isl_coalesce.c 130 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 * Copyright 2012-2013 Ecole Normale Superieure
 * Copyright 2014      INRIA Rocquencourt
 * Copyright 2016      INRIA Paris
 * Copyright 2020      Cerebras Systems
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France 
 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 * B.P. 105 - 78153 Le Chesnay, France
 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
 * CS 42112, 75589 Paris Cedex 12, France
 * and Cerebras Systems, 175 S San Antonio Rd, Los Altos, CA, USA
 */

#include <isl_ctx_private.h>
#include "isl_map_private.h"
#include <isl_seq.h>
#include <isl/options.h>
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_local_space_private.h>
#include <isl_val_private.h>
#include <isl_vec_private.h>
#include <isl_aff_private.h>
#include <isl_equalities.h>
#include <isl_constraint_private.h>

#include <set_to_map.c>
#include <set_from_map.c>

#define STATUS_ERROR		-1
#define STATUS_REDUNDANT	 1
#define STATUS_VALID	 	 2
#define STATUS_SEPARATE	 	 3
#define STATUS_CUT	 	 4
#define STATUS_ADJ_EQ	 	 5
#define STATUS_ADJ_INEQ	 	 6

static int status_in(isl_int *ineq, struct isl_tab *tab)
{
	enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
	switch (type) {
	default:
	case isl_ineq_error:		return STATUS_ERROR;
	case isl_ineq_redundant:	return STATUS_VALID;
	case isl_ineq_separate:		return STATUS_SEPARATE;
	case isl_ineq_cut:		return STATUS_CUT;
	case isl_ineq_adj_eq:		return STATUS_ADJ_EQ;
	case isl_ineq_adj_ineq:		return STATUS_ADJ_INEQ;
	}
}

/* Compute the position of the equalities of basic map "bmap_i"
 * with respect to the basic map represented by "tab_j".
 * The resulting array has twice as many entries as the number
 * of equalities corresponding to the two inequalities to which
 * each equality corresponds.
 */
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
	struct isl_tab *tab_j)
{
	int k, l;
	int *eq;
	isl_size dim;

	dim = isl_basic_map_dim(bmap_i, isl_dim_all);
	if (dim < 0)
		return NULL;

	eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
	if (!eq)
		return NULL;

	for (k = 0; k < bmap_i->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
			eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
			if (eq[2 * k + l] == STATUS_ERROR)
				goto error;
		}
	}

	return eq;
error:
	free(eq);
	return NULL;
}

/* Compute the position of the inequalities of basic map "bmap_i"
 * (also represented by "tab_i", if not NULL) with respect to the basic map
 * represented by "tab_j".
 */
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
	struct isl_tab *tab_i, struct isl_tab *tab_j)
{
	int k;
	unsigned n_eq = bmap_i->n_eq;
	int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);

	if (!ineq)
		return NULL;

	for (k = 0; k < bmap_i->n_ineq; ++k) {
		if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
			ineq[k] = STATUS_REDUNDANT;
			continue;
		}
		ineq[k] = status_in(bmap_i->ineq[k], tab_j);
		if (ineq[k] == STATUS_ERROR)
			goto error;
		if (ineq[k] == STATUS_SEPARATE)
			break;
	}

	return ineq;
error:
	free(ineq);
	return NULL;
}

static int any(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			return 1;
	return 0;
}

/* Return the first position of "status" in the list "con" of length "len".
 * Return -1 if there is no such entry.
 */
static int find(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			return i;
	return -1;
}

static int count(int *con, unsigned len, int status)
{
	int i;
	int c = 0;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			c++;
	return c;
}

static int all(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i) {
		if (con[i] == STATUS_REDUNDANT)
			continue;
		if (con[i] != status)
			return 0;
	}
	return 1;
}

/* Internal information associated to a basic map in a map
 * that is to be coalesced by isl_map_coalesce.
 *
 * "bmap" is the basic map itself (or NULL if "removed" is set)
 * "tab" is the corresponding tableau (or NULL if "removed" is set)
 * "hull_hash" identifies the affine space in which "bmap" lives.
 * "modified" is set if this basic map may not be identical
 * to any of the basic maps in the input.
 * "removed" is set if this basic map has been removed from the map
 * "simplify" is set if this basic map may have some unknown integer
 * divisions that were not present in the input basic maps.  The basic
 * map should then be simplified such that we may be able to find
 * a definition among the constraints.
 *
 * "eq" and "ineq" are only set if we are currently trying to coalesce
 * this basic map with another basic map, in which case they represent
 * the position of the inequalities of this basic map with respect to
 * the other basic map.  The number of elements in the "eq" array
 * is twice the number of equalities in the "bmap", corresponding
 * to the two inequalities that make up each equality.
 */
struct isl_coalesce_info {
	isl_basic_map *bmap;
	struct isl_tab *tab;
	uint32_t hull_hash;
	int modified;
	int removed;
	int simplify;
	int *eq;
	int *ineq;
};

/* Is there any (half of an) equality constraint in the description
 * of the basic map represented by "info" that
 * has position "status" with respect to the other basic map?
 */
static int any_eq(struct isl_coalesce_info *info, int status)
{
	isl_size n_eq;

	n_eq = isl_basic_map_n_equality(info->bmap);
	return any(info->eq, 2 * n_eq, status);
}

/* Is there any inequality constraint in the description
 * of the basic map represented by "info" that
 * has position "status" with respect to the other basic map?
 */
static int any_ineq(struct isl_coalesce_info *info, int status)
{
	isl_size n_ineq;

	n_ineq = isl_basic_map_n_inequality(info->bmap);
	return any(info->ineq, n_ineq, status);
}

/* Return the position of the first half on an equality constraint
 * in the description of the basic map represented by "info" that
 * has position "status" with respect to the other basic map.
 * The returned value is twice the position of the equality constraint
 * plus zero for the negative half and plus one for the positive half.
 * Return -1 if there is no such entry.
 */
static int find_eq(struct isl_coalesce_info *info, int status)
{
	isl_size n_eq;

	n_eq = isl_basic_map_n_equality(info->bmap);
	return find(info->eq, 2 * n_eq, status);
}

/* Return the position of the first inequality constraint in the description
 * of the basic map represented by "info" that
 * has position "status" with respect to the other basic map.
 * Return -1 if there is no such entry.
 */
static int find_ineq(struct isl_coalesce_info *info, int status)
{
	isl_size n_ineq;

	n_ineq = isl_basic_map_n_inequality(info->bmap);
	return find(info->ineq, n_ineq, status);
}

/* Return the number of (halves of) equality constraints in the description
 * of the basic map represented by "info" that
 * have position "status" with respect to the other basic map.
 */
static int count_eq(struct isl_coalesce_info *info, int status)
{
	isl_size n_eq;

	n_eq = isl_basic_map_n_equality(info->bmap);
	return count(info->eq, 2 * n_eq, status);
}

/* Return the number of inequality constraints in the description
 * of the basic map represented by "info" that
 * have position "status" with respect to the other basic map.
 */
static int count_ineq(struct isl_coalesce_info *info, int status)
{
	isl_size n_ineq;

	n_ineq = isl_basic_map_n_inequality(info->bmap);
	return count(info->ineq, n_ineq, status);
}

/* Are all non-redundant constraints of the basic map represented by "info"
 * either valid or cut constraints with respect to the other basic map?
 */
static int all_valid_or_cut(struct isl_coalesce_info *info)
{
	int i;

	for (i = 0; i < 2 * info->bmap->n_eq; ++i) {
		if (info->eq[i] == STATUS_REDUNDANT)
			continue;
		if (info->eq[i] == STATUS_VALID)
			continue;
		if (info->eq[i] == STATUS_CUT)
			continue;
		return 0;
	}

	for (i = 0; i < info->bmap->n_ineq; ++i) {
		if (info->ineq[i] == STATUS_REDUNDANT)
			continue;
		if (info->ineq[i] == STATUS_VALID)
			continue;
		if (info->ineq[i] == STATUS_CUT)
			continue;
		return 0;
	}

	return 1;
}

/* Compute the hash of the (apparent) affine hull of info->bmap (with
 * the existentially quantified variables removed) and store it
 * in info->hash.
 */
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
{
	isl_basic_map *hull;
	isl_size n_div;

	hull = isl_basic_map_copy(info->bmap);
	hull = isl_basic_map_plain_affine_hull(hull);
	n_div = isl_basic_map_dim(hull, isl_dim_div);
	if (n_div < 0)
		hull = isl_basic_map_free(hull);
	hull = isl_basic_map_drop_constraints_involving_dims(hull,
							isl_dim_div, 0, n_div);
	info->hull_hash = isl_basic_map_get_hash(hull);
	isl_basic_map_free(hull);

	return hull ? 0 : -1;
}

/* Free all the allocated memory in an array
 * of "n" isl_coalesce_info elements.
 */
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
{
	int i;

	if (!info)
		return;

	for (i = 0; i < n; ++i) {
		isl_basic_map_free(info[i].bmap);
		isl_tab_free(info[i].tab);
	}

	free(info);
}

/* Clear the memory associated to "info".
 */
static void clear(struct isl_coalesce_info *info)
{
	info->bmap = isl_basic_map_free(info->bmap);
	isl_tab_free(info->tab);
	info->tab = NULL;
}

/* Drop the basic map represented by "info".
 * That is, clear the memory associated to the entry and
 * mark it as having been removed.
 */
static void drop(struct isl_coalesce_info *info)
{
	clear(info);
	info->removed = 1;
}

/* Exchange the information in "info1" with that in "info2".
 */
static void exchange(struct isl_coalesce_info *info1,
	struct isl_coalesce_info *info2)
{
	struct isl_coalesce_info info;

	info = *info1;
	*info1 = *info2;
	*info2 = info;
}

/* This type represents the kind of change that has been performed
 * while trying to coalesce two basic maps.
 *
 * isl_change_none: nothing was changed
 * isl_change_drop_first: the first basic map was removed
 * isl_change_drop_second: the second basic map was removed
 * isl_change_fuse: the two basic maps were replaced by a new basic map.
 */
enum isl_change {
	isl_change_error = -1,
	isl_change_none = 0,
	isl_change_drop_first,
	isl_change_drop_second,
	isl_change_fuse,
};

/* Update "change" based on an interchange of the first and the second
 * basic map.  That is, interchange isl_change_drop_first and
 * isl_change_drop_second.
 */
static enum isl_change invert_change(enum isl_change change)
{
	switch (change) {
	case isl_change_error:
		return isl_change_error;
	case isl_change_none:
		return isl_change_none;
	case isl_change_drop_first:
		return isl_change_drop_second;
	case isl_change_drop_second:
		return isl_change_drop_first;
	case isl_change_fuse:
		return isl_change_fuse;
	}

	return isl_change_error;
}

/* Add the valid constraints of the basic map represented by "info"
 * to "bmap".  "len" is the size of the constraints.
 * If only one of the pair of inequalities that make up an equality
 * is valid, then add that inequality.
 */
static __isl_give isl_basic_map *add_valid_constraints(
	__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
	unsigned len)
{
	int k, l;

	if (!bmap)
		return NULL;

	for (k = 0; k < info->bmap->n_eq; ++k) {
		if (info->eq[2 * k] == STATUS_VALID &&
		    info->eq[2 * k + 1] == STATUS_VALID) {
			l = isl_basic_map_alloc_equality(bmap);
			if (l < 0)
				return isl_basic_map_free(bmap);
			isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
		} else if (info->eq[2 * k] == STATUS_VALID) {
			l = isl_basic_map_alloc_inequality(bmap);
			if (l < 0)
				return isl_basic_map_free(bmap);
			isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
		} else if (info->eq[2 * k + 1] == STATUS_VALID) {
			l = isl_basic_map_alloc_inequality(bmap);
			if (l < 0)
				return isl_basic_map_free(bmap);
			isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
		}
	}

	for (k = 0; k < info->bmap->n_ineq; ++k) {
		if (info->ineq[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(bmap);
		if (l < 0)
			return isl_basic_map_free(bmap);
		isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
	}

	return bmap;
}

/* Is "bmap" defined by a number of (non-redundant) constraints that
 * is greater than the number of constraints of basic maps i and j combined?
 * Equalities are counted as two inequalities.
 */
static int number_of_constraints_increases(int i, int j,
	struct isl_coalesce_info *info,
	__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
{
	int k, n_old, n_new;

	n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
	n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;

	n_new = 2 * bmap->n_eq;
	for (k = 0; k < bmap->n_ineq; ++k)
		if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
			++n_new;

	return n_new > n_old;
}

/* Replace the pair of basic maps i and j by the basic map bounded
 * by the valid constraints in both basic maps and the constraints
 * in extra (if not NULL).
 * Place the fused basic map in the position that is the smallest of i and j.
 *
 * If "detect_equalities" is set, then look for equalities encoded
 * as pairs of inequalities.
 * If "check_number" is set, then the original basic maps are only
 * replaced if the total number of constraints does not increase.
 * While the number of integer divisions in the two basic maps
 * is assumed to be the same, the actual definitions may be different.
 * We only copy the definition from one of the basic map if it is
 * the same as that of the other basic map.  Otherwise, we mark
 * the integer division as unknown and simplify the basic map
 * in an attempt to recover the integer division definition.
 * If any extra constraints get introduced, then these may
 * involve integer divisions with a unit coefficient.
 * Eliminate those that do not appear with any other coefficient
 * in other constraints, to ensure they get eliminated completely,
 * improving the chances of further coalescing.
 */
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
	__isl_keep isl_mat *extra, int detect_equalities, int check_number)
{
	int k, l;
	struct isl_basic_map *fused = NULL;
	struct isl_tab *fused_tab = NULL;
	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	unsigned extra_rows = extra ? extra->n_row : 0;
	unsigned n_eq, n_ineq;
	int simplify = 0;

	if (total < 0)
		return isl_change_error;
	if (j < i)
		return fuse(j, i, info, extra, detect_equalities, check_number);

	n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
	n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
	fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
		    info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
	fused = add_valid_constraints(fused, &info[i], 1 + total);
	fused = add_valid_constraints(fused, &info[j], 1 + total);
	if (!fused)
		goto error;
	if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
	    ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
		ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);

	for (k = 0; k < info[i].bmap->n_div; ++k) {
		int l = isl_basic_map_alloc_div(fused);
		if (l < 0)
			goto error;
		if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
				1 + 1 + total)) {
			isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
				1 + 1 + total);
		} else {
			isl_int_set_si(fused->div[l][0], 0);
			simplify = 1;
		}
	}

	for (k = 0; k < extra_rows; ++k) {
		l = isl_basic_map_alloc_inequality(fused);
		if (l < 0)
			goto error;
		isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
	}

	if (detect_equalities)
		fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
	fused = isl_basic_map_gauss(fused, NULL);
	if (simplify || info[j].simplify) {
		fused = isl_basic_map_simplify(fused);
		info[i].simplify = 0;
	} else if (extra_rows > 0) {
		fused = isl_basic_map_eliminate_pure_unit_divs(fused);
	}
	fused = isl_basic_map_finalize(fused);

	fused_tab = isl_tab_from_basic_map(fused, 0);
	if (isl_tab_detect_redundant(fused_tab) < 0)
		goto error;

	if (check_number &&
	    number_of_constraints_increases(i, j, info, fused, fused_tab)) {
		isl_tab_free(fused_tab);
		isl_basic_map_free(fused);
		return isl_change_none;
	}

	clear(&info[i]);
	info[i].bmap = fused;
	info[i].tab = fused_tab;
	info[i].modified = 1;
	drop(&info[j]);

	return isl_change_fuse;
error:
	isl_tab_free(fused_tab);
	isl_basic_map_free(fused);
	return isl_change_error;
}

