArraySpace));
  isl::local_space LArraySpace = isl::local_space(ArraySpace);

  // Begin with last dimension, to iteratively carry into higher dimensions.
  for (int i = DimsArray - 1; i > 0; i--) {
    auto *DimSize = SAI->getDimensionSize(i);
    auto *DimSizeCst = dyn_cast<SCEVConstant>(DimSize);

    // This transformation is not applicable to dimensions with dynamic size.
    if (!DimSizeCst)
      continue;

    // This transformation is not applicable to dimensions of size zero.
    if (DimSize->isZero())
      continue;

    isl::val DimSizeVal =
        valFromAPInt(Ctx.get(), DimSizeCst->getAPInt(), false);
    isl::aff Var = isl::aff::var_on_domain(LArraySpace, isl::dim::set, i);
    isl::aff PrevVar =
        isl::aff::var_on_domain(LArraySpace, isl::dim::set, i - 1);

    // Compute: index % size
    // Modulo must apply in the divide of the previous iteration, if any.
    isl::aff Modulo = Var.mod(DimSizeVal);
    Modulo = Modulo.pullback(DivModAff);

    // Compute: floor(index / size)
    isl::aff Divide = Var.div(isl::aff(LArraySpace, DimSizeVal));
    Divide = Divide.floor();
    Divide = Divide.add(PrevVar);
    Divide = Divide.pullback(DivModAff);

    // Apply Modulo and Divide.
    DivModAff = DivModAff.set_aff(i, Modulo);
    DivModAff = DivModAff.set_aff(i - 1, Divide);
  }

  // Apply all modulo/divides on the accesses.
  isl::map Relation = AccessRelation;
  Relation = Relation.apply_range(isl::map::from_multi_aff(DivModAff));
  Relation = Relation.detect_equalities();
  AccessRelation = Relation;
}

void MemoryAccess::updateDimensionality() {
  auto *SAI = getScopArrayInfo();
  isl::space ArraySpace = SAI->getSpace();
  isl::space AccessSpace = AccessRelation.get_space().range();
  isl::ctx Ctx = ArraySpace.get_ctx();

  auto DimsArray = ArraySpace.dim(isl::dim::set);
  auto DimsAccess = AccessSpace.dim(isl::dim::set);
  auto DimsMissing = DimsArray - DimsAccess;

  auto *BB = getStatement()->getEntryBlock();
  auto &DL = BB->getModule()->getDataLayout();
  unsigned ArrayElemSize = SAI->getElemSizeInBytes();
  unsigned ElemBytes = DL.getTypeAllocSize(getElementType());

  isl::map Map = isl::map::from_domain_and_range(
      isl::set::universe(AccessSpace), isl::set::universe(ArraySpace));

  for (unsigned i = 0; i < DimsMissing; i++)
    Map = Map.fix_si(isl::dim::out, i, 0);

  for (unsigned i = DimsMissing; i < DimsArray; i++)
    Map = Map.equate(isl::dim::in, i - DimsMissing, isl::dim::out, i);

  AccessRelation = AccessRelation.apply_range(Map);

  // For the non delinearized arrays, divide the access function of the last
  // subscript by the size of the elements in the array.
  //
  // A stride one array access in C expressed as A[i] is expressed in
  // LLVM-IR as something like A[i * elementsize]. This hides the fact that
  // two subsequent values of 'i' index two values that are stored next to
  // each other in memory. By this division we make this characteristic
  // obvious again. If the base pointer was accessed with offsets not divisible
  // by the accesses element size, we will have chosen a smaller ArrayElemSize
  // that divides the offsets of all accesses to this base pointer.
  if (DimsAccess == 1) {
    isl::val V = isl::val(Ctx, ArrayElemSize);
    AccessRelation = AccessRelation.floordiv_val(V);
  }

  // We currently do this only if we added at least one dimension, which means
  // some dimension's indices have not been specified, an indicator that some
  // index values have been added together.
  // TODO: Investigate general usefulness; Effect on unit tests is to make index
  // expressions more complicated.
  if (DimsMissing)
    wrapConstantDimensions();

  if (!isAffine())
    computeBoundsOnAccessRelation(ArrayElemSize);

  // Introduce multi-element accesses in case the type loaded by this memory
  // access is larger than the canonical element type of the array.
  //
  // An access ((float *)A)[i] to an array char *A is modeled as
  // {[i] -> A[o] : 4 i <= o <= 4 i + 3
  if (ElemBytes > ArrayElemSize) {
    assert(ElemBytes % ArrayElemSize == 0 &&
           "Loaded element size should be multiple of canonical element size");
    isl::map Map = isl::map::from_domain_and_range(
        isl::set::universe(ArraySpace), isl::set::universe(ArraySpace));
    for (unsigned i = 0; i < DimsArray - 1; i++)
      Map = Map.equate(isl::dim::in, i, isl::dim::out, i);

    isl::constraint C;
    isl::local_space LS;

    LS = isl::local_space(Map.get_space());
    int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes();

    C = isl::constraint::alloc_inequality(LS);
    C = C.set_constant_val(isl::val(Ctx, Num - 1));
    C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, 1);
    C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, -1);
    Map = Map.add_constraint(C);

    C = isl::constraint::alloc_inequality(LS);
    C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, -1);
    C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, 1);
    C = C.set_constant_val(isl::val(Ctx, 0));
    Map = Map.add_constraint(C);
    AccessRelation = AccessRelation.apply_range(Map);
  }
}

const std::string
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
  switch (RT) {
  case MemoryAccess::RT_NONE:
    llvm_unreachable("Requested a reduction operator string for a memory "
                     "access which isn't a reduction");
  case MemoryAccess::RT_ADD:
    return "+";
  case MemoryAccess::RT_MUL:
    return "*";
  case MemoryAccess::RT_BOR:
    return "|";
  case MemoryAccess::RT_BXOR:
    return "^";
  case MemoryAccess::RT_BAND:
    return "&";
  }
  llvm_unreachable("Unknown reduction type");
}

const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const {
  isl::id ArrayId = getArrayId();
  void *User = ArrayId.get_user();
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
  return SAI;
}

const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const {
  isl::id ArrayId = getLatestArrayId();
  void *User = ArrayId.get_user();
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
  return SAI;
}

isl::id MemoryAccess::getOriginalArrayId() const {
  return AccessRelation.get_tuple_id(isl::dim::out);
}

isl::id MemoryAccess::getLatestArrayId() const {
  if (!hasNewAccessRelation())
    return getOriginalArrayId();
  return NewAccessRelation.get_tuple_id(isl::dim::out);
}

isl::map MemoryAccess::getAddressFunction() const {
  return getAccessRelation().lexmin();
}

isl::pw_multi_aff
MemoryAccess::applyScheduleToAccessRelation(isl::union_map USchedule) const {
  isl::map Schedule, ScheduledAccRel;
  isl::union_set UDomain;

  UDomain = getStatement()->getDomain();
  USchedule = USchedule.intersect_domain(UDomain);
  Schedule = isl::map::from_union_map(USchedule);
  ScheduledAccRel = getAddressFunction().apply_domain(Schedule);
  return isl::pw_multi_aff::from_map(ScheduledAccRel);
}

isl::map MemoryAccess::getOriginalAccessRelation() const {
  return AccessRelation;
}

std::string MemoryAccess::getOriginalAccessRelationStr() const {
  return AccessRelation.to_str();
}

isl::space MemoryAccess::getOriginalAccessRelationSpace() const {
  return AccessRelation.get_space();
}

isl::map MemoryAccess::getNewAccessRelation() const {
  return NewAccessRelation;
}

std::string MemoryAccess::getNewAccessRelationStr() const {
  return NewAccessRelation.to_str();
}

std::string MemoryAccess::getAccessRelationStr() const {
  return getAccessRelation().to_str();
}

isl::basic_map MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
  isl::space Space = isl::space(Statement->getIslCtx(), 0, 1);
  Space = Space.align_params(Statement->getDomainSpace());

  return isl::basic_map::from_domain_and_range(
      isl::basic_set::universe(Statement->getDomainSpace()),
      isl::basic_set::universe(Space));
}

// Formalize no out-of-bound access assumption
//
// When delinearizing array accesses we optimistically assume that the
// delinearized accesses do not access out of bound locations (the subscript
// expression of each array evaluates for each statement instance that is
// executed to a value that is larger than zero and strictly smaller than the
// size of the corresponding dimension). The only exception is the outermost
// dimension for which we do not need to assume any upper bound.  At this point
// we formalize this assumption to ensure that at code generation time the
// relevant run-time checks can be generated.
//
// To find the set of constraints necessary to avoid out of bound accesses, we
// first build the set of data locations that are not within array bounds. We
// then apply the reverse access relation to obtain the set of iterations that
// may contain invalid accesses and reduce this set of iterations to the ones
// that are actually executed by intersecting them with the domain of the
// statement. If we now project out all loop dimensions, we obtain a set of
// parameters that may cause statement instances to be executed that may
// possibly yield out of bound memory accesses. The complement of these
// constraints is the set of constraints that needs to be assumed to ensure such
// statement instances are never executed.
isl::set MemoryAccess::assumeNoOutOfBound() {
  auto *SAI = getScopArrayInfo();
  isl::space Space = getOriginalAccessRelationSpace().range();
  isl::set Outside = isl::set::empty(Space);
  for (int i = 1, Size = Space.dim(isl::dim::set); i < Size; ++i) {
    isl::local_space LS(Space);
    isl::pw_aff Var = isl::pw_aff::var_on_domain(LS, isl::dim::set, i);
    isl::pw_aff Zero = isl::pw_aff(LS);

    isl::set DimOutside = Var.lt_set(Zero);
    isl::pw_aff SizeE = SAI->getDimensionSizePw(i);
    SizeE = SizeE.add_dims(isl::dim::in, Space.dim(isl::dim::set));
    SizeE = SizeE.set_tuple_id(isl::dim::in, Space.get_tuple_id(isl::dim::set));
    DimOutside = DimOutside.unite(SizeE.le_set(Var));

    Outside = Outside.unite(DimOutside);
  }

  Outside = Outside.apply(getAccessRelation().reverse());
  Outside = Outside.intersect(Statement->getDomain());
  Outside = Outside.params();

