isl_affine_hull.c
33.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_seq.h>
#include <isl/set.h>
#include <isl/lp.h>
#include <isl/map.h>
#include "isl_equalities.h"
#include "isl_sample.h"
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <bset_to_bmap.c>
#include <bset_from_bmap.c>
#include <set_to_map.c>
#include <set_from_map.c>
__isl_give isl_basic_map *isl_basic_map_implicit_equalities(
__isl_take isl_basic_map *bmap)
{
struct isl_tab *tab;
if (!bmap)
return bmap;
bmap = isl_basic_map_gauss(bmap, NULL);
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
return bmap;
if (bmap->n_ineq <= 1)
return bmap;
tab = isl_tab_from_basic_map(bmap, 0);
if (isl_tab_detect_implicit_equalities(tab) < 0)
goto error;
bmap = isl_basic_map_update_from_tab(bmap, tab);
isl_tab_free(tab);
bmap = isl_basic_map_gauss(bmap, NULL);
ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
return bmap;
error:
isl_tab_free(tab);
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_implicit_equalities(
__isl_take isl_basic_set *bset)
{
return bset_from_bmap(
isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
}
/* Make eq[row][col] of both bmaps equal so we can add the row
* add the column to the common matrix.
* Note that because of the echelon form, the columns of row row
* after column col are zero.
*/
static void set_common_multiple(
struct isl_basic_set *bset1, struct isl_basic_set *bset2,
unsigned row, unsigned col)
{
isl_int m, c;
if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
return;
isl_int_init(c);
isl_int_init(m);
isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
isl_int_divexact(c, m, bset1->eq[row][col]);
isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
isl_int_divexact(c, m, bset2->eq[row][col]);
isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
isl_int_clear(c);
isl_int_clear(m);
}
/* Delete a given equality, moving all the following equalities one up.
*/
static void delete_row(__isl_keep isl_basic_set *bset, unsigned row)
{
isl_int *t;
int r;
t = bset->eq[row];
bset->n_eq--;
for (r = row; r < bset->n_eq; ++r)
bset->eq[r] = bset->eq[r+1];
bset->eq[bset->n_eq] = t;
}
/* Make first row entries in column col of bset1 identical to
* those of bset2, using the fact that entry bset1->eq[row][col]=a
* is non-zero. Initially, these elements of bset1 are all zero.
* For each row i < row, we set
* A[i] = a * A[i] + B[i][col] * A[row]
* B[i] = a * B[i]
* so that
* A[i][col] = B[i][col] = a * old(B[i][col])
*/
static isl_stat construct_column(
__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
unsigned row, unsigned col)
{
int r;
isl_int a;
isl_int b;
isl_size total;
total = isl_basic_set_dim(bset1, isl_dim_set);
if (total < 0)
return isl_stat_error;
isl_int_init(a);
isl_int_init(b);
for (r = 0; r < row; ++r) {
if (isl_int_is_zero(bset2->eq[r][col]))
continue;
isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
isl_int_divexact(a, bset1->eq[row][col], b);
isl_int_divexact(b, bset2->eq[r][col], b);
isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
b, bset1->eq[row], 1 + total);
isl_seq_scale(bset2->eq[r], bset2->eq[r], a, 1 + total);
}
isl_int_clear(a);
isl_int_clear(b);
delete_row(bset1, row);
return isl_stat_ok;
}
/* Make first row entries in column col of bset1 identical to
* those of bset2, using only these entries of the two matrices.
* Let t be the last row with different entries.
* For each row i < t, we set
* A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
* B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
* so that
* A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
*/
static isl_bool transform_column(
__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
unsigned row, unsigned col)
{
int i, t;
isl_int a, b, g;
isl_size total;
for (t = row-1; t >= 0; --t)
if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
break;
if (t < 0)
return isl_bool_false;
total = isl_basic_set_dim(bset1, isl_dim_set);
if (total < 0)
return isl_bool_error;
isl_int_init(a);
isl_int_init(b);
isl_int_init(g);
isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
for (i = 0; i < t; ++i) {
isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
isl_int_gcd(g, a, b);
isl_int_divexact(a, a, g);
isl_int_divexact(g, b, g);
isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
1 + total);
isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
1 + total);
}
isl_int_clear(a);
isl_int_clear(b);
isl_int_clear(g);
delete_row(bset1, t);
delete_row(bset2, t);
return isl_bool_true;
}
/* The implementation is based on Section 5.2 of Michael Karr,
* "Affine Relationships Among Variables of a Program",
* except that the echelon form we use starts from the last column
* and that we are dealing with integer coefficients.
