hybrid.c
64.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
/*
* Copyright 2013 Ecole Normale Superieure
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege,
* Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <string.h>
#include <isl/space.h>
#include <isl/constraint.h>
#include <isl/val.h>
#include <isl/aff.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include "hybrid.h"
#include "schedule.h"
/* The hybrid tiling implemented in this file is based on
* Grosser et al., "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
/* Bounds on relative dependence distances in input to hybrid tiling.
* upper is an upper bound on the relative dependence distances
* in the first space dimension
* -lower is a lower bound on the relative dependence distances
* in all space dimensions.
*
* In particular,
*
* d_i >= -lower_i d_0
* and
* d_1 <= upper d_0
*
* for each dependence distance vector d, where d_1 is the component
* corresponding to the first space dimension.
*
* upper and lower are always non-negative.
* Some of the values may be NaN if no bound could be found.
*/
struct ppcg_ht_bounds {
isl_val *upper;
isl_multi_val *lower;
};
/* Free "bounds" along with all its fields.
*/
__isl_null ppcg_ht_bounds *ppcg_ht_bounds_free(
__isl_take ppcg_ht_bounds *bounds)
{
if (!bounds)
return NULL;
isl_val_free(bounds->upper);
isl_multi_val_free(bounds->lower);
free(bounds);
return NULL;
}
/* Create a ppcg_ht_bounds object for a band living in "space".
* The bounds are initialized to NaN.
*/
__isl_give ppcg_ht_bounds *ppcg_ht_bounds_alloc(__isl_take isl_space *space)
{
int i, n;
isl_ctx *ctx;
ppcg_ht_bounds *bounds;
if (!space)
return NULL;
ctx = isl_space_get_ctx(space);
bounds = isl_alloc_type(ctx, struct ppcg_ht_bounds);
if (!bounds)
goto error;
bounds->upper = isl_val_nan(ctx);
bounds->lower = isl_multi_val_zero(space);
n = isl_multi_val_dim(bounds->lower, isl_dim_set);
for (i = 0; i < n; ++i) {
isl_val *v = isl_val_copy(bounds->upper);
bounds->lower = isl_multi_val_set_val(bounds->lower, i, v);
}
if (!bounds->lower || !bounds->upper)
return ppcg_ht_bounds_free(bounds);
return bounds;
error:
isl_space_free(space);
return NULL;
}
void ppcg_ht_bounds_dump(__isl_keep ppcg_ht_bounds *bounds)
{
if (!bounds)
return;
fprintf(stderr, "lower: ");
isl_multi_val_dump(bounds->lower);
fprintf(stderr, "upper: ");
isl_val_dump(bounds->upper);
}
/* Return the upper bound on the relative dependence distances
* in the first space dimension.
*/
__isl_give isl_val *ppcg_ht_bounds_get_upper(__isl_keep ppcg_ht_bounds *bounds)
{
if (!bounds)
return NULL;
return isl_val_copy(bounds->upper);
}
/* Replace the upper bound on the relative dependence distances
* in the first space dimension by "upper".
*/
__isl_give ppcg_ht_bounds *ppcg_ht_bounds_set_upper(
__isl_take ppcg_ht_bounds *bounds, __isl_take isl_val *upper)
{
if (!bounds || !upper)
goto error;
isl_val_free(bounds->upper);
bounds->upper = upper;
return bounds;
error:
ppcg_ht_bounds_free(bounds);
isl_val_free(upper);
return NULL;
}
/* Return the lower bound on the relative dependence distances
* in space dimension "pos".
*/
__isl_give isl_val *ppcg_ht_bounds_get_lower(__isl_keep ppcg_ht_bounds *bounds,
int pos)
{
if (!bounds)
return NULL;
return isl_multi_val_get_val(bounds->lower, pos);
}
/* Replace the lower bound on the relative dependence distances
* in space dimension "pos" by "lower".
*/
__isl_give ppcg_ht_bounds *ppcg_ht_bounds_set_lower(
__isl_take ppcg_ht_bounds *bounds, int pos, __isl_take isl_val *lower)
{
if (!bounds || !lower)
goto error;
bounds->lower = isl_multi_val_set_val(bounds->lower, pos, lower);
if (!bounds->lower)
return ppcg_ht_bounds_free(bounds);
return bounds;
error:
ppcg_ht_bounds_free(bounds);
isl_val_free(lower);
return NULL;
}
/* Can the bounds on relative dependence distances recorded in "bounds"
* be used to perform hybrid tiling?
