isl_morph.c 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/*
 * Copyright 2010-2011 INRIA Saclay
 * Copyright 2014      Ecole Normale Superieure
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 * 91893 Orsay, France 
 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 */

#include <isl_map_private.h>
#include <isl_aff_private.h>
#include <isl_morph.h>
#include <isl_seq.h>
#include <isl_mat_private.h>
#include <isl_space_private.h>
#include <isl_equalities.h>
#include <isl_id_private.h>

isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;
	return isl_basic_set_get_ctx(morph->dom);
}

__isl_give isl_morph *isl_morph_alloc(
	__isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran,
	__isl_take isl_mat *map, __isl_take isl_mat *inv)
{
	isl_morph *morph;

	if (!dom || !ran || !map || !inv)
		goto error;

	morph = isl_alloc_type(dom->ctx, struct isl_morph);
	if (!morph)
		goto error;

	morph->ref = 1;
	morph->dom = dom;
	morph->ran = ran;
	morph->map = map;
	morph->inv = inv;

	return morph;
error:
	isl_basic_set_free(dom);
	isl_basic_set_free(ran);
	isl_mat_free(map);
	isl_mat_free(inv);
	return NULL;
}

__isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;

	morph->ref++;
	return morph;
}

__isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;

	return isl_morph_alloc(isl_basic_set_copy(morph->dom),
		isl_basic_set_copy(morph->ran),
		isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
}

__isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph)
{
	if (!morph)
		return NULL;

	if (morph->ref == 1)
		return morph;
	morph->ref--;
	return isl_morph_dup(morph);
}

__isl_null isl_morph *isl_morph_free(__isl_take isl_morph *morph)
{
	if (!morph)
		return NULL;

	if (--morph->ref > 0)
		return NULL;

	isl_basic_set_free(morph->dom);
	isl_basic_set_free(morph->ran);
	isl_mat_free(morph->map);
	isl_mat_free(morph->inv);
	free(morph);

	return NULL;
}

/* Is "morph" an identity on the parameters?
 */
static isl_bool identity_on_parameters(__isl_keep isl_morph *morph)
{
	isl_bool is_identity;
	isl_size nparam, nparam_ran;
	isl_mat *sub;

	nparam = isl_morph_dom_dim(morph, isl_dim_param);
	nparam_ran = isl_morph_ran_dim(morph, isl_dim_param);
	if (nparam < 0 || nparam_ran < 0)
		return isl_bool_error;
	if (nparam != nparam_ran)
		return isl_bool_false;
	if (nparam == 0)
		return isl_bool_true;
	sub = isl_mat_sub_alloc(morph->map, 0, 1 + nparam, 0, 1 + nparam);
	is_identity = isl_mat_is_scaled_identity(sub);
	isl_mat_free(sub);

	return is_identity;
}

/* Return an affine expression of the variables of the range of "morph"
 * in terms of the parameters and the variables of the domain on "morph".
 *
 * In order for the space manipulations to make sense, we require
 * that the parameters are not modified by "morph".
 */
__isl_give isl_multi_aff *isl_morph_get_var_multi_aff(
	__isl_keep isl_morph *morph)
{
	isl_space *dom, *ran, *space;
	isl_local_space *ls;
	isl_multi_aff *ma;
	isl_size nparam, nvar;
	int i;
	isl_bool is_identity;

	if (!morph)
		return NULL;

	is_identity = identity_on_parameters(morph);
	if (is_identity < 0)
		return NULL;
	if (!is_identity)
		isl_die(isl_morph_get_ctx(morph), isl_error_invalid,
			"cannot handle parameter compression", return NULL);

	dom = isl_morph_get_dom_space(morph);
	ls = isl_local_space_from_space(isl_space_copy(dom));
	ran = isl_morph_get_ran_space(morph);
	space = isl_space_map_from_domain_and_range(dom, ran);
	ma = isl_multi_aff_zero(space);

	nparam = isl_multi_aff_dim(ma, isl_dim_param);
	nvar = isl_multi_aff_dim(ma, isl_dim_out);
	if (nparam < 0 || nvar < 0)
		ma = isl_multi_aff_free(ma);
	for (i = 0; i < nvar; ++i) {
		isl_val *val;
		isl_vec *v;
		isl_aff *aff;

