isl_farkas.c 27.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
/*
 * Copyright 2010      INRIA Saclay
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 * 91893 Orsay, France 
 */

#include <isl_map_private.h>
#include <isl/set.h>
#include <isl_space_private.h>
#include <isl_seq.h>
#include <isl_aff_private.h>
#include <isl_mat_private.h>
#include <isl_factorization.h>

/*
 * Let C be a cone and define
 *
 *	C' := { y | forall x in C : y x >= 0 }
 *
 * C' contains the coefficients of all linear constraints
 * that are valid for C.
 * Furthermore, C'' = C.
 *
 * If C is defined as { x | A x >= 0 }
 * then any element in C' must be a non-negative combination
 * of the rows of A, i.e., y = t A with t >= 0.  That is,
 *
 *	C' = { y | exists t >= 0 : y = t A }
 *
 * If any of the rows in A actually represents an equality, then
 * also negative combinations of this row are allowed and so the
 * non-negativity constraint on the corresponding element of t
 * can be dropped.
 *
 * A polyhedron P = { x | b + A x >= 0 } can be represented
 * in homogeneous coordinates by the cone
 * C = { [z,x] | b z + A x >= and z >= 0 }
 * The valid linear constraints on C correspond to the valid affine
 * constraints on P.
 * This is essentially Farkas' lemma.
 *
 * Since
 *				  [ 1 0 ]
 *		[ w y ] = [t_0 t] [ b A ]
 *
 * we have
 *
 *	C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
 * or
 *
 *	C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
 *
 * In practice, we introduce an extra variable (w), shifting all
 * other variables to the right, and an extra inequality
 * (w - t b >= 0) corresponding to the positivity constraint on
 * the homogeneous coordinate.
 *
 * When going back from coefficients to solutions, we immediately
 * plug in 1 for z, which corresponds to shifting all variables
 * to the left, with the leftmost ending up in the constant position.
 */

/* Add the given prefix to all named isl_dim_set dimensions in "space".
 */
static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space,
	const char *prefix)
{
	int i;
	isl_ctx *ctx;
	isl_size nvar;
	size_t prefix_len = strlen(prefix);

	if (!space)
		return NULL;

	ctx = isl_space_get_ctx(space);
	nvar = isl_space_dim(space, isl_dim_set);
	if (nvar < 0)
		return isl_space_free(space);

	for (i = 0; i < nvar; ++i) {
		const char *name;
		char *prefix_name;

		name = isl_space_get_dim_name(space, isl_dim_set, i);
		if (!name)
			continue;

		prefix_name = isl_alloc_array(ctx, char,
					      prefix_len + strlen(name) + 1);
		if (!prefix_name)
			goto error;
		memcpy(prefix_name, prefix, prefix_len);
		strcpy(prefix_name + prefix_len, name);

		space = isl_space_set_dim_name(space,
						isl_dim_set, i, prefix_name);
		free(prefix_name);
	}

	return space;
error:
	isl_space_free(space);
	return NULL;
}

/* Given a dimension specification of the solutions space, construct
 * a dimension specification for the space of coefficients.
 *
 * In particular transform
 *
 *	[params] -> { S }
 *
 * to
 *
 *	{ coefficients[[cst, params] -> S] }
 *
 * and prefix each dimension name with "c_".
 */
static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space)
{
	isl_space *space_param;
	isl_size nvar;
	isl_size nparam;

	nvar = isl_space_dim(space, isl_dim_set);
	nparam = isl_space_dim(space, isl_dim_param);
	if (nvar < 0 || nparam < 0)
		return isl_space_free(space);
	space_param = isl_space_copy(space);
	space_param = isl_space_drop_dims(space_param, isl_dim_set, 0, nvar);
	space_param = isl_space_move_dims(space_param, isl_dim_set, 0,
				 isl_dim_param, 0, nparam);
	space_param = isl_space_prefix(space_param, "c_");
	space_param = isl_space_insert_dims(space_param, isl_dim_set, 0, 1);
	space_param = isl_space_set_dim_name(space_param,
				isl_dim_set, 0, "c_cst");
	space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
	space = isl_space_prefix(space, "c_");
	space = isl_space_join(isl_space_from_domain(space_param),
			   isl_space_from_range(space));
	space = isl_space_wrap(space);
	space = isl_space_set_tuple_name(space, isl_dim_set, "coefficients");