* In particular, have appropriate lower and upper bounds been found?
* Any NaN indicates that no corresponding bound was found.
*/
isl_bool ppcg_ht_bounds_is_valid(__isl_keep ppcg_ht_bounds *bounds)
{
isl_bool is_nan;
int i, n;
if (!bounds)
return isl_bool_error;
is_nan = isl_val_is_nan(bounds->upper);
if (is_nan < 0)
return isl_bool_error;
if (is_nan)
return isl_bool_false;
n = isl_multi_val_dim(bounds->lower, isl_dim_set);
for (i = 0; i < n; ++i) {
isl_val *v;
v = isl_multi_val_get_val(bounds->lower, i);
is_nan = isl_val_is_nan(v);
if (is_nan < 0)
return isl_bool_error;
if (is_nan)
return isl_bool_false;
isl_val_free(v);
}
return isl_bool_true;
}
/* Structure that represents the basic hexagonal tiling,
* along with information that is needed to perform the hybrid tiling.
*
* "bounds" are the bounds on the dependence distances that
* define the hexagonal shape and the required skewing in the remaining
* space dimensions.
*
* "input_node" points to the input pair of band nodes.
* "input_schedule" is the partial schedule of this input pair of band nodes.
* The space of this schedule is [P -> C], where P is the space
* of the parent node and C is the space of the child node.
*
* "space_sizes" represent the total size of a tile for the space
* dimensions, i.e., those corresponding to the child node.
* The space of "space_sizes" is C.
* If S_0 is the original tile size in the first space dimension,
* then the first entry of "space_sizes" is equal to
* W = 2*S_0 + floor(d_l h) + floor(d_u h).
* The remaining entries are the same as in the original tile sizes.
*
* The basic hexagonal tiling "hex" is defined
* in a "ts" (time-space) space and corresponds to the phase-1 tiles.
* "time_tile" maps the "ts" space to outer time tile.
* Is is equal to ts[t, s] -> floor(t/(2 * S_t)), with S_t the original tile
* size corresponding to the parent node.
* "local_time" maps the "ts" space to the time dimension inside each tile.
* It is equal to ts[t, s] -> t mod (2 S_t), with S_t the original tile
* size corresponding to the parent node.
* "shift_space" shifts the tiles at time tile T = floor(t/(2 S_t))
* in the space dimension such that they align to a multiple of W.
* It is equal to ts[t, s] -> s + (-(2 * shift_s)*T) % W,
* with shift_s = S_0 + floor(d_u h).
* "shift_phase" is the shift taken to go from phase 0 to phase 1
* It is equal to ts[t, s] -> ts[t + S_t, s + shift_s],
* with shift_s = S_0 + floor(d_u h).
*
* "project_ts" projects the space of the input schedule to the ts-space.
* It is equal to [P[t] -> C[s_0, ...]] -> ts[t, s_0].
*/
struct ppcg_ht_tiling {
int ref;
ppcg_ht_bounds *bounds;
isl_schedule_node *input_node;
isl_multi_union_pw_aff *input_schedule;
isl_multi_val *space_sizes;
isl_aff *time_tile;
isl_aff *local_time;
isl_aff *shift_space;
isl_multi_aff *shift_phase;
isl_set *hex;
isl_multi_aff *project_ts;
};
typedef struct ppcg_ht_tiling ppcg_ht_tiling;
/* Return the space of the pair of band nodes that form the input
* to the hybrid tiling.
* In particular, return the space [P -> C], where P is the space
* of the parent node and C is the space of the child node.
*/
__isl_give isl_space *ppcg_ht_tiling_get_input_space(
__isl_keep ppcg_ht_tiling *tile)
{
if (!tile)
return NULL;
return isl_multi_union_pw_aff_get_space(tile->input_schedule);
}
/* Remove a reference to "tile" and free "tile" along with all its fields
* as soon as the reference count drops to zero.