/* Given a pair of basic maps i and j such that all constraints are either
 * "valid" or "cut", check if the facets corresponding to the "cut"
 * constraints of i lie entirely within basic map j.
 * If so, replace the pair by the basic map consisting of the valid
 * constraints in both basic maps.
 * Checking whether the facet lies entirely within basic map j
 * is performed by checking whether the constraints of basic map j
 * are valid for the facet.  These tests are performed on a rational
 * tableau to avoid the theoretical possibility that a constraint
 * that was considered to be a cut constraint for the entire basic map i
 * happens to be considered to be a valid constraint for the facet,
 * even though it cuts off the same rational points.
 *
 * To see that we are not introducing any extra points, call the
 * two basic maps A and B and the resulting map U and let x
 * be an element of U \setminus ( A \cup B ).
 * A line connecting x with an element of A \cup B meets a facet F
 * of either A or B.  Assume it is a facet of B and let c_1 be
 * the corresponding facet constraint.  We have c_1(x) < 0 and
 * so c_1 is a cut constraint.  This implies that there is some
 * (possibly rational) point x' satisfying the constraints of A
 * and the opposite of c_1 as otherwise c_1 would have been marked
 * valid for A.  The line connecting x and x' meets a facet of A
 * in a (possibly rational) point that also violates c_1, but this
 * is impossible since all cut constraints of B are valid for all
 * cut facets of A.
 * In case F is a facet of A rather than B, then we can apply the
 * above reasoning to find a facet of B separating x from A \cup B first.
 */
static enum isl_change check_facets(int i, int j,
	struct isl_coalesce_info *info)
{
	int k, l;
	struct isl_tab_undo *snap, *snap2;
	unsigned n_eq = info[i].bmap->n_eq;

	snap = isl_tab_snap(info[i].tab);
	if (isl_tab_mark_rational(info[i].tab) < 0)
		return isl_change_error;
	snap2 = isl_tab_snap(info[i].tab);

	for (k = 0; k < info[i].bmap->n_ineq; ++k) {
		if (info[i].ineq[k] != STATUS_CUT)
			continue;
		if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
			return isl_change_error;
		for (l = 0; l < info[j].bmap->n_ineq; ++l) {
			int stat;
			if (info[j].ineq[l] != STATUS_CUT)
				continue;
			stat = status_in(info[j].bmap->ineq[l], info[i].tab);
			if (stat < 0)
				return isl_change_error;
			if (stat != STATUS_VALID)
				break;
		}
		if (isl_tab_rollback(info[i].tab, snap2) < 0)
			return isl_change_error;
		if (l < info[j].bmap->n_ineq)
			break;
	}

	if (k < info[i].bmap->n_ineq) {
		if (isl_tab_rollback(info[i].tab, snap) < 0)
			return isl_change_error;
		return isl_change_none;
	}
	return fuse(i, j, info, NULL, 0, 0);
}

/* Check if info->bmap contains the basic map represented
 * by the tableau "tab".
 * For each equality, we check both the constraint itself
 * (as an inequality) and its negation.  Make sure the
 * equality is returned to its original state before returning.
 */
static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab)
{
	int k;
	isl_size dim;
	isl_basic_map *bmap = info->bmap;

	dim = isl_basic_map_dim(bmap, isl_dim_all);
	if (dim < 0)
		return isl_bool_error;
	for (k = 0; k < bmap->n_eq; ++k) {
		int stat;
		isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
		stat = status_in(bmap->eq[k], tab);
		isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
		if (stat < 0)
			return isl_bool_error;
		if (stat != STATUS_VALID)
			return isl_bool_false;
		stat = status_in(bmap->eq[k], tab);
		if (stat < 0)
			return isl_bool_error;
		if (stat != STATUS_VALID)
			return isl_bool_false;
	}

	for (k = 0; k < bmap->n_ineq; ++k) {
		int stat;
		if (info->ineq[k] == STATUS_REDUNDANT)
			continue;
		stat = status_in(bmap->ineq[k], tab);
		if (stat < 0)
			return isl_bool_error;
		if (stat != STATUS_VALID)
			return isl_bool_false;
	}
	return isl_bool_true;
}

/* Basic map "i" has an inequality "k" that is adjacent
 * to some inequality of basic map "j".  All the other inequalities
 * are valid for "j".
 * If not NULL, then "extra" contains extra wrapping constraints that are valid
 * for both "i" and "j".
 * Check if basic map "j" forms an extension of basic map "i",
 * taking into account the extra constraints, if any.
 *
 * Note that this function is only called if some of the equalities or
 * inequalities of basic map "j" do cut basic map "i".  The function is
 * correct even if there are no such cut constraints, but in that case
 * the additional checks performed by this function are overkill.
 *
 * In particular, we replace constraint k, say f >= 0, by constraint
 * f <= -1, add the inequalities of "j" that are valid for "i",
 * as well as the "extra" constraints, if any,
 * and check if the result is a subset of basic map "j".
 * To improve the chances of the subset relation being detected,
 * any variable that only attains a single integer value
 * in the tableau of "i" is first fixed to that value.
 * If the result is a subset, then we know that this result is exactly equal
 * to basic map "j" since all its constraints are valid for basic map "j".
 * By combining the valid constraints of "i" (all equalities and all
 * inequalities except "k"), the valid constraints of "j" and
 * the "extra" constraints, if any, we therefore
 * obtain a basic map that is equal to their union.
 * In this case, there is no need to perform a rollback of the tableau
 * since it is going to be destroyed in fuse().
 *
 *
 *	|\__			|\__
 *	|   \__			|   \__
 *	|      \_	=>	|      \__
 *	|_______| _		|_________\
 *
 *
 *	|\			|\
 *	| \			| \
 *	|  \			|  \
 *	|  |			|   \
 *	|  ||\		=>      |    \
 *	|  || \			|     \
 *	|  ||  |		|      |
 *	|__||_/			|_____/
 *
 *
 *	_______			 _______
 *     |       | __		|       \__
 *     |       ||__|	=>	|        __|
 *     |_______|		|_______/
 */
static enum isl_change is_adj_ineq_extension_with_wraps(int i, int j, int k,
	struct isl_coalesce_info *info, __isl_keep isl_mat *extra)
{
	struct isl_tab_undo *snap;
	isl_size n_eq_i, n_ineq_j, n_extra;
	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	isl_stat r;
	isl_bool super;

	if (total < 0)
		return isl_change_error;

	n_eq_i = isl_basic_map_n_equality(info[i].bmap);
	n_ineq_j = isl_basic_map_n_inequality(info[j].bmap);
	n_extra = isl_mat_rows(extra);
	if (n_eq_i < 0 || n_ineq_j < 0 || n_extra < 0)
		return isl_change_error;

	if (isl_tab_extend_cons(info[i].tab, 1 + n_ineq_j + n_extra) < 0)
		return isl_change_error;

	snap = isl_tab_snap(info[i].tab);

	if (isl_tab_unrestrict(info[i].tab, n_eq_i + k) < 0)
		return isl_change_error;

	isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
	isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
	r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
	isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
	isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
	if (r < 0)
		return isl_change_error;

	for (k = 0; k < n_ineq_j; ++k) {
		if (info[j].ineq[k] != STATUS_VALID)
			continue;
		if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
			return isl_change_error;
	}
	for (k = 0; k < n_extra; ++k) {
		if (isl_tab_add_ineq(info[i].tab, extra->row[k]) < 0)
			return isl_change_error;
	}
	if (isl_tab_detect_constants(info[i].tab) < 0)
		return isl_change_error;

	super = contains(&info[j], info[i].tab);
	if (super < 0)
		return isl_change_error;
	if (super)
		return fuse(i, j, info, extra, 0, 0);

	if (isl_tab_rollback(info[i].tab, snap) < 0)
		return isl_change_error;

	return isl_change_none;
}

/* Given an affine transformation matrix "T", does row "row" represent
 * anything other than a unit vector (possibly shifted by a constant)
 * that is not involved in any of the other rows?
 *
 * That is, if a constraint involves the variable corresponding to
 * the row, then could its preimage by "T" have any coefficients
 * that are different from those in the original constraint?
 */
static int not_unique_unit_row(__isl_keep isl_mat *T, int row)
{
	int i, j;
	int len = T->n_col - 1;

	i = isl_seq_first_non_zero(T->row[row] + 1, len);
	if (i < 0)
		return 1;
	if (!isl_int_is_one(T->row[row][1 + i]) &&
	    !isl_int_is_negone(T->row[row][1 + i]))
		return 1;

	j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1));
	if (j >= 0)
		return 1;

	for (j = 1; j < T->n_row; ++j) {
		if (j == row)
			continue;
		if (!isl_int_is_zero(T->row[j][1 + i]))
			return 1;
	}

	return 0;
}

/* Does inequality constraint "ineq" of "bmap" involve any of
 * the variables marked in "affected"?
 * "total" is the total number of variables, i.e., the number
 * of entries in "affected".
 */
static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq,
	int *affected, int total)
{
	int i;

	for (i = 0; i < total; ++i) {
		if (!affected[i])
			continue;
		if (!isl_int_is_zero(bmap->ineq[ineq][1 + i]))
			return isl_bool_true;
	}

	return isl_bool_false;
}

/* Given the compressed version of inequality constraint "ineq"
 * of info->bmap in "v", check if the constraint can be tightened,
 * where the compression is based on an equality constraint valid
 * for info->tab.
 * If so, add the tightened version of the inequality constraint
 * to info->tab.  "v" may be modified by this function.
 *
 * That is, if the compressed constraint is of the form
 *
 *	m f() + c >= 0
 *
 * with 0 < c < m, then it is equivalent to
 *
 *	f() >= 0
 *
 * This means that c can also be subtracted from the original,
 * uncompressed constraint without affecting the integer points
 * in info->tab.  Add this tightened constraint as an extra row
 * to info->tab to make this information explicitly available.
 */
static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info,
	int ineq, __isl_take isl_vec *v)
{
	isl_ctx *ctx;
	isl_stat r;

	if (!v)
		return NULL;

	ctx = isl_vec_get_ctx(v);
	isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
	if (isl_int_is_zero(ctx->normalize_gcd) ||
	    isl_int_is_one(ctx->normalize_gcd)) {
		return v;
	}

	v = isl_vec_cow(v);
	if (!v)
		return NULL;

	isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd);
	if (isl_int_is_zero(v->el[0]))
		return v;

	if (isl_tab_extend_cons(info->tab, 1) < 0)
		return isl_vec_free(v);

	isl_int_sub(info->bmap->ineq[ineq][0],
		    info->bmap->ineq[ineq][0], v->el[0]);
	r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]);
	isl_int_add(info->bmap->ineq[ineq][0],
		    info->bmap->ineq[ineq][0], v->el[0]);

	if (r < 0)
		return isl_vec_free(v);

	return v;
}

/* Tighten the (non-redundant) constraints on the facet represented
 * by info->tab.
 * In particular, on input, info->tab represents the result
 * of relaxing the "n" inequality constraints of info->bmap in "relaxed"
 * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
 * replacing the one at index "l" by the corresponding equality,
 * i.e., f_k + 1 = 0, with k = relaxed[l].
 *
 * Compute a variable compression from the equality constraint f_k + 1 = 0
 * and use it to tighten the other constraints of info->bmap
 * (that is, all constraints that have not been relaxed),
 * updating info->tab (and leaving info->bmap untouched).
 * The compression handles essentially two cases, one where a variable
 * is assigned a fixed value and can therefore be eliminated, and one
 * where one variable is a shifted multiple of some other variable and
 * can therefore be replaced by that multiple.
 * Gaussian elimination would also work for the first case, but for
 * the second case, the effectiveness would depend on the order
 * of the variables.
 * After compression, some of the constraints may have coefficients
 * with a common divisor.  If this divisor does not divide the constant
 * term, then the constraint can be tightened.
 * The tightening is performed on the tableau info->tab by introducing
 * extra (temporary) constraints.
 *
 * Only constraints that are possibly affected by the compression are
 * considered.  In particular, if the constraint only involves variables
 * that are directly mapped to a distinct set of other variables, then
 * no common divisor can be introduced and no tightening can occur.
 *
 * It is important to only consider the non-redundant constraints
 * since the facet constraint has been relaxed prior to the call
 * to this function, meaning that the constraints that were redundant
 * prior to the relaxation may no longer be redundant.
 * These constraints will be ignored in the fused result, so
 * the fusion detection should not exploit them.
 */
static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info,
	int n, int *relaxed, int l)
{
	isl_size total;
	isl_ctx *ctx;
	isl_vec *v = NULL;
	isl_mat *T;
	int i;
	int k;
	int *affected;

	k = relaxed[l];
	ctx = isl_basic_map_get_ctx(info->bmap);
	total = isl_basic_map_dim(info->bmap, isl_dim_all);
	if (total < 0)
		return isl_stat_error;
	isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
	T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total);
	T = isl_mat_variable_compression(T, NULL);
	isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
	if (!T)
		return isl_stat_error;
	if (T->n_col == 0) {
		isl_mat_free(T);
		return isl_stat_ok;
	}

	affected = isl_alloc_array(ctx, int, total);
	if (!affected)
		goto error;

	for (i = 0; i < total; ++i)
		affected[i] = not_unique_unit_row(T, 1 + i);

	for (i = 0; i < info->bmap->n_ineq; ++i) {
		isl_bool handle;
		if (any(relaxed, n, i))
			continue;
		if (info->ineq[i] == STATUS_REDUNDANT)
			continue;
		handle = is_affected(info->bmap, i, affected, total);
		if (handle < 0)
			goto error;
		if (!handle)
			continue;
		v = isl_vec_alloc(ctx, 1 + total);
		if (!v)
			goto error;
		isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total);
		v = isl_vec_mat_product(v, isl_mat_copy(T));
		v = try_tightening(info, i, v);
		isl_vec_free(v);
		if (!v)
			goto error;
	}

	isl_mat_free(T);
	free(affected);
	return isl_stat_ok;
error:
	isl_mat_free(T);
	free(affected);
	return isl_stat_error;
}

/* Replace the basic maps "i" and "j" by an extension of "i"
 * along the "n" inequality constraints in "relax" by one.
 * The tableau info[i].tab has already been extended.
 * Extend info[i].bmap accordingly by relaxing all constraints in "relax"
 * by one.
 * Each integer division that does not have exactly the same
 * definition in "i" and "j" is marked unknown and the basic map
 * is scheduled to be simplified in an attempt to recover
 * the integer division definition.
 * Place the extension in the position that is the smallest of i and j.
 */
static enum isl_change extend(int i, int j, int n, int *relax,
	struct isl_coalesce_info *info)
{
	int l;
	isl_size total;

	info[i].bmap = isl_basic_map_cow(info[i].bmap);
	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	if (total < 0)
		return isl_change_error;
	for (l = 0; l < info[i].bmap->n_div; ++l)
		if (!isl_seq_eq(info[i].bmap->div[l],
				info[j].bmap->div[l], 1 + 1 + total)) {
			isl_int_set_si(info[i].bmap->div[l][0], 0);
			info[i].simplify = 1;
		}
	for (l = 0; l < n; ++l)
		isl_int_add_ui(info[i].bmap->ineq[relax[l]][0],
				info[i].bmap->ineq[relax[l]][0], 1);
	ISL_F_CLR(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
	ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
	drop(&info[j]);
	info[i].modified = 1;
	if (j < i)
		exchange(&info[i], &info[j]);
	return isl_change_fuse;
}