*/
static __isl_give isl_basic_set *affine_hull(
__isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
{
isl_size dim;
unsigned total;
int col;
int row;
dim = isl_basic_set_dim(bset1, isl_dim_set);
if (dim < 0 || !bset2)
goto error;
total = 1 + dim;
row = 0;
for (col = total-1; col >= 0; --col) {
int is_zero1 = row >= bset1->n_eq ||
isl_int_is_zero(bset1->eq[row][col]);
int is_zero2 = row >= bset2->n_eq ||
isl_int_is_zero(bset2->eq[row][col]);
if (!is_zero1 && !is_zero2) {
set_common_multiple(bset1, bset2, row, col);
++row;
} else if (!is_zero1 && is_zero2) {
if (construct_column(bset1, bset2, row, col) < 0)
goto error;
} else if (is_zero1 && !is_zero2) {
if (construct_column(bset2, bset1, row, col) < 0)
goto error;
} else {
isl_bool transform;
transform = transform_column(bset1, bset2, row, col);
if (transform < 0)
goto error;
if (transform)
--row;
}
}
isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
isl_basic_set_free(bset2);
bset1 = isl_basic_set_normalize_constraints(bset1);
return bset1;
error:
isl_basic_set_free(bset1);
isl_basic_set_free(bset2);
return NULL;
}
/* Find an integer point in the set represented by "tab"
* that lies outside of the equality "eq" e(x) = 0.
* If "up" is true, look for a point satisfying e(x) - 1 >= 0.
* Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
* The point, if found, is returned.
* If no point can be found, a zero-length vector is returned.
*
* Before solving an ILP problem, we first check if simply
* adding the normal of the constraint to one of the known
* integer points in the basic set represented by "tab"
* yields another point inside the basic set.
*
* The caller of this function ensures that the tableau is bounded or
* that tab->basis and tab->n_unbounded have been set appropriately.
*/
static __isl_give isl_vec *outside_point(struct isl_tab *tab, isl_int *eq,
int up)
{
struct isl_ctx *ctx;
struct isl_vec *sample = NULL;
struct isl_tab_undo *snap;
unsigned dim;
if (!tab)
return NULL;
ctx = tab->mat->ctx;
dim = tab->n_var;
sample = isl_vec_alloc(ctx, 1 + dim);
if (!sample)
return NULL;
isl_int_set_si(sample->el[0], 1);
isl_seq_combine(sample->el + 1,
ctx->one, tab->bmap->sample->el + 1,
up ? ctx->one : ctx->negone, eq + 1, dim);
if (isl_basic_map_contains(tab->bmap, sample))
return sample;
isl_vec_free(sample);
sample = NULL;
snap = isl_tab_snap(tab);
if (!up)
isl_seq_neg(eq, eq, 1 + dim);
isl_int_sub_ui(eq[0], eq[0], 1);
if (isl_tab_extend_cons(tab, 1) < 0)
goto error;
if (isl_tab_add_ineq(tab, eq) < 0)
goto error;
sample = isl_tab_sample(tab);
isl_int_add_ui(eq[0], eq[0], 1);
if (!up)
isl_seq_neg(eq, eq, 1 + dim);
if (sample && isl_tab_rollback(tab, snap) < 0)
goto error;
return sample;
error:
isl_vec_free(sample);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_recession_cone(
__isl_take isl_basic_set *bset)
{
int i;
isl_bool empty;
empty = isl_basic_set_plain_is_empty(bset);
if (empty < 0)
return isl_basic_set_free(bset);
if (empty)
return bset;
bset = isl_basic_set_cow(bset);
if (isl_basic_set_check_no_locals(bset) < 0)
return isl_basic_set_free(bset);
for (i = 0; i < bset->n_eq; ++i)
isl_int_set_si(bset->eq[i][0], 0);
for (i = 0; i < bset->n_ineq; ++i)
isl_int_set_si(bset->ineq[i][0], 0);
ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
return isl_basic_set_implicit_equalities(bset);
}
/* Move "sample" to a point that is one up (or down) from the original
* point in dimension "pos".