		v = isl_mat_get_row(morph->map, 1 + nparam + i);
		v = isl_vec_insert_els(v, 0, 1);
		val = isl_mat_get_element_val(morph->map, 0, 0);
		v = isl_vec_set_element_val(v, 0, val);
		aff = isl_aff_alloc_vec(isl_local_space_copy(ls), v);
		ma = isl_multi_aff_set_aff(ma, i, aff);
	}

	isl_local_space_free(ls);
	return ma;
}

/* Return the domain space of "morph".
 */
__isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;

	return isl_basic_set_get_space(morph->dom);
}

__isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;
	
	return isl_space_copy(morph->ran->dim);
}

isl_size isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
{
	if (!morph)
		return isl_size_error;

	return isl_basic_set_dim(morph->dom, type);
}

isl_size isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
{
	if (!morph)
		return isl_size_error;

	return isl_basic_set_dim(morph->ran, type);
}

__isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph,
	enum isl_dim_type type, unsigned first, unsigned n)
{
	unsigned dom_offset;

	if (n == 0)
		return morph;

	morph = isl_morph_cow(morph);
	if (!morph)
		return NULL;

	dom_offset = 1 + isl_space_offset(morph->dom->dim, type);

	morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n);

	morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n);

	morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n);

	if (morph->dom && morph->ran && morph->map && morph->inv)
		return morph;

	isl_morph_free(morph);
	return NULL;
}

__isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph,
	enum isl_dim_type type, unsigned first, unsigned n)
{
	unsigned ran_offset;

	if (n == 0)
		return morph;

	morph = isl_morph_cow(morph);
	if (!morph)
		return NULL;

	ran_offset = 1 + isl_space_offset(morph->ran->dim, type);

	morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n);

	morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n);

	morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n);

	if (morph->dom && morph->ran && morph->map && morph->inv)
		return morph;

	isl_morph_free(morph);
	return NULL;
}

/* Project domain of morph onto its parameter domain.
 */
__isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph)
{
	isl_size n;

	morph = isl_morph_cow(morph);
	if (!morph)
		return NULL;
	n = isl_basic_set_dim(morph->dom, isl_dim_set);
	if (n < 0)
		return isl_morph_free(morph);
	morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n);
	if (!morph)
		return NULL;
	morph->dom = isl_basic_set_params(morph->dom);
	if (morph->dom)
		return morph;

	isl_morph_free(morph);
	return NULL;
}

/* Project range of morph onto its parameter domain.
 */
__isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph)
{
	isl_size n;

	morph = isl_morph_cow(morph);
	if (!morph)
		return NULL;
	n = isl_basic_set_dim(morph->ran, isl_dim_set);
	if (n < 0)
		return isl_morph_free(morph);
	morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n);
	if (!morph)
		return NULL;
	morph->ran = isl_basic_set_params(morph->ran);
	if (morph->ran)
		return morph;

	isl_morph_free(morph);
	return NULL;
}

/* Replace the identifier of the tuple of the range of the morph by "id".
 */
static __isl_give isl_morph *isl_morph_set_ran_tuple_id(
	__isl_take isl_morph *morph, __isl_keep isl_id *id)
{
	morph = isl_morph_cow(morph);
	if (!morph)
		return NULL;
	morph->ran = isl_basic_set_set_tuple_id(morph->ran, isl_id_copy(id));
	if (!morph->ran)
		return isl_morph_free(morph);
	return morph;
}

void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out)
{
	if (!morph)
		return;

	isl_basic_set_dump(morph->dom);
	isl_basic_set_dump(morph->ran);
	isl_mat_print_internal(morph->map, out, 4);
	isl_mat_print_internal(morph->inv, out, 4);
}

void isl_morph_dump(__isl_take isl_morph *morph)
{
	isl_morph_print_internal(morph, stderr);
}

__isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
{
	isl_mat *id;
	isl_basic_set *universe;
	isl_size total;

	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0)
		return NULL;

	id = isl_mat_identity(bset->ctx, 1 + total);
	universe = isl_basic_set_universe(isl_space_copy(bset->dim));

	return isl_morph_alloc(universe, isl_basic_set_copy(universe),
		id, isl_mat_copy(id));
}