  // Remove divs to avoid the construction of overly complicated assumptions.
  // Doing so increases the set of parameter combinations that are assumed to
  // not appear. This is always save, but may make the resulting run-time check
  // bail out more often than strictly necessary.
  Outside = Outside.remove_divs();
  Outside = Outside.complement();

  if (!PollyPreciseInbounds)
    Outside = Outside.gist_params(Statement->getDomain().params());
  return Outside;
}

void MemoryAccess::buildMemIntrinsicAccessRelation() {
  assert(isMemoryIntrinsic());
  assert(Subscripts.size() == 2 && Sizes.size() == 1);

  isl::pw_aff SubscriptPWA = getPwAff(Subscripts[0]);
  isl::map SubscriptMap = isl::map::from_pw_aff(SubscriptPWA);

  isl::map LengthMap;
  if (Subscripts[1] == nullptr) {
    LengthMap = isl::map::universe(SubscriptMap.get_space());
  } else {
    isl::pw_aff LengthPWA = getPwAff(Subscripts[1]);
    LengthMap = isl::map::from_pw_aff(LengthPWA);
    isl::space RangeSpace = LengthMap.get_space().range();
    LengthMap = LengthMap.apply_range(isl::map::lex_gt(RangeSpace));
  }
  LengthMap = LengthMap.lower_bound_si(isl::dim::out, 0, 0);
  LengthMap = LengthMap.align_params(SubscriptMap.get_space());
  SubscriptMap = SubscriptMap.align_params(LengthMap.get_space());
  LengthMap = LengthMap.sum(SubscriptMap);
  AccessRelation =
      LengthMap.set_tuple_id(isl::dim::in, getStatement()->getDomainId());
}

void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
  ScalarEvolution *SE = Statement->getParent()->getSE();

  auto MAI = MemAccInst(getAccessInstruction());
  if (isa<MemIntrinsic>(MAI))
    return;

  Value *Ptr = MAI.getPointerOperand();
  if (!Ptr || !SE->isSCEVable(Ptr->getType()))
    return;

  auto *PtrSCEV = SE->getSCEV(Ptr);
  if (isa<SCEVCouldNotCompute>(PtrSCEV))
    return;

  auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
  if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
    PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);

  const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
  if (Range.isFullSet())
    return;

  if (Range.isUpperWrapped() || Range.isSignWrappedSet())
    return;

  bool isWrapping = Range.isSignWrappedSet();

  unsigned BW = Range.getBitWidth();
  const auto One = APInt(BW, 1);
  const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
  const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax();

  auto Min = LB.sdiv(APInt(BW, ElementSize));
  auto Max = UB.sdiv(APInt(BW, ElementSize)) + One;

  assert(Min.sle(Max) && "Minimum expected to be less or equal than max");

  isl::map Relation = AccessRelation;
  isl::set AccessRange = Relation.range();
  AccessRange = addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0,
                                    isl::dim::set);
  AccessRelation = Relation.intersect_range(AccessRange);
}

void MemoryAccess::foldAccessRelation() {
  if (Sizes.size() < 2 || isa<SCEVConstant>(Sizes[1]))
    return;

  int Size = Subscripts.size();

  isl::map NewAccessRelation = AccessRelation;

  for (int i = Size - 2; i >= 0; --i) {
    isl::space Space;
    isl::map MapOne, MapTwo;
    isl::pw_aff DimSize = getPwAff(Sizes[i + 1]);

    isl::space SpaceSize = DimSize.get_space();
    isl::id ParamId = SpaceSize.get_dim_id(isl::dim::param, 0);

    Space = AccessRelation.get_space();
    Space = Space.range().map_from_set();
    Space = Space.align_params(SpaceSize);

    int ParamLocation = Space.find_dim_by_id(isl::dim::param, ParamId);

    MapOne = isl::map::universe(Space);
    for (int j = 0; j < Size; ++j)
      MapOne = MapOne.equate(isl::dim::in, j, isl::dim::out, j);
    MapOne = MapOne.lower_bound_si(isl::dim::in, i + 1, 0);

    MapTwo = isl::map::universe(Space);
    for (int j = 0; j < Size; ++j)
      if (j < i || j > i + 1)
        MapTwo = MapTwo.equate(isl::dim::in, j, isl::dim::out, j);

    isl::local_space LS(Space);
    isl::constraint C;
    C = isl::constraint::alloc_equality(LS);
    C = C.set_constant_si(-1);
    C = C.set_coefficient_si(isl::dim::in, i, 1);
    C = C.set_coefficient_si(isl::dim::out, i, -1);
    MapTwo = MapTwo.add_constraint(C);
    C = isl::constraint::alloc_equality(LS);
    C = C.set_coefficient_si(isl::dim::in, i + 1, 1);
    C = C.set_coefficient_si(isl::dim::out, i + 1, -1);
    C = C.set_coefficient_si(isl::dim::param, ParamLocation, 1);
    MapTwo = MapTwo.add_constraint(C);
    MapTwo = MapTwo.upper_bound_si(isl::dim::in, i + 1, -1);

    MapOne = MapOne.unite(MapTwo);
    NewAccessRelation = NewAccessRelation.apply_range(MapOne);
  }

  isl::id BaseAddrId = getScopArrayInfo()->getBasePtrId();
  isl::space Space = Statement->getDomainSpace();
  NewAccessRelation = NewAccessRelation.set_tuple_id(
      isl::dim::in, Space.get_tuple_id(isl::dim::set));
  NewAccessRelation = NewAccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
  NewAccessRelation = NewAccessRelation.gist_domain(Statement->getDomain());

  // Access dimension folding might in certain cases increase the number of
  // disjuncts in the memory access, which can possibly complicate the generated
  // run-time checks and can lead to costly compilation.
  if (!PollyPreciseFoldAccesses &&
      NewAccessRelation.n_basic_map() > AccessRelation.n_basic_map()) {
  } else {
    AccessRelation = NewAccessRelation;
  }
}

void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
  assert(AccessRelation.is_null() && "AccessRelation already built");

  // Initialize the invalid domain which describes all iterations for which the
  // access relation is not modeled correctly.
  isl::set StmtInvalidDomain = getStatement()->getInvalidDomain();
  InvalidDomain = isl::set::empty(StmtInvalidDomain.get_space());

  isl::ctx Ctx = Id.get_ctx();
  isl::id BaseAddrId = SAI->getBasePtrId();

  if (getAccessInstruction() && isa<MemIntrinsic>(getAccessInstruction())) {
    buildMemIntrinsicAccessRelation();
    AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
    return;
  }

  if (!isAffine()) {
    // We overapproximate non-affine accesses with a possible access to the
    // whole array. For read accesses it does not make a difference, if an
    // access must or may happen. However, for write accesses it is important to
    // differentiate between writes that must happen and writes that may happen.
    if (AccessRelation.is_null())
      AccessRelation = createBasicAccessMap(Statement);

    AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
    return;
  }

  isl::space Space = isl::space(Ctx, 0, Statement->getNumIterators(), 0);
  AccessRelation = isl::map::universe(Space);

  for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
    isl::pw_aff Affine = getPwAff(Subscripts[i]);
    isl::map SubscriptMap = isl::map::from_pw_aff(Affine);
    AccessRelation = AccessRelation.flat_range_product(SubscriptMap);
  }

  Space = Statement->getDomainSpace();
  AccessRelation = AccessRelation.set_tuple_id(
      isl::dim::in, Space.get_tuple_id(isl::dim::set));
  AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);

  AccessRelation = AccessRelation.gist_domain(Statement->getDomain());
}

MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
                           AccessType AccType, Value *BaseAddress,
                           Type *ElementType, bool Affine,
                           ArrayRef<const SCEV *> Subscripts,
                           ArrayRef<const SCEV *> Sizes, Value *AccessValue,
                           MemoryKind Kind)
    : Kind(Kind), AccType(AccType), Statement(Stmt), InvalidDomain(nullptr),
      BaseAddr(BaseAddress), ElementType(ElementType),
      Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
      AccessValue(AccessValue), IsAffine(Affine),
      Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
      NewAccessRelation(nullptr), FAD(nullptr) {
  static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
  const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());

  std::string IdName = Stmt->getBaseName() + Access;
  Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
}

MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel)
    : Kind(MemoryKind::Array), AccType(AccType), Statement(Stmt),
      InvalidDomain(nullptr), AccessRelation(nullptr),
      NewAccessRelation(AccRel), FAD(nullptr) {
  isl::id ArrayInfoId = NewAccessRelation.get_tuple_id(isl::dim::out);
  auto *SAI = ScopArrayInfo::getFromId(ArrayInfoId);
  Sizes.push_back(nullptr);
  for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++)
    Sizes.push_back(SAI->getDimensionSize(i));
  ElementType = SAI->getElementType();
  BaseAddr = SAI->getBasePtr();
  static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
  const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());

  std::string IdName = Stmt->getBaseName() + Access;
  Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
}

MemoryAccess::~MemoryAccess() = default;

void MemoryAccess::realignParams() {
  isl::set Ctx = Statement->getParent()->getContext();
  InvalidDomain = InvalidDomain.gist_params(Ctx);
  AccessRelation = AccessRelation.gist_params(Ctx);

  // Predictable parameter order is required for JSON imports. Ensure alignment
  // by explicitly calling align_params.
  isl::space CtxSpace = Ctx.get_space();
  InvalidDomain = InvalidDomain.align_params(CtxSpace);
  AccessRelation = AccessRelation.align_params(CtxSpace);
}

const std::string MemoryAccess::getReductionOperatorStr() const {
  return MemoryAccess::getReductionOperatorStr(getReductionType());
}

isl::id MemoryAccess::getId() const { return Id; }

raw_ostream &polly::operator<<(raw_ostream &OS,
                               MemoryAccess::ReductionType RT) {
  if (RT == MemoryAccess::RT_NONE)
    OS << "NONE";
  else
    OS << MemoryAccess::getReductionOperatorStr(RT);
  return OS;
}

void MemoryAccess::setFortranArrayDescriptor(Value *FAD) { this->FAD = FAD; }

void MemoryAccess::print(raw_ostream &OS) const {
  switch (AccType) {
  case READ:
    OS.indent(12) << "ReadAccess :=\t";
    break;
  case MUST_WRITE:
    OS.indent(12) << "MustWriteAccess :=\t";
    break;
  case MAY_WRITE:
    OS.indent(12) << "MayWriteAccess :=\t";
    break;
  }