*/
static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
{
if (up)
isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
else
isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
}
/* Check if any points that are adjacent to "sample" also belong to "bset".
* If so, add them to "hull" and return the updated hull.
*
* Before checking whether and adjacent point belongs to "bset", we first
* check whether it already belongs to "hull" as this test is typically
* much cheaper.
*/
static __isl_give isl_basic_set *add_adjacent_points(
__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
__isl_keep isl_basic_set *bset)
{
int i, up;
isl_size dim;
dim = isl_basic_set_dim(hull, isl_dim_set);
if (!sample || dim < 0)
goto error;
for (i = 0; i < dim; ++i) {
for (up = 0; up <= 1; ++up) {
int contains;
isl_basic_set *point;
adjacent_point(sample, i, up);
contains = isl_basic_set_contains(hull, sample);
if (contains < 0)
goto error;
if (contains) {
adjacent_point(sample, i, !up);
continue;
}
contains = isl_basic_set_contains(bset, sample);
if (contains < 0)
goto error;
if (contains) {
point = isl_basic_set_from_vec(
isl_vec_copy(sample));
hull = affine_hull(hull, point);
}
adjacent_point(sample, i, !up);
if (contains)
break;
}
}
isl_vec_free(sample);
return hull;
error:
isl_vec_free(sample);
isl_basic_set_free(hull);
return NULL;
}
/* Extend an initial (under-)approximation of the affine hull of basic
* set represented by the tableau "tab"
* by looking for points that do not satisfy one of the equalities
* in the current approximation and adding them to that approximation
* until no such points can be found any more.
*
* The caller of this function ensures that "tab" is bounded or
* that tab->basis and tab->n_unbounded have been set appropriately.
*
* "bset" may be either NULL or the basic set represented by "tab".
* If "bset" is not NULL, we check for any point we find if any
* of its adjacent points also belong to "bset".
*/
static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
{
int i, j;
unsigned dim;
if (!tab || !hull)
goto error;
dim = tab->n_var;
if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
goto error;
for (i = 0; i < dim; ++i) {
struct isl_vec *sample;
struct isl_basic_set *point;
for (j = 0; j < hull->n_eq; ++j) {
sample = outside_point(tab, hull->eq[j], 1);
if (!sample)
goto error;
if (sample->size > 0)
break;
isl_vec_free(sample);
sample = outside_point(tab, hull->eq[j], 0);
if (!sample)
goto error;
if (sample->size > 0)
break;
isl_vec_free(sample);
if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
goto error;
}
if (j == hull->n_eq)
break;
if (tab->samples &&
isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
hull = isl_basic_set_free(hull);
if (bset)
hull = add_adjacent_points(hull, isl_vec_copy(sample),
bset);
point = isl_basic_set_from_vec(sample);
hull = affine_hull(hull, point);
if (!hull)
return NULL;
}
return hull;
error:
isl_basic_set_free(hull);
return NULL;
}
/* Construct an initial underapproximation of the hull of "bset"
* from "sample" and any of its adjacent points that also belong to "bset".
*/
static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
__isl_take isl_vec *sample)
{
isl_basic_set *hull;
hull = isl_basic_set_from_vec(isl_vec_copy(sample));
hull = add_adjacent_points(hull, sample, bset);
return hull;
}
/* Look for all equalities satisfied by the integer points in bset,
* which is assumed to be bounded.
*
* The equalities are obtained by successively looking for
* a point that is affinely independent of the points found so far.