/* Create a(n identity) morphism between empty sets of the same dimension
 * a "bset".
 */
__isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
{
	isl_mat *id;
	isl_basic_set *empty;
	isl_size total;

	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0)
		return NULL;

	id = isl_mat_identity(bset->ctx, 1 + total);
	empty = isl_basic_set_empty(isl_space_copy(bset->dim));

	return isl_morph_alloc(empty, isl_basic_set_copy(empty),
		id, isl_mat_copy(id));
}

/* Construct a basic set described by the "n" equalities of "bset" starting
 * at "first".
 */
static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
	unsigned first, unsigned n)
{
	int i, k;
	isl_basic_set *eq;
	isl_size total;

	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0 || isl_basic_set_check_no_locals(bset) < 0)
		return NULL;

	eq = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, n, 0);
	if (!eq)
		return NULL;
	for (i = 0; i < n; ++i) {
		k = isl_basic_set_alloc_equality(eq);
		if (k < 0)
			goto error;
		isl_seq_cpy(eq->eq[k], bset->eq[first + i], 1 + total);
	}

	return eq;
error:
	isl_basic_set_free(eq);
	return NULL;
}

/* Given a basic set, exploit the equalities in the basic set to construct
 * a morphism that maps the basic set to a lower-dimensional space.
 * Specifically, the morphism reduces the number of dimensions of type "type".
 *
 * We first select the equalities of interest, that is those that involve
 * variables of type "type" and no later variables.
 * Denote those equalities as
 *
 *		-C(p) + M x = 0
 *
 * where C(p) depends on the parameters if type == isl_dim_set and
 * is a constant if type == isl_dim_param.
 *
 * Use isl_mat_final_variable_compression to construct a compression
 *
 *	x = T x'
 *
 *	x' = Q x
 *
 * If T is a zero-column matrix, then the set of equality constraints
 * do not admit a solution.  In this case, an empty morphism is returned.
 *
 * Both matrices are extended to map the full original space to the full
 * compressed space.
 */
__isl_give isl_morph *isl_basic_set_variable_compression(
	__isl_keep isl_basic_set *bset, enum isl_dim_type type)
{
	unsigned otype;
	isl_size ntype;
	unsigned orest;
	unsigned nrest;
	isl_size total;
	int f_eq, n_eq;
	isl_space *space;
	isl_mat *E, *Q, *C;
	isl_basic_set *dom, *ran;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return isl_morph_empty(bset);

	if (isl_basic_set_check_no_locals(bset) < 0)
		return NULL;

	ntype = isl_basic_set_dim(bset, type);
	total = isl_basic_set_dim(bset, isl_dim_all);
	if (ntype < 0 || total < 0)
		return NULL;
	otype = isl_basic_set_offset(bset, type);
	orest = otype + ntype;
	nrest = total - (orest - 1);

	for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
		if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
			break;
	for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
		if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
			break;
	if (n_eq == 0)
		return isl_morph_identity(bset);

	E = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, 0, orest);
	C = isl_mat_final_variable_compression(E, otype - 1, &Q);
	if (!Q)
		C = isl_mat_free(C);
	if (C && C->n_col == 0) {
		isl_mat_free(C);
		isl_mat_free(Q);
		return isl_morph_empty(bset);
	}

	Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
	C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));

	space = isl_space_copy(bset->dim);
	space = isl_space_drop_dims(space, type, 0, ntype);
	space = isl_space_add_dims(space, type, ntype - n_eq);
	ran = isl_basic_set_universe(space);
	dom = copy_equalities(bset, f_eq, n_eq);

	return isl_morph_alloc(dom, ran, Q, C);
}

/* Given a basic set, exploit the equalities in the basic set to construct
 * a morphism that maps the basic set to a lower-dimensional space
 * with identifier "id".
 * Specifically, the morphism reduces the number of set dimensions.
 */
__isl_give isl_morph *isl_basic_set_variable_compression_with_id(
	__isl_keep isl_basic_set *bset, __isl_keep isl_id *id)
{
	isl_morph *morph;

	morph = isl_basic_set_variable_compression(bset, isl_dim_set);
	morph = isl_morph_set_ran_tuple_id(morph, id);
	return morph;
}