  OS << "[Reduction Type: " << getReductionType() << "] ";

  if (FAD) {
    OS << "[Fortran array descriptor: " << FAD->getName();
    OS << "] ";
  };

  OS << "[Scalar: " << isScalarKind() << "]\n";
  OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
  if (hasNewAccessRelation())
    OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MemoryAccess::dump() const { print(errs()); }
#endif

isl::pw_aff MemoryAccess::getPwAff(const SCEV *E) {
  auto *Stmt = getStatement();
  PWACtx PWAC = Stmt->getParent()->getPwAff(E, Stmt->getEntryBlock());
  isl::set StmtDom = getStatement()->getDomain();
  StmtDom = StmtDom.reset_tuple_id();
  isl::set NewInvalidDom = StmtDom.intersect(PWAC.second);
  InvalidDomain = InvalidDomain.unite(NewInvalidDom);
  return PWAC.first;
}

// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
//   getEqualAndLarger(set[i0, i1, ..., iX]):
//
//   set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
//     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl::map getEqualAndLarger(isl::space SetDomain) {
  isl::space Space = SetDomain.map_from_set();
  isl::map Map = isl::map::universe(Space);
  unsigned lastDimension = Map.dim(isl::dim::in) - 1;

  // Set all but the last dimension to be equal for the input and output
  //
  //   input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
  //     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
  for (unsigned i = 0; i < lastDimension; ++i)
    Map = Map.equate(isl::dim::in, i, isl::dim::out, i);

  // Set the last dimension of the input to be strict smaller than the
  // last dimension of the output.
  //
  //   input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
  Map = Map.order_lt(isl::dim::in, lastDimension, isl::dim::out, lastDimension);
  return Map;
}

isl::set MemoryAccess::getStride(isl::map Schedule) const {
  isl::map AccessRelation = getAccessRelation();
  isl::space Space = Schedule.get_space().range();
  isl::map NextScatt = getEqualAndLarger(Space);

  Schedule = Schedule.reverse();
  NextScatt = NextScatt.lexmin();

  NextScatt = NextScatt.apply_range(Schedule);
  NextScatt = NextScatt.apply_range(AccessRelation);
  NextScatt = NextScatt.apply_domain(Schedule);
  NextScatt = NextScatt.apply_domain(AccessRelation);

  isl::set Deltas = NextScatt.deltas();
  return Deltas;
}

bool MemoryAccess::isStrideX(isl::map Schedule, int StrideWidth) const {
  isl::set Stride, StrideX;
  bool IsStrideX;

  Stride = getStride(Schedule);
  StrideX = isl::set::universe(Stride.get_space());
  for (unsigned i = 0; i < StrideX.dim(isl::dim::set) - 1; i++)
    StrideX = StrideX.fix_si(isl::dim::set, i, 0);
  StrideX = StrideX.fix_si(isl::dim::set, StrideX.dim(isl::dim::set) - 1,
                           StrideWidth);
  IsStrideX = Stride.is_subset(StrideX);

  return IsStrideX;
}

bool MemoryAccess::isStrideZero(isl::map Schedule) const {
  return isStrideX(Schedule, 0);
}

bool MemoryAccess::isStrideOne(isl::map Schedule) const {
  return isStrideX(Schedule, 1);
}

void MemoryAccess::setAccessRelation(isl::map NewAccess) {
  AccessRelation = NewAccess;
}

void MemoryAccess::setNewAccessRelation(isl::map NewAccess) {
  assert(NewAccess);

#ifndef NDEBUG
  // Check domain space compatibility.
  isl::space NewSpace = NewAccess.get_space();
  isl::space NewDomainSpace = NewSpace.domain();
  isl::space OriginalDomainSpace = getStatement()->getDomainSpace();
  assert(OriginalDomainSpace.has_equal_tuples(NewDomainSpace));

  // Reads must be executed unconditionally. Writes might be executed in a
  // subdomain only.
  if (isRead()) {
    // Check whether there is an access for every statement instance.
    isl::set StmtDomain = getStatement()->getDomain();
    StmtDomain =
        StmtDomain.intersect_params(getStatement()->getParent()->getContext());
    isl::set NewDomain = NewAccess.domain();
    assert(StmtDomain.is_subset(NewDomain) &&
           "Partial READ accesses not supported");
  }

  isl::space NewAccessSpace = NewAccess.get_space();
  assert(NewAccessSpace.has_tuple_id(isl::dim::set) &&
         "Must specify the array that is accessed");
  isl::id NewArrayId = NewAccessSpace.get_tuple_id(isl::dim::set);
  auto *SAI = static_cast<ScopArrayInfo *>(NewArrayId.get_user());
  assert(SAI && "Must set a ScopArrayInfo");

  if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) {
    InvariantEquivClassTy *EqClass =
        getStatement()->getParent()->lookupInvariantEquivClass(
            SAI->getBasePtr());
    assert(EqClass &&
           "Access functions to indirect arrays must have an invariant and "
           "hoisted base pointer");
  }

  // Check whether access dimensions correspond to number of dimensions of the
  // accesses array.
  auto Dims = SAI->getNumberOfDimensions();
  assert(NewAccessSpace.dim(isl::dim::set) == Dims &&
         "Access dims must match array dims");
#endif

  NewAccess = NewAccess.gist_domain(getStatement()->getDomain());
  NewAccessRelation = NewAccess;
}

bool MemoryAccess::isLatestPartialAccess() const {
  isl::set StmtDom = getStatement()->getDomain();
  isl::set AccDom = getLatestAccessRelation().domain();

  return !StmtDom.is_subset(AccDom);
}

//===----------------------------------------------------------------------===//

isl::map ScopStmt::getSchedule() const {
  isl::set Domain = getDomain();
  if (Domain.is_empty())
    return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
  auto Schedule = getParent()->getSchedule();
  if (!Schedule)
    return nullptr;
  Schedule = Schedule.intersect_domain(isl::union_set(Domain));
  if (Schedule.is_empty())
    return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
  isl::map M = M.from_union_map(Schedule);
  M = M.coalesce();
  M = M.gist_domain(Domain);
  M = M.coalesce();
  return M;
}

void ScopStmt::restrictDomain(isl::set NewDomain) {
  assert(NewDomain.is_subset(Domain) &&
         "New domain is not a subset of old domain!");
  Domain = NewDomain;
}

void ScopStmt::addAccess(MemoryAccess *Access, bool Prepend) {
  Instruction *AccessInst = Access->getAccessInstruction();

  if (Access->isArrayKind()) {
    MemoryAccessList &MAL = InstructionToAccess[AccessInst];
    MAL.emplace_front(Access);
  } else if (Access->isValueKind() && Access->isWrite()) {
    Instruction *AccessVal = cast<Instruction>(Access->getAccessValue());
    assert(!ValueWrites.lookup(AccessVal));

    ValueWrites[AccessVal] = Access;
  } else if (Access->isValueKind() && Access->isRead()) {
    Value *AccessVal = Access->getAccessValue();
    assert(!ValueReads.lookup(AccessVal));

    ValueReads[AccessVal] = Access;
  } else if (Access->isAnyPHIKind() && Access->isWrite()) {
    PHINode *PHI = cast<PHINode>(Access->getAccessValue());
    assert(!PHIWrites.lookup(PHI));

    PHIWrites[PHI] = Access;
  } else if (Access->isAnyPHIKind() && Access->isRead()) {
    PHINode *PHI = cast<PHINode>(Access->getAccessValue());
    assert(!PHIReads.lookup(PHI));

    PHIReads[PHI] = Access;
  }

  if (Prepend) {
    MemAccs.insert(MemAccs.begin(), Access);
    return;
  }
  MemAccs.push_back(Access);
}

void ScopStmt::realignParams() {
  for (MemoryAccess *MA : *this)
    MA->realignParams();

  isl::set Ctx = Parent.getContext();
  InvalidDomain = InvalidDomain.gist_params(Ctx);
  Domain = Domain.gist_params(Ctx);

  // Predictable parameter order is required for JSON imports. Ensure alignment
  // by explicitly calling align_params.
  isl::space CtxSpace = Ctx.get_space();
  InvalidDomain = InvalidDomain.align_params(CtxSpace);
  Domain = Domain.align_params(CtxSpace);
}

ScopStmt::ScopStmt(Scop &parent, Region &R, StringRef Name,
                   Loop *SurroundingLoop,
                   std::vector<Instruction *> EntryBlockInstructions)
    : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), R(&R),
      Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
      Instructions(EntryBlockInstructions) {}

ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name,
                   Loop *SurroundingLoop,
                   std::vector<Instruction *> Instructions)
    : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), BB(&bb),
      Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
      Instructions(Instructions) {}

ScopStmt::ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
                   isl::set NewDomain)
    : Parent(parent), InvalidDomain(nullptr), Domain(NewDomain),
      Build(nullptr) {
  BaseName = getIslCompatibleName("CopyStmt_", "",
                                  std::to_string(parent.getCopyStmtsNum()));
  isl::id Id = isl::id::alloc(getIslCtx(), getBaseName(), this);
  Domain = Domain.set_tuple_id(Id);
  TargetRel = TargetRel.set_tuple_id(isl::dim::in, Id);
  auto *Access =
      new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel);
  parent.addAccessFunction(Access);
  addAccess(Access);
  SourceRel = SourceRel.set_tuple_id(isl::dim::in, Id);
  Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel);
  parent.addAccessFunction(Access);
  addAccess(Access);
}

ScopStmt::~ScopStmt() = default;

std::string ScopStmt::getDomainStr() const { return Domain.to_str(); }

std::string ScopStmt::getScheduleStr() const {
  auto *S = getSchedule().release();
  if (!S)
    return {};
  auto Str = stringFromIslObj(S);
  isl_map_free(S);
  return Str;
}

void ScopStmt::setInvalidDomain(isl::set ID) { InvalidDomain = ID; }

BasicBlock *ScopStmt::getEntryBlock() const {
  if (isBlockStmt())
    return getBasicBlock();
  return getRegion()->getEntry();
}

unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }

const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }

Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
  return NestLoops[Dimension];
}

isl::ctx ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }

isl::set ScopStmt::getDomain() const { return Domain; }

isl::space ScopStmt::getDomainSpace() const { return Domain.get_space(); }

isl::id ScopStmt::getDomainId() const { return Domain.get_tuple_id(); }

void ScopStmt::printInstructions(raw_ostream &OS) const {
  OS << "Instructions {\n";

  for (Instruction *Inst : Instructions)
    OS.indent(16) << *Inst << "\n";