*/
static __isl_null ppcg_ht_tiling *ppcg_ht_tiling_free(
__isl_take ppcg_ht_tiling *tiling)
{
if (!tiling)
return NULL;
if (--tiling->ref > 0)
return NULL;
ppcg_ht_bounds_free(tiling->bounds);
isl_schedule_node_free(tiling->input_node);
isl_multi_union_pw_aff_free(tiling->input_schedule);
isl_multi_val_free(tiling->space_sizes);
isl_aff_free(tiling->time_tile);
isl_aff_free(tiling->local_time);
isl_aff_free(tiling->shift_space);
isl_multi_aff_free(tiling->shift_phase);
isl_set_free(tiling->hex);
isl_multi_aff_free(tiling->project_ts);
free(tiling);
return NULL;
}
/* Return a new reference to "tiling".
*/
__isl_give ppcg_ht_tiling *ppcg_ht_tiling_copy(
__isl_keep ppcg_ht_tiling *tiling)
{
if (!tiling)
return NULL;
tiling->ref++;
return tiling;
}
/* Return the isl_ctx to which "tiling" belongs.
*/
isl_ctx *ppcg_ht_tiling_get_ctx(__isl_keep ppcg_ht_tiling *tiling)
{
if (!tiling)
return NULL;
return isl_multi_union_pw_aff_get_ctx(tiling->input_schedule);
}
/* Representation of one of the two phases of hybrid tiling.
*
* "tiling" points to the shared tiling data.
*
* "time_tile", "local_time" and "shift_space" are equal to the corresponding
* fields of "tiling", pulled back to the input space.
* In case of phase 0, these expressions have also been moved
* from phase 1 to phase 0.
*
* "domain" contains the hexagonal tiling of this phase.
*
* "space_shift" is the shift that should be added to the space band
* in order to be able to apply rectangular tiling to the space.
* For phase 1, it is equal to
*
* [P[t] -> C[s_0, s_i]] -> C[(-(2 * shift_s)*T) % W, dl_i * u]
*
* with shift_s = S_0 + floor(d_u h),
* T equal to "time_tile" and u equal to "local_time".
* For phase 0, it is equal to
*
* [P[t] -> C[s_0, s_i]] -> C[shift_s + (-(2 * shift_s)*T) % W, dl_i * u]
*
* "space_tile" is the space tiling. It is equal to
*
* [P[t] -> C[s]] -> C[floor((s + space_shift)/space_size]
*/
struct ppcg_ht_phase {
ppcg_ht_tiling *tiling;
isl_aff *time_tile;
isl_aff *local_time;
isl_aff *shift_space;
isl_set *domain;
isl_multi_aff *space_shift;
isl_multi_aff *space_tile;
};
/* Free "phase" along with all its fields.
*/
static __isl_null ppcg_ht_phase *ppcg_ht_phase_free(
__isl_take ppcg_ht_phase *phase)
{
if (!phase)
return NULL;
ppcg_ht_tiling_free(phase->tiling);
isl_aff_free(phase->time_tile);
isl_aff_free(phase->local_time);
isl_aff_free(phase->shift_space);
isl_set_free(phase->domain);
isl_multi_aff_free(phase->space_shift);
isl_multi_aff_free(phase->space_tile);
free(phase);
return NULL;
}
/* Wrapper around ppcg_ht_phase_free for use as an argument
* to isl_id_set_free_user.
*/
static void ppcg_ht_phase_free_wrap(void *user)
{
ppcg_ht_phase *phase = user;
ppcg_ht_phase_free(phase);
}
/* Return the domain of hybrid tiling phase "phase".
*/
static __isl_give isl_set *ppcg_ht_phase_get_domain(ppcg_ht_phase *phase)
{
if (!phase)
return NULL;
return isl_set_copy(phase->domain);
}
/* Return the space of the pair of band nodes that form the input
* to the hybrid tiling of which "phase" is a phase.
* In particular, return the space [P -> C], where P is the space
* of the parent node and C is the space of the child node.