/* Construct a parameter compression for "bset".
 * We basically just call isl_mat_parameter_compression with the right input
 * and then extend the resulting matrix to include the variables.
 *
 * The implementation assumes that "bset" does not have any equalities
 * that only involve the parameters and that isl_basic_set_gauss has
 * been applied to "bset".
 *
 * Let the equalities be given as
 *
 *	B(p) + A x = 0.
 *
 * We use isl_mat_parameter_compression_ext to compute the compression
 *
 *	p = T p'.
 */
__isl_give isl_morph *isl_basic_set_parameter_compression(
	__isl_keep isl_basic_set *bset)
{
	isl_size nparam;
	isl_size nvar;
	isl_size n_div;
	int n_eq;
	isl_mat *H, *B;
	isl_mat *map, *inv;
	isl_basic_set *dom, *ran;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return isl_morph_empty(bset);
	if (bset->n_eq == 0)
		return isl_morph_identity(bset);

	n_eq = bset->n_eq;
	nparam = isl_basic_set_dim(bset, isl_dim_param);
	nvar = isl_basic_set_dim(bset, isl_dim_set);
	n_div = isl_basic_set_dim(bset, isl_dim_div);
	if (nparam < 0 || nvar < 0 || n_div < 0)
		return NULL;

	if (isl_seq_first_non_zero(bset->eq[bset->n_eq - 1] + 1 + nparam,
				    nvar + n_div) == -1)
		isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
			"input not allowed to have parameter equalities",
			return NULL);
	if (n_eq > nvar + n_div)
		isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
			"input not gaussed", return NULL);

	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
	H = isl_mat_sub_alloc6(bset->ctx, bset->eq,
				0, n_eq, 1 + nparam, nvar + n_div);
	inv = isl_mat_parameter_compression_ext(B, H);
	inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
	map = isl_mat_right_inverse(isl_mat_copy(inv));

	dom = isl_basic_set_universe(isl_space_copy(bset->dim));
	ran = isl_basic_set_universe(isl_space_copy(bset->dim));

	return isl_morph_alloc(dom, ran, map, inv);
}

/* Add stride constraints to "bset" based on the inverse mapping
 * that was plugged in.  In particular, if morph maps x' to x,
 * the constraints of the original input
 *
 *	A x' + b >= 0
 *
 * have been rewritten to
 *
 *	A inv x + b >= 0
 *
 * However, this substitution may loose information on the integrality of x',
 * so we need to impose that
 *
 *	inv x
 *
 * is integral.  If inv = B/d, this means that we need to impose that
 *
 *	B x = 0		mod d
 *
 * or
 *
 *	exists alpha in Z^m: B x = d alpha
 *
 * This function is similar to add_strides in isl_affine_hull.c
 */
static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
	__isl_keep isl_morph *morph)
{
	int i, div, k;
	isl_int gcd;

	if (isl_int_is_one(morph->inv->row[0][0]))
		return bset;

	isl_int_init(gcd);

	for (i = 0; 1 + i < morph->inv->n_row; ++i) {
		isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
		if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
			continue;
		div = isl_basic_set_alloc_div(bset);
		if (div < 0)
			goto error;
		isl_int_set_si(bset->div[div][0], 0);
		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			goto error;
		isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
			    morph->inv->n_col);
		isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
		isl_int_set(bset->eq[k][morph->inv->n_col + div],
			    morph->inv->row[0][0]);
	}

	isl_int_clear(gcd);

	return bset;
error:
	isl_int_clear(gcd);
	isl_basic_set_free(bset);
	return NULL;
}