  OS.indent(12) << "}\n";
}

void ScopStmt::print(raw_ostream &OS, bool PrintInstructions) const {
  OS << "\t" << getBaseName() << "\n";
  OS.indent(12) << "Domain :=\n";

  if (Domain) {
    OS.indent(16) << getDomainStr() << ";\n";
  } else
    OS.indent(16) << "n/a\n";

  OS.indent(12) << "Schedule :=\n";

  if (Domain) {
    OS.indent(16) << getScheduleStr() << ";\n";
  } else
    OS.indent(16) << "n/a\n";

  for (MemoryAccess *Access : MemAccs)
    Access->print(OS);

  if (PrintInstructions)
    printInstructions(OS.indent(12));
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ScopStmt::dump() const { print(dbgs(), true); }
#endif

void ScopStmt::removeAccessData(MemoryAccess *MA) {
  if (MA->isRead() && MA->isOriginalValueKind()) {
    bool Found = ValueReads.erase(MA->getAccessValue());
    (void)Found;
    assert(Found && "Expected access data not found");
  }
  if (MA->isWrite() && MA->isOriginalValueKind()) {
    bool Found = ValueWrites.erase(cast<Instruction>(MA->getAccessValue()));
    (void)Found;
    assert(Found && "Expected access data not found");
  }
  if (MA->isWrite() && MA->isOriginalAnyPHIKind()) {
    bool Found = PHIWrites.erase(cast<PHINode>(MA->getAccessInstruction()));
    (void)Found;
    assert(Found && "Expected access data not found");
  }
  if (MA->isRead() && MA->isOriginalAnyPHIKind()) {
    bool Found = PHIReads.erase(cast<PHINode>(MA->getAccessInstruction()));
    (void)Found;
    assert(Found && "Expected access data not found");
  }
}

void ScopStmt::removeMemoryAccess(MemoryAccess *MA) {
  // Remove the memory accesses from this statement together with all scalar
  // accesses that were caused by it. MemoryKind::Value READs have no access
  // instruction, hence would not be removed by this function. However, it is
  // only used for invariant LoadInst accesses, its arguments are always affine,
  // hence synthesizable, and therefore there are no MemoryKind::Value READ
  // accesses to be removed.
  auto Predicate = [&](MemoryAccess *Acc) {
    return Acc->getAccessInstruction() == MA->getAccessInstruction();
  };
  for (auto *MA : MemAccs) {
    if (Predicate(MA)) {
      removeAccessData(MA);
      Parent.removeAccessData(MA);
    }
  }
  MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
                MemAccs.end());
  InstructionToAccess.erase(MA->getAccessInstruction());
}

void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting) {
  if (AfterHoisting) {
    auto MAIt = std::find(MemAccs.begin(), MemAccs.end(), MA);
    assert(MAIt != MemAccs.end());
    MemAccs.erase(MAIt);

    removeAccessData(MA);
    Parent.removeAccessData(MA);
  }

  auto It = InstructionToAccess.find(MA->getAccessInstruction());
  if (It != InstructionToAccess.end()) {
    It->second.remove(MA);
    if (It->second.empty())
      InstructionToAccess.erase(MA->getAccessInstruction());
  }
}

MemoryAccess *ScopStmt::ensureValueRead(Value *V) {
  MemoryAccess *Access = lookupInputAccessOf(V);
  if (Access)
    return Access;

  ScopArrayInfo *SAI =
      Parent.getOrCreateScopArrayInfo(V, V->getType(), {}, MemoryKind::Value);
  Access = new MemoryAccess(this, nullptr, MemoryAccess::READ, V, V->getType(),
                            true, {}, {}, V, MemoryKind::Value);
  Parent.addAccessFunction(Access);
  Access->buildAccessRelation(SAI);
  addAccess(Access);
  Parent.addAccessData(Access);
  return Access;
}

raw_ostream &polly::operator<<(raw_ostream &OS, const ScopStmt &S) {
  S.print(OS, PollyPrintInstructions);
  return OS;
}

//===----------------------------------------------------------------------===//
/// Scop class implement

void Scop::setContext(isl::set NewContext) {
  Context = NewContext.align_params(Context.get_space());
}

namespace {

/// Remap parameter values but keep AddRecs valid wrt. invariant loads.
struct SCEVSensitiveParameterRewriter
    : public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> {
  const ValueToValueMap &VMap;

public:
  SCEVSensitiveParameterRewriter(const ValueToValueMap &VMap,
                                 ScalarEvolution &SE)
      : SCEVRewriteVisitor(SE), VMap(VMap) {}

  static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
                             const ValueToValueMap &VMap) {
    SCEVSensitiveParameterRewriter SSPR(VMap, SE);
    return SSPR.visit(E);
  }

  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
    auto *Start = visit(E->getStart());
    auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
                                    visit(E->getStepRecurrence(SE)),
                                    E->getLoop(), SCEV::FlagAnyWrap);
    return SE.getAddExpr(Start, AddRec);
  }

  const SCEV *visitUnknown(const SCEVUnknown *E) {
    if (auto *NewValue = VMap.lookup(E->getValue()))
      return SE.getUnknown(NewValue);
    return E;
  }
};

/// Check whether we should remap a SCEV expression.
struct SCEVFindInsideScop : public SCEVTraversal<SCEVFindInsideScop> {
  const ValueToValueMap &VMap;
  bool FoundInside = false;
  const Scop *S;

public:
  SCEVFindInsideScop(const ValueToValueMap &VMap, ScalarEvolution &SE,
                     const Scop *S)
      : SCEVTraversal(*this), VMap(VMap), S(S) {}

  static bool hasVariant(const SCEV *E, ScalarEvolution &SE,
                         const ValueToValueMap &VMap, const Scop *S) {
    SCEVFindInsideScop SFIS(VMap, SE, S);
    SFIS.visitAll(E);
    return SFIS.FoundInside;
  }

  bool follow(const SCEV *E) {
    if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(E)) {
      FoundInside |= S->getRegion().contains(AddRec->getLoop());
    } else if (auto *Unknown = dyn_cast<SCEVUnknown>(E)) {
      if (Instruction *I = dyn_cast<Instruction>(Unknown->getValue()))
        FoundInside |= S->getRegion().contains(I) && !VMap.count(I);
    }
    return !FoundInside;
  }

  bool isDone() { return FoundInside; }
};
} // end anonymous namespace

const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *E) const {
  // Check whether it makes sense to rewrite the SCEV.  (ScalarEvolution
  // doesn't like addition between an AddRec and an expression that
  // doesn't have a dominance relationship with it.)
  if (SCEVFindInsideScop::hasVariant(E, *SE, InvEquivClassVMap, this))
    return E;

  // Rewrite SCEV.
  return SCEVSensitiveParameterRewriter::rewrite(E, *SE, InvEquivClassVMap);
}

// This table of function names is used to translate parameter names in more
// human-readable names. This makes it easier to interpret Polly analysis
// results.
StringMap<std::string> KnownNames = {
    {"_Z13get_global_idj", "global_id"},
    {"_Z12get_local_idj", "local_id"},
    {"_Z15get_global_sizej", "global_size"},
    {"_Z14get_local_sizej", "local_size"},
    {"_Z12get_work_dimv", "work_dim"},
    {"_Z17get_global_offsetj", "global_offset"},
    {"_Z12get_group_idj", "group_id"},
    {"_Z14get_num_groupsj", "num_groups"},
};

static std::string getCallParamName(CallInst *Call) {
  std::string Result;
  raw_string_ostream OS(Result);
  std::string Name = Call->getCalledFunction()->getName().str();

  auto Iterator = KnownNames.find(Name);
  if (Iterator != KnownNames.end())
    Name = "__" + Iterator->getValue();
  OS << Name;
  for (auto &Operand : Call->arg_operands()) {
    ConstantInt *Op = cast<ConstantInt>(&Operand);
    OS << "_" << Op->getValue();
  }
  OS.flush();
  return Result;
}

void Scop::createParameterId(const SCEV *Parameter) {
  assert(Parameters.count(Parameter));
  assert(!ParameterIds.count(Parameter));

  std::string ParameterName = "p_" + std::to_string(getNumParams() - 1);

  if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
    Value *Val = ValueParameter->getValue();
    CallInst *Call = dyn_cast<CallInst>(Val);

    if (Call && isConstCall(Call)) {
      ParameterName = getCallParamName(Call);
    } else if (UseInstructionNames) {
      // If this parameter references a specific Value and this value has a name
      // we use this name as it is likely to be unique and more useful than just
      // a number.
      if (Val->hasName())
        ParameterName = Val->getName().str();
      else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
        auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
        if (LoadOrigin->hasName()) {
          ParameterName += "_loaded_from_";
          ParameterName +=
              LI->getPointerOperand()->stripInBoundsOffsets()->getName();
        }
      }
    }