/* Basic map "i" has "n" inequality constraints (collected in "relax")
 * that are such that they include basic map "j" if they are relaxed
 * by one.  All the other inequalities are valid for "j".
 * Check if basic map "j" forms an extension of basic map "i".
 *
 * In particular, relax the constraints in "relax", compute the corresponding
 * facets one by one and check whether each of these is included
 * in the other basic map.
 * Before testing for inclusion, the constraints on each facet
 * are tightened to increase the chance of an inclusion being detected.
 * (Adding the valid constraints of "j" to the tableau of "i", as is done
 * in is_adj_ineq_extension, may further increase those chances, but this
 * is not currently done.)
 * If each facet is included, we know that relaxing the constraints extends
 * the basic map with exactly the other basic map (we already know that this
 * other basic map is included in the extension, because all other
 * inequality constraints are valid of "j") and we can replace the
 * two basic maps by this extension.
 *
 * If any of the relaxed constraints turn out to be redundant, then bail out.
 * isl_tab_select_facet refuses to handle such constraints.  It may be
 * possible to handle them anyway by making a distinction between
 * redundant constraints with a corresponding facet that still intersects
 * the set (allowing isl_tab_select_facet to handle them) and
 * those where the facet does not intersect the set (which can be ignored
 * because the empty facet is trivially included in the other disjunct).
 * However, relaxed constraints that turn out to be redundant should
 * be fairly rare and no such instance has been reported where
 * coalescing would be successful.
 *        ____			  _____
 *       /    || 		 /     |
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 *
 *
 *	 \			|\
 *	|\\			| \
 *	| \\			|  \
 *	|  |		=>	|  /
 *	| /			| /
 *	|/			|/
 */
static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax,
	struct isl_coalesce_info *info)
{
	int l;
	isl_bool super;
	struct isl_tab_undo *snap, *snap2;
	unsigned n_eq = info[i].bmap->n_eq;

	for (l = 0; l < n; ++l)
		if (isl_tab_is_equality(info[i].tab, n_eq + relax[l]))
			return isl_change_none;

	snap = isl_tab_snap(info[i].tab);
	for (l = 0; l < n; ++l)
		if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0)
			return isl_change_error;
	for (l = 0; l < n; ++l) {
		if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l]))
			continue;
		if (isl_tab_rollback(info[i].tab, snap) < 0)
			return isl_change_error;
		return isl_change_none;
	}
	snap2 = isl_tab_snap(info[i].tab);
	for (l = 0; l < n; ++l) {
		if (isl_tab_rollback(info[i].tab, snap2) < 0)
			return isl_change_error;
		if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0)
			return isl_change_error;
		if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0)
			return isl_change_error;
		super = contains(&info[j], info[i].tab);
		if (super < 0)
			return isl_change_error;
		if (super)
			continue;
		if (isl_tab_rollback(info[i].tab, snap) < 0)
			return isl_change_error;
		return isl_change_none;
	}

	if (isl_tab_rollback(info[i].tab, snap2) < 0)
		return isl_change_error;
	return extend(i, j, n, relax, info);
}

/* Data structure that keeps track of the wrapping constraints
 * and of information to bound the coefficients of those constraints.
 *
 * "failed" is set if wrapping has failed.
 * bound is set if we want to apply a bound on the coefficients
 * mat contains the wrapping constraints
 * max is the bound on the coefficients (if bound is set)
 */
struct isl_wraps {
	int failed;
	int bound;
	isl_mat *mat;
	isl_int max;
};

/* Update wraps->max to be greater than or equal to the coefficients
 * in the equalities and inequalities of info->bmap that can be removed
 * if we end up applying wrapping.
 */
static isl_stat wraps_update_max(struct isl_wraps *wraps,
	struct isl_coalesce_info *info)
{
	int k;
	isl_int max_k;
	isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);

	if (total < 0)
		return isl_stat_error;
	isl_int_init(max_k);

	for (k = 0; k < info->bmap->n_eq; ++k) {
		if (info->eq[2 * k] == STATUS_VALID &&
		    info->eq[2 * k + 1] == STATUS_VALID)
			continue;
		isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
		if (isl_int_abs_gt(max_k, wraps->max))
			isl_int_set(wraps->max, max_k);
	}

	for (k = 0; k < info->bmap->n_ineq; ++k) {
		if (info->ineq[k] == STATUS_VALID ||
		    info->ineq[k] == STATUS_REDUNDANT)
			continue;
		isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
		if (isl_int_abs_gt(max_k, wraps->max))
			isl_int_set(wraps->max, max_k);
	}

	isl_int_clear(max_k);

	return isl_stat_ok;
}

/* Initialize the isl_wraps data structure.
 * If we want to bound the coefficients of the wrapping constraints,
 * we set wraps->max to the largest coefficient
 * in the equalities and inequalities that can be removed if we end up
 * applying wrapping.
 */
static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
	struct isl_coalesce_info *info, int i, int j)
{
	isl_ctx *ctx;

	wraps->failed = 0;
	wraps->bound = 0;
	wraps->mat = mat;
	if (!mat)
		return isl_stat_error;
	wraps->mat->n_row = 0;
	ctx = isl_mat_get_ctx(mat);
	wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
	if (!wraps->bound)
		return isl_stat_ok;
	isl_int_init(wraps->max);
	isl_int_set_si(wraps->max, 0);
	if (wraps_update_max(wraps, &info[i]) < 0)
		return isl_stat_error;
	if (wraps_update_max(wraps, &info[j]) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Free the contents of the isl_wraps data structure.
 */
static void wraps_free(struct isl_wraps *wraps)
{
	isl_mat_free(wraps->mat);
	if (wraps->bound)
		isl_int_clear(wraps->max);
}

/* Mark the wrapping as failed.
 */
static isl_stat wraps_mark_failed(struct isl_wraps *wraps)
{
	wraps->failed = 1;
	return isl_stat_ok;
}

/* Is the wrapping constraint in row "row" allowed?
 *
 * If wraps->bound is set, we check that none of the coefficients
 * is greater than wraps->max.
 */
static int allow_wrap(struct isl_wraps *wraps, int row)
{
	int i;

	if (!wraps->bound)
		return 1;

	for (i = 1; i < wraps->mat->n_col; ++i)
		if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
			return 0;

	return 1;
}

/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
 * to include "set" and add the result in position "w" of "wraps".
 * "len" is the total number of coefficients in "bound" and "ineq".
 * Return 1 on success, 0 on failure and -1 on error.
 * Wrapping can fail if the result of wrapping is equal to "bound"
 * or if we want to bound the sizes of the coefficients and
 * the wrapped constraint does not satisfy this bound.
 */
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
	isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
{
	isl_seq_cpy(wraps->mat->row[w], bound, len);
	if (negate) {
		isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
		ineq = wraps->mat->row[w + 1];
	}
	if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
		return -1;
	if (isl_seq_eq(wraps->mat->row[w], bound, len))
		return 0;
	if (!allow_wrap(wraps, w))
		return 0;
	return 1;
}

/* This function has two modes of operations.
 *
 * If "add_valid" is set, then all the constraints of info->bmap
 * (except the opposite of "bound") are valid for the other basic map.
 * In this case, attempts are made to wrap some of these valid constraints
 * to more tightly fit around "set".  Only successful wrappings are recorded
 * and failed wrappings are ignored.
 *
 * If "add_valid" is not set, then some of the constraints of info->bmap
 * are not valid for the other basic map, and only those are considered
 * for wrapping.  In this case all attempted wrappings need to succeed.
 * Otherwise "wraps" is marked as failed.
 * Note that the constraints that are valid for the other basic map
 * will be added to the combined basic map by default, so there is
 * no need to wrap them.
 * The caller wrap_in_facets even relies on this function not wrapping
 * any constraints that are already valid.
 *
 * Only consider constraints that are not redundant (as determined
 * by info->tab) and that are valid or invalid depending on "add_valid".
 * Wrap each constraint around "bound" such that it includes the whole
 * set "set" and append the resulting constraint to "wraps".
 * "wraps" is assumed to have been pre-allocated to the appropriate size.
 * wraps->n_row is the number of actual wrapped constraints that have
 * been added.
 * If any of the wrapping problems results in a constraint that is
 * identical to "bound", then this means that "set" is unbounded in such
 * a way that no wrapping is possible.
 * Similarly, if we want to bound the coefficients of the wrapping
 * constraints and a newly added wrapping constraint does not
 * satisfy the bound, then the wrapping is considered to have failed.
 * Note though that "wraps" is only marked failed if "add_valid" is not set.
 */
static isl_stat add_selected_wraps(struct isl_wraps *wraps,
	struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set,
	int add_valid)
{
	int l, m;
	int w;
	int added;
	isl_basic_map *bmap = info->bmap;
	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
	unsigned len = 1 + total;

	if (total < 0)
		return isl_stat_error;

	w = wraps->mat->n_row;

	for (l = 0; l < bmap->n_ineq; ++l) {
		int is_valid = info->ineq[l] == STATUS_VALID;
		if ((!add_valid && is_valid) ||
		    info->ineq[l] == STATUS_REDUNDANT)
			continue;
		if (isl_seq_is_neg(bound, bmap->ineq[l], len))
			continue;
		if (isl_seq_eq(bound, bmap->ineq[l], len))
			continue;
		if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
			continue;

		added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
		if (added < 0)
			return isl_stat_error;
		if (!added && !is_valid)
			goto unbounded;
		if (added)
			++w;
	}
	for (l = 0; l < bmap->n_eq; ++l) {
		if (isl_seq_is_neg(bound, bmap->eq[l], len))
			continue;
		if (isl_seq_eq(bound, bmap->eq[l], len))
			continue;

		for (m = 0; m < 2; ++m) {
			if (info->eq[2 * l + m] == STATUS_VALID)
				continue;
			added = add_wrap(wraps, w, bound, bmap->eq[l], len,
					set, !m);
			if (added < 0)
				return isl_stat_error;
			if (!added)
				goto unbounded;
			++w;
		}
	}

	wraps->mat->n_row = w;
	return isl_stat_ok;
unbounded:
	return wraps_mark_failed(wraps);
}

/* For each constraint in info->bmap that is not redundant (as determined
 * by info->tab) and that is not a valid constraint for the other basic map,
 * wrap the constraint around "bound" such that it includes the whole
 * set "set" and append the resulting constraint to "wraps".
 * Note that the constraints that are valid for the other basic map
 * will be added to the combined basic map by default, so there is
 * no need to wrap them.
 * The caller wrap_in_facets even relies on this function not wrapping
 * any constraints that are already valid.
 * "wraps" is assumed to have been pre-allocated to the appropriate size.
 * wraps->n_row is the number of actual wrapped constraints that have
 * been added.
 * If any of the wrapping problems results in a constraint that is
 * identical to "bound", then this means that "set" is unbounded in such
 * a way that no wrapping is possible.  If this happens then "wraps"
 * is marked as failed.
 * Similarly, if we want to bound the coefficients of the wrapping
 * constraints and a newly added wrapping constraint does not
 * satisfy the bound, then "wraps" is also marked as failed.
 */
static isl_stat add_wraps(struct isl_wraps *wraps,
	struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set)
{
	return add_selected_wraps(wraps, info, bound, set, 0);
}

/* Check if the constraints in "wraps" from "first" until the last
 * are all valid for the basic set represented by "tab",
 * dropping the invalid constraints if "keep" is set and
 * marking the wrapping as failed if "keep" is not set and
 * any constraint turns out to be invalid.
 */
static isl_stat check_wraps(struct isl_wraps *wraps, int first,
	struct isl_tab *tab, int keep)
{
	int i;

	for (i = wraps->mat->n_row - 1; i >= first; --i) {
		enum isl_ineq_type type;
		type = isl_tab_ineq_type(tab, wraps->mat->row[i]);
		if (type == isl_ineq_error)
			return isl_stat_error;
		if (type == isl_ineq_redundant)
			continue;
		if (!keep)
			return wraps_mark_failed(wraps);
		wraps->mat = isl_mat_drop_rows(wraps->mat, i, 1);
		if (!wraps->mat)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Return a set that corresponds to the non-redundant constraints
 * (as recorded in tab) of bmap.
 *
 * It's important to remove the redundant constraints as some
 * of the other constraints may have been modified after the
 * constraints were marked redundant.
 * In particular, a constraint may have been relaxed.
 * Redundant constraints are ignored when a constraint is relaxed
 * and should therefore continue to be ignored ever after.
 * Otherwise, the relaxation might be thwarted by some of
 * these constraints.
 *
 * Update the underlying set to ensure that the dimension doesn't change.
 * Otherwise the integer divisions could get dropped if the tab
 * turns out to be empty.
 */
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
	struct isl_tab *tab)
{
	isl_basic_set *bset;

	bmap = isl_basic_map_copy(bmap);
	bset = isl_basic_map_underlying_set(bmap);
	bset = isl_basic_set_cow(bset);
	bset = isl_basic_set_update_from_tab(bset, tab);
	return isl_set_from_basic_set(bset);
}

/* Does "info" have any cut constraints that are redundant?
 */
static isl_bool has_redundant_cuts(struct isl_coalesce_info *info)
{
	int l;
	isl_size n_eq, n_ineq;

	n_eq = isl_basic_map_n_equality(info->bmap);
	n_ineq = isl_basic_map_n_inequality(info->bmap);
	if (n_eq < 0 || n_ineq < 0)
		return isl_bool_error;
	for (l = 0; l < n_ineq; ++l) {
		int red;

		if (info->ineq[l] != STATUS_CUT)
			continue;
		red = isl_tab_is_redundant(info->tab, n_eq + l);
		if (red < 0)
			return isl_bool_error;
		if (red)
			return isl_bool_true;
	}

	return isl_bool_false;
}

/* Wrap some constraints of info->bmap that bound the facet defined
 * by inequality "k" around (the opposite of) this inequality to
 * include "set".  "bound" may be used to store the negated inequality.
 *
 * If "add_valid" is set, then all ridges are already valid and
 * the purpose is to wrap "set" more tightly.  In this case,
 * wrapping doesn't fail, although it is possible that no constraint
 * gets wrapped.
 *
 * If "add_valid" is not set, then some of the ridges are cut constraints
 * and only those are wrapped around "set".
 *
 * Since the wrapped constraints are not guaranteed to contain the whole
 * of info->bmap, we check them in check_wraps.
 * If any of the wrapped constraints turn out to be invalid, then
 * check_wraps will mark "wraps" as failed if "add_valid" is not set.
 * If "add_valid" is set, then the offending constraints are
 * simply removed.
 *
 * If any of the cut constraints of info->bmap turn out
 * to be redundant with respect to other constraints
 * then these will neither be wrapped nor added directly to the result.
 * The result may therefore not be correct.
 * Skip wrapping and mark "wraps" as failed in this case.
 */
static isl_stat add_selected_wraps_around_facet(struct isl_wraps *wraps,
	struct isl_coalesce_info *info, int k, isl_int *bound,
	__isl_keep isl_set *set, int add_valid)
{
	isl_bool nowrap;
	struct isl_tab_undo *snap;
	int n;
	isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);

	if (total < 0)
		return isl_stat_error;

	snap = isl_tab_snap(info->tab);

	if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
		return isl_stat_error;
	if (isl_tab_detect_redundant(info->tab) < 0)
		return isl_stat_error;
	nowrap = has_redundant_cuts(info);
	if (nowrap < 0)
		return isl_stat_error;

	n = wraps->mat->n_row;
	if (!nowrap) {
		isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);

		if (add_selected_wraps(wraps, info, bound, set, add_valid) < 0)
			return isl_stat_error;
	}

	if (isl_tab_rollback(info->tab, snap) < 0)
		return isl_stat_error;
	if (nowrap)
		return wraps_mark_failed(wraps);
	if (check_wraps(wraps, n, info->tab, add_valid) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Wrap the constraints of info->bmap that bound the facet defined
 * by inequality "k" around (the opposite of) this inequality to
 * include "set".  "bound" may be used to store the negated inequality.
 * If any of the wrapped constraints turn out to be invalid for info->bmap
 * itself, then mark "wraps" as failed.
 */
static isl_stat add_wraps_around_facet(struct isl_wraps *wraps,
	struct isl_coalesce_info *info, int k, isl_int *bound,
	__isl_keep isl_set *set)
{
	return add_selected_wraps_around_facet(wraps, info, k, bound, set, 0);
}

/* Wrap the (valid) constraints of info->bmap that bound the facet defined
 * by inequality "k" around (the opposite of) this inequality to
 * include "set" more tightly.
 * "bound" may be used to store the negated inequality.
 * Remove any wrapping constraints that turn out to be invalid
 * for info->bmap itself.
 */
static isl_stat add_valid_wraps_around_facet(struct isl_wraps *wraps,
	struct isl_coalesce_info *info, int k, isl_int *bound,
	__isl_keep isl_set *set)
{
	return add_selected_wraps_around_facet(wraps, info, k, bound, set, 1);
}