* In particular, for each equality satisfied by the points so far,
* we check if there is any point on a hyperplane parallel to the
* corresponding hyperplane shifted by at least one (in either direction).
*/
static __isl_give isl_basic_set *uset_affine_hull_bounded(
__isl_take isl_basic_set *bset)
{
struct isl_vec *sample = NULL;
struct isl_basic_set *hull;
struct isl_tab *tab = NULL;
isl_size dim;
if (isl_basic_set_plain_is_empty(bset))
return bset;
dim = isl_basic_set_dim(bset, isl_dim_set);
if (dim < 0)
return isl_basic_set_free(bset);
if (bset->sample && bset->sample->size == 1 + dim) {
int contains = isl_basic_set_contains(bset, bset->sample);
if (contains < 0)
goto error;
if (contains) {
if (dim == 0)
return bset;
sample = isl_vec_copy(bset->sample);
} else {
isl_vec_free(bset->sample);
bset->sample = NULL;
}
}
tab = isl_tab_from_basic_set(bset, 1);
if (!tab)
goto error;
if (tab->empty) {
isl_tab_free(tab);
isl_vec_free(sample);
return isl_basic_set_set_to_empty(bset);
}
if (!sample) {
struct isl_tab_undo *snap;
snap = isl_tab_snap(tab);
sample = isl_tab_sample(tab);
if (isl_tab_rollback(tab, snap) < 0)
goto error;
isl_vec_free(tab->bmap->sample);
tab->bmap->sample = isl_vec_copy(sample);
}
if (!sample)
goto error;
if (sample->size == 0) {
isl_tab_free(tab);
isl_vec_free(sample);
return isl_basic_set_set_to_empty(bset);
}
hull = initialize_hull(bset, sample);
hull = extend_affine_hull(tab, hull, bset);
isl_basic_set_free(bset);
isl_tab_free(tab);
return hull;
error:
isl_vec_free(sample);
isl_tab_free(tab);
isl_basic_set_free(bset);
return NULL;
}
/* Given an unbounded tableau and an integer point satisfying the tableau,
* construct an initial affine hull containing the recession cone
* shifted to the given point.
*
* The unbounded directions are taken from the last rows of the basis,
* which is assumed to have been initialized appropriately.
*/
static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
__isl_take isl_vec *vec)
{
int i;
int k;
struct isl_basic_set *bset = NULL;
struct isl_ctx *ctx;
isl_size dim;
if (!vec || !tab)
return NULL;
ctx = vec->ctx;
isl_assert(ctx, vec->size != 0, goto error);
bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
dim = isl_basic_set_dim(bset, isl_dim_set);
if (dim < 0)
goto error;
dim -= tab->n_unbounded;
for (i = 0; i < dim; ++i) {
k = isl_basic_set_alloc_equality(bset);
if (k < 0)
goto error;
isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
vec->size - 1);
isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
vec->size - 1, &bset->eq[k][0]);
isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
}
bset->sample = vec;
bset = isl_basic_set_gauss(bset, NULL);
return bset;
error:
isl_basic_set_free(bset);
isl_vec_free(vec);
return NULL;
}
/* Given a tableau of a set and a tableau of the corresponding
* recession cone, detect and add all equalities to the tableau.
* If the tableau is bounded, then we can simply keep the
* tableau in its state after the return from extend_affine_hull.
* However, if the tableau is unbounded, then
* isl_tab_set_initial_basis_with_cone will add some additional
* constraints to the tableau that have to be removed again.
* In this case, we therefore rollback to the state before
* any constraints were added and then add the equalities back in.