	return space;
}

/* Drop the given prefix from all named dimensions of type "type" in "space".
 */
static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space,
	enum isl_dim_type type, const char *prefix)
{
	int i;
	isl_size n;
	size_t prefix_len = strlen(prefix);

	n = isl_space_dim(space, type);
	if (n < 0)
		return isl_space_free(space);

	for (i = 0; i < n; ++i) {
		const char *name;

		name = isl_space_get_dim_name(space, type, i);
		if (!name)
			continue;
		if (strncmp(name, prefix, prefix_len))
			continue;

		space = isl_space_set_dim_name(space,
						type, i, name + prefix_len);
	}

	return space;
}

/* Given a dimension specification of the space of coefficients, construct
 * a dimension specification for the space of solutions.
 *
 * In particular transform
 *
 *	{ coefficients[[cst, params] -> S] }
 *
 * to
 *
 *	[params] -> { S }
 *
 * and drop the "c_" prefix from the dimension names.
 */
static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space)
{
	isl_size nparam;

	space = isl_space_unwrap(space);
	space = isl_space_drop_dims(space, isl_dim_in, 0, 1);
	space = isl_space_unprefix(space, isl_dim_in, "c_");
	space = isl_space_unprefix(space, isl_dim_out, "c_");
	nparam = isl_space_dim(space, isl_dim_in);
	if (nparam < 0)
		return isl_space_free(space);
	space = isl_space_move_dims(space,
				    isl_dim_param, 0, isl_dim_in, 0, nparam);
	space = isl_space_range(space);

	return space;
}

/* Return the rational universe basic set in the given space.
 */
static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
{
	isl_basic_set *bset;

	bset = isl_basic_set_universe(space);
	bset = isl_basic_set_set_rational(bset);

	return bset;
}

/* Compute the dual of "bset" by applying Farkas' lemma.
 * As explained above, we add an extra dimension to represent
 * the coefficient of the constant term when going from solutions
 * to coefficients (shift == 1) and we drop the extra dimension when going
 * in the opposite direction (shift == -1).
 * The dual can be created in an arbitrary space.
 * The caller is responsible for putting the result in the appropriate space.
 *
 * If "bset" is (obviously) empty, then the way this emptiness
 * is represented by the constraints does not allow for the application
 * of the standard farkas algorithm.  We therefore handle this case
 * specifically and return the universe basic set.
 */
static __isl_give isl_basic_set *farkas(__isl_take isl_basic_set *bset,
	int shift)
{
	int i, j, k;
	isl_ctx *ctx;
	isl_space *space;
	isl_basic_set *dual = NULL;
	isl_size total;

	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0)
		return isl_basic_set_free(bset);

	ctx = isl_basic_set_get_ctx(bset);
	space = isl_space_set_alloc(ctx, 0, total + shift);
	if (isl_basic_set_plain_is_empty(bset)) {
		isl_basic_set_free(bset);
		return rational_universe(space);
	}

	dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
					total, bset->n_ineq + (shift > 0));
	dual = isl_basic_set_set_rational(dual);

	for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_div(dual);
		if (k < 0)
			goto error;
		isl_int_set_si(dual->div[k][0], 0);
	}

	for (i = 0; i < total; ++i) {
		k = isl_basic_set_alloc_equality(dual);
		if (k < 0)
			goto error;
		isl_seq_clr(dual->eq[k], 1 + shift + total);
		isl_int_set_si(dual->eq[k][1 + shift + i], -1);
		for (j = 0; j < bset->n_eq; ++j)
			isl_int_set(dual->eq[k][1 + shift + total + j],
				    bset->eq[j][1 + i]);
		for (j = 0; j < bset->n_ineq; ++j)
			isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
				    bset->ineq[j][1 + i]);
	}