/* Basic map "i" has an inequality (say "k") that is adjacent
 * to some inequality of basic map "j".  All the other inequalities
 * are valid for "j".
 * Check if basic map "j" forms an extension of basic map "i".
 *
 * Note that this function is only called if some of the equalities or
 * inequalities of basic map "j" do cut basic map "i".  The function is
 * correct even if there are no such cut constraints, but in that case
 * the additional checks performed by this function are overkill.
 *
 * First try and wrap the ridges of "k" around "j".
 * Note that those ridges are already valid for "j",
 * but the wrapped versions may wrap "j" more tightly,
 * increasing the chances of "j" being detected as an extension of "i"
 */
static enum isl_change is_adj_ineq_extension(int i, int j,
	struct isl_coalesce_info *info)
{
	int k;
	enum isl_change change;
	isl_size total;
	isl_size n_eq_i, n_ineq_i;
	struct isl_wraps wraps;
	isl_ctx *ctx;
	isl_mat *mat;
	isl_vec *bound;
	isl_set *set_j;
	isl_stat r;

	k = find_ineq(&info[i], STATUS_ADJ_INEQ);
	if (k < 0)
		isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
			"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
			return isl_change_error);

	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	n_eq_i = isl_basic_map_n_equality(info[i].bmap);
	n_ineq_i = isl_basic_map_n_inequality(info[i].bmap);
	if (total < 0 || n_eq_i < 0 || n_ineq_i < 0)
		return isl_change_error;

	set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
	ctx = isl_basic_map_get_ctx(info[i].bmap);
	bound = isl_vec_alloc(ctx, 1 + total);
	mat = isl_mat_alloc(ctx, 2 * n_eq_i + n_ineq_i, 1 + total);
	if (wraps_init(&wraps, mat, info, i, j) < 0)
		goto error;
	if (!bound || !set_j)
		goto error;
	r = add_valid_wraps_around_facet(&wraps, &info[i], k, bound->el, set_j);
	if (r < 0)
		goto error;

	change = is_adj_ineq_extension_with_wraps(i, j, k, info, wraps.mat);

	wraps_free(&wraps);
	isl_vec_free(bound);
	isl_set_free(set_j);

	return change;
error:
	wraps_free(&wraps);
	isl_vec_free(bound);
	isl_set_free(set_j);
	return isl_change_error;
}

/* Both basic maps have at least one inequality with and adjacent
 * (but opposite) inequality in the other basic map.
 * Check that there are no cut constraints and that there is only
 * a single pair of adjacent inequalities.
 * If so, we can replace the pair by a single basic map described
 * by all but the pair of adjacent inequalities.
 * Any additional points introduced lie strictly between the two
 * adjacent hyperplanes and can therefore be integral.
 *
 *        ____			  _____
 *       /    ||\		 /     \
 *      /     || \		/       \
 *      \     ||  \	=>	\        \
 *       \    ||  /		 \       /
 *        \___||_/		  \_____/
 *
 * The test for a single pair of adjacent inequalities is important
 * for avoiding the combination of two basic maps like the following
 *
 *       /|
 *      / |
 *     /__|
 *         _____
 *         |   |
 *         |   |
 *         |___|
 *
 * If there are some cut constraints on one side, then we may
 * still be able to fuse the two basic maps, but we need to perform
 * some additional checks in is_adj_ineq_extension.
 */
static enum isl_change check_adj_ineq(int i, int j,
	struct isl_coalesce_info *info)
{
	int count_i, count_j;
	int cut_i, cut_j;

	count_i = count_ineq(&info[i], STATUS_ADJ_INEQ);
	count_j = count_ineq(&info[j], STATUS_ADJ_INEQ);

	if (count_i != 1 && count_j != 1)
		return isl_change_none;

	cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], STATUS_CUT);
	cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], STATUS_CUT);

	if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
		return fuse(i, j, info, NULL, 0, 0);

	if (count_i == 1 && !cut_i)
		return is_adj_ineq_extension(i, j, info);

	if (count_j == 1 && !cut_j)
		return is_adj_ineq_extension(j, i, info);

	return isl_change_none;
}

/* Given a basic set i with a constraint k that is adjacent to
 * basic set j, check if we can wrap
 * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
 * (always) around their ridges to include the other set.
 * If so, replace the pair of basic sets by their union.
 *
 * All constraints of i (except k) are assumed to be valid or
 * cut constraints for j.
 * Wrapping the cut constraints to include basic map j may result
 * in constraints that are no longer valid of basic map i
 * we have to check that the resulting wrapping constraints are valid for i.
 * If "wrap_facet" is not set, then all constraints of i (except k)
 * are assumed to be valid for j.
 *        ____			  _____
 *       /    | 		 /     \
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 *
 */
static enum isl_change can_wrap_in_facet(int i, int j, int k,
	struct isl_coalesce_info *info, int wrap_facet)
{
	enum isl_change change = isl_change_none;
	struct isl_wraps wraps;
	isl_ctx *ctx;
	isl_mat *mat;
	struct isl_set *set_i = NULL;
	struct isl_set *set_j = NULL;
	struct isl_vec *bound = NULL;
	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);

	if (total < 0)
		return isl_change_error;
	set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
	set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
	ctx = isl_basic_map_get_ctx(info[i].bmap);
	mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
				    info[i].bmap->n_ineq + info[j].bmap->n_ineq,
				    1 + total);
	if (wraps_init(&wraps, mat, info, i, j) < 0)
		goto error;
	bound = isl_vec_alloc(ctx, 1 + total);
	if (!set_i || !set_j || !bound)
		goto error;

	isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
	isl_int_add_ui(bound->el[0], bound->el[0], 1);
	isl_seq_normalize(ctx, bound->el, 1 + total);

	isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
	wraps.mat->n_row = 1;

	if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
		goto error;
	if (wraps.failed)
		goto unbounded;

	if (wrap_facet) {
		if (add_wraps_around_facet(&wraps, &info[i], k,
					    bound->el, set_j) < 0)
			goto error;
		if (wraps.failed)
			goto unbounded;
	}

	change = fuse(i, j, info, wraps.mat, 0, 0);

unbounded:
	wraps_free(&wraps);

	isl_set_free(set_i);
	isl_set_free(set_j);

	isl_vec_free(bound);

	return change;
error:
	wraps_free(&wraps);
	isl_vec_free(bound);
	isl_set_free(set_i);
	isl_set_free(set_j);
	return isl_change_error;
}

/* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
 * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
 * add wrapping constraints to wrap.mat for all constraints
 * of basic map j that bound the part of basic map j that sticks out
 * of the cut constraint.
 * "set_i" is the underlying set of basic map i.
 * If any wrapping fails, then wraps->mat.n_row is reset to zero.
 *
 * In particular, we first intersect basic map j with t(x) + 1 = 0.
 * If the result is empty, then t(x) >= 0 was actually a valid constraint
 * (with respect to the integer points), so we add t(x) >= 0 instead.
 * Otherwise, we wrap the constraints of basic map j that are not
 * redundant in this intersection and that are not already valid
 * for basic map i over basic map i.
 * Note that it is sufficient to wrap the constraints to include
 * basic map i, because we will only wrap the constraints that do
 * not include basic map i already.  The wrapped constraint will
 * therefore be more relaxed compared to the original constraint.
 * Since the original constraint is valid for basic map j, so is
 * the wrapped constraint.
 */
static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w,
	struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i,
	struct isl_tab_undo *snap)
{
	isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
	if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0)
		return isl_stat_error;
	if (isl_tab_detect_redundant(info_j->tab) < 0)
		return isl_stat_error;

	if (info_j->tab->empty)
		isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
	else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0)
		return isl_stat_error;

	if (isl_tab_rollback(info_j->tab, snap) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Given a pair of basic maps i and j such that j sticks out
 * of i at n cut constraints, each time by at most one,
 * try to compute wrapping constraints and replace the two
 * basic maps by a single basic map.
 * The other constraints of i are assumed to be valid for j.
 * "set_i" is the underlying set of basic map i.
 * "wraps" has been initialized to be of the right size.
 *
 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
 * of basic map j that bound the part of basic map j that sticks out
 * of the cut constraint.
 *
 * If any wrapping fails, i.e., if we cannot wrap to touch
 * the union, then we give up.
 * Otherwise, the pair of basic maps is replaced by their union.
 */
static enum isl_change try_wrap_in_facets(int i, int j,
	struct isl_coalesce_info *info, struct isl_wraps *wraps,
	__isl_keep isl_set *set_i)
{
	int k, l, w;
	isl_size total;
	struct isl_tab_undo *snap;

	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	if (total < 0)
		return isl_change_error;

	snap = isl_tab_snap(info[j].tab);

	for (k = 0; k < info[i].bmap->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			if (info[i].eq[2 * k + l] != STATUS_CUT)
				continue;
			w = wraps->mat->n_row++;
			if (l == 0)
				isl_seq_neg(wraps->mat->row[w],
					    info[i].bmap->eq[k], 1 + total);
			else
				isl_seq_cpy(wraps->mat->row[w],
					    info[i].bmap->eq[k], 1 + total);
			if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
				return isl_change_error;

			if (wraps->failed)
				return isl_change_none;
		}
	}

	for (k = 0; k < info[i].bmap->n_ineq; ++k) {
		if (info[i].ineq[k] != STATUS_CUT)
			continue;
		w = wraps->mat->n_row++;
		isl_seq_cpy(wraps->mat->row[w],
			    info[i].bmap->ineq[k], 1 + total);
		if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
			return isl_change_error;

		if (wraps->failed)
			return isl_change_none;
	}

	return fuse(i, j, info, wraps->mat, 0, 1);
}

/* Given a pair of basic maps i and j such that j sticks out
 * of i at n cut constraints, each time by at most one,
 * try to compute wrapping constraints and replace the two
 * basic maps by a single basic map.
 * The other constraints of i are assumed to be valid for j.
 *
 * The core computation is performed by try_wrap_in_facets.
 * This function simply extracts an underlying set representation
 * of basic map i and initializes the data structure for keeping
 * track of wrapping constraints.
 */
static enum isl_change wrap_in_facets(int i, int j, int n,
	struct isl_coalesce_info *info)
{
	enum isl_change change = isl_change_none;
	struct isl_wraps wraps;
	isl_ctx *ctx;
	isl_mat *mat;
	isl_set *set_i = NULL;
	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	int max_wrap;

	if (total < 0)
		return isl_change_error;
	if (isl_tab_extend_cons(info[j].tab, 1) < 0)
		return isl_change_error;

	max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
	max_wrap *= n;

	set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
	ctx = isl_basic_map_get_ctx(info[i].bmap);
	mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
	if (wraps_init(&wraps, mat, info, i, j) < 0)
		goto error;
	if (!set_i)
		goto error;

	change = try_wrap_in_facets(i, j, info, &wraps, set_i);

	wraps_free(&wraps);
	isl_set_free(set_i);

	return change;
error:
	wraps_free(&wraps);
	isl_set_free(set_i);
	return isl_change_error;
}

/* Return the effect of inequality "ineq" on the tableau "tab",
 * after relaxing the constant term of "ineq" by one.
 */
static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq)
{
	enum isl_ineq_type type;

	isl_int_add_ui(ineq[0], ineq[0], 1);
	type = isl_tab_ineq_type(tab, ineq);
	isl_int_sub_ui(ineq[0], ineq[0], 1);

	return type;
}

/* Given two basic sets i and j,
 * check if relaxing all the cut constraints of i by one turns
 * them into valid constraint for j and check if we can wrap in
 * the bits that are sticking out.
 * If so, replace the pair by their union.
 *
 * We first check if all relaxed cut inequalities of i are valid for j
 * and then try to wrap in the intersections of the relaxed cut inequalities
 * with j.
 *
 * During this wrapping, we consider the points of j that lie at a distance
 * of exactly 1 from i.  In particular, we ignore the points that lie in
 * between this lower-dimensional space and the basic map i.
 * We can therefore only apply this to integer maps.
 *        ____			  _____
 *       / ___|_		 /     \
 *      / |    |  		/      |
 *      \ |    |   	=>	\      |
 *       \|____|		 \     |
 *        \___| 		  \____/
 *
 *	 _____			 ______
 *	| ____|_		|      \
 *	| |     |		|       |
 *	| |	|	=>	|       |
 *	|_|     |		|       |
 *	  |_____|		 \______|
 *
 *	 _______
 *	|       |
 *	|  |\   |
 *	|  | \  |
 *	|  |  \ |
 *	|  |   \|
 *	|  |    \
 *	|  |_____\
 *	|       |
 *	|_______|
 *
 * Wrapping can fail if the result of wrapping one of the facets
 * around its edges does not produce any new facet constraint.
 * In particular, this happens when we try to wrap in unbounded sets.
 *
 *	 _______________________________________________________________________
 *	|
 *	|  ___
 *	| |   |
 *	|_|   |_________________________________________________________________
 *	  |___|
 *
 * The following is not an acceptable result of coalescing the above two
 * sets as it includes extra integer points.
 *	 _______________________________________________________________________
 *	|
 *	|     
 *	|      
 *	|
 *	 \______________________________________________________________________
 */
static enum isl_change can_wrap_in_set(int i, int j,
	struct isl_coalesce_info *info)
{
	int k, l;
	int n;
	isl_size total;

	if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
	    ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
		return isl_change_none;

	n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT);
	if (n == 0)
		return isl_change_none;

	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
	if (total < 0)
		return isl_change_error;
	for (k = 0; k < info[i].bmap->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			enum isl_ineq_type type;

			if (info[i].eq[2 * k + l] != STATUS_CUT)
				continue;

			if (l == 0)
				isl_seq_neg(info[i].bmap->eq[k],
					    info[i].bmap->eq[k], 1 + total);
			type = type_of_relaxed(info[j].tab,
					    info[i].bmap->eq[k]);
			if (l == 0)
				isl_seq_neg(info[i].bmap->eq[k],
					    info[i].bmap->eq[k], 1 + total);
			if (type == isl_ineq_error)
				return isl_change_error;
			if (type != isl_ineq_redundant)
				return isl_change_none;
		}
	}

	for (k = 0; k < info[i].bmap->n_ineq; ++k) {
		enum isl_ineq_type type;

		if (info[i].ineq[k] != STATUS_CUT)
			continue;

		type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]);
		if (type == isl_ineq_error)
			return isl_change_error;
		if (type != isl_ineq_redundant)
			return isl_change_none;
	}

	return wrap_in_facets(i, j, n, info);
}

/* Check if either i or j has only cut constraints that can
 * be used to wrap in (a facet of) the other basic set.
 * if so, replace the pair by their union.
 */
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
{
	enum isl_change change = isl_change_none;

	change = can_wrap_in_set(i, j, info);
	if (change != isl_change_none)
		return change;

	change = can_wrap_in_set(j, i, info);
	return change;
}

/* Check if all inequality constraints of "i" that cut "j" cease
 * to be cut constraints if they are relaxed by one.
 * If so, collect the cut constraints in "list".
 * The caller is responsible for allocating "list".
 */
static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info,
	int *list)
{
	int l, n;

	n = 0;
	for (l = 0; l < info[i].bmap->n_ineq; ++l) {
		enum isl_ineq_type type;

		if (info[i].ineq[l] != STATUS_CUT)
			continue;
		type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]);
		if (type == isl_ineq_error)
			return isl_bool_error;
		if (type != isl_ineq_redundant)
			return isl_bool_false;
		list[n++] = l;
	}

	return isl_bool_true;
}

/* Given two basic maps such that "j" has at least one equality constraint
 * that is adjacent to an inequality constraint of "i" and such that "i" has
 * exactly one inequality constraint that is adjacent to an equality
 * constraint of "j", check whether "i" can be extended to include "j" or
 * whether "j" can be wrapped into "i".
 * All remaining constraints of "i" and "j" are assumed to be valid
 * or cut constraints of the other basic map.
 * However, none of the equality constraints of "i" are cut constraints.
 *
 * If "i" has any "cut" inequality constraints, then check if relaxing
 * each of them by one is sufficient for them to become valid.
 * If so, check if the inequality constraint adjacent to an equality
 * constraint of "j" along with all these cut constraints
 * can be relaxed by one to contain exactly "j".
 * Otherwise, or if this fails, check if "j" can be wrapped into "i".
 */
static enum isl_change check_single_adj_eq(int i, int j,
	struct isl_coalesce_info *info)
{
	enum isl_change change = isl_change_none;
	int k;
	int n_cut;
	int *relax;
	isl_ctx *ctx;
	isl_bool try_relax;

	n_cut = count_ineq(&info[i], STATUS_CUT);

	k = find_ineq(&info[i], STATUS_ADJ_EQ);

	if (n_cut > 0) {
		ctx = isl_basic_map_get_ctx(info[i].bmap);
		relax = isl_calloc_array(ctx, int, 1 + n_cut);
		if (!relax)
			return isl_change_error;
		relax[0] = k;
		try_relax = all_cut_by_one(i, j, info, relax + 1);
		if (try_relax < 0)
			change = isl_change_error;
	} else {
		try_relax = isl_bool_true;
		relax = &k;
	}
	if (try_relax && change == isl_change_none)
		change = is_relaxed_extension(i, j, 1 + n_cut, relax, info);
	if (n_cut > 0)
		free(relax);
	if (change != isl_change_none)
		return change;

	change = can_wrap_in_facet(i, j, k, info, n_cut > 0);

	return change;
}

/* At least one of the basic maps has an equality that is adjacent
 * to an inequality.  Make sure that only one of the basic maps has
 * such an equality and that the other basic map has exactly one
 * inequality adjacent to an equality.
 * If the other basic map does not have such an inequality, then
 * check if all its constraints are either valid or cut constraints
 * and, if so, try wrapping in the first map into the second.
 * Otherwise, try to extend one basic map with the other or
 * wrap one basic map in the other.
 */
static enum isl_change check_adj_eq(int i, int j,
	struct isl_coalesce_info *info)
{
	if (any_eq(&info[i], STATUS_ADJ_INEQ) &&
	    any_eq(&info[j], STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return isl_change_none;

	if (any_eq(&info[i], STATUS_ADJ_INEQ))
		return check_adj_eq(j, i, info);