    ParameterName = getIslCompatibleName("", ParameterName, "");
  }

  isl::id Id = isl::id::alloc(getIslCtx(), ParameterName,
                              const_cast<void *>((const void *)Parameter));
  ParameterIds[Parameter] = Id;
}

void Scop::addParams(const ParameterSetTy &NewParameters) {
  for (const SCEV *Parameter : NewParameters) {
    // Normalize the SCEV to get the representing element for an invariant load.
    Parameter = extractConstantFactor(Parameter, *SE).second;
    Parameter = getRepresentingInvariantLoadSCEV(Parameter);

    if (Parameters.insert(Parameter))
      createParameterId(Parameter);
  }
}

isl::id Scop::getIdForParam(const SCEV *Parameter) const {
  // Normalize the SCEV to get the representing element for an invariant load.
  Parameter = getRepresentingInvariantLoadSCEV(Parameter);
  return ParameterIds.lookup(Parameter);
}

bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const {
  return DT.dominates(BB, getEntry());
}

void Scop::buildContext() {
  isl::space Space = isl::space::params_alloc(getIslCtx(), 0);
  Context = isl::set::universe(Space);
  InvalidContext = isl::set::empty(Space);
  AssumedContext = isl::set::universe(Space);
}

void Scop::addParameterBounds() {
  unsigned PDim = 0;
  for (auto *Parameter : Parameters) {
    ConstantRange SRange = SE->getSignedRange(Parameter);
    Context = addRangeBoundsToSet(Context, SRange, PDim++, isl::dim::param);
  }
}

static std::vector<isl::id> getFortranArrayIds(Scop::array_range Arrays) {
  std::vector<isl::id> OutermostSizeIds;
  for (auto Array : Arrays) {
    // To check if an array is a Fortran array, we check if it has a isl_pw_aff
    // for its outermost dimension. Fortran arrays will have this since the
    // outermost dimension size can be picked up from their runtime description.
    // TODO: actually need to check if it has a FAD, but for now this works.
    if (Array->getNumberOfDimensions() > 0) {
      isl::pw_aff PwAff = Array->getDimensionSizePw(0);
      if (!PwAff)
        continue;

      isl::id Id = PwAff.get_dim_id(isl::dim::param, 0);
      assert(!Id.is_null() &&
             "Invalid Id for PwAff expression in Fortran array");
      OutermostSizeIds.push_back(Id);
    }
  }
  return OutermostSizeIds;
}

// The FORTRAN array size parameters are known to be non-negative.
static isl::set boundFortranArrayParams(isl::set Context,
                                        Scop::array_range Arrays) {
  std::vector<isl::id> OutermostSizeIds;
  OutermostSizeIds = getFortranArrayIds(Arrays);

  for (isl::id Id : OutermostSizeIds) {
    int dim = Context.find_dim_by_id(isl::dim::param, Id);
    Context = Context.lower_bound_si(isl::dim::param, dim, 0);
  }

  return Context;
}

void Scop::realignParams() {
  if (PollyIgnoreParamBounds)
    return;

  // Add all parameters into a common model.
  isl::space Space = getFullParamSpace();

  // Align the parameters of all data structures to the model.
  Context = Context.align_params(Space);
  AssumedContext = AssumedContext.align_params(Space);
  InvalidContext = InvalidContext.align_params(Space);

  // Bound the size of the fortran array dimensions.
  Context = boundFortranArrayParams(Context, arrays());

  // As all parameters are known add bounds to them.
  addParameterBounds();

  for (ScopStmt &Stmt : *this)
    Stmt.realignParams();
  // Simplify the schedule according to the context too.
  Schedule = Schedule.gist_domain_params(getContext());

  // Predictable parameter order is required for JSON imports. Ensure alignment
  // by explicitly calling align_params.
  Schedule = Schedule.align_params(Space);
}

static isl::set simplifyAssumptionContext(isl::set AssumptionContext,
                                          const Scop &S) {
  // If we have modeled all blocks in the SCoP that have side effects we can
  // simplify the context with the constraints that are needed for anything to
  // be executed at all. However, if we have error blocks in the SCoP we already
  // assumed some parameter combinations cannot occur and removed them from the
  // domains, thus we cannot use the remaining domain to simplify the
  // assumptions.
  if (!S.hasErrorBlock()) {
    auto DomainParameters = S.getDomains().params();
    AssumptionContext = AssumptionContext.gist_params(DomainParameters);
  }

  AssumptionContext = AssumptionContext.gist_params(S.getContext());
  return AssumptionContext;
}

void Scop::simplifyContexts() {
  // The parameter constraints of the iteration domains give us a set of
  // constraints that need to hold for all cases where at least a single
  // statement iteration is executed in the whole scop. We now simplify the
  // assumed context under the assumption that such constraints hold and at
  // least a single statement iteration is executed. For cases where no
  // statement instances are executed, the assumptions we have taken about
  // the executed code do not matter and can be changed.
  //
  // WARNING: This only holds if the assumptions we have taken do not reduce
  //          the set of statement instances that are executed. Otherwise we
  //          may run into a case where the iteration domains suggest that
  //          for a certain set of parameter constraints no code is executed,
  //          but in the original program some computation would have been
  //          performed. In such a case, modifying the run-time conditions and
  //          possibly influencing the run-time check may cause certain scops
  //          to not be executed.
  //
  // Example:
  //
  //   When delinearizing the following code:
  //
  //     for (long i = 0; i < 100; i++)
  //       for (long j = 0; j < m; j++)
  //         A[i+p][j] = 1.0;
  //
  //   we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
  //   otherwise we would access out of bound data. Now, knowing that code is
  //   only executed for the case m >= 0, it is sufficient to assume p >= 0.
  AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
  InvalidContext = InvalidContext.align_params(getParamSpace());
}

isl::set Scop::getDomainConditions(const ScopStmt *Stmt) const {
  return getDomainConditions(Stmt->getEntryBlock());
}

isl::set Scop::getDomainConditions(BasicBlock *BB) const {
  auto DIt = DomainMap.find(BB);
  if (DIt != DomainMap.end())
    return DIt->getSecond();

  auto &RI = *R.getRegionInfo();
  auto *BBR = RI.getRegionFor(BB);
  while (BBR->getEntry() == BB)
    BBR = BBR->getParent();
  return getDomainConditions(BBR->getEntry());
}

Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI,
           DominatorTree &DT, ScopDetection::DetectionContext &DC,
           OptimizationRemarkEmitter &ORE, int ID)
    : IslCtx(isl_ctx_alloc(), isl_ctx_free), SE(&ScalarEvolution), DT(&DT),
      R(R), name(None), HasSingleExitEdge(R.getExitingBlock()), DC(DC),
      ORE(ORE), Affinator(this, LI), ID(ID) {
  SmallVector<char *, 8> IslArgv;
  IslArgv.reserve(1 + IslArgs.size());

  // Substitute for program name.
  IslArgv.push_back(const_cast<char *>("-polly-isl-arg"));

  for (std::string &Arg : IslArgs)
    IslArgv.push_back(const_cast<char *>(Arg.c_str()));

  // Abort if unknown argument is passed.
  // Note that "-V" (print isl version) will always call exit(0), so we cannot
  // avoid ISL aborting the program at this point.
  unsigned IslParseFlags = ISL_ARG_ALL;

  isl_ctx_parse_options(IslCtx.get(), IslArgv.size(), IslArgv.data(),
                        IslParseFlags);

  if (IslOnErrorAbort)
    isl_options_set_on_error(getIslCtx().get(), ISL_ON_ERROR_ABORT);
  buildContext();
}

Scop::~Scop() = default;

void Scop::removeFromStmtMap(ScopStmt &Stmt) {
  for (Instruction *Inst : Stmt.getInstructions())
    InstStmtMap.erase(Inst);

  if (Stmt.isRegionStmt()) {
    for (BasicBlock *BB : Stmt.getRegion()->blocks()) {
      StmtMap.erase(BB);
      // Skip entry basic block, as its instructions are already deleted as
      // part of the statement's instruction list.
      if (BB == Stmt.getEntryBlock())
        continue;
      for (Instruction &Inst : *BB)
        InstStmtMap.erase(&Inst);
    }
  } else {
    auto StmtMapIt = StmtMap.find(Stmt.getBasicBlock());
    if (StmtMapIt != StmtMap.end())
      StmtMapIt->second.erase(std::remove(StmtMapIt->second.begin(),
                                          StmtMapIt->second.end(), &Stmt),
                              StmtMapIt->second.end());
    for (Instruction *Inst : Stmt.getInstructions())
      InstStmtMap.erase(Inst);
  }
}

void Scop::removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete,
                       bool AfterHoisting) {
  for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
    if (!ShouldDelete(*StmtIt)) {
      StmtIt++;
      continue;
    }

    // Start with removing all of the statement's accesses including erasing it
    // from all maps that are pointing to them.
    // Make a temporary copy because removing MAs invalidates the iterator.
    SmallVector<MemoryAccess *, 16> MAList(StmtIt->begin(), StmtIt->end());
    for (MemoryAccess *MA : MAList)
      StmtIt->removeSingleMemoryAccess(MA, AfterHoisting);

    removeFromStmtMap(*StmtIt);
    StmtIt = Stmts.erase(StmtIt);
  }
}

void Scop::removeStmtNotInDomainMap() {
  removeStmts([this](ScopStmt &Stmt) -> bool {
    isl::set Domain = DomainMap.lookup(Stmt.getEntryBlock());
    if (!Domain)
      return true;
    return Domain.is_empty();
  });
}

void Scop::simplifySCoP(bool AfterHoisting) {
  removeStmts(
      [AfterHoisting](ScopStmt &Stmt) -> bool {
        // Never delete statements that contain calls to debug functions.
        if (hasDebugCall(&Stmt))
          return false;

        bool RemoveStmt = Stmt.isEmpty();

        // Remove read only statements only after invariant load hoisting.
        if (!RemoveStmt && AfterHoisting) {
          bool OnlyRead = true;
          for (MemoryAccess *MA : Stmt) {
            if (MA->isRead())
              continue;

            OnlyRead = false;
            break;
          }

          RemoveStmt = OnlyRead;
        }
        return RemoveStmt;
      },
      AfterHoisting);
}

InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) {
  LoadInst *LInst = dyn_cast<LoadInst>(Val);
  if (!LInst)
    return nullptr;

  if (Value *Rep = InvEquivClassVMap.lookup(LInst))
    LInst = cast<LoadInst>(Rep);