*/
struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
struct isl_tab *tab_cone)
{
int j;
struct isl_vec *sample;
struct isl_basic_set *hull = NULL;
struct isl_tab_undo *snap;
if (!tab || !tab_cone)
goto error;
snap = isl_tab_snap(tab);
isl_mat_free(tab->basis);
tab->basis = NULL;
isl_assert(tab->mat->ctx, tab->bmap, goto error);
isl_assert(tab->mat->ctx, tab->samples, goto error);
isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
goto error;
sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
if (!sample)
goto error;
isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
isl_vec_free(tab->bmap->sample);
tab->bmap->sample = isl_vec_copy(sample);
if (tab->n_unbounded == 0)
hull = isl_basic_set_from_vec(isl_vec_copy(sample));
else
hull = initial_hull(tab, isl_vec_copy(sample));
for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
hull = affine_hull(hull,
isl_basic_set_from_vec(isl_vec_copy(sample)));
}
isl_vec_free(sample);
hull = extend_affine_hull(tab, hull, NULL);
if (!hull)
goto error;
if (tab->n_unbounded == 0) {
isl_basic_set_free(hull);
return tab;
}
if (isl_tab_rollback(tab, snap) < 0)
goto error;
if (hull->n_eq > tab->n_zero) {
for (j = 0; j < hull->n_eq; ++j) {
isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
goto error;
}
}
isl_basic_set_free(hull);
return tab;
error:
isl_basic_set_free(hull);
isl_tab_free(tab);
return NULL;
}
/* Compute the affine hull of "bset", where "cone" is the recession cone
* of "bset".
*
* We first compute a unimodular transformation that puts the unbounded
* directions in the last dimensions. In particular, we take a transformation
* that maps all equalities to equalities (in HNF) on the first dimensions.
* Let x be the original dimensions and y the transformed, with y_1 bounded
* and y_2 unbounded.
*
* [ y_1 ] [ y_1 ] [ Q_1 ]
* x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
*
* Let's call the input basic set S. We compute S' = preimage(S, U)
* and drop the final dimensions including any constraints involving them.
* This results in set S''.
* Then we compute the affine hull A'' of S''.
* Let F y_1 >= g be the constraint system of A''. In the transformed
* space the y_2 are unbounded, so we can add them back without any constraints,
* resulting in
*
* [ y_1 ]
* [ F 0 ] [ y_2 ] >= g
* or
* [ Q_1 ]
* [ F 0 ] [ Q_2 ] x >= g
* or
* F Q_1 x >= g
*
* The affine hull in the original space is then obtained as
* A = preimage(A'', Q_1).
*/
static __isl_give isl_basic_set *affine_hull_with_cone(
__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
{
isl_size total;
unsigned cone_dim;
struct isl_basic_set *hull;
struct isl_mat *M, *U, *Q;
total = isl_basic_set_dim(cone, isl_dim_all);
if (!bset || total < 0)
goto error;
cone_dim = total - cone->n_eq;
M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
M = isl_mat_left_hermite(M, 0, &U, &Q);
if (!M)
goto error;
isl_mat_free(M);
U = isl_mat_lin_to_aff(U);
bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
cone_dim);
bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
Q = isl_mat_lin_to_aff(Q);
Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
if (bset && bset->sample && bset->sample->size == 1 + total)
bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
hull = uset_affine_hull_bounded(bset);
if (!hull) {
isl_mat_free(Q);
isl_mat_free(U);
} else {
struct isl_vec *sample = isl_vec_copy(hull->sample);
U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
if (sample && sample->size > 0)
sample = isl_mat_vec_product(U, sample);
else
isl_mat_free(U);
hull = isl_basic_set_preimage(hull, Q);
if (hull) {
isl_vec_free(hull->sample);
hull->sample = sample;
} else
isl_vec_free(sample);
}
isl_basic_set_free(cone);
return hull;
error:
isl_basic_set_free(bset);
isl_basic_set_free(cone);
return NULL;
}
/* Look for all equalities satisfied by the integer points in bset,
* which is assumed not to have any explicit equalities.
*
* The equalities are obtained by successively looking for
* a point that is affinely independent of the points found so far.
* In particular, for each equality satisfied by the points so far,
* we check if there is any point on a hyperplane parallel to the
* corresponding hyperplane shifted by at least one (in either direction).
*
* Before looking for any outside points, we first compute the recession
* cone. The directions of this recession cone will always be part
* of the affine hull, so there is no need for looking for any points
* in these directions.