	/* j has an equality adjacent to an inequality in i */

	if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) {
		if (all_valid_or_cut(&info[i]))
			return can_wrap_in_set(i, j, info);
		return isl_change_none;
	}
	if (any_eq(&info[i], STATUS_CUT))
		return isl_change_none;
	if (any_ineq(&info[j], STATUS_ADJ_EQ) ||
	    any_ineq(&info[i], STATUS_ADJ_INEQ) ||
	    any_ineq(&info[j], STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return isl_change_none;

	return check_single_adj_eq(i, j, info);
}

/* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
 * In particular, disjunct "i" has an inequality constraint that is adjacent
 * to a (combination of) equality constraint(s) of disjunct "j",
 * but disjunct "j" has no explicit equality constraint adjacent
 * to an inequality constraint of disjunct "i".
 *
 * Disjunct "i" is already known not to have any equality constraints
 * that are adjacent to an equality or inequality constraint.
 * Check that, other than the inequality constraint mentioned above,
 * all other constraints of disjunct "i" are valid for disjunct "j".
 * If so, try and wrap in disjunct "j".
 */
static enum isl_change check_ineq_adj_eq(int i, int j,
	struct isl_coalesce_info *info)
{
	int k;

	if (any_eq(&info[i], STATUS_CUT))
		return isl_change_none;
	if (any_ineq(&info[i], STATUS_CUT))
		return isl_change_none;
	if (any_ineq(&info[i], STATUS_ADJ_INEQ))
		return isl_change_none;
	if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1)
		return isl_change_none;

	k = find_ineq(&info[i], STATUS_ADJ_EQ);

	return can_wrap_in_facet(i, j, k, info, 0);
}

/* The two basic maps lie on adjacent hyperplanes.  In particular,
 * basic map "i" has an equality that lies parallel to basic map "j".
 * Check if we can wrap the facets around the parallel hyperplanes
 * to include the other set.
 *
 * We perform basically the same operations as can_wrap_in_facet,
 * except that we don't need to select a facet of one of the sets.
 *				_
 *	\\			\\
 *	 \\		=>	 \\
 *	  \			  \|
 *
 * If there is more than one equality of "i" adjacent to an equality of "j",
 * then the result will satisfy one or more equalities that are a linear
 * combination of these equalities.  These will be encoded as pairs
 * of inequalities in the wrapping constraints and need to be made
 * explicit.
 */
static enum isl_change check_eq_adj_eq(int i, int j,
	struct isl_coalesce_info *info)
{
	int k;
	enum isl_change change = isl_change_none;
	int detect_equalities = 0;
	struct isl_wraps wraps;
	isl_ctx *ctx;
	isl_mat *mat;
	struct isl_set *set_i = NULL;
	struct isl_set *set_j = NULL;
	struct isl_vec *bound = NULL;
	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);

	if (total < 0)
		return isl_change_error;
	if (count_eq(&info[i], STATUS_ADJ_EQ) != 1)
		detect_equalities = 1;

	k = find_eq(&info[i], STATUS_ADJ_EQ);

	set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
	set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
	ctx = isl_basic_map_get_ctx(info[i].bmap);
	mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
				    info[i].bmap->n_ineq + info[j].bmap->n_ineq,
				    1 + total);
	if (wraps_init(&wraps, mat, info, i, j) < 0)
		goto error;
	bound = isl_vec_alloc(ctx, 1 + total);
	if (!set_i || !set_j || !bound)
		goto error;

	if (k % 2 == 0)
		isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
	else
		isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
	isl_int_add_ui(bound->el[0], bound->el[0], 1);

	isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
	wraps.mat->n_row = 1;

	if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
		goto error;
	if (wraps.failed)
		goto unbounded;

	isl_int_sub_ui(bound->el[0], bound->el[0], 1);
	isl_seq_neg(bound->el, bound->el, 1 + total);

	isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
	wraps.mat->n_row++;

	if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
		goto error;
	if (wraps.failed)
		goto unbounded;

	change = fuse(i, j, info, wraps.mat, detect_equalities, 0);

	if (0) {
error:		change = isl_change_error;
	}
unbounded:

	wraps_free(&wraps);
	isl_set_free(set_i);
	isl_set_free(set_j);
	isl_vec_free(bound);

	return change;
}

/* Initialize the "eq" and "ineq" fields of "info".
 */
static void init_status(struct isl_coalesce_info *info)
{
	info->eq = info->ineq = NULL;
}

/* Set info->eq to the positions of the equalities of info->bmap
 * with respect to the basic map represented by "tab".
 * If info->eq has already been computed, then do not compute it again.
 */
static void set_eq_status_in(struct isl_coalesce_info *info,
	struct isl_tab *tab)
{
	if (info->eq)
		return;
	info->eq = eq_status_in(info->bmap, tab);
}

/* Set info->ineq to the positions of the inequalities of info->bmap
 * with respect to the basic map represented by "tab".
 * If info->ineq has already been computed, then do not compute it again.
 */
static void set_ineq_status_in(struct isl_coalesce_info *info,
	struct isl_tab *tab)
{
	if (info->ineq)
		return;
	info->ineq = ineq_status_in(info->bmap, info->tab, tab);
}

/* Free the memory allocated by the "eq" and "ineq" fields of "info".
 * This function assumes that init_status has been called on "info" first,
 * after which the "eq" and "ineq" fields may or may not have been
 * assigned a newly allocated array.
 */
static void clear_status(struct isl_coalesce_info *info)
{
	free(info->eq);
	free(info->ineq);
}

/* Are all inequality constraints of the basic map represented by "info"
 * valid for the other basic map, except for a single constraint
 * that is adjacent to an inequality constraint of the other basic map?
 */
static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info)
{
	int i;
	int k = -1;

	for (i = 0; i < info->bmap->n_ineq; ++i) {
		if (info->ineq[i] == STATUS_REDUNDANT)
			continue;
		if (info->ineq[i] == STATUS_VALID)
			continue;
		if (info->ineq[i] != STATUS_ADJ_INEQ)
			return 0;
		if (k != -1)
			return 0;
		k = i;
	}

	return k != -1;
}

/* Basic map "i" has one or more equality constraints that separate it
 * from basic map "j".  Check if it happens to be an extension
 * of basic map "j".
 * In particular, check that all constraints of "j" are valid for "i",
 * except for one inequality constraint that is adjacent
 * to an inequality constraints of "i".
 * If so, check for "i" being an extension of "j" by calling
 * is_adj_ineq_extension.
 *
 * Clean up the memory allocated for keeping track of the status
 * of the constraints before returning.
 */
static enum isl_change separating_equality(int i, int j,
	struct isl_coalesce_info *info)
{
	enum isl_change change = isl_change_none;

	if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
	    all_ineq_valid_or_single_adj_ineq(&info[j]))
		change = is_adj_ineq_extension(j, i, info);

	clear_status(&info[i]);
	clear_status(&info[j]);
	return change;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 * The two basic maps are assumed to live in the same local space.
 * The "eq" and "ineq" fields of info[i] and info[j] are assumed
 * to have been initialized by the caller, either to NULL or
 * to valid information.
 *
 * We first check the effect of each constraint of one basic map
 * on the other basic map.
 * The constraint may be
 *	redundant	the constraint is redundant in its own
 *			basic map and should be ignore and removed
 *			in the end
 *	valid		all (integer) points of the other basic map
 *			satisfy the constraint
 *	separate	no (integer) point of the other basic map
 *			satisfies the constraint
 *	cut		some but not all points of the other basic map
 *			satisfy the constraint
 *	adj_eq		the given constraint is adjacent (on the outside)
 *			to an equality of the other basic map
 *	adj_ineq	the given constraint is adjacent (on the outside)
 *			to an inequality of the other basic map
 *
 * We consider seven cases in which we can replace the pair by a single
 * basic map.  We ignore all "redundant" constraints.
 *
 *	1. all constraints of one basic map are valid
 *		=> the other basic map is a subset and can be removed
 *
 *	2. all constraints of both basic maps are either "valid" or "cut"
 *	   and the facets corresponding to the "cut" constraints
 *	   of one of the basic maps lies entirely inside the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	3. there is a single pair of adjacent inequalities
 *	   (all other constraints are "valid")
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	4. one basic map has a single adjacent inequality, while the other
 *	   constraints are "valid".  The other basic map has some
 *	   "cut" constraints, but replacing the adjacent inequality by
 *	   its opposite and adding the valid constraints of the other
 *	   basic map results in a subset of the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	5. there is a single adjacent pair of an inequality and an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, if the inequality the basic map is relaxed
 *	   and then turned into an equality, then resulting facet lies
 *	   entirely inside the other basic map
 *		=> the pair can be replaced by the basic map containing
 *		   the inequality, with the inequality relaxed.
 *
 *	6. there is a single inequality adjacent to an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, the facets corresponding to both
 *	   the inequality and the equality can be wrapped around their
 *	   ridges to include the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps together
 *		   with all wrapping constraints
 *
 *	7. one of the basic maps extends beyond the other by at most one.
 *	   Moreover, the facets corresponding to the cut constraints and
 *	   the pieces of the other basic map at offset one from these cut
 *	   constraints can be wrapped around their ridges to include
 *	   the union of the two basic maps
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps together
 *		   with all wrapping constraints
 *
 *	8. the two basic maps live in adjacent hyperplanes.  In principle
 *	   such sets can always be combined through wrapping, but we impose
 *	   that there is only one such pair, to avoid overeager coalescing.
 *
 * Throughout the computation, we maintain a collection of tableaus
 * corresponding to the basic maps.  When the basic maps are dropped
 * or combined, the tableaus are modified accordingly.
 */
static enum isl_change coalesce_local_pair_reuse(int i, int j,
	struct isl_coalesce_info *info)
{
	enum isl_change change = isl_change_none;

	set_ineq_status_in(&info[i], info[j].tab);
	if (info[i].bmap->n_ineq && !info[i].ineq)
		goto error;
	if (any_ineq(&info[i], STATUS_ERROR))
		goto error;
	if (any_ineq(&info[i], STATUS_SEPARATE))
		goto done;

	set_ineq_status_in(&info[j], info[i].tab);
	if (info[j].bmap->n_ineq && !info[j].ineq)
		goto error;
	if (any_ineq(&info[j], STATUS_ERROR))
		goto error;
	if (any_ineq(&info[j], STATUS_SEPARATE))
		goto done;

	set_eq_status_in(&info[i], info[j].tab);
	if (info[i].bmap->n_eq && !info[i].eq)
		goto error;
	if (any_eq(&info[i], STATUS_ERROR))
		goto error;

	set_eq_status_in(&info[j], info[i].tab);
	if (info[j].bmap->n_eq && !info[j].eq)
		goto error;
	if (any_eq(&info[j], STATUS_ERROR))
		goto error;

	if (any_eq(&info[i], STATUS_SEPARATE))
		return separating_equality(i, j, info);
	if (any_eq(&info[j], STATUS_SEPARATE))
		return separating_equality(j, i, info);

	if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
	    all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
		drop(&info[j]);
		change = isl_change_drop_second;
	} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
		   all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
		drop(&info[i]);
		change = isl_change_drop_first;
	} else if (any_eq(&info[i], STATUS_ADJ_EQ)) {
		change = check_eq_adj_eq(i, j, info);
	} else if (any_eq(&info[j], STATUS_ADJ_EQ)) {
		change = check_eq_adj_eq(j, i, info);
	} else if (any_eq(&info[i], STATUS_ADJ_INEQ) ||
		   any_eq(&info[j], STATUS_ADJ_INEQ)) {
		change = check_adj_eq(i, j, info);
	} else if (any_ineq(&info[i], STATUS_ADJ_EQ)) {
		change = check_ineq_adj_eq(i, j, info);
	} else if (any_ineq(&info[j], STATUS_ADJ_EQ)) {
		change = check_ineq_adj_eq(j, i, info);
	} else if (any_ineq(&info[i], STATUS_ADJ_INEQ) ||
		   any_ineq(&info[j], STATUS_ADJ_INEQ)) {
		change = check_adj_ineq(i, j, info);
	} else {
		if (!any_eq(&info[i], STATUS_CUT) &&
		    !any_eq(&info[j], STATUS_CUT))
			change = check_facets(i, j, info);
		if (change == isl_change_none)
			change = check_wrap(i, j, info);
	}

done:
	clear_status(&info[i]);
	clear_status(&info[j]);
	return change;
error:
	clear_status(&info[i]);
	clear_status(&info[j]);
	return isl_change_error;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 * The two basic maps are assumed to live in the same local space.
 */
static enum isl_change coalesce_local_pair(int i, int j,
	struct isl_coalesce_info *info)
{
	init_status(&info[i]);
	init_status(&info[j]);
	return coalesce_local_pair_reuse(i, j, info);
}