  Type *Ty = LInst->getType();
  const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
  for (auto &IAClass : InvariantEquivClasses) {
    if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
      continue;

    auto &MAs = IAClass.InvariantAccesses;
    for (auto *MA : MAs)
      if (MA->getAccessInstruction() == Val)
        return &IAClass;
  }

  return nullptr;
}

ScopArrayInfo *Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
                                              ArrayRef<const SCEV *> Sizes,
                                              MemoryKind Kind,
                                              const char *BaseName) {
  assert((BasePtr || BaseName) &&
         "BasePtr and BaseName can not be nullptr at the same time.");
  assert(!(BasePtr && BaseName) && "BaseName is redundant.");
  auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(BasePtr, Kind)]
                      : ScopArrayNameMap[BaseName];
  if (!SAI) {
    auto &DL = getFunction().getParent()->getDataLayout();
    SAI.reset(new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind,
                                DL, this, BaseName));
    ScopArrayInfoSet.insert(SAI.get());
  } else {
    SAI->updateElementType(ElementType);
    // In case of mismatching array sizes, we bail out by setting the run-time
    // context to false.
    if (!SAI->updateSizes(Sizes))
      invalidate(DELINEARIZATION, DebugLoc());
  }
  return SAI.get();
}

ScopArrayInfo *Scop::createScopArrayInfo(Type *ElementType,
                                         const std::string &BaseName,
                                         const std::vector<unsigned> &Sizes) {
  auto *DimSizeType = Type::getInt64Ty(getSE()->getContext());
  std::vector<const SCEV *> SCEVSizes;

  for (auto size : Sizes)
    if (size)
      SCEVSizes.push_back(getSE()->getConstant(DimSizeType, size, false));
    else
      SCEVSizes.push_back(nullptr);

  auto *SAI = getOrCreateScopArrayInfo(nullptr, ElementType, SCEVSizes,
                                       MemoryKind::Array, BaseName.c_str());
  return SAI;
}

ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind) {
  auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
  return SAI;
}

ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
  auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind);
  assert(SAI && "No ScopArrayInfo available for this base pointer");
  return SAI;
}

std::string Scop::getContextStr() const { return getContext().to_str(); }

std::string Scop::getAssumedContextStr() const {
  assert(AssumedContext && "Assumed context not yet built");
  return AssumedContext.to_str();
}

std::string Scop::getInvalidContextStr() const {
  return InvalidContext.to_str();
}

std::string Scop::getNameStr() const {
  std::string ExitName, EntryName;
  std::tie(EntryName, ExitName) = getEntryExitStr();
  return EntryName + "---" + ExitName;
}

std::pair<std::string, std::string> Scop::getEntryExitStr() const {
  std::string ExitName, EntryName;
  raw_string_ostream ExitStr(ExitName);
  raw_string_ostream EntryStr(EntryName);

  R.getEntry()->printAsOperand(EntryStr, false);
  EntryStr.str();

  if (R.getExit()) {
    R.getExit()->printAsOperand(ExitStr, false);
    ExitStr.str();
  } else
    ExitName = "FunctionExit";

  return std::make_pair(EntryName, ExitName);
}

isl::set Scop::getContext() const { return Context; }

isl::space Scop::getParamSpace() const { return getContext().get_space(); }

isl::space Scop::getFullParamSpace() const {
  std::vector<isl::id> FortranIDs;
  FortranIDs = getFortranArrayIds(arrays());

  isl::space Space = isl::space::params_alloc(
      getIslCtx(), ParameterIds.size() + FortranIDs.size());

  unsigned PDim = 0;
  for (const SCEV *Parameter : Parameters) {
    isl::id Id = getIdForParam(Parameter);
    Space = Space.set_dim_id(isl::dim::param, PDim++, Id);
  }

  for (isl::id Id : FortranIDs)
    Space = Space.set_dim_id(isl::dim::param, PDim++, Id);

  return Space;
}

isl::set Scop::getAssumedContext() const {
  assert(AssumedContext && "Assumed context not yet built");
  return AssumedContext;
}

bool Scop::isProfitable(bool ScalarsAreUnprofitable) const {
  if (PollyProcessUnprofitable)
    return true;

  if (isEmpty())
    return false;

  unsigned OptimizableStmtsOrLoops = 0;
  for (auto &Stmt : *this) {
    if (Stmt.getNumIterators() == 0)
      continue;

    bool ContainsArrayAccs = false;
    bool ContainsScalarAccs = false;
    for (auto *MA : Stmt) {
      if (MA->isRead())
        continue;
      ContainsArrayAccs |= MA->isLatestArrayKind();
      ContainsScalarAccs |= MA->isLatestScalarKind();
    }

    if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs))
      OptimizableStmtsOrLoops += Stmt.getNumIterators();
  }

  return OptimizableStmtsOrLoops > 1;
}

bool Scop::hasFeasibleRuntimeContext() const {
  auto PositiveContext = getAssumedContext();
  auto NegativeContext = getInvalidContext();
  PositiveContext = addNonEmptyDomainConstraints(PositiveContext);
  // addNonEmptyDomainConstraints returns null if ScopStmts have a null domain
  if (!PositiveContext)
    return false;

  bool IsFeasible = !(PositiveContext.is_empty() ||
                      PositiveContext.is_subset(NegativeContext));
  if (!IsFeasible)
    return false;

  auto DomainContext = getDomains().params();
  IsFeasible = !DomainContext.is_subset(NegativeContext);
  IsFeasible &= !getContext().is_subset(NegativeContext);

  return IsFeasible;
}

isl::set Scop::addNonEmptyDomainConstraints(isl::set C) const {
  isl::set DomainContext = getDomains().params();
  return C.intersect_params(DomainContext);
}

MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) {
  Value *PointerBase = MA->getOriginalBaseAddr();

  auto *PointerBaseInst = dyn_cast<Instruction>(PointerBase);
  if (!PointerBaseInst)
    return nullptr;

  auto *BasePtrStmt = getStmtFor(PointerBaseInst);
  if (!BasePtrStmt)
    return nullptr;

  return BasePtrStmt->getArrayAccessOrNULLFor(PointerBaseInst);
}

static std::string toString(AssumptionKind Kind) {
  switch (Kind) {
  case ALIASING:
    return "No-aliasing";
  case INBOUNDS:
    return "Inbounds";
  case WRAPPING:
    return "No-overflows";
  case UNSIGNED:
    return "Signed-unsigned";
  case COMPLEXITY:
    return "Low complexity";
  case PROFITABLE:
    return "Profitable";
  case ERRORBLOCK:
    return "No-error";
  case INFINITELOOP:
    return "Finite loop";
  case INVARIANTLOAD:
    return "Invariant load";
  case DELINEARIZATION:
    return "Delinearization";
  }
  llvm_unreachable("Unknown AssumptionKind!");
}

bool Scop::isEffectiveAssumption(isl::set Set, AssumptionSign Sign) {
  if (Sign == AS_ASSUMPTION) {
    if (Context.is_subset(Set))
      return false;

    if (AssumedContext.is_subset(Set))
      return false;
  } else {
    if (Set.is_disjoint(Context))
      return false;

    if (Set.is_subset(InvalidContext))
      return false;
  }
  return true;
}

bool Scop::trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                           AssumptionSign Sign, BasicBlock *BB) {
  if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign))
    return false;

  // Do never emit trivial assumptions as they only clutter the output.
  if (!PollyRemarksMinimal) {
    isl::set Univ;
    if (Sign == AS_ASSUMPTION)
      Univ = isl::set::universe(Set.get_space());

    bool IsTrivial = (Sign == AS_RESTRICTION && Set.is_empty()) ||
                     (Sign == AS_ASSUMPTION && Univ.is_equal(Set));

    if (IsTrivial)
      return false;
  }

  switch (Kind) {
  case ALIASING:
    AssumptionsAliasing++;
    break;
  case INBOUNDS:
    AssumptionsInbounds++;
    break;
  case WRAPPING:
    AssumptionsWrapping++;
    break;
  case UNSIGNED:
    AssumptionsUnsigned++;
    break;
  case COMPLEXITY:
    AssumptionsComplexity++;
    break;
  case PROFITABLE:
    AssumptionsUnprofitable++;
    break;
  case ERRORBLOCK:
    AssumptionsErrorBlock++;
    break;
  case INFINITELOOP:
    AssumptionsInfiniteLoop++;
    break;
  case INVARIANTLOAD:
    AssumptionsInvariantLoad++;
    break;
  case DELINEARIZATION:
    AssumptionsDelinearization++;
    break;
  }

  auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t";
  std::string Msg = toString(Kind) + Suffix + Set.to_str();
  if (BB)
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc, BB)
             << Msg);
  else
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc,
                                        R.getEntry())
             << Msg);
  return true;
}

void Scop::addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
                         AssumptionSign Sign, BasicBlock *BB) {
  // Simplify the assumptions/restrictions first.
  Set = Set.gist_params(getContext());

  if (!trackAssumption(Kind, Set, Loc, Sign, BB))
    return;

  if (Sign == AS_ASSUMPTION)
    AssumedContext = AssumedContext.intersect(Set).coalesce();
  else
    InvalidContext = InvalidContext.unite(Set).coalesce();
}

void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB) {
  LLVM_DEBUG(dbgs() << "Invalidate SCoP because of reason " << Kind << "\n");
  addAssumption(Kind, isl::set::empty(getParamSpace()), Loc, AS_ASSUMPTION, BB);
}

isl::set Scop::getInvalidContext() const { return InvalidContext; }

void Scop::printContext(raw_ostream &OS) const {
  OS << "Context:\n";
  OS.indent(4) << Context << "\n";

  OS.indent(4) << "Assumed Context:\n";
  OS.indent(4) << AssumedContext << "\n";

  OS.indent(4) << "Invalid Context:\n";
  OS.indent(4) << InvalidContext << "\n";

  unsigned Dim = 0;
  for (const SCEV *Parameter : Parameters)
    OS.indent(4) << "p" << Dim++ << ": " << *Parameter << "\n";
}

void Scop::printAliasAssumptions(raw_ostream &OS) const {
  int noOfGroups = 0;
  for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
    if (Pair.second.size() == 0)
      noOfGroups += 1;
    else
      noOfGroups += Pair.second.size();
  }

  OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
  if (MinMaxAliasGroups.empty()) {
    OS.indent(8) << "n/a\n";
    return;
  }

  for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {

    // If the group has no read only accesses print the write accesses.
    if (Pair.second.empty()) {
      OS.indent(8) << "[[";
      for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
        OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
           << ">";
      }
      OS << " ]]\n";
    }

    for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
      OS.indent(8) << "[[";
      OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
      for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
        OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
           << ">";
      }
      OS << " ]]\n";
    }
  }
}

void Scop::printStatements(raw_ostream &OS, bool PrintInstructions) const {
  OS << "Statements {\n";

  for (const ScopStmt &Stmt : *this) {
    OS.indent(4);
    Stmt.print(OS, PrintInstructions);
  }