/* Apply the morphism to the basic set.
 * We basically just compute the preimage of "bset" under the inverse mapping
 * in morph, add in stride constraints and intersect with the range
 * of the morphism.
 */
__isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
	__isl_take isl_basic_set *bset)
{
	isl_basic_set *res = NULL;
	isl_mat *mat = NULL;
	int i, k;
	int max_stride;

	if (!morph || isl_basic_set_check_equal_space(bset, morph->dom) < 0)
		goto error;

	max_stride = morph->inv->n_row - 1;
	if (isl_int_is_one(morph->inv->row[0][0]))
		max_stride = 0;
	res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
		bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);

	for (i = 0; i < bset->n_div; ++i)
		if (isl_basic_set_alloc_div(res) < 0)
			goto error;

	mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_eq; ++i) {
		k = isl_basic_set_alloc_equality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->ineq[k] + mat->n_col,
				bset->ineq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
					1, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_div; ++i) {
		isl_int_mul(res->div[i][0],
				morph->inv->row[0][0], bset->div[i][0]);
		isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
		isl_seq_scale(res->div[i] + 1 + mat->n_col,
				bset->div[i] + 1 + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	res = add_strides(res, morph);

	if (isl_basic_set_is_rational(bset))
		res = isl_basic_set_set_rational(res);

	res = isl_basic_set_simplify(res);
	res = isl_basic_set_finalize(res);

	res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));

	isl_morph_free(morph);
	isl_basic_set_free(bset);
	return res;
error:
	isl_mat_free(mat);
	isl_morph_free(morph);
	isl_basic_set_free(bset);
	isl_basic_set_free(res);
	return NULL;
}

/* Apply the morphism to the set.
 */
__isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
	__isl_take isl_set *set)
{
	int i;

	if (!morph || isl_set_basic_set_check_equal_space(set, morph->dom) < 0)
		goto error;

	set = isl_set_cow(set);
	if (!set)
		goto error;

	isl_space_free(set->dim);
	set->dim = isl_space_copy(morph->ran->dim);
	if (!set->dim)
		goto error;

	for (i = 0; i < set->n; ++i) {
		set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
		if (!set->p[i])
			goto error;
	}

	isl_morph_free(morph);

	ISL_F_CLR(set, ISL_SET_NORMALIZED);

	return set;
error:
	isl_set_free(set);
	isl_morph_free(morph);
	return NULL;
}

/* Construct a morphism that first does morph2 and then morph1.
 */
__isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
	__isl_take isl_morph *morph2)
{
	isl_mat *map, *inv;
	isl_basic_set *dom, *ran;

	if (!morph1 || !morph2)
		goto error;

	map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
	inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
	dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
				  isl_basic_set_copy(morph1->dom));
	dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
	ran = isl_morph_basic_set(isl_morph_copy(morph1),
				  isl_basic_set_copy(morph2->ran));
	ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));

	isl_morph_free(morph1);
	isl_morph_free(morph2);

	return isl_morph_alloc(dom, ran, map, inv);
error:
	isl_morph_free(morph1);
	isl_morph_free(morph2);
	return NULL;
}

__isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph)
{
	isl_basic_set *bset;
	isl_mat *mat;

	morph = isl_morph_cow(morph);
	if (!morph)
		return NULL;

	bset = morph->dom;
	morph->dom = morph->ran;
	morph->ran = bset;

	mat = morph->map;
	morph->map = morph->inv;
	morph->inv = mat;

	return morph;
}

/* We detect all the equalities first to avoid implicit equalities
 * being discovered during the computations.  In particular,
 * the compression on the variables could expose additional stride
 * constraints on the parameters.  This would result in existentially
 * quantified variables after applying the resulting morph, which
 * in turn could break invariants of the calling functions.
 */
__isl_give isl_morph *isl_basic_set_full_compression(
	__isl_keep isl_basic_set *bset)
{
	isl_morph *morph, *morph2;

	bset = isl_basic_set_copy(bset);
	bset = isl_basic_set_detect_equalities(bset);

	morph = isl_basic_set_variable_compression(bset, isl_dim_param);
	bset = isl_morph_basic_set(isl_morph_copy(morph), bset);

	morph2 = isl_basic_set_parameter_compression(bset);
	bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);

	morph = isl_morph_compose(morph2, morph);

	morph2 = isl_basic_set_variable_compression(bset, isl_dim_set);
	isl_basic_set_free(bset);

	morph = isl_morph_compose(morph2, morph);

	return morph;
}

__isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph,
	__isl_take isl_vec *vec)
{
	if (!morph)
		goto error;

	vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec);

	isl_morph_free(morph);
	return vec;
error:
	isl_morph_free(morph);
	isl_vec_free(vec);
	return NULL;
}