/* Shift the integer division at position "div" of the basic map
 * represented by "info" by "shift".
 *
 * That is, if the integer division has the form
 *
 *	floor(f(x)/d)
 *
 * then replace it by
 *
 *	floor((f(x) + shift * d)/d) - shift
 */
static isl_stat shift_div(struct isl_coalesce_info *info, int div,
	isl_int shift)
{
	isl_size total, n_div;

	info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
	if (!info->bmap)
		return isl_stat_error;

	total = isl_basic_map_dim(info->bmap, isl_dim_all);
	n_div = isl_basic_map_dim(info->bmap, isl_dim_div);
	if (total < 0 || n_div < 0)
		return isl_stat_error;
	total -= n_div;
	if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* If the integer division at position "div" is defined by an equality,
 * i.e., a stride constraint, then change the integer division expression
 * to have a constant term equal to zero.
 *
 * Let the equality constraint be
 *
 *	c + f + m a = 0
 *
 * The integer division expression is then typically of the form
 *
 *	a = floor((-f - c')/m)
 *
 * The integer division is first shifted by t = floor(c/m),
 * turning the equality constraint into
 *
 *	c - m floor(c/m) + f + m a' = 0
 *
 * i.e.,
 *
 *	(c mod m) + f + m a' = 0
 *
 * That is,
 *
 *	a' = (-f - (c mod m))/m = floor((-f)/m)
 *
 * because a' is an integer and 0 <= (c mod m) < m.
 * The constant term of a' can therefore be zeroed out,
 * but only if the integer division expression is of the expected form.
 */
static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div)
{
	isl_bool defined, valid;
	isl_stat r;
	isl_constraint *c;
	isl_int shift, stride;

	defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div,
							div, &c);
	if (defined < 0)
		return isl_stat_error;
	if (!defined)
		return isl_stat_ok;
	if (!c)
		return isl_stat_error;
	valid = isl_constraint_is_div_equality(c, div);
	isl_int_init(shift);
	isl_int_init(stride);
	isl_constraint_get_constant(c, &shift);
	isl_constraint_get_coefficient(c, isl_dim_div, div, &stride);
	isl_int_fdiv_q(shift, shift, stride);
	r = shift_div(info, div, shift);
	isl_int_clear(stride);
	isl_int_clear(shift);
	isl_constraint_free(c);
	if (r < 0 || valid < 0)
		return isl_stat_error;
	if (!valid)
		return isl_stat_ok;
	info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace(
							    info->bmap, div, 0);
	if (!info->bmap)
		return isl_stat_error;
	return isl_stat_ok;
}

/* The basic maps represented by "info1" and "info2" are known
 * to have the same number of integer divisions.
 * Check if pairs of integer divisions are equal to each other
 * despite the fact that they differ by a rational constant.
 *
 * In particular, look for any pair of integer divisions that
 * only differ in their constant terms.
 * If either of these integer divisions is defined
 * by stride constraints, then modify it to have a zero constant term.
 * If both are defined by stride constraints then in the end they will have
 * the same (zero) constant term.
 */
static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1,
	struct isl_coalesce_info *info2)
{
	int i;
	isl_size n;

	n = isl_basic_map_dim(info1->bmap, isl_dim_div);
	if (n < 0)
		return isl_stat_error;
	for (i = 0; i < n; ++i) {
		isl_bool known, harmonize;

		known = isl_basic_map_div_is_known(info1->bmap, i);
		if (known >= 0 && known)
			known = isl_basic_map_div_is_known(info2->bmap, i);
		if (known < 0)
			return isl_stat_error;
		if (!known)
			continue;
		harmonize = isl_basic_map_equal_div_expr_except_constant(
					    info1->bmap, i, info2->bmap, i);
		if (harmonize < 0)
			return isl_stat_error;
		if (!harmonize)
			continue;
		if (normalize_stride_div(info1, i) < 0)
			return isl_stat_error;
		if (normalize_stride_div(info2, i) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* If "shift" is an integer constant, then shift the integer division
 * at position "div" of the basic map represented by "info" by "shift".
 * If "shift" is not an integer constant, then do nothing.
 * If "shift" is equal to zero, then no shift needs to be performed either.
 *
 * That is, if the integer division has the form
 *
 *	floor(f(x)/d)
 *
 * then replace it by
 *
 *	floor((f(x) + shift * d)/d) - shift
 */
static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div,
	__isl_keep isl_aff *shift)
{
	isl_bool cst;
	isl_stat r;
	isl_int d;
	isl_val *c;

	cst = isl_aff_is_cst(shift);
	if (cst < 0 || !cst)
		return cst < 0 ? isl_stat_error : isl_stat_ok;

	c = isl_aff_get_constant_val(shift);
	cst = isl_val_is_int(c);
	if (cst >= 0 && cst)
		cst = isl_bool_not(isl_val_is_zero(c));
	if (cst < 0 || !cst) {
		isl_val_free(c);
		return cst < 0 ? isl_stat_error : isl_stat_ok;
	}

	isl_int_init(d);
	r = isl_val_get_num_isl_int(c, &d);
	if (r >= 0)
		r = shift_div(info, div, d);
	isl_int_clear(d);

	isl_val_free(c);

	return r;
}

/* Check if some of the divs in the basic map represented by "info1"
 * are shifts of the corresponding divs in the basic map represented
 * by "info2", taking into account the equality constraints "eq1" of "info1"
 * and "eq2" of "info2".  If so, align them with those of "info2".
 * "info1" and "info2" are assumed to have the same number
 * of integer divisions.
 *
 * An integer division is considered to be a shift of another integer
 * division if, after simplification with respect to the equality
 * constraints of the other basic map, one is equal to the other
 * plus a constant.
 *
 * In particular, for each pair of integer divisions, if both are known,
 * have the same denominator and are not already equal to each other,
 * simplify each with respect to the equality constraints
 * of the other basic map.  If the difference is an integer constant,
 * then move this difference outside.
 * That is, if, after simplification, one integer division is of the form
 *
 *	floor((f(x) + c_1)/d)
 *
 * while the other is of the form
 *
 *	floor((f(x) + c_2)/d)
 *
 * and n = (c_2 - c_1)/d is an integer, then replace the first
 * integer division by
 *
 *	floor((f_1(x) + c_1 + n * d)/d) - n,
 *
 * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
 * after simplification with respect to the equality constraints.
 */
static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1,
	struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1,
	__isl_keep isl_basic_set *eq2)
{
	int i;
	isl_size total;
	isl_local_space *ls1, *ls2;

	total = isl_basic_map_dim(info1->bmap, isl_dim_all);
	if (total < 0)
		return isl_stat_error;
	ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap));
	ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap));
	for (i = 0; i < info1->bmap->n_div; ++i) {
		isl_stat r;
		isl_aff *div1, *div2;

		if (!isl_local_space_div_is_known(ls1, i) ||
		    !isl_local_space_div_is_known(ls2, i))
			continue;
		if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
			continue;
		if (isl_seq_eq(info1->bmap->div[i] + 1,
				info2->bmap->div[i] + 1, 1 + total))
			continue;
		div1 = isl_local_space_get_div(ls1, i);
		div2 = isl_local_space_get_div(ls2, i);
		div1 = isl_aff_substitute_equalities(div1,
						    isl_basic_set_copy(eq2));
		div2 = isl_aff_substitute_equalities(div2,
						    isl_basic_set_copy(eq1));
		div2 = isl_aff_sub(div2, div1);
		r = shift_if_cst_int(info1, i, div2);
		isl_aff_free(div2);
		if (r < 0)
			break;
	}
	isl_local_space_free(ls1);
	isl_local_space_free(ls2);

	if (i < info1->bmap->n_div)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Check if some of the divs in the basic map represented by "info1"
 * are shifts of the corresponding divs in the basic map represented
 * by "info2".  If so, align them with those of "info2".
 * Only do this if "info1" and "info2" have the same number
 * of integer divisions.
 *
 * An integer division is considered to be a shift of another integer
 * division if, after simplification with respect to the equality
 * constraints of the other basic map, one is equal to the other
 * plus a constant.
 *
 * First check if pairs of integer divisions are equal to each other
 * despite the fact that they differ by a rational constant.
 * If so, try and arrange for them to have the same constant term.
 *
 * Then, extract the equality constraints and continue with
 * harmonize_divs_with_hulls.
 *
 * If the equality constraints of both basic maps are the same,
 * then there is no need to perform any shifting since
 * the coefficients of the integer divisions should have been
 * reduced in the same way.
 */
static isl_stat harmonize_divs(struct isl_coalesce_info *info1,
	struct isl_coalesce_info *info2)
{
	isl_bool equal;
	isl_basic_map *bmap1, *bmap2;
	isl_basic_set *eq1, *eq2;
	isl_stat r;

	if (!info1->bmap || !info2->bmap)
		return isl_stat_error;

	if (info1->bmap->n_div != info2->bmap->n_div)
		return isl_stat_ok;
	if (info1->bmap->n_div == 0)
		return isl_stat_ok;

	if (harmonize_stride_divs(info1, info2) < 0)
		return isl_stat_error;

	bmap1 = isl_basic_map_copy(info1->bmap);
	bmap2 = isl_basic_map_copy(info2->bmap);
	eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1));
	eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2));
	equal = isl_basic_set_plain_is_equal(eq1, eq2);
	if (equal < 0)
		r = isl_stat_error;
	else if (equal)
		r = isl_stat_ok;
	else
		r = harmonize_divs_with_hulls(info1, info2, eq1, eq2);
	isl_basic_set_free(eq1);
	isl_basic_set_free(eq2);

	return r;
}

/* Do the two basic maps live in the same local space, i.e.,
 * do they have the same (known) divs?
 * If either basic map has any unknown divs, then we can only assume
 * that they do not live in the same local space.
 */
static isl_bool same_divs(__isl_keep isl_basic_map *bmap1,
	__isl_keep isl_basic_map *bmap2)
{
	int i;
	isl_bool known;
	isl_size total;

	if (!bmap1 || !bmap2)
		return isl_bool_error;
	if (bmap1->n_div != bmap2->n_div)
		return isl_bool_false;

	if (bmap1->n_div == 0)
		return isl_bool_true;

	known = isl_basic_map_divs_known(bmap1);
	if (known < 0 || !known)
		return known;
	known = isl_basic_map_divs_known(bmap2);
	if (known < 0 || !known)
		return known;

	total = isl_basic_map_dim(bmap1, isl_dim_all);
	if (total < 0)
		return isl_bool_error;
	for (i = 0; i < bmap1->n_div; ++i)
		if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
			return isl_bool_false;

	return isl_bool_true;
}

/* Assuming that "tab" contains the equality constraints and
 * the initial inequality constraints of "bmap", copy the remaining
 * inequality constraints of "bmap" to "Tab".
 */
static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap)
{
	int i, n_ineq;

	if (!bmap)
		return isl_stat_error;

	n_ineq = tab->n_con - tab->n_eq;
	for (i = n_ineq; i < bmap->n_ineq; ++i)
		if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
			return isl_stat_error;

	return isl_stat_ok;
}

/* Description of an integer division that is added
 * during an expansion.
 * "pos" is the position of the corresponding variable.
 * "cst" indicates whether this integer division has a fixed value.
 * "val" contains the fixed value, if the value is fixed.
 */
struct isl_expanded {
	int pos;
	isl_bool cst;
	isl_int val;
};

/* For each of the "n" integer division variables "expanded",
 * if the variable has a fixed value, then add two inequality
 * constraints expressing the fixed value.
 * Otherwise, add the corresponding div constraints.
 * The caller is responsible for removing the div constraints
 * that it added for all these "n" integer divisions.
 *
 * The div constraints and the pair of inequality constraints
 * forcing the fixed value cannot both be added for a given variable
 * as the combination may render some of the original constraints redundant.
 * These would then be ignored during the coalescing detection,
 * while they could remain in the fused result.
 *
 * The two added inequality constraints are
 *
 *	-a + v >= 0
 *	a - v >= 0
 *
 * with "a" the variable and "v" its fixed value.
 * The facet corresponding to one of these two constraints is selected
 * in the tableau to ensure that the pair of inequality constraints
 * is treated as an equality constraint.
 *
 * The information in info->ineq is thrown away because it was
 * computed in terms of div constraints, while some of those
 * have now been replaced by these pairs of inequality constraints.
 */
static isl_stat fix_constant_divs(struct isl_coalesce_info *info,
	int n, struct isl_expanded *expanded)
{
	unsigned o_div;
	int i;
	isl_vec *ineq;

	o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1;
	ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var);
	if (!ineq)
		return isl_stat_error;
	isl_seq_clr(ineq->el + 1, info->tab->n_var);

	for (i = 0; i < n; ++i) {
		if (!expanded[i].cst) {
			info->bmap = isl_basic_map_extend_constraints(
						info->bmap, 0, 2);
			info->bmap = isl_basic_map_add_div_constraints(
					info->bmap, expanded[i].pos - o_div);
		} else {
			isl_int_set_si(ineq->el[1 + expanded[i].pos], -1);
			isl_int_set(ineq->el[0], expanded[i].val);
			info->bmap = isl_basic_map_add_ineq(info->bmap,
								ineq->el);
			isl_int_set_si(ineq->el[1 + expanded[i].pos], 1);
			isl_int_neg(ineq->el[0], expanded[i].val);
			info->bmap = isl_basic_map_add_ineq(info->bmap,
								ineq->el);
			isl_int_set_si(ineq->el[1 + expanded[i].pos], 0);
		}
		if (copy_ineq(info->tab, info->bmap) < 0)
			break;
		if (expanded[i].cst &&
		    isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0)
			break;
	}

	isl_vec_free(ineq);

	clear_status(info);
	init_status(info);

	return i < n ? isl_stat_error : isl_stat_ok;
}

/* Insert the "n" integer division variables "expanded"
 * into info->tab and info->bmap and
 * update info->ineq with respect to the redundant constraints
 * in the resulting tableau.
 * "bmap" contains the result of this insertion in info->bmap,
 * while info->bmap is the original version
 * of "bmap", i.e., the one that corresponds to the current
 * state of info->tab.  The number of constraints in info->bmap
 * is assumed to be the same as the number of constraints
 * in info->tab.  This is required to be able to detect
 * the extra constraints in "bmap".
 *
 * In particular, introduce extra variables corresponding
 * to the extra integer divisions and add the div constraints
 * that were added to "bmap" after info->tab was created
 * from info->bmap.
 * Furthermore, check if these extra integer divisions happen
 * to attain a fixed integer value in info->tab.
 * If so, replace the corresponding div constraints by pairs
 * of inequality constraints that fix these
 * integer divisions to their single integer values.
 * Replace info->bmap by "bmap" to match the changes to info->tab.
 * info->ineq was computed without a tableau and therefore
 * does not take into account the redundant constraints
 * in the tableau.  Mark them here.
 * There is no need to check the newly added div constraints
 * since they cannot be redundant.
 * The redundancy check is not performed when constants have been discovered
 * since info->ineq is completely thrown away in this case.
 */
static isl_stat tab_insert_divs(struct isl_coalesce_info *info,
	int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap)
{
	int i, n_ineq;
	unsigned n_eq;
	struct isl_tab_undo *snap;
	int any;

	if (!bmap)
		return isl_stat_error;
	if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con)
		isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
			"original tableau does not correspond "
			"to original basic map", goto error);

	if (isl_tab_extend_vars(info->tab, n) < 0)
		goto error;
	if (isl_tab_extend_cons(info->tab, 2 * n) < 0)
		goto error;

	for (i = 0; i < n; ++i) {
		if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0)
			goto error;
	}

	snap = isl_tab_snap(info->tab);

	n_ineq = info->tab->n_con - info->tab->n_eq;
	if (copy_ineq(info->tab, bmap) < 0)
		goto error;

	isl_basic_map_free(info->bmap);
	info->bmap = bmap;

	any = 0;
	for (i = 0; i < n; ++i) {
		expanded[i].cst = isl_tab_is_constant(info->tab,
					    expanded[i].pos, &expanded[i].val);
		if (expanded[i].cst < 0)
			return isl_stat_error;
		if (expanded[i].cst)
			any = 1;
	}

	if (any) {
		if (isl_tab_rollback(info->tab, snap) < 0)
			return isl_stat_error;
		info->bmap = isl_basic_map_cow(info->bmap);
		info->bmap = isl_basic_map_free_inequality(info->bmap, 2 * n);
		if (info->bmap < 0)
			return isl_stat_error;

		return fix_constant_divs(info, n, expanded);
	}

	n_eq = info->bmap->n_eq;
	for (i = 0; i < n_ineq; ++i) {
		if (isl_tab_is_redundant(info->tab, n_eq + i))
			info->ineq[i] = STATUS_REDUNDANT;
	}