	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(dual);
		if (k < 0)
			goto error;
		isl_seq_clr(dual->ineq[k],
			    1 + shift + total + bset->n_eq + bset->n_ineq);
		isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
	}

	if (shift > 0) {
		k = isl_basic_set_alloc_inequality(dual);
		if (k < 0)
			goto error;
		isl_seq_clr(dual->ineq[k], 2 + total);
		isl_int_set_si(dual->ineq[k][1], 1);
		for (j = 0; j < bset->n_eq; ++j)
			isl_int_neg(dual->ineq[k][2 + total + j],
				    bset->eq[j][0]);
		for (j = 0; j < bset->n_ineq; ++j)
			isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
				    bset->ineq[j][0]);
	}

	dual = isl_basic_set_remove_divs(dual);
	dual = isl_basic_set_simplify(dual);
	dual = isl_basic_set_finalize(dual);

	isl_basic_set_free(bset);
	return dual;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(dual);
	return NULL;
}

/* Construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the given basic set, ignoring
 * the space of input and output and without any further decomposition.
 */
static __isl_give isl_basic_set *isl_basic_set_coefficients_base(
	__isl_take isl_basic_set *bset)
{
	return farkas(bset, 1);
}

/* Return the inverse mapping of "morph".
 */
static __isl_give isl_mat *peek_inv(__isl_keep isl_morph *morph)
{
	return morph ? morph->inv : NULL;
}

/* Return a copy of the inverse mapping of "morph".
 */
static __isl_give isl_mat *get_inv(__isl_keep isl_morph *morph)
{
	return isl_mat_copy(peek_inv(morph));
}

/* Information about a single factor within isl_basic_set_coefficients_product.
 *
 * "start" is the position of the first coefficient (beyond
 * the one corresponding to the constant term) in this factor.
 * "dim" is the number of coefficients (other than
 * the one corresponding to the constant term) in this factor.
 * "n_line" is the number of lines in "coeff".
 * "n_ray" is the number of rays (other than lines) in "coeff".
 * "n_vertex" is the number of vertices in "coeff".
 *
 * While iterating over the vertices,
 * "pos" represents the inequality constraint corresponding
 * to the current vertex.
 */
struct isl_coefficients_factor_data {
	isl_basic_set *coeff;
	int start;
	int dim;
	int n_line;
	int n_ray;
	int n_vertex;
	int pos;
};

/* Internal data structure for isl_basic_set_coefficients_product.
 * "n" is the number of factors in the factorization.
 * "pos" is the next factor that will be considered.
 * "start_next" is the position of the first coefficient (beyond
 * the one corresponding to the constant term) in the next factor.
 * "factors" contains information about the individual "n" factors.
 */
struct isl_coefficients_product_data {
	int n;
	int pos;
	int start_next;
	struct isl_coefficients_factor_data *factors;
};

/* Initialize the internal data structure for
 * isl_basic_set_coefficients_product.
 */
static isl_stat isl_coefficients_product_data_init(isl_ctx *ctx,
	struct isl_coefficients_product_data *data, int n)
{
	data->n = n;
	data->pos = 0;
	data->start_next = 0;
	data->factors = isl_calloc_array(ctx,
					struct isl_coefficients_factor_data, n);
	if (!data->factors)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Free all memory allocated in "data".
 */
static void isl_coefficients_product_data_clear(
	struct isl_coefficients_product_data *data)
{
	int i;

	if (data->factors) {
		for (i = 0; i < data->n; ++i) {
			isl_basic_set_free(data->factors[i].coeff);
		}
	}
	free(data->factors);
}

/* Does inequality "ineq" in the (dual) basic set "bset" represent a ray?
 * In particular, does it have a zero denominator
 * (i.e., a zero coefficient for the constant term)?
 */
static int is_ray(__isl_keep isl_basic_set *bset, int ineq)
{
	return isl_int_is_zero(bset->ineq[ineq][1]);
}