*/
static __isl_give isl_space *ppcg_ht_phase_get_input_space(
__isl_keep ppcg_ht_phase *phase)
{
if (!phase)
return NULL;
return ppcg_ht_tiling_get_input_space(phase->tiling);
}
/* Construct the lower left constraint of the hexagonal tile, i.e.,
*
* du a - b <= (2h+1) du - duh
* -du a + b + (2h+1) du - duh >= 0
*
* where duh = floor(du * h).
*
* This constraint corresponds to (6) in
* "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
static __isl_give isl_constraint *hex_lower_left(__isl_take isl_local_space *ls,
__isl_keep isl_val *h, __isl_keep isl_val *du, __isl_keep isl_val *duh)
{
isl_val *v;
isl_aff *aff;
v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
v = isl_val_mul(v, isl_val_copy(du));
v = isl_val_sub(v, isl_val_copy(duh));
aff = isl_aff_val_on_domain(ls, v);
v = isl_val_neg(isl_val_copy(du));
aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, v);
aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, 1);
return isl_inequality_from_aff(aff);
}
/* Construct the lower constraint of the hexagonal tile, i.e.,
*
* a <= 2h+1
* -a + 2h+1 >= 0
*
* This constraint corresponds to (7) in
* "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
static __isl_give isl_constraint *hex_lower(__isl_take isl_local_space *ls,
__isl_keep isl_val *h)
{
isl_val *v;
isl_aff *aff;
v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
aff = isl_aff_val_on_domain(ls, v);
aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 0, -1);
return isl_inequality_from_aff(aff);
}
/* Construct the lower right constraint of the hexagonal tile, i.e.,
*
* dl a + b <= (2h+1) dl + duh + (s0-1)
* -dl a - b + (2h+1) dl + duh + (s0-1) >= 0
*
* where duh = floor(du * h).
*
* This constraint corresponds to (8) in
* "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
static __isl_give isl_constraint *hex_lower_right(
__isl_take isl_local_space *ls, __isl_keep isl_val *h,
__isl_keep isl_val *s0, __isl_keep isl_val *dl, __isl_keep isl_val *duh)
{
isl_val *v;
isl_aff *aff;
v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
v = isl_val_mul(v, isl_val_copy(dl));
v = isl_val_add(v, isl_val_copy(duh));
v = isl_val_add(v, isl_val_copy(s0));
v = isl_val_sub_ui(v, 1);
aff = isl_aff_val_on_domain(ls, v);
v = isl_val_neg(isl_val_copy(dl));
aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, v);
aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, -1);
return isl_inequality_from_aff(aff);
}
/* Construct the upper left constraint of the hexagonal tile, i.e.,
*
* dl a + b >= h dl - (d - 1)/d with d = den(dl)
* dl a + b - h dl + (d - 1)/d >= 0
*
* This constraint corresponds to (10) in
* "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
static __isl_give isl_constraint *hex_upper_left(__isl_take isl_local_space *ls,
__isl_keep isl_val *h, __isl_keep isl_val *dl)
{
isl_val *v, *d;
isl_aff *aff;
d = isl_val_get_den_val(dl);
v = isl_val_sub_ui(isl_val_copy(d), 1);
v = isl_val_div(v, d);
v = isl_val_sub(v, isl_val_mul(isl_val_copy(h), isl_val_copy(dl)));
aff = isl_aff_val_on_domain(ls, v);
aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, isl_val_copy(dl));
aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, 1);
return isl_inequality_from_aff(aff);
}
/* Construct the upper right constraint of the hexagonal tile, i.e.,
*
* du a - b >= du h - duh - (s0-1) - dlh - (d - 1)/d with d = den(du)
* du a - b - du h + duh + (s0-1) + dlh + (d - 1)/d >= 0
*
* where dlh = floor(dl * h) and duh = floor(du * h).