* In particular, if the recession cone is full-dimensional, then
* the affine hull is simply the whole universe.
*/
static __isl_give isl_basic_set *uset_affine_hull(
__isl_take isl_basic_set *bset)
{
struct isl_basic_set *cone;
isl_size total;
if (isl_basic_set_plain_is_empty(bset))
return bset;
cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
if (!cone)
goto error;
if (cone->n_eq == 0) {
isl_space *space;
space = isl_basic_set_get_space(bset);
isl_basic_set_free(cone);
isl_basic_set_free(bset);
return isl_basic_set_universe(space);
}
total = isl_basic_set_dim(cone, isl_dim_all);
if (total < 0)
bset = isl_basic_set_free(bset);
if (cone->n_eq < total)
return affine_hull_with_cone(bset, cone);
isl_basic_set_free(cone);
return uset_affine_hull_bounded(bset);
error:
isl_basic_set_free(bset);
return NULL;
}
/* Look for all equalities satisfied by the integer points in bmap
* that are independent of the equalities already explicitly available
* in bmap.
*
* We first remove all equalities already explicitly available,
* then look for additional equalities in the reduced space
* and then transform the result to the original space.
* The original equalities are _not_ added to this set. This is
* the responsibility of the calling function.
* The resulting basic set has all meaning about the dimensions removed.
* In particular, dimensions that correspond to existential variables
* in bmap and that are found to be fixed are not removed.
*/
static __isl_give isl_basic_set *equalities_in_underlying_set(
__isl_take isl_basic_map *bmap)
{
struct isl_mat *T1 = NULL;
struct isl_mat *T2 = NULL;
struct isl_basic_set *bset = NULL;
struct isl_basic_set *hull = NULL;
bset = isl_basic_map_underlying_set(bmap);
if (!bset)
return NULL;
if (bset->n_eq)
bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
if (!bset)
goto error;
hull = uset_affine_hull(bset);
if (!T2)
return hull;
if (!hull) {
isl_mat_free(T1);
isl_mat_free(T2);
} else {
struct isl_vec *sample = isl_vec_copy(hull->sample);
if (sample && sample->size > 0)
sample = isl_mat_vec_product(T1, sample);
else
isl_mat_free(T1);
hull = isl_basic_set_preimage(hull, T2);
if (hull) {
isl_vec_free(hull->sample);
hull->sample = sample;
} else
isl_vec_free(sample);
}
return hull;
error:
isl_mat_free(T1);
isl_mat_free(T2);
isl_basic_set_free(bset);
isl_basic_set_free(hull);
return NULL;
}
/* Detect and make explicit all equalities satisfied by the (integer)
* points in bmap.
*/
__isl_give isl_basic_map *isl_basic_map_detect_equalities(
__isl_take isl_basic_map *bmap)
{
int i, j;
isl_size total;
struct isl_basic_set *hull = NULL;
if (!bmap)
return NULL;
if (bmap->n_ineq == 0)
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
return isl_basic_map_implicit_equalities(bmap);
hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
if (!hull)
goto error;
if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
isl_basic_set_free(hull);
return isl_basic_map_set_to_empty(bmap);
}
bmap = isl_basic_map_extend(bmap, 0, hull->n_eq, 0);
total = isl_basic_set_dim(hull, isl_dim_all);
if (total < 0)
goto error;
for (i = 0; i < hull->n_eq; ++i) {
j = isl_basic_map_alloc_equality(bmap);
if (j < 0)
goto error;
isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + total);
}
isl_vec_free(bmap->sample);
bmap->sample = isl_vec_copy(hull->sample);
isl_basic_set_free(hull);
ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
bmap = isl_basic_map_simplify(bmap);
return isl_basic_map_finalize(bmap);
error:
isl_basic_set_free(hull);
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_detect_equalities(
__isl_take isl_basic_set *bset)
{
return bset_from_bmap(
isl_basic_map_detect_equalities(bset_to_bmap(bset)));
}
__isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
{
return isl_map_inline_foreach_basic_map(map,
&isl_basic_map_detect_equalities);
}
__isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
{
return set_from_map(isl_map_detect_equalities(set_to_map(set)));
}
/* Return the superset of "bmap" described by the equalities
* satisfied by "bmap" that are already known.