/* isl_factorizer_every_factor_basic_set callback that
 * constructs a basic set containing the tuples of coefficients of all
 * valid affine constraints on the factor "bset" and
 * extracts further information that will be used
 * when combining the results over the different factors.
 */
static isl_bool isl_basic_set_coefficients_factor(
	__isl_keep isl_basic_set *bset, void *user)
{
	struct isl_coefficients_product_data *data = user;
	isl_basic_set *coeff;
	isl_size n_eq, n_ineq, dim;
	int i, n_ray, n_vertex;

	coeff = isl_basic_set_coefficients_base(isl_basic_set_copy(bset));
	data->factors[data->pos].coeff = coeff;
	if (!coeff)
		return isl_bool_error;

	dim = isl_basic_set_dim(bset, isl_dim_set);
	n_eq = isl_basic_set_n_equality(coeff);
	n_ineq = isl_basic_set_n_inequality(coeff);
	if (dim < 0 || n_eq < 0 || n_ineq < 0)
		return isl_bool_error;
	n_ray = n_vertex = 0;
	for (i = 0; i < n_ineq; ++i) {
		if (is_ray(coeff, i))
			n_ray++;
		else
			n_vertex++;
	}
	data->factors[data->pos].start = data->start_next;
	data->factors[data->pos].dim = dim;
	data->factors[data->pos].n_line = n_eq;
	data->factors[data->pos].n_ray = n_ray;
	data->factors[data->pos].n_vertex = n_vertex;
	data->pos++;
	data->start_next += dim;

	return isl_bool_true;
}

/* Clear an entry in the product, given that there is a "total" number
 * of coefficients (other than that of the constant term).
 */
static void clear_entry(isl_int *entry, int total)
{
	isl_seq_clr(entry, 1 + 1 + total);
}

/* Set the part of the entry corresponding to factor "data",
 * from the factor coefficients in "src".
 */
static void set_factor(isl_int *entry, isl_int *src,
	struct isl_coefficients_factor_data *data)
{
	isl_seq_cpy(entry + 1 + 1 + data->start, src + 1 + 1, data->dim);
}

/* Set the part of the entry corresponding to factor "data",
 * from the factor coefficients in "src" multiplied by "f".
 */
static void scale_factor(isl_int *entry, isl_int *src, isl_int f,
	struct isl_coefficients_factor_data *data)
{
	isl_seq_scale(entry + 1 + 1 + data->start, src + 1 + 1, f, data->dim);
}

/* Add all lines from the given factor to "bset",
 * given that there is a "total" number of coefficients
 * (other than that of the constant term).
 */
static __isl_give isl_basic_set *add_lines(__isl_take isl_basic_set *bset,
	struct isl_coefficients_factor_data *factor, int total)
{
	int i;

	for (i = 0; i < factor->n_line; ++i) {
		int k;

		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			return isl_basic_set_free(bset);
		clear_entry(bset->eq[k], total);
		set_factor(bset->eq[k], factor->coeff->eq[i], factor);
	}

	return bset;
}

/* Add all rays (other than lines) from the given factor to "bset",
 * given that there is a "total" number of coefficients
 * (other than that of the constant term).
 */
static __isl_give isl_basic_set *add_rays(__isl_take isl_basic_set *bset,
	struct isl_coefficients_factor_data *data, int total)
{
	int i;
	int n_ineq = data->n_ray + data->n_vertex;

	for (i = 0; i < n_ineq; ++i) {
		int k;

		if (!is_ray(data->coeff, i))
			continue;

		k = isl_basic_set_alloc_inequality(bset);
		if (k < 0)
			return isl_basic_set_free(bset);
		clear_entry(bset->ineq[k], total);
		set_factor(bset->ineq[k], data->coeff->ineq[i], data);
	}

	return bset;
}

/* Move to the first vertex of the given factor starting
 * at inequality constraint "start", setting factor->pos and
 * returning 1 if a vertex is found.
 */
static int factor_first_vertex(struct isl_coefficients_factor_data *factor,
	int start)
{
	int j;
	int n = factor->n_ray + factor->n_vertex;

	for (j = start; j < n; ++j) {
		if (is_ray(factor->coeff, j))
			continue;
		factor->pos = j;
		return 1;
	}

	return 0;
}

/* Move to the first constraint in each factor starting at "first"
 * that represents a vertex.
 * In particular, skip the initial constraints that correspond to rays.
 */
static void first_vertex(struct isl_coefficients_product_data *data, int first)
{
	int i;