*
* This constraint corresponds to (12) in
* "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
static __isl_give isl_constraint *hex_upper_right(
__isl_take isl_local_space *ls, __isl_keep isl_val *h,
__isl_keep isl_val *s0, __isl_keep isl_val *du,
__isl_keep isl_val *dlh, __isl_keep isl_val *duh)
{
isl_val *v, *d;
isl_aff *aff;
d = isl_val_get_den_val(du);
v = isl_val_sub_ui(isl_val_copy(d), 1);
v = isl_val_div(v, d);
v = isl_val_sub(v, isl_val_mul(isl_val_copy(h), isl_val_copy(du)));
v = isl_val_add(v, isl_val_copy(duh));
v = isl_val_add(v, isl_val_copy(dlh));
v = isl_val_add(v, isl_val_copy(s0));
v = isl_val_sub_ui(v, 1);
aff = isl_aff_val_on_domain(ls, v);
aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, isl_val_copy(du));
aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, -1);
return isl_inequality_from_aff(aff);
}
/* Construct the uppper constraint of the hexagonal tile, i.e.,
*
* a >= 0
*
* This constraint corresponds to (13) in
* "Hybrid Hexagonal/Classical Tiling for GPUs".
*/
static __isl_give isl_constraint *hex_upper(__isl_take isl_local_space *ls)
{
isl_aff *aff;
aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
return isl_inequality_from_aff(aff);
}
/* Construct the basic hexagonal tile shape.
* "space" is the 2D space in which the hexagon should be constructed.
* h is st-1, with st the tile size in the time dimension
* s0 is the tile size in the space dimension
* dl is a bound on the negative relative dependence distances, i.e.,
*
* d_s >= -dl d_t
*
* du is a bound on the positive relative dependence distances, i.e.,
*
* d_s <= du d_t
*
* with (d_t,d_s) any dependence distance vector.
* dlh = floor(dl * h)
* duh = floor(du * h)
*
* The shape of the hexagon is as follows:
*
* 0 dlh dlh+s0-1
* ______ __
* 0 / \_ /
* / \_ /
* h / \ ______ /
* h+1 \_ // \\_
* \_ // \\_
* 2h+1 \______// \\
* 0 duh duh+s0-1
* duh+s0-1+dlh
* duh+s0-1+dlh+1+s0+1
*
* The next hexagon is shifted by duh + dlh + 2 * s0.
*
* The slope of the "/" constraints is dl.
* The slope of the "\_" constraints is du.
*/
static __isl_give isl_set *compute_hexagon(__isl_take isl_space *space,
__isl_keep isl_val *h, __isl_keep isl_val *s0,
__isl_keep isl_val *dl, __isl_keep isl_val *du,
__isl_keep isl_val *dlh, __isl_keep isl_val *duh)
{
isl_local_space *ls;
isl_constraint *c;
isl_basic_set *bset;
ls = isl_local_space_from_space(space);
c = hex_lower_left(isl_local_space_copy(ls), h, du, duh);
bset = isl_basic_set_from_constraint(c);
c = hex_lower(isl_local_space_copy(ls), h);
bset = isl_basic_set_add_constraint(bset, c);
c = hex_lower_right(isl_local_space_copy(ls), h, s0, dl, duh);
bset = isl_basic_set_add_constraint(bset, c);
c = hex_upper_left(isl_local_space_copy(ls), h, dl);
bset = isl_basic_set_add_constraint(bset, c);
c = hex_upper_right(isl_local_space_copy(ls), h, s0, du, dlh, duh);
bset = isl_basic_set_add_constraint(bset, c);
c = hex_upper(ls);
bset = isl_basic_set_add_constraint(bset, c);
return isl_set_from_basic_set(bset);
}
/* Name of the ts-space.
*/
static const char *ts_space_name = "ts";
/* Construct and return the space ts[t, s].
*/
static __isl_give isl_space *construct_ts_space(isl_ctx *ctx)
{
isl_space *s;
s = isl_space_set_alloc(ctx, 0, 2);
s = isl_space_set_tuple_name(s, isl_dim_set, ts_space_name);
return s;
}
/* Name of the local ts-space.
*/
static const char *local_ts_space_name = "local_ts";
/* Construct and return the space local_ts[t, s].
*/
static __isl_give isl_space *construct_local_ts_space(isl_ctx *ctx)
{
isl_space *s;
s = isl_space_set_alloc(ctx, 0, 2);
s = isl_space_set_tuple_name(s, isl_dim_set, local_ts_space_name);
return s;
}
/* Compute the total size of a tile for the space dimensions,
* i.e., those corresponding to the child node
* of the input pattern.
* If S_0 is the original tile size in the first space dimension,
* then the first entry of "space_sizes" is equal to
* W = 2*S_0 + floor(d_l h) + floor(d_u h).