*/
__isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
__isl_take isl_basic_map *bmap)
{
bmap = isl_basic_map_cow(bmap);
if (bmap)
isl_basic_map_free_inequality(bmap, bmap->n_ineq);
bmap = isl_basic_map_finalize(bmap);
return bmap;
}
/* Return the superset of "bset" described by the equalities
* satisfied by "bset" that are already known.
*/
__isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
__isl_take isl_basic_set *bset)
{
return isl_basic_map_plain_affine_hull(bset);
}
/* After computing the rational affine hull (by detecting the implicit
* equalities), we compute the additional equalities satisfied by
* the integer points (if any) and add the original equalities back in.
*/
__isl_give isl_basic_map *isl_basic_map_affine_hull(
__isl_take isl_basic_map *bmap)
{
bmap = isl_basic_map_detect_equalities(bmap);
bmap = isl_basic_map_plain_affine_hull(bmap);
return bmap;
}
__isl_give isl_basic_set *isl_basic_set_affine_hull(
__isl_take isl_basic_set *bset)
{
return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
}
/* Given a rational affine matrix "M", add stride constraints to "bmap"
* that ensure that
*
* M(x)
*
* is an integer vector. The variables x include all the variables
* of "bmap" except the unknown divs.
*
* If d is the common denominator of M, then we need to impose that
*
* d M(x) = 0 mod d
*
* or
*
* exists alpha : d M(x) = d alpha
*
* This function is similar to add_strides in isl_morph.c
*/
static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
__isl_keep isl_mat *M, int n_known)
{
int i, div, k;
isl_int gcd;
if (isl_int_is_one(M->row[0][0]))
return bmap;
bmap = isl_basic_map_extend(bmap, M->n_row - 1, M->n_row - 1, 0);
isl_int_init(gcd);
for (i = 1; i < M->n_row; ++i) {
isl_seq_gcd(M->row[i], M->n_col, &gcd);
if (isl_int_is_divisible_by(gcd, M->row[0][0]))
continue;
div = isl_basic_map_alloc_div(bmap);
if (div < 0)
goto error;
isl_int_set_si(bmap->div[div][0], 0);
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
goto error;
isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
isl_int_set(bmap->eq[k][M->n_col - n_known + div],
M->row[0][0]);
}
isl_int_clear(gcd);
return bmap;
error:
isl_int_clear(gcd);
isl_basic_map_free(bmap);
return NULL;
}
/* If there are any equalities that involve (multiple) unknown divs,
* then extract the stride information encoded by those equalities
* and make it explicitly available in "bmap".
*
* We first sort the divs so that the unknown divs appear last and
* then we count how many equalities involve these divs.
*
* Let these equalities be of the form
*
* A(x) + B y = 0
*
* where y represents the unknown divs and x the remaining variables.
* Let [H 0] be the Hermite Normal Form of B, i.e.,
*
* B = [H 0] Q
*
* Then x is a solution of the equalities iff
*
* H^-1 A(x) (= - [I 0] Q y)
*
* is an integer vector. Let d be the common denominator of H^-1.
* We impose
*
* d H^-1 A(x) = d alpha
*
* in add_strides, with alpha fresh existentially quantified variables.