	for (i = first; i < data->n; ++i)
		factor_first_vertex(&data->factors[i], 0);
}

/* Move to the next vertex in the product.
 * In particular, move to the next vertex of the last factor.
 * If all vertices of this last factor have already been considered,
 * then move to the next vertex of the previous factor(s)
 * until a factor is found that still has a next vertex.
 * Once such a next vertex has been found, the subsequent
 * factors are reset to the first vertex.
 * Return 1 if any next vertex was found.
 */
static int next_vertex(struct isl_coefficients_product_data *data)
{
	int i;

	for (i = data->n - 1; i >= 0; --i) {
		struct isl_coefficients_factor_data *factor = &data->factors[i];

		if (!factor_first_vertex(factor, factor->pos + 1))
			continue;
		first_vertex(data, i + 1);
		return 1;
	}

	return 0;
}

/* Add a vertex to the product "bset" combining the currently selected
 * vertices of the factors.
 *
 * In the dual representation, the constant term is always zero.
 * The vertex itself is the sum of the contributions of the factors
 * with a shared denominator in position 1.
 *
 * First compute the shared denominator (lcm) and
 * then scale the numerators to this shared denominator.
 */
static __isl_give isl_basic_set *add_vertex(__isl_take isl_basic_set *bset,
	struct isl_coefficients_product_data *data)
{
	int i;
	int k;
	isl_int lcm, f;

	k = isl_basic_set_alloc_inequality(bset);
	if (k < 0)
		return isl_basic_set_free(bset);

	isl_int_init(lcm);
	isl_int_init(f);
	isl_int_set_si(lcm, 1);
	for (i = 0; i < data->n; ++i) {
		struct isl_coefficients_factor_data *factor = &data->factors[i];
		isl_basic_set *coeff = factor->coeff;
		int pos = factor->pos;
		isl_int_lcm(lcm, lcm, coeff->ineq[pos][1]);
	}
	isl_int_set_si(bset->ineq[k][0], 0);
	isl_int_set(bset->ineq[k][1], lcm);

	for (i = 0; i < data->n; ++i) {
		struct isl_coefficients_factor_data *factor = &data->factors[i];
		isl_basic_set *coeff = factor->coeff;
		int pos = factor->pos;
		isl_int_divexact(f, lcm, coeff->ineq[pos][1]);
		scale_factor(bset->ineq[k], coeff->ineq[pos], f, factor);
	}

	isl_int_clear(f);
	isl_int_clear(lcm);

	return bset;
}

/* Combine the duals of the factors in the factorization of a basic set
 * to form the dual of the entire basic set.
 * The dual share the coefficient of the constant term.
 * All other coefficients are specific to a factor.
 * Any constraint not involving the coefficient of the constant term
 * can therefor simply be copied into the appropriate position.
 * This includes all equality constraints since the coefficient
 * of the constant term can always be increased and therefore
 * never appears in an equality constraint.
 * The inequality constraints involving the coefficient of
 * the constant term need to be combined across factors.
 * In particular, if this coefficient needs to be greater than or equal
 * to some linear combination of the other coefficients in each factor,
 * then it needs to be greater than or equal to the sum of
 * these linear combinations across the factors.
 *
 * Alternatively, the constraints of the dual can be seen
 * as the vertices, rays and lines of the original basic set.
 * Clearly, rays and lines can simply be copied,
 * while vertices needs to be combined across factors.
 * This means that the number of rays and lines in the product
 * is equal to the sum of the numbers in the factors,
 * while the number of vertices is the product
 * of the number of vertices in the factors.  Note that each
 * factor has at least one vertex.
 * The only exception is when the factor is the dual of an obviously empty set,
 * in which case a universe dual is created.
 * In this case, return a universe dual for the product as well.
 *
 * While constructing the vertices, look for the first combination
 * of inequality constraints that represent a vertex,
 * construct the corresponding vertex and then move on
 * to the next combination of inequality constraints until
 * all combinations have been considered.
 */
static __isl_give isl_basic_set *construct_product(isl_ctx *ctx,
	struct isl_coefficients_product_data *data)
{
	int i;
	int n_line, n_ray, n_vertex;
	int total;
	isl_space *space;
	isl_basic_set *product;