* The remaining entries are the same as in the original tile sizes.
* "tile_sizes" contains the original tile sizes, including
* the tile size corresponding to the parent node.
* "dlh" is equal to floor(d_l h).
* "duh" is equal to floor(d_u h).
*/
static __isl_give isl_multi_val *compute_space_sizes(
__isl_keep isl_multi_val *tile_sizes,
__isl_keep isl_val *dlh, __isl_keep isl_val *duh)
{
isl_val *size;
isl_multi_val *space_sizes;
space_sizes = isl_multi_val_copy(tile_sizes);
space_sizes = isl_multi_val_factor_range(space_sizes);
size = isl_multi_val_get_val(space_sizes, 0);
size = isl_val_mul_ui(size, 2);
size = isl_val_add(size, isl_val_copy(duh));
size = isl_val_add(size, isl_val_copy(dlh));
space_sizes = isl_multi_val_set_val(space_sizes, 0, size);
return space_sizes;
}
/* Compute the offset of phase 1 with respect to phase 0
* in the ts-space ("space").
* In particular, return
*
* ts[st, s0 + duh]
*/
static __isl_give isl_multi_val *compute_phase_shift(
__isl_keep isl_space *space, __isl_keep isl_val *st,
__isl_keep isl_val *s0, __isl_keep isl_val *duh)
{
isl_val *v;
isl_multi_val *phase_shift;
phase_shift = isl_multi_val_zero(isl_space_copy(space));
phase_shift = isl_multi_val_set_val(phase_shift, 0, isl_val_copy(st));
v = isl_val_add(isl_val_copy(duh), isl_val_copy(s0));
phase_shift = isl_multi_val_set_val(phase_shift, 1, v);
return phase_shift;
}
/* Return the function
*
* ts[t, s] -> floor(t/(2 * st))
*
* representing the time tile.
* "space" is the space ts[t, s].
*/
static __isl_give isl_aff *compute_time_tile(__isl_keep isl_space *space,
__isl_keep isl_val *st)
{
isl_val *v;
isl_aff *t;
isl_local_space *ls;
ls = isl_local_space_from_space(isl_space_copy(space));
t = isl_aff_var_on_domain(ls, isl_dim_set, 0);
v = isl_val_mul_ui(isl_val_copy(st), 2);
t = isl_aff_floor(isl_aff_scale_down_val(t, v));
return t;
}
/* Compute a shift in the space dimension for tiles
* at time tile T = floor(t/(2 * S_t))
* such that they align to a multiple of the total space tile dimension W.
* In particular, compute
*
* ts[t, s] -> s + (-(2 * shift_s)*T) % W
*
* where shift_s is the shift of phase 1 with respect to phase 0
* in the space dimension (the first element of "phase_shift").
* W is stored in the first element of "space_sizes".
* "time_tile" is the function
*
* ts[t, s] -> floor(t/(2 * S_T))
*
* Since phase 1 is shifted by shift_s with respect to phase 0,
* the next line of phase 0 (at T+1) is shifted by 2*shift_s
* with respect to the previous line (at T).
* A shift of -(2 * shift_s)*T therefore allows the basic pattern
* (which starts at 0) to be applied.
* However, this shift will be used to obtain the tile coordinate
* in the first space dimension and if the original values
* in the space dimension are non-negative, then the shift should
* not make them negative. Moreover, the shift should be as minimal
* as possible.
* Since the pattern repeats itself with a period of W in the space
* dimension, the shift can be replaced by (-(2 * shift_s)*T) % W.