  OS.indent(4) << "}\n";
}

void Scop::printArrayInfo(raw_ostream &OS) const {
  OS << "Arrays {\n";

  for (auto &Array : arrays())
    Array->print(OS);

  OS.indent(4) << "}\n";

  OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";

  for (auto &Array : arrays())
    Array->print(OS, /* SizeAsPwAff */ true);

  OS.indent(4) << "}\n";
}

void Scop::print(raw_ostream &OS, bool PrintInstructions) const {
  OS.indent(4) << "Function: " << getFunction().getName() << "\n";
  OS.indent(4) << "Region: " << getNameStr() << "\n";
  OS.indent(4) << "Max Loop Depth:  " << getMaxLoopDepth() << "\n";
  OS.indent(4) << "Invariant Accesses: {\n";
  for (const auto &IAClass : InvariantEquivClasses) {
    const auto &MAs = IAClass.InvariantAccesses;
    if (MAs.empty()) {
      OS.indent(12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n";
    } else {
      MAs.front()->print(OS);
      OS.indent(12) << "Execution Context: " << IAClass.ExecutionContext
                    << "\n";
    }
  }
  OS.indent(4) << "}\n";
  printContext(OS.indent(4));
  printArrayInfo(OS.indent(4));
  printAliasAssumptions(OS);
  printStatements(OS.indent(4), PrintInstructions);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Scop::dump() const { print(dbgs(), true); }
#endif

isl::ctx Scop::getIslCtx() const { return IslCtx.get(); }

__isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB,
                                 bool NonNegative,
                                 RecordedAssumptionsTy *RecordedAssumptions) {
  // First try to use the SCEVAffinator to generate a piecewise defined
  // affine function from @p E in the context of @p BB. If that tasks becomes to
  // complex the affinator might return a nullptr. In such a case we invalidate
  // the SCoP and return a dummy value. This way we do not need to add error
  // handling code to all users of this function.
  auto PWAC = Affinator.getPwAff(E, BB, RecordedAssumptions);
  if (PWAC.first) {
    // TODO: We could use a heuristic and either use:
    //         SCEVAffinator::takeNonNegativeAssumption
    //       or
    //         SCEVAffinator::interpretAsUnsigned
    //       to deal with unsigned or "NonNegative" SCEVs.
    if (NonNegative)
      Affinator.takeNonNegativeAssumption(PWAC, RecordedAssumptions);
    return PWAC;
  }

  auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  invalidate(COMPLEXITY, DL, BB);
  return Affinator.getPwAff(SE->getZero(E->getType()), BB, RecordedAssumptions);
}

isl::union_set Scop::getDomains() const {
  isl_space *EmptySpace = isl_space_params_alloc(getIslCtx().get(), 0);
  isl_union_set *Domain = isl_union_set_empty(EmptySpace);

  for (const ScopStmt &Stmt : *this)
    Domain = isl_union_set_add_set(Domain, Stmt.getDomain().release());

  return isl::manage(Domain);
}

isl::pw_aff Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB,
                               RecordedAssumptionsTy *RecordedAssumptions) {
  PWACtx PWAC = getPwAff(E, BB, RecordedAssumptions);
  return PWAC.first;
}

isl::union_map
Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
  isl::union_map Accesses = isl::union_map::empty(getParamSpace());

  for (ScopStmt &Stmt : *this) {
    for (MemoryAccess *MA : Stmt) {
      if (!Predicate(*MA))
        continue;

      isl::set Domain = Stmt.getDomain();
      isl::map AccessDomain = MA->getAccessRelation();
      AccessDomain = AccessDomain.intersect_domain(Domain);
      Accesses = Accesses.add_map(AccessDomain);
    }
  }

  return Accesses.coalesce();
}

isl::union_map Scop::getMustWrites() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
}

isl::union_map Scop::getMayWrites() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
}

isl::union_map Scop::getWrites() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
}

isl::union_map Scop::getReads() {
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
}

isl::union_map Scop::getAccesses() {
  return getAccessesOfType([](MemoryAccess &MA) { return true; });
}

isl::union_map Scop::getAccesses(ScopArrayInfo *Array) {
  return getAccessesOfType(
      [Array](MemoryAccess &MA) { return MA.getScopArrayInfo() == Array; });
}

isl::union_map Scop::getSchedule() const {
  auto Tree = getScheduleTree();
  return Tree.get_map();
}

isl::schedule Scop::getScheduleTree() const {
  return Schedule.intersect_domain(getDomains());
}

void Scop::setSchedule(isl::union_map NewSchedule) {
  auto S = isl::schedule::from_domain(getDomains());
  Schedule = S.insert_partial_schedule(
      isl::multi_union_pw_aff::from_union_map(NewSchedule));
  ScheduleModified = true;
}

void Scop::setScheduleTree(isl::schedule NewSchedule) {
  Schedule = NewSchedule;
  ScheduleModified = true;
}

bool Scop::restrictDomains(isl::union_set Domain) {
  bool Changed = false;
  for (ScopStmt &Stmt : *this) {
    isl::union_set StmtDomain = isl::union_set(Stmt.getDomain());
    isl::union_set NewStmtDomain = StmtDomain.intersect(Domain);

    if (StmtDomain.is_subset(NewStmtDomain))
      continue;

    Changed = true;

    NewStmtDomain = NewStmtDomain.coalesce();

    if (NewStmtDomain.is_empty())
      Stmt.restrictDomain(isl::set::empty(Stmt.getDomainSpace()));
    else
      Stmt.restrictDomain(isl::set(NewStmtDomain));
  }
  return Changed;
}

ScalarEvolution *Scop::getSE() const { return SE; }

void Scop::addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
                       std::vector<Instruction *> Instructions) {
  assert(BB && "Unexpected nullptr!");
  Stmts.emplace_back(*this, *BB, Name, SurroundingLoop, Instructions);
  auto *Stmt = &Stmts.back();
  StmtMap[BB].push_back(Stmt);
  for (Instruction *Inst : Instructions) {
    assert(!InstStmtMap.count(Inst) &&
           "Unexpected statement corresponding to the instruction.");
    InstStmtMap[Inst] = Stmt;
  }
}

void Scop::addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
                       std::vector<Instruction *> Instructions) {
  assert(R && "Unexpected nullptr!");
  Stmts.emplace_back(*this, *R, Name, SurroundingLoop, Instructions);
  auto *Stmt = &Stmts.back();

  for (Instruction *Inst : Instructions) {
    assert(!InstStmtMap.count(Inst) &&
           "Unexpected statement corresponding to the instruction.");
    InstStmtMap[Inst] = Stmt;
  }

  for (BasicBlock *BB : R->blocks()) {
    StmtMap[BB].push_back(Stmt);
    if (BB == R->getEntry())
      continue;
    for (Instruction &Inst : *BB) {
      assert(!InstStmtMap.count(&Inst) &&
             "Unexpected statement corresponding to the instruction.");
      InstStmtMap[&Inst] = Stmt;
    }
  }
}

ScopStmt *Scop::addScopStmt(isl::map SourceRel, isl::map TargetRel,
                            isl::set Domain) {
#ifndef NDEBUG
  isl::set SourceDomain = SourceRel.domain();
  isl::set TargetDomain = TargetRel.domain();
  assert(Domain.is_subset(TargetDomain) &&
         "Target access not defined for complete statement domain");
  assert(Domain.is_subset(SourceDomain) &&
         "Source access not defined for complete statement domain");
#endif
  Stmts.emplace_back(*this, SourceRel, TargetRel, Domain);
  CopyStmtsNum++;
  return &(Stmts.back());
}

ArrayRef<ScopStmt *> Scop::getStmtListFor(BasicBlock *BB) const {
  auto StmtMapIt = StmtMap.find(BB);
  if (StmtMapIt == StmtMap.end())
    return {};
  return StmtMapIt->second;
}

ScopStmt *Scop::getIncomingStmtFor(const Use &U) const {
  auto *PHI = cast<PHINode>(U.getUser());
  BasicBlock *IncomingBB = PHI->getIncomingBlock(U);

  // If the value is a non-synthesizable from the incoming block, use the
  // statement that contains it as user statement.
  if (auto *IncomingInst = dyn_cast<Instruction>(U.get())) {
    if (IncomingInst->getParent() == IncomingBB) {
      if (ScopStmt *IncomingStmt = getStmtFor(IncomingInst))
        return IncomingStmt;
    }
  }

  // Otherwise, use the epilogue/last statement.
  return getLastStmtFor(IncomingBB);
}

ScopStmt *Scop::getLastStmtFor(BasicBlock *BB) const {
  ArrayRef<ScopStmt *> StmtList = getStmtListFor(BB);
  if (!StmtList.empty())
    return StmtList.back();
  return nullptr;
}

ArrayRef<ScopStmt *> Scop::getStmtListFor(RegionNode *RN) const {
  if (RN->isSubRegion())
    return getStmtListFor(RN->getNodeAs<Region>());
  return getStmtListFor(RN->getNodeAs<BasicBlock>());
}

ArrayRef<ScopStmt *> Scop::getStmtListFor(Region *R) const {
  return getStmtListFor(R->getEntry());
}

int Scop::getRelativeLoopDepth(const Loop *L) const {
  if (!L || !R.contains(L))
    return -1;
  // outermostLoopInRegion always returns nullptr for top level regions
  if (R.isTopLevelRegion()) {
    // LoopInfo's depths start at 1, we start at 0
    return L->getLoopDepth() - 1;
  } else {
    Loop *OuterLoop = R.outermostLoopInRegion(const_cast<Loop *>(L));
    assert(OuterLoop);
    return L->getLoopDepth() - OuterLoop->getLoopDepth();
  }
}

ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) {
  for (auto &SAI : arrays()) {
    if (SAI->getName() == BaseName)
      return SAI;
  }
  return nullptr;
}

void Scop::addAccessData(MemoryAccess *Access) {
  const ScopArrayInfo *SAI = Access->getOriginalScopArrayInfo();
  assert(SAI && "can only use after access relations have been constructed");

  if (Access->isOriginalValueKind() && Access->isRead())
    ValueUseAccs[SAI].push_back(Access);
  else if (Access->isOriginalAnyPHIKind() && Access->isWrite())
    PHIIncomingAccs[SAI].push_back(Access);
}

void Scop::removeAccessData(MemoryAccess *Access) {
  if (Access->isOriginalValueKind() && Access->isWrite()) {
    ValueDefAccs.erase(Access->getAccessValue());
  } else if (Access->isOriginalValueKind() && Access->isRead()) {
    auto &Uses = ValueUseAccs[Access->getScopArrayInfo()];
    auto NewEnd = std::remove(Uses.begin(), Uses.end(), Access);
    Uses.erase(NewEnd, Uses.end());
  } else if (Access->isOriginalPHIKind() && Access->isRead()) {
    PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
    PHIReadAccs.erase(PHI);
  } else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) {
    auto &Incomings = PHIIncomingAccs[Access->getScopArrayInfo()];
    auto NewEnd = std::remove(Incomings.begin(), Incomings.end(), Access);
    Incomings.erase(NewEnd, Incomings.end());
  }
}

MemoryAccess *Scop::getValueDef(const ScopArrayInfo *SAI) const {
  assert(SAI->isValueKind());

  Instruction *Val = dyn_cast<Instruction>(SAI->getBasePtr());
  if (!Val)
    return nullptr;

  return ValueDefAccs.lookup(Val);
}

ArrayRef<MemoryAccess *> Scop::getValueUses(const ScopArrayInfo *SAI) const {
  assert(SAI->isValueKind());
  auto It = ValueUseAccs.find(SAI);
  if (It == ValueUseAccs.end())
    return {};
  return It->second;
}

MemoryAccess *Scop::getPHIRead(const ScopArrayInfo *SAI) const {
  assert(SAI->isPHIKind() || SAI->isExitPHIKind());

  if (SAI->isExitPHIKind())
    return nullptr;

  PHINode *PHI = cast<PHINode>(SAI->getBasePtr());
  return PHIReadAccs.lookup(PHI);
}

ArrayRef<MemoryAccess *> Scop::getPHIIncomings(const ScopArrayInfo *SAI) const {
  assert(SAI->isPHIKind() || SAI->isExitPHIKind());
  auto It = PHIIncomingAccs.find(SAI);
  if (It == PHIIncomingAccs.end())
    return {};
  return It->second;
}

bool Scop::isEscaping(Instruction *Inst) {
  assert(contains(Inst) && "The concept of escaping makes only sense for "
                           "values defined inside the SCoP");

  for (Use &Use : Inst->uses()) {
    BasicBlock *UserBB = getUseBlock(Use);
    if (!contains(UserBB))
      return true;

    // When the SCoP region exit needs to be simplified, PHIs in the region exit
    // move to a new basic block such that its incoming blocks are not in the
    // SCoP anymore.
    if (hasSingleExitEdge() && isa<PHINode>(Use.getUser()) &&
        isExit(cast<PHINode>(Use.getUser())->getParent()))
      return true;
  }
  return false;
}

void Scop::incrementNumberOfAliasingAssumptions(unsigned step) {
  AssumptionsAliasing += step;
}

Scop::ScopStatistics Scop::getStatistics() const {
  ScopStatistics Result;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
  auto LoopStat = ScopDetection::countBeneficialLoops(&R, *SE, *getLI(), 0);

  int NumTotalLoops = LoopStat.NumLoops;
  Result.NumBoxedLoops = getBoxedLoops().size();
  Result.NumAffineLoops = NumTotalLoops - Result.NumBoxedLoops;

  for (const ScopStmt &Stmt : *this) {
    isl::set Domain = Stmt.getDomain().intersect_params(getContext());
    bool IsInLoop = Stmt.getNumIterators() >= 1;
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isWrite())
        continue;

      if (MA->isLatestValueKind()) {
        Result.NumValueWrites += 1;
        if (IsInLoop)
          Result.NumValueWritesInLoops += 1;
      }

      if (MA->isLatestAnyPHIKind()) {
        Result.NumPHIWrites += 1;
        if (IsInLoop)
          Result.NumPHIWritesInLoops += 1;
      }

      isl::set AccSet =
          MA->getAccessRelation().intersect_domain(Domain).range();
      if (AccSet.is_singleton()) {
        Result.NumSingletonWrites += 1;
        if (IsInLoop)
          Result.NumSingletonWritesInLoops += 1;
      }
    }
  }
#endif
  return Result;
}

raw_ostream &polly::operator<<(raw_ostream &OS, const Scop &scop) {
  scop.print(OS, PollyPrintInstructions);
  return OS;
}

//===----------------------------------------------------------------------===//
void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<RegionInfoPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequiredTransitive<ScopDetectionWrapperPass>();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  AU.setPreservesAll();
}

void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
                              Scop::ScopStatistics ScopStats) {
  assert(Stats.NumLoops == ScopStats.NumAffineLoops + ScopStats.NumBoxedLoops);

  NumScops++;
  NumLoopsInScop += Stats.NumLoops;
  MaxNumLoopsInScop =
      std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);

  if (Stats.MaxDepth == 0)
    NumScopsDepthZero++;
  else if (Stats.MaxDepth == 1)
    NumScopsDepthOne++;
  else if (Stats.MaxDepth == 2)
    NumScopsDepthTwo++;
  else if (Stats.MaxDepth == 3)
    NumScopsDepthThree++;
  else if (Stats.MaxDepth == 4)
    NumScopsDepthFour++;
  else if (Stats.MaxDepth == 5)
    NumScopsDepthFive++;
  else
    NumScopsDepthLarger++;

  NumAffineLoops += ScopStats.NumAffineLoops;
  NumBoxedLoops += ScopStats.NumBoxedLoops;

  NumValueWrites += ScopStats.NumValueWrites;
  NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
  NumPHIWrites += ScopStats.NumPHIWrites;
  NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
  NumSingletonWrites += ScopStats.NumSingletonWrites;
  NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
}

bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) {
  auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();

  if (!SD.isMaxRegionInScop(*R))
    return false;

  Function *F = R->getEntry()->getParent();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto const &DL = F->getParent()->getDataLayout();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
  S = SB.getScop(); // take ownership of scop object

#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
  if (S) {
    ScopDetection::LoopStats Stats =
        ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
    updateLoopCountStatistic(Stats, S->getStatistics());
  }
#endif

  return false;
}

void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const {
  if (S)
    S->print(OS, PollyPrintInstructions);
  else
    OS << "Invalid Scop!\n";
}

char ScopInfoRegionPass::ID = 0;

Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); }

INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops",
                      "Polly - Create polyhedral description of Scops", false,
                      false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops",
                    "Polly - Create polyhedral description of Scops", false,
                    false)

//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
                   LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
                   AssumptionCache &AC, OptimizationRemarkEmitter &ORE)
    : DL(DL), SD(SD), SE(SE), LI(LI), AA(AA), DT(DT), AC(AC), ORE(ORE) {
  recompute();
}

void ScopInfo::recompute() {
  RegionToScopMap.clear();
  /// Create polyhedral description of scops for all the valid regions of a
  /// function.
  for (auto &It : SD) {
    Region *R = const_cast<Region *>(It);
    if (!SD.isMaxRegionInScop(*R))
      continue;

    ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
    std::unique_ptr<Scop> S = SB.getScop();
    if (!S)
      continue;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
    ScopDetection::LoopStats Stats =
        ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
    updateLoopCountStatistic(Stats, S->getStatistics());
#endif
    bool Inserted = RegionToScopMap.insert({R, std::move(S)}).second;
    assert(Inserted && "Building Scop for the same region twice!");
    (void)Inserted;
  }
}

bool ScopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                          FunctionAnalysisManager::Invalidator &Inv) {
  // Check whether the analysis, all analyses on functions have been preserved
  // or anything we're holding references to is being invalidated
  auto PAC = PA.getChecker<ScopInfoAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
         Inv.invalidate<ScopAnalysis>(F, PA) ||
         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
         Inv.invalidate<LoopAnalysis>(F, PA) ||
         Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
         Inv.invalidate<AssumptionAnalysis>(F, PA);
}

AnalysisKey ScopInfoAnalysis::Key;

ScopInfoAnalysis::Result ScopInfoAnalysis::run(Function &F,
                                               FunctionAnalysisManager &FAM) {
  auto &SD = FAM.getResult<ScopAnalysis>(F);
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  auto &AA = FAM.getResult<AAManager>(F);
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = FAM.getResult<AssumptionAnalysis>(F);
  auto &DL = F.getParent()->getDataLayout();
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  return {DL, SD, SE, LI, AA, DT, AC, ORE};
}

PreservedAnalyses ScopInfoPrinterPass::run(Function &F,
                                           FunctionAnalysisManager &FAM) {
  auto &SI = FAM.getResult<ScopInfoAnalysis>(F);
  // Since the legacy PM processes Scops in bottom up, we print them in reverse
  // order here to keep the output persistent
  for (auto &It : reverse(SI)) {
    if (It.second)
      It.second->print(Stream, PollyPrintInstructions);
    else
      Stream << "Invalid Scop!\n";
  }
  return PreservedAnalyses::all();
}

void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<RegionInfoPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequiredTransitive<ScopDetectionWrapperPass>();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  AU.setPreservesAll();
}

bool ScopInfoWrapperPass::runOnFunction(Function &F) {
  auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto const &DL = F.getParent()->getDataLayout();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  Result.reset(new ScopInfo{DL, SD, SE, LI, AA, DT, AC, ORE});
  return false;
}

void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
  for (auto &It : *Result) {
    if (It.second)
      It.second->print(OS, PollyPrintInstructions);
    else
      OS << "Invalid Scop!\n";
  }
}

char ScopInfoWrapperPass::ID = 0;

Pass *polly::createScopInfoWrapperPassPass() {
  return new ScopInfoWrapperPass();
}

INITIALIZE_PASS_BEGIN(
    ScopInfoWrapperPass, "polly-function-scops",
    "Polly - Create polyhedral description of all Scops of a function", false,
    false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_END(
    ScopInfoWrapperPass, "polly-function-scops",
    "Polly - Create polyhedral description of all Scops of a function", false,
    false)