*/
static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
__isl_take isl_basic_map *bmap)
{
isl_bool known;
int n_known;
int n, n_col;
isl_size v_div;
isl_ctx *ctx;
isl_mat *A, *B, *M;
known = isl_basic_map_divs_known(bmap);
if (known < 0)
return isl_basic_map_free(bmap);
if (known)
return bmap;
bmap = isl_basic_map_sort_divs(bmap);
bmap = isl_basic_map_gauss(bmap, NULL);
if (!bmap)
return NULL;
for (n_known = 0; n_known < bmap->n_div; ++n_known)
if (isl_int_is_zero(bmap->div[n_known][0]))
break;
v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
if (v_div < 0)
return isl_basic_map_free(bmap);
for (n = 0; n < bmap->n_eq; ++n)
if (isl_seq_first_non_zero(bmap->eq[n] + 1 + v_div + n_known,
bmap->n_div - n_known) == -1)
break;
if (n == 0)
return bmap;
ctx = isl_basic_map_get_ctx(bmap);
B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + v_div + n_known);
n_col = bmap->n_div - n_known;
A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + v_div + n_known, n_col);
A = isl_mat_left_hermite(A, 0, NULL, NULL);
A = isl_mat_drop_cols(A, n, n_col - n);
A = isl_mat_lin_to_aff(A);
A = isl_mat_right_inverse(A);
B = isl_mat_insert_zero_rows(B, 0, 1);
B = isl_mat_set_element_si(B, 0, 0, 1);
M = isl_mat_product(A, B);
if (!M)
return isl_basic_map_free(bmap);
bmap = add_strides(bmap, M, n_known);
bmap = isl_basic_map_gauss(bmap, NULL);
isl_mat_free(M);
return bmap;
}
/* Compute the affine hull of each basic map in "map" separately
* and make all stride information explicit so that we can remove
* all unknown divs without losing this information.
* The result is also guaranteed to be gaussed.
*
* In simple cases where a div is determined by an equality,
* calling isl_basic_map_gauss is enough to make the stride information
* explicit, as it will derive an explicit representation for the div
* from the equality. If, however, the stride information
* is encoded through multiple unknown divs then we need to make
* some extra effort in isl_basic_map_make_strides_explicit.
*/
static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
{
int i;
map = isl_map_cow(map);
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_affine_hull(map->p[i]);
map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
if (!map->p[i])
return isl_map_free(map);
}
return map;
}
static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
{
return isl_map_local_affine_hull(set);
}
/* Return an empty basic map living in the same space as "map".
*/
static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
__isl_take isl_map *map)
{
isl_space *space;
space = isl_map_get_space(map);
isl_map_free(map);
return isl_basic_map_empty(space);
}
/* Compute the affine hull of "map".
*
* We first compute the affine hull of each basic map separately.
* Then we align the divs and recompute the affine hulls of the basic
* maps since some of them may now have extra divs.
* In order to avoid performing parametric integer programming to
* compute explicit expressions for the divs, possible leading to
* an explosion in the number of basic maps, we first drop all unknown
* divs before aligning the divs. Note that isl_map_local_affine_hull tries
* to make sure that all stride information is explicitly available
* in terms of known divs. This involves calling isl_basic_set_gauss,
* which is also needed because affine_hull assumes its input has been gaussed,
* while isl_map_affine_hull may be called on input that has not been gaussed,
* in particular from initial_facet_constraint.
* Similarly, align_divs may reorder some divs so that we need to
* gauss the result again.
* Finally, we combine the individual affine hulls into a single
* affine hull.
*/
__isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
{
struct isl_basic_map *model = NULL;
struct isl_basic_map *hull = NULL;
struct isl_set *set;
isl_basic_set *bset;
map = isl_map_detect_equalities(map);
map = isl_map_local_affine_hull(map);
map = isl_map_remove_empty_parts(map);
map = isl_map_remove_unknown_divs(map);
map = isl_map_align_divs_internal(map);
if (!map)
return NULL;
if (map->n == 0)
return replace_map_by_empty_basic_map(map);
model = isl_basic_map_copy(map->p[0]);
set = isl_map_underlying_set(map);
set = isl_set_cow(set);
set = isl_set_local_affine_hull(set);
if (!set)
goto error;
while (set->n > 1)
set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
bset = isl_basic_set_copy(set->p[0]);
hull = isl_basic_map_overlying_set(bset, model);
isl_set_free(set);
hull = isl_basic_map_simplify(hull);
return isl_basic_map_finalize(hull);
error:
isl_basic_map_free(model);
isl_set_free(set);
return NULL;
}
__isl_give isl_basic_set *isl_set_affine_hull(__isl_take isl_set *set)
{
return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));
}