*/
static __isl_give isl_aff *compute_shift_space(__isl_keep isl_aff *time_tile,
__isl_keep isl_multi_val *space_sizes,
__isl_keep isl_multi_val *phase_shift)
{
isl_val *v;
isl_aff *s, *t;
isl_local_space *ls;
ls = isl_local_space_from_space(isl_aff_get_domain_space(time_tile));
t = isl_aff_copy(time_tile);
v = isl_val_mul_ui(isl_multi_val_get_val(phase_shift, 1), 2);
v = isl_val_neg(v);
t = isl_aff_scale_val(t, v);
v = isl_multi_val_get_val(space_sizes, 0);
t = isl_aff_mod_val(t, v);
s = isl_aff_var_on_domain(ls, isl_dim_set, 1);
s = isl_aff_add(s, t);
return s;
}
/* Give the phase_shift ts[S_t, S_0 + floor(d_u h)],
* compute a function that applies the shift, i.e.,
*
* ts[t, s] -> ts[t + S_t, s + S_0 + floor(d_u h)],
*/
static __isl_give isl_multi_aff *compute_shift_phase(
__isl_keep isl_multi_val *phase_shift)
{
isl_space *space;
isl_multi_aff *shift;
space = isl_multi_val_get_space(phase_shift);
shift = isl_multi_aff_multi_val_on_space(space,
isl_multi_val_copy(phase_shift));
space = isl_multi_aff_get_space(shift);
shift = isl_multi_aff_add(shift, isl_multi_aff_identity(space));
return shift;
}
/* Compute a mapping from the ts-space to the local coordinates
* within each tile. In particular, compute
*
* ts[t, s] -> local_ts[t % (2 S_t), (s + (-(2 * shift_s)*T) % W) % W]
*
* "ts" is the space ts[t, s]
* "local_ts" is the space local_ts[t, s]
* "shift_space" is equal to ts[t, s] -> s + (-(2 * shift_s)*T) % W
* "st" is the tile size in the time dimension S_t.
* The first element of "space_sizes" is equal to W.
*/
static __isl_give isl_multi_aff *compute_localize(
__isl_keep isl_space *local_ts, __isl_keep isl_aff *shift_space,
__isl_keep isl_val *st, __isl_keep isl_multi_val *space_sizes)
{
isl_val *v;
isl_space *space;
isl_aff *s, *t;
isl_multi_aff *localize;
space = isl_aff_get_domain_space(shift_space);
local_ts = isl_space_copy(local_ts);
space = isl_space_map_from_domain_and_range(space, local_ts);
localize = isl_multi_aff_identity(space);
t = isl_multi_aff_get_aff(localize, 0);
v = isl_val_mul_ui(isl_val_copy(st), 2);
t = isl_aff_mod_val(t, v);
localize = isl_multi_aff_set_aff(localize, 0, t);
s = isl_aff_copy(shift_space);
v = isl_multi_val_get_val(space_sizes, 0);
s = isl_aff_mod_val(s, v);
localize = isl_multi_aff_set_aff(localize, 1, s);
return localize;
}
/* Set the project_ts field of "tiling".
*
* This field projects the space of the input schedule to the ts-space.
* It is equal to [P[t] -> C[s_0, ...]] -> ts[t, s_0].
*/
static __isl_give ppcg_ht_tiling *ppcg_ht_tiling_set_project_ts(
__isl_take ppcg_ht_tiling *tiling)
{
int n;
isl_space *space;
isl_multi_aff *project;
if (!tiling)
return NULL;
space = ppcg_ht_tiling_get_input_space(tiling);
n = isl_space_dim(space, isl_dim_set);
project = isl_multi_aff_project_out_map(space, isl_dim_set, 2, n - 2);
project = isl_multi_aff_set_tuple_name(project,
isl_dim_out, ts_space_name);
if (!project)
return ppcg_ht_tiling_free(tiling);
tiling->project_ts = project;
return tiling;
}
/* Construct a hybrid tiling description from bounds on the dependence
* distances "bounds".
* "input_node" points to the original parent node.
* "input_schedule" is the combined schedule of the parent and child
* node in the input.
* "tile_sizes" are the original, user specified tile sizes.