	return isl_stat_ok;
error:
	isl_basic_map_free(bmap);
	return isl_stat_error;
}

/* Expand info->tab and info->bmap in the same way "bmap" was expanded
 * in isl_basic_map_expand_divs using the expansion "exp" and
 * update info->ineq with respect to the redundant constraints
 * in the resulting tableau. info->bmap is the original version
 * of "bmap", i.e., the one that corresponds to the current
 * state of info->tab.  The number of constraints in info->bmap
 * is assumed to be the same as the number of constraints
 * in info->tab.  This is required to be able to detect
 * the extra constraints in "bmap".
 *
 * Extract the positions where extra local variables are introduced
 * from "exp" and call tab_insert_divs.
 */
static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp,
	__isl_take isl_basic_map *bmap)
{
	isl_ctx *ctx;
	struct isl_expanded *expanded;
	int i, j, k, n;
	int extra_var;
	isl_size total, n_div;
	unsigned pos;
	isl_stat r;

	total = isl_basic_map_dim(bmap, isl_dim_all);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (total < 0 || n_div < 0)
		return isl_stat_error;
	pos = total - n_div;
	extra_var = total - info->tab->n_var;
	n = n_div - extra_var;

	ctx = isl_basic_map_get_ctx(bmap);
	expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var);
	if (extra_var && !expanded)
		goto error;

	i = 0;
	k = 0;
	for (j = 0; j < n_div; ++j) {
		if (i < n && exp[i] == j) {
			++i;
			continue;
		}
		expanded[k++].pos = pos + j;
	}

	for (k = 0; k < extra_var; ++k)
		isl_int_init(expanded[k].val);

	r = tab_insert_divs(info, extra_var, expanded, bmap);

	for (k = 0; k < extra_var; ++k)
		isl_int_clear(expanded[k].val);
	free(expanded);

	return r;
error:
	isl_basic_map_free(bmap);
	return isl_stat_error;
}

/* Check if the union of the basic maps represented by info[i] and info[j]
 * can be represented by a single basic map,
 * after expanding the divs of info[i] to match those of info[j].
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 *
 * The caller has already checked for info[j] being a subset of info[i].
 * If some of the divs of info[j] are unknown, then the expanded info[i]
 * will not have the corresponding div constraints.  The other patterns
 * therefore cannot apply.  Skip the computation in this case.
 *
 * The expansion is performed using the divs "div" and expansion "exp"
 * computed by the caller.
 * info[i].bmap has already been expanded and the result is passed in
 * as "bmap".
 * The "eq" and "ineq" fields of info[i] reflect the status of
 * the constraints of the expanded "bmap" with respect to info[j].tab.
 * However, inequality constraints that are redundant in info[i].tab
 * have not yet been marked as such because no tableau was available.
 *
 * Replace info[i].bmap by "bmap" and expand info[i].tab as well,
 * updating info[i].ineq with respect to the redundant constraints.
 * Then try and coalesce the expanded info[i] with info[j],
 * reusing the information in info[i].eq and info[i].ineq.
 * If this does not result in any coalescing or if it results in info[j]
 * getting dropped (which should not happen in practice, since the case
 * of info[j] being a subset of info[i] has already been checked by
 * the caller), then revert info[i] to its original state.
 */
static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap,
	int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div,
	int *exp)
{
	isl_bool known;
	isl_basic_map *bmap_i;
	struct isl_tab_undo *snap;
	enum isl_change change = isl_change_none;

	known = isl_basic_map_divs_known(info[j].bmap);
	if (known < 0 || !known) {
		clear_status(&info[i]);
		isl_basic_map_free(bmap);
		return known < 0 ? isl_change_error : isl_change_none;
	}

	bmap_i = isl_basic_map_copy(info[i].bmap);
	snap = isl_tab_snap(info[i].tab);
	if (expand_tab(&info[i], exp, bmap) < 0)
		change = isl_change_error;

	init_status(&info[j]);
	if (change == isl_change_none)
		change = coalesce_local_pair_reuse(i, j, info);
	else
		clear_status(&info[i]);
	if (change != isl_change_none && change != isl_change_drop_second) {
		isl_basic_map_free(bmap_i);
	} else {
		isl_basic_map_free(info[i].bmap);
		info[i].bmap = bmap_i;

		if (isl_tab_rollback(info[i].tab, snap) < 0)
			change = isl_change_error;
	}

	return change;
}

/* Check if the union of "bmap" and the basic map represented by info[j]
 * can be represented by a single basic map,
 * after expanding the divs of "bmap" to match those of info[j].
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 *
 * In particular, check if the expanded "bmap" contains the basic map
 * represented by the tableau info[j].tab.
 * The expansion is performed using the divs "div" and expansion "exp"
 * computed by the caller.
 * Then we check if all constraints of the expanded "bmap" are valid for
 * info[j].tab.
 *
 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
 * In this case, the positions of the constraints of info[i].bmap
 * with respect to the basic map represented by info[j] are stored
 * in info[i].
 *
 * If the expanded "bmap" does not contain the basic map
 * represented by the tableau info[j].tab and if "i" is not -1,
 * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
 * as well and check if that results in coalescing.
 */
static enum isl_change coalesce_with_expanded_divs(
	__isl_keep isl_basic_map *bmap, int i, int j,
	struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp)
{
	enum isl_change change = isl_change_none;
	struct isl_coalesce_info info_local, *info_i;

	info_i = i >= 0 ? &info[i] : &info_local;
	init_status(info_i);
	bmap = isl_basic_map_copy(bmap);
	bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp);
	bmap = isl_basic_map_mark_final(bmap);

	if (!bmap)
		goto error;

	info_local.bmap = bmap;
	info_i->eq = eq_status_in(bmap, info[j].tab);
	if (bmap->n_eq && !info_i->eq)
		goto error;
	if (any_eq(info_i, STATUS_ERROR))
		goto error;
	if (any_eq(info_i, STATUS_SEPARATE))
		goto done;

	info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab);
	if (bmap->n_ineq && !info_i->ineq)
		goto error;
	if (any_ineq(info_i, STATUS_ERROR))
		goto error;
	if (any_ineq(info_i, STATUS_SEPARATE))
		goto done;

	if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) &&
	    all(info_i->ineq, bmap->n_ineq, STATUS_VALID)) {
		drop(&info[j]);
		change = isl_change_drop_second;
	}

	if (change == isl_change_none && i != -1)
		return coalesce_expand_tab_divs(bmap, i, j, info, div, exp);

done:
	isl_basic_map_free(bmap);
	clear_status(info_i);
	return change;
error:
	isl_basic_map_free(bmap);
	clear_status(info_i);
	return isl_change_error;
}

/* Check if the union of "bmap_i" and the basic map represented by info[j]
 * can be represented by a single basic map,
 * after aligning the divs of "bmap_i" to match those of info[j].
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 *
 * In particular, check if "bmap_i" contains the basic map represented by
 * info[j] after aligning the divs of "bmap_i" to those of info[j].
 * Note that this can only succeed if the number of divs of "bmap_i"
 * is smaller than (or equal to) the number of divs of info[j].
 *
 * We first check if the divs of "bmap_i" are all known and form a subset
 * of those of info[j].bmap.  If so, we pass control over to
 * coalesce_with_expanded_divs.
 *
 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
 */
static enum isl_change coalesce_after_aligning_divs(
	__isl_keep isl_basic_map *bmap_i, int i, int j,
	struct isl_coalesce_info *info)
{
	isl_bool known;
	isl_mat *div_i, *div_j, *div;
	int *exp1 = NULL;
	int *exp2 = NULL;
	isl_ctx *ctx;
	enum isl_change change;

	known = isl_basic_map_divs_known(bmap_i);
	if (known < 0)
		return isl_change_error;
	if (!known)
		return isl_change_none;

	ctx = isl_basic_map_get_ctx(bmap_i);

	div_i = isl_basic_map_get_divs(bmap_i);
	div_j = isl_basic_map_get_divs(info[j].bmap);

	if (!div_i || !div_j)
		goto error;

	exp1 = isl_alloc_array(ctx, int, div_i->n_row);
	exp2 = isl_alloc_array(ctx, int, div_j->n_row);
	if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
		goto error;

	div = isl_merge_divs(div_i, div_j, exp1, exp2);
	if (!div)
		goto error;

	if (div->n_row == div_j->n_row)
		change = coalesce_with_expanded_divs(bmap_i,
							i, j, info, div, exp1);
	else
		change = isl_change_none;

	isl_mat_free(div);

	isl_mat_free(div_i);
	isl_mat_free(div_j);

	free(exp2);
	free(exp1);

	return change;
error:
	isl_mat_free(div_i);
	isl_mat_free(div_j);
	free(exp1);
	free(exp2);
	return isl_change_error;
}

/* Check if basic map "j" is a subset of basic map "i" after
 * exploiting the extra equalities of "j" to simplify the divs of "i".
 * If so, remove basic map "j" and return isl_change_drop_second.
 *
 * If "j" does not have any equalities or if they are the same
 * as those of "i", then we cannot exploit them to simplify the divs.
 * Similarly, if there are no divs in "i", then they cannot be simplified.
 * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
 * then "j" cannot be a subset of "i".
 *
 * Otherwise, we intersect "i" with the affine hull of "j" and then
 * check if "j" is a subset of the result after aligning the divs.
 * If so, then "j" is definitely a subset of "i" and can be removed.
 * Note that if after intersection with the affine hull of "j".
 * "i" still has more divs than "j", then there is no way we can
 * align the divs of "i" to those of "j".
 */
static enum isl_change coalesce_subset_with_equalities(int i, int j,
	struct isl_coalesce_info *info)
{
	isl_basic_map *hull_i, *hull_j, *bmap_i;
	int equal, empty;
	enum isl_change change;

	if (info[j].bmap->n_eq == 0)
		return isl_change_none;
	if (info[i].bmap->n_div == 0)
		return isl_change_none;

	hull_i = isl_basic_map_copy(info[i].bmap);
	hull_i = isl_basic_map_plain_affine_hull(hull_i);
	hull_j = isl_basic_map_copy(info[j].bmap);
	hull_j = isl_basic_map_plain_affine_hull(hull_j);

	hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
	equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
	empty = isl_basic_map_plain_is_empty(hull_j);
	isl_basic_map_free(hull_i);

	if (equal < 0 || equal || empty < 0 || empty) {
		isl_basic_map_free(hull_j);
		if (equal < 0 || empty < 0)
			return isl_change_error;
		return isl_change_none;
	}

	bmap_i = isl_basic_map_copy(info[i].bmap);
	bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
	if (!bmap_i)
		return isl_change_error;

	if (bmap_i->n_div > info[j].bmap->n_div) {
		isl_basic_map_free(bmap_i);
		return isl_change_none;
	}

	change = coalesce_after_aligning_divs(bmap_i, -1, j, info);

	isl_basic_map_free(bmap_i);

	return change;
}

/* Check if the union of and the basic maps represented by info[i] and info[j]
 * can be represented by a single basic map, by aligning or equating
 * their integer divisions.
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 *
 * Note that we only perform any test if the number of divs is different
 * in the two basic maps.  In case the number of divs is the same,
 * we have already established that the divs are different
 * in the two basic maps.
 * In particular, if the number of divs of basic map i is smaller than
 * the number of divs of basic map j, then we check if j is a subset of i
 * and vice versa.
 */
static enum isl_change coalesce_divs(int i, int j,
	struct isl_coalesce_info *info)
{
	enum isl_change change = isl_change_none;

	if (info[i].bmap->n_div < info[j].bmap->n_div)
		change = coalesce_after_aligning_divs(info[i].bmap, i, j, info);
	if (change != isl_change_none)
		return change;

	if (info[j].bmap->n_div < info[i].bmap->n_div)
		change = coalesce_after_aligning_divs(info[j].bmap, j, i, info);
	if (change != isl_change_none)
		return invert_change(change);

	change = coalesce_subset_with_equalities(i, j, info);
	if (change != isl_change_none)
		return change;

	change = coalesce_subset_with_equalities(j, i, info);
	if (change != isl_change_none)
		return invert_change(change);

	return isl_change_none;
}

/* Does "bmap" involve any divs that themselves refer to divs?
 */
static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap)
{
	int i;
	isl_size total;
	isl_size n_div;

	total = isl_basic_map_dim(bmap, isl_dim_all);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (total < 0 || n_div < 0)
		return isl_bool_error;
	total -= n_div;

	for (i = 0; i < n_div; ++i)
		if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
					    n_div) != -1)
			return isl_bool_true;

	return isl_bool_false;
}

/* Return a list of affine expressions, one for each integer division
 * in "bmap_i".  For each integer division that also appears in "bmap_j",
 * the affine expression is set to NaN.  The number of NaNs in the list
 * is equal to the number of integer divisions in "bmap_j".
 * For the other integer divisions of "bmap_i", the corresponding
 * element in the list is a purely affine expression equal to the integer
 * division in "hull".
 * If no such list can be constructed, then the number of elements
 * in the returned list is smaller than the number of integer divisions
 * in "bmap_i".
 */
static __isl_give isl_aff_list *set_up_substitutions(
	__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
	__isl_take isl_basic_map *hull)
{
	isl_size n_div_i, n_div_j, total;
	isl_ctx *ctx;
	isl_local_space *ls;
	isl_basic_set *wrap_hull;
	isl_aff *aff_nan;
	isl_aff_list *list;
	int i, j;

	n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
	n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
	total = isl_basic_map_dim(bmap_i, isl_dim_all);
	if (!hull || n_div_i < 0 || n_div_j < 0 || total < 0)
		return NULL;

	ctx = isl_basic_map_get_ctx(hull);
	total -= n_div_i;

	ls = isl_basic_map_get_local_space(bmap_i);
	ls = isl_local_space_wrap(ls);
	wrap_hull = isl_basic_map_wrap(hull);

	aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
	list = isl_aff_list_alloc(ctx, n_div_i);

	j = 0;
	for (i = 0; i < n_div_i; ++i) {
		isl_aff *aff;
		isl_size n_div;

		if (j < n_div_j &&
		    isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j,
						    0, 2 + total)) {
			++j;
			list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
			continue;
		}
		if (n_div_i - i <= n_div_j - j)
			break;

		aff = isl_local_space_get_div(ls, i);
		aff = isl_aff_substitute_equalities(aff,
						isl_basic_set_copy(wrap_hull));
		aff = isl_aff_floor(aff);
		n_div = isl_aff_dim(aff, isl_dim_div);
		if (n_div < 0)
			goto error;
		if (n_div != 0) {
			isl_aff_free(aff);
			break;
		}

		list = isl_aff_list_add(list, aff);
	}

	isl_aff_free(aff_nan);
	isl_local_space_free(ls);
	isl_basic_set_free(wrap_hull);

	return list;
error:
	isl_aff_free(aff_nan);
	isl_local_space_free(ls);
	isl_basic_set_free(wrap_hull);
	isl_aff_list_free(list);
	return NULL;
}