	if (!data->factors)
		return NULL;

	total = data->start_next;

	n_line = 0;
	n_ray = 0;
	n_vertex = 1;
	for (i = 0; i < data->n; ++i) {
		n_line += data->factors[i].n_line;
		n_ray += data->factors[i].n_ray;
		n_vertex *= data->factors[i].n_vertex;
	}

	space = isl_space_set_alloc(ctx, 0, 1 + total);
	if (n_vertex == 0)
		return rational_universe(space);
	product = isl_basic_set_alloc_space(space, 0, n_line, n_ray + n_vertex);
	product = isl_basic_set_set_rational(product);

	for (i = 0; i < data->n; ++i)
		product = add_lines(product, &data->factors[i], total);
	for (i = 0; i < data->n; ++i)
		product = add_rays(product, &data->factors[i], total);

	first_vertex(data, 0);
	do {
		product = add_vertex(product, data);
	} while (next_vertex(data));

	return product;
}

/* Given a factorization "f" of a basic set,
 * construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the product of the factors, ignoring
 * the space of input and output.
 * Note that this product may not be equal to the original basic set,
 * if a non-trivial transformation is involved.
 * This is handled by the caller.
 *
 * Compute the tuples of coefficients for each factor separately and
 * then combine the results.
 */
static __isl_give isl_basic_set *isl_basic_set_coefficients_product(
	__isl_take isl_factorizer *f)
{
	struct isl_coefficients_product_data data;
	isl_ctx *ctx;
	isl_basic_set *coeff;
	isl_bool every;

	ctx = isl_factorizer_get_ctx(f);
	if (isl_coefficients_product_data_init(ctx, &data, f->n_group) < 0)
		f = isl_factorizer_free(f);
	every = isl_factorizer_every_factor_basic_set(f,
			&isl_basic_set_coefficients_factor, &data);
	isl_factorizer_free(f);
	if (every >= 0)
		coeff = construct_product(ctx, &data);
	else
		coeff = NULL;
	isl_coefficients_product_data_clear(&data);

	return coeff;
}

/* Given a factorization "f" of a basic set,
 * construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the basic set, ignoring
 * the space of input and output.
 *
 * The factorization may involve a linear transformation of the basic set.
 * In particular, the transformed basic set is formulated
 * in terms of x' = U x, i.e., x = V x', with V = U^{-1}.
 * The dual is then computed in terms of y' with y'^t [z; x'] >= 0.
 * Plugging in y' = [1 0; 0 V^t] y yields
 * y^t [1 0; 0 V] [z; x'] >= 0, i.e., y^t [z; x] >= 0, which is
 * the desired set of coefficients y.
 * Note that this transformation to y' only needs to be applied
 * if U is not the identity matrix.
 */
static __isl_give isl_basic_set *isl_basic_set_coefficients_morphed_product(
	__isl_take isl_factorizer *f)
{
	isl_bool is_identity;
	isl_space *space;
	isl_mat *inv;
	isl_multi_aff *ma;
	isl_basic_set *coeff;

	if (!f)
		goto error;
	is_identity = isl_mat_is_scaled_identity(peek_inv(f->morph));
	if (is_identity < 0)
		goto error;
	if (is_identity)
		return isl_basic_set_coefficients_product(f);

	inv = get_inv(f->morph);
	inv = isl_mat_transpose(inv);
	inv = isl_mat_lin_to_aff(inv);

	coeff = isl_basic_set_coefficients_product(f);
	space = isl_space_map_from_set(isl_basic_set_get_space(coeff));
	ma = isl_multi_aff_from_aff_mat(space, inv);
	coeff = isl_basic_set_preimage_multi_aff(coeff, ma);

	return coeff;
error:
	isl_factorizer_free(f);
	return NULL;
}

/* Construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the given basic set, ignoring
 * the space of input and output.
 *
 * The caller has already checked that "bset" does not involve
 * any local variables.  It may have parameters, though.
 * Treat them as regular variables internally.
 * This is especially important for the factorization,
 * since the (original) parameters should be taken into account
 * explicitly in this factorization.
 *
 * Check if the basic set can be factorized.
 * If so, compute constraints on the coefficients of the factors
 * separately and combine the results.
 * Otherwise, compute the results for the input basic set as a whole.
 */
static __isl_give isl_basic_set *basic_set_coefficients(
	__isl_take isl_basic_set *bset)
{
	isl_factorizer *f;
	isl_size nparam;

	nparam = isl_basic_set_dim(bset, isl_dim_param);
	if (nparam < 0)
		return isl_basic_set_free(bset);
	bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
					    isl_dim_param, 0, nparam);

	f = isl_basic_set_factorizer(bset);
	if (!f)
		return isl_basic_set_free(bset);
	if (f->n_group > 0) {
		isl_basic_set_free(bset);
		return isl_basic_set_coefficients_morphed_product(f);
	}
	isl_factorizer_free(f);
	return isl_basic_set_coefficients_base(bset);
}

/* Construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the given basic set.
 */
__isl_give isl_basic_set *isl_basic_set_coefficients(
	__isl_take isl_basic_set *bset)
{
	isl_space *space;

	if (!bset)
		return NULL;
	if (bset->n_div)
		isl_die(bset->ctx, isl_error_invalid,
			"input set not allowed to have local variables",
			goto error);

	space = isl_basic_set_get_space(bset);
	space = isl_space_coefficients(space);

	bset = basic_set_coefficients(bset);
	bset = isl_basic_set_reset_space(bset, space);
	return bset;
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Construct a basic set containing the elements that satisfy all
 * affine constraints whose coefficient tuples are
 * contained in the given basic set.
 */
__isl_give isl_basic_set *isl_basic_set_solutions(
	__isl_take isl_basic_set *bset)
{
	isl_space *space;

	if (!bset)
		return NULL;
	if (bset->n_div)
		isl_die(bset->ctx, isl_error_invalid,
			"input set not allowed to have local variables",
			goto error);

	space = isl_basic_set_get_space(bset);
	space = isl_space_solutions(space);

	bset = farkas(bset, -1);
	bset = isl_basic_set_reset_space(bset, space);
	return bset;
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the given set.
 */
__isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
{
	int i;
	isl_basic_set *coeff;

	if (!set)
		return NULL;
	if (set->n == 0) {
		isl_space *space = isl_set_get_space(set);
		space = isl_space_coefficients(space);
		isl_set_free(set);
		return rational_universe(space);
	}

	coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));

	for (i = 1; i < set->n; ++i) {
		isl_basic_set *bset, *coeff_i;
		bset = isl_basic_set_copy(set->p[i]);
		coeff_i = isl_basic_set_coefficients(bset);
		coeff = isl_basic_set_intersect(coeff, coeff_i);
	}

	isl_set_free(set);
	return coeff;
}

/* Wrapper around isl_basic_set_coefficients for use
 * as a isl_basic_set_list_map callback.
 */
static __isl_give isl_basic_set *coefficients_wrap(
	__isl_take isl_basic_set *bset, void *user)
{
	return isl_basic_set_coefficients(bset);
}

/* Replace the elements of "list" by the result of applying
 * isl_basic_set_coefficients to them.
 */
__isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
	__isl_take isl_basic_set_list *list)
{
	return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
}

/* Construct a basic set containing the elements that satisfy all
 * affine constraints whose coefficient tuples are
 * contained in the given set.
 */
__isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
{
	int i;
	isl_basic_set *sol;

	if (!set)
		return NULL;
	if (set->n == 0) {
		isl_space *space = isl_set_get_space(set);
		space = isl_space_solutions(space);
		isl_set_free(set);
		return rational_universe(space);
	}

	sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));

	for (i = 1; i < set->n; ++i) {
		isl_basic_set *bset, *sol_i;
		bset = isl_basic_set_copy(set->p[i]);
		sol_i = isl_basic_set_solutions(bset);
		sol = isl_basic_set_intersect(sol, sol_i);
	}

	isl_set_free(set);
	return sol;
}