/* Add variables to info->bmap and info->tab corresponding to the elements
 * in "list" that are not set to NaN.
 * "extra_var" is the number of these elements.
 * "dim" is the offset in the variables of "tab" where we should
 * start considering the elements in "list".
 * When this function returns, the total number of variables in "tab"
 * is equal to "dim" plus the number of elements in "list".
 *
 * The newly added existentially quantified variables are not given
 * an explicit representation because the corresponding div constraints
 * do not appear in info->bmap.  These constraints are not added
 * to info->bmap because for internal consistency, they would need to
 * be added to info->tab as well, where they could combine with the equality
 * that is added later to result in constraints that do not hold
 * in the original input.
 */
static isl_stat add_sub_vars(struct isl_coalesce_info *info,
	__isl_keep isl_aff_list *list, int dim, int extra_var)
{
	int i, j, d;
	isl_size n;

	info->bmap = isl_basic_map_cow(info->bmap);
	info->bmap = isl_basic_map_extend(info->bmap, extra_var, 0, 0);
	n = isl_aff_list_n_aff(list);
	if (!info->bmap || n < 0)
		return isl_stat_error;
	for (i = 0; i < n; ++i) {
		int is_nan;
		isl_aff *aff;

		aff = isl_aff_list_get_aff(list, i);
		is_nan = isl_aff_is_nan(aff);
		isl_aff_free(aff);
		if (is_nan < 0)
			return isl_stat_error;
		if (is_nan)
			continue;

		if (isl_tab_insert_var(info->tab, dim + i) < 0)
			return isl_stat_error;
		d = isl_basic_map_alloc_div(info->bmap);
		if (d < 0)
			return isl_stat_error;
		info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d);
		for (j = d; j > i; --j)
			info->bmap = isl_basic_map_swap_div(info->bmap,
							    j - 1, j);
		if (!info->bmap)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* For each element in "list" that is not set to NaN, fix the corresponding
 * variable in "tab" to the purely affine expression defined by the element.
 * "dim" is the offset in the variables of "tab" where we should
 * start considering the elements in "list".
 *
 * This function assumes that a sufficient number of rows and
 * elements in the constraint array are available in the tableau.
 */
static isl_stat add_sub_equalities(struct isl_tab *tab,
	__isl_keep isl_aff_list *list, int dim)
{
	int i;
	isl_size n;
	isl_ctx *ctx;
	isl_vec *sub;
	isl_aff *aff;

	n = isl_aff_list_n_aff(list);
	if (n < 0)
		return isl_stat_error;

	ctx = isl_tab_get_ctx(tab);
	sub = isl_vec_alloc(ctx, 1 + dim + n);
	if (!sub)
		return isl_stat_error;
	isl_seq_clr(sub->el + 1 + dim, n);

	for (i = 0; i < n; ++i) {
		aff = isl_aff_list_get_aff(list, i);
		if (!aff)
			goto error;
		if (isl_aff_is_nan(aff)) {
			isl_aff_free(aff);
			continue;
		}
		isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
		isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
		if (isl_tab_add_eq(tab, sub->el) < 0)
			goto error;
		isl_int_set_si(sub->el[1 + dim + i], 0);
		isl_aff_free(aff);
	}

	isl_vec_free(sub);
	return isl_stat_ok;
error:
	isl_aff_free(aff);
	isl_vec_free(sub);
	return isl_stat_error;
}

/* Add variables to info->tab and info->bmap corresponding to the elements
 * in "list" that are not set to NaN.  The value of the added variable
 * in info->tab is fixed to the purely affine expression defined by the element.
 * "dim" is the offset in the variables of info->tab where we should
 * start considering the elements in "list".
 * When this function returns, the total number of variables in info->tab
 * is equal to "dim" plus the number of elements in "list".
 */
static isl_stat add_subs(struct isl_coalesce_info *info,
	__isl_keep isl_aff_list *list, int dim)
{
	int extra_var;
	isl_size n;

	n = isl_aff_list_n_aff(list);
	if (n < 0)
		return isl_stat_error;

	extra_var = n - (info->tab->n_var - dim);

	if (isl_tab_extend_vars(info->tab, extra_var) < 0)
		return isl_stat_error;
	if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
		return isl_stat_error;
	if (add_sub_vars(info, list, dim, extra_var) < 0)
		return isl_stat_error;

	return add_sub_equalities(info->tab, list, dim);
}

/* Coalesce basic map "j" into basic map "i" after adding the extra integer
 * divisions in "i" but not in "j" to basic map "j", with values
 * specified by "list".  The total number of elements in "list"
 * is equal to the number of integer divisions in "i", while the number
 * of NaN elements in the list is equal to the number of integer divisions
 * in "j".
 *
 * If no coalescing can be performed, then we need to revert basic map "j"
 * to its original state.  We do the same if basic map "i" gets dropped
 * during the coalescing, even though this should not happen in practice
 * since we have already checked for "j" being a subset of "i"
 * before we reach this stage.
 */
static enum isl_change coalesce_with_subs(int i, int j,
	struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
{
	isl_basic_map *bmap_j;
	struct isl_tab_undo *snap;
	isl_size dim, n_div;
	enum isl_change change;

	bmap_j = isl_basic_map_copy(info[j].bmap);
	snap = isl_tab_snap(info[j].tab);

	dim = isl_basic_map_dim(bmap_j, isl_dim_all);
	n_div = isl_basic_map_dim(bmap_j, isl_dim_div);
	if (dim < 0 || n_div < 0)
		goto error;
	dim -= n_div;
	if (add_subs(&info[j], list, dim) < 0)
		goto error;

	change = coalesce_local_pair(i, j, info);
	if (change != isl_change_none && change != isl_change_drop_first) {
		isl_basic_map_free(bmap_j);
	} else {
		isl_basic_map_free(info[j].bmap);
		info[j].bmap = bmap_j;

		if (isl_tab_rollback(info[j].tab, snap) < 0)
			return isl_change_error;
	}

	return change;
error:
	isl_basic_map_free(bmap_j);
	return isl_change_error;
}

/* Check if we can coalesce basic map "j" into basic map "i" after copying
 * those extra integer divisions in "i" that can be simplified away
 * using the extra equalities in "j".
 * All divs are assumed to be known and not contain any nested divs.
 *
 * We first check if there are any extra equalities in "j" that we
 * can exploit.  Then we check if every integer division in "i"
 * either already appears in "j" or can be simplified using the
 * extra equalities to a purely affine expression.
 * If these tests succeed, then we try to coalesce the two basic maps
 * by introducing extra dimensions in "j" corresponding to
 * the extra integer divisions "i" fixed to the corresponding
 * purely affine expression.
 */
static enum isl_change check_coalesce_into_eq(int i, int j,
	struct isl_coalesce_info *info)
{
	isl_size n_div_i, n_div_j, n;
	isl_basic_map *hull_i, *hull_j;
	isl_bool equal, empty;
	isl_aff_list *list;
	enum isl_change change;

	n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
	n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
	if (n_div_i < 0 || n_div_j < 0)
		return isl_change_error;
	if (n_div_i <= n_div_j)
		return isl_change_none;
	if (info[j].bmap->n_eq == 0)
		return isl_change_none;

	hull_i = isl_basic_map_copy(info[i].bmap);
	hull_i = isl_basic_map_plain_affine_hull(hull_i);
	hull_j = isl_basic_map_copy(info[j].bmap);
	hull_j = isl_basic_map_plain_affine_hull(hull_j);

	hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
	equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
	empty = isl_basic_map_plain_is_empty(hull_j);
	isl_basic_map_free(hull_i);

	if (equal < 0 || empty < 0)
		goto error;
	if (equal || empty) {
		isl_basic_map_free(hull_j);
		return isl_change_none;
	}

	list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
	if (!list)
		return isl_change_error;
	n = isl_aff_list_n_aff(list);
	if (n < 0)
		change = isl_change_error;
	else if (n < n_div_i)
		change = isl_change_none;
	else
		change = coalesce_with_subs(i, j, info, list);

	isl_aff_list_free(list);

	return change;
error:
	isl_basic_map_free(hull_j);
	return isl_change_error;
}

/* Check if we can coalesce basic maps "i" and "j" after copying
 * those extra integer divisions in one of the basic maps that can
 * be simplified away using the extra equalities in the other basic map.
 * We require all divs to be known in both basic maps.
 * Furthermore, to simplify the comparison of div expressions,
 * we do not allow any nested integer divisions.
 */
static enum isl_change check_coalesce_eq(int i, int j,
	struct isl_coalesce_info *info)
{
	isl_bool known, nested;
	enum isl_change change;

	known = isl_basic_map_divs_known(info[i].bmap);
	if (known < 0 || !known)
		return known < 0 ? isl_change_error : isl_change_none;
	known = isl_basic_map_divs_known(info[j].bmap);
	if (known < 0 || !known)
		return known < 0 ? isl_change_error : isl_change_none;
	nested = has_nested_div(info[i].bmap);
	if (nested < 0 || nested)
		return nested < 0 ? isl_change_error : isl_change_none;
	nested = has_nested_div(info[j].bmap);
	if (nested < 0 || nested)
		return nested < 0 ? isl_change_error : isl_change_none;

	change = check_coalesce_into_eq(i, j, info);
	if (change != isl_change_none)
		return change;
	change = check_coalesce_into_eq(j, i, info);
	if (change != isl_change_none)
		return invert_change(change);

	return isl_change_none;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return
 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
 * Otherwise, return isl_change_none.
 *
 * We first check if the two basic maps live in the same local space,
 * after aligning the divs that differ by only an integer constant.
 * If so, we do the complete check.  Otherwise, we check if they have
 * the same number of integer divisions and can be coalesced, if one is
 * an obvious subset of the other or if the extra integer divisions
 * of one basic map can be simplified away using the extra equalities
 * of the other basic map.
 *
 * Note that trying to coalesce pairs of disjuncts with the same
 * number, but different local variables may drop the explicit
 * representation of some of these local variables.
 * This operation is therefore not performed when
 * the "coalesce_preserve_locals" option is set.
 */
static enum isl_change coalesce_pair(int i, int j,
	struct isl_coalesce_info *info)
{
	int preserve;
	isl_bool same;
	enum isl_change change;
	isl_ctx *ctx;

	if (harmonize_divs(&info[i], &info[j]) < 0)
		return isl_change_error;
	same = same_divs(info[i].bmap, info[j].bmap);
	if (same < 0)
		return isl_change_error;
	if (same)
		return coalesce_local_pair(i, j, info);

	ctx = isl_basic_map_get_ctx(info[i].bmap);
	preserve = isl_options_get_coalesce_preserve_locals(ctx);
	if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) {
		change = coalesce_local_pair(i, j, info);
		if (change != isl_change_none)
			return change;
	}

	change = coalesce_divs(i, j, info);
	if (change != isl_change_none)
		return change;

	return check_coalesce_eq(i, j, info);
}

/* Return the maximum of "a" and "b".
 */
static int isl_max(int a, int b)
{
	return a > b ? a : b;
}

/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
 * with those in the range [start2, end2[, skipping basic maps
 * that have been removed (either before or within this function).
 *
 * For each basic map i in the first range, we check if it can be coalesced
 * with respect to any previously considered basic map j in the second range.
 * If i gets dropped (because it was a subset of some j), then
 * we can move on to the next basic map.
 * If j gets dropped, we need to continue checking against the other
 * previously considered basic maps.
 * If the two basic maps got fused, then we recheck the fused basic map
 * against the previously considered basic maps, starting at i + 1
 * (even if start2 is greater than i + 1).
 */
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
	int start1, int end1, int start2, int end2)
{
	int i, j;

	for (i = end1 - 1; i >= start1; --i) {
		if (info[i].removed)
			continue;
		for (j = isl_max(i + 1, start2); j < end2; ++j) {
			enum isl_change changed;

			if (info[j].removed)
				continue;
			if (info[i].removed)
				isl_die(ctx, isl_error_internal,
					"basic map unexpectedly removed",
					return -1);
			changed = coalesce_pair(i, j, info);
			switch (changed) {
			case isl_change_error:
				return -1;
			case isl_change_none:
			case isl_change_drop_second:
				continue;
			case isl_change_drop_first:
				j = end2;
				break;
			case isl_change_fuse:
				j = i;
				break;
			}
		}
	}

	return 0;
}

/* Pairwise coalesce the basic maps described by the "n" elements of "info".
 *
 * We consider groups of basic maps that live in the same apparent
 * affine hull and we first coalesce within such a group before we
 * coalesce the elements in the group with elements of previously
 * considered groups.  If a fuse happens during the second phase,
 * then we also reconsider the elements within the group.
 */
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
{
	int start, end;

	for (end = n; end > 0; end = start) {
		start = end - 1;
		while (start >= 1 &&
		    info[start - 1].hull_hash == info[start].hull_hash)
			start--;
		if (coalesce_range(ctx, info, start, end, start, end) < 0)
			return -1;
		if (coalesce_range(ctx, info, start, end, end, n) < 0)
			return -1;
	}

	return 0;
}

/* Update the basic maps in "map" based on the information in "info".
 * In particular, remove the basic maps that have been marked removed and
 * update the others based on the information in the corresponding tableau.
 * Since we detected implicit equalities without calling
 * isl_basic_map_gauss, we need to do it now.
 * Also call isl_basic_map_simplify if we may have lost the definition
 * of one or more integer divisions.
 * If a basic map is still equal to the one from which the corresponding "info"
 * entry was created, then redundant constraint and
 * implicit equality constraint detection have been performed
 * on the corresponding tableau and the basic map can be marked as such.
 */
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
	int n, struct isl_coalesce_info *info)
{
	int i;

	if (!map)
		return NULL;

	for (i = n - 1; i >= 0; --i) {
		if (info[i].removed) {
			isl_basic_map_free(map->p[i]);
			if (i != map->n - 1)
				map->p[i] = map->p[map->n - 1];
			map->n--;
			continue;
		}

		info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
							info[i].tab);
		info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
		if (info[i].simplify)
			info[i].bmap = isl_basic_map_simplify(info[i].bmap);
		info[i].bmap = isl_basic_map_finalize(info[i].bmap);
		if (!info[i].bmap)
			return isl_map_free(map);
		if (!info[i].modified) {
			ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
			ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
		}
		isl_basic_map_free(map->p[i]);
		map->p[i] = info[i].bmap;
		info[i].bmap = NULL;
	}

	return map;
}

/* For each pair of basic maps in the map, check if the union of the two
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and start over.
 *
 * We factor out any (hidden) common factor from the constraint
 * coefficients to improve the detection of adjacent constraints.
 * Note that this function does not call isl_basic_map_gauss,
 * but it does make sure that only a single copy of the basic map
 * is affected.  This means that isl_basic_map_gauss may have
 * to be called at the end of the computation (in update_basic_maps)
 * on this single copy to ensure that
 * the basic maps are not left in an unexpected state.
 *
 * Since we are constructing the tableaus of the basic maps anyway,
 * we exploit them to detect implicit equalities and redundant constraints.
 * This also helps the coalescing as it can ignore the redundant constraints.
 * In order to avoid confusion, we make all implicit equalities explicit
 * in the basic maps.  If the basic map only has a single reference
 * (this happens in particular if it was modified by
 * isl_basic_map_reduce_coefficients), then isl_basic_map_gauss
 * does not get called on the result.  The call to
 * isl_basic_map_gauss in update_basic_maps resolves this as well.
 * For each basic map, we also compute the hash of the apparent affine hull
 * for use in coalesce.
 */
__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map)
{
	int i;
	unsigned n;
	isl_ctx *ctx;
	struct isl_coalesce_info *info = NULL;

	map = isl_map_remove_empty_parts(map);
	if (!map)
		return NULL;

	if (map->n <= 1)
		return map;

	ctx = isl_map_get_ctx(map);
	map = isl_map_sort_divs(map);
	map = isl_map_cow(map);

	if (!map)
		return NULL;

	n = map->n;

	info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
	if (!info)
		goto error;

	for (i = 0; i < map->n; ++i) {
		map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
		if (!map->p[i])
			goto error;
		info[i].bmap = isl_basic_map_copy(map->p[i]);
		info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
		if (!info[i].tab)
			goto error;
		if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
			if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
				goto error;
		info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
								info[i].bmap);
		if (!info[i].bmap)
			goto error;
		if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
			if (isl_tab_detect_redundant(info[i].tab) < 0)
				goto error;
		if (coalesce_info_set_hull_hash(&info[i]) < 0)
			goto error;
	}
	for (i = map->n - 1; i >= 0; --i)
		if (info[i].tab->empty)
			drop(&info[i]);

	if (coalesce(ctx, n, info) < 0)
		goto error;

	map = update_basic_maps(map, n, info);

	clear_coalesce_info(n, info);

	return map;
error:
	clear_coalesce_info(n, info);
	isl_map_free(map);
	return NULL;
}

/* For each pair of basic sets in the set, check if the union of the two
 * can be represented by a single basic set.
 * If so, replace the pair by the single basic set and start over.
 */
__isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set)
{
	return set_from_map(isl_map_coalesce(set_to_map(set)));
}