*/
static __isl_give ppcg_ht_tiling *ppcg_ht_bounds_construct_tiling(
__isl_take ppcg_ht_bounds *bounds,
__isl_keep isl_schedule_node *input_node,
__isl_keep isl_multi_union_pw_aff *input_schedule,
__isl_keep isl_multi_val *tile_sizes)
{
isl_ctx *ctx;
ppcg_ht_tiling *tiling;
isl_multi_val *space_sizes, *phase_shift;
isl_aff *time_tile, *shift_space;
isl_multi_aff *localize;
isl_val *h, *duh, *dlh;
isl_val *st, *s0, *du, *dl;
isl_space *ts, *local_ts;
if (!bounds || !input_node || !input_schedule || !tile_sizes)
goto error;
ctx = isl_multi_union_pw_aff_get_ctx(input_schedule);
tiling = isl_calloc_type(ctx, struct ppcg_ht_tiling);
if (!tiling)
goto error;
tiling->ref = 1;
st = isl_multi_val_get_val(tile_sizes, 0);
h = isl_val_sub_ui(isl_val_copy(st), 1);
s0 = isl_multi_val_get_val(tile_sizes, 1);
du = ppcg_ht_bounds_get_upper(bounds);
dl = ppcg_ht_bounds_get_lower(bounds, 0);
duh = isl_val_floor(isl_val_mul(isl_val_copy(du), isl_val_copy(h)));
dlh = isl_val_floor(isl_val_mul(isl_val_copy(dl), isl_val_copy(h)));
ts = construct_ts_space(ctx);
local_ts = construct_local_ts_space(ctx);
space_sizes = compute_space_sizes(tile_sizes, dlh, duh);
phase_shift = compute_phase_shift(ts, st, s0, duh);
time_tile = compute_time_tile(ts, st);
shift_space = compute_shift_space(time_tile, space_sizes, phase_shift);
localize = compute_localize(local_ts, shift_space, st, space_sizes);
isl_space_free(ts);
tiling->input_node = isl_schedule_node_copy(input_node);
tiling->input_schedule = isl_multi_union_pw_aff_copy(input_schedule);
tiling->space_sizes = space_sizes;
tiling->bounds = bounds;
tiling->local_time = isl_multi_aff_get_aff(localize, 0);
tiling->hex = compute_hexagon(local_ts, h, s0, dl, du, dlh, duh);
tiling->hex = isl_set_preimage_multi_aff(tiling->hex, localize);
tiling->time_tile = time_tile;
tiling->shift_space = shift_space;
tiling->shift_phase = compute_shift_phase(phase_shift);
isl_multi_val_free(phase_shift);
isl_val_free(duh);
isl_val_free(dlh);
isl_val_free(du);
isl_val_free(dl);
isl_val_free(s0);
isl_val_free(st);
isl_val_free(h);
if (!tiling->input_schedule || !tiling->local_time || !tiling->hex ||
!tiling->shift_space || !tiling->shift_phase)
return ppcg_ht_tiling_free(tiling);
tiling = ppcg_ht_tiling_set_project_ts(tiling);
return tiling;
error:
ppcg_ht_bounds_free(bounds);
return NULL;
}
/* Are all members of the band node "node" coincident?
*/
static isl_bool all_coincident(__isl_keep isl_schedule_node *node)
{
int i, n;
n = isl_schedule_node_band_n_member(node);
for (i = 0; i < n; ++i) {
isl_bool c;
c = isl_schedule_node_band_member_get_coincident(node, i);
if (c < 0 || !c)
return c;
}
return isl_bool_true;
}
/* Does "node" satisfy the properties of the inner node in the input
* pattern for hybrid tiling?
* That is, is it a band node with only coincident members, of which
* there is at least one?
*/
static isl_bool has_child_properties(__isl_keep isl_schedule_node *node)
{
if (!node)
return isl_bool_error;
if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
return isl_bool_false;
if (isl_schedule_node_band_n_member(node) < 1)
return isl_bool_false;
return all_coincident(node);
}
/* Does "node" satisfy the properties of the outer node in the input
* pattern for hybrid tiling?
* That is, is it a band node with a single member?
*/
static isl_bool has_parent_properties(__isl_keep isl_schedule_node *node)
{
if (!node)
return isl_bool_error;
if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
return isl_bool_false;
if (isl_schedule_node_band_n_member(node) != 1)
return isl_bool_false;
return isl_bool_true;
}
/* Does the parent of "node" satisfy the input patttern for hybrid tiling?
* That is, does "node" satisfy the properties of the inner node and
* does the parent of "node" satisfy the properties of the outer node?
*/
isl_bool ppcg_ht_parent_has_input_pattern(__isl_keep isl_schedule_node *node)
{
isl_bool has_pattern;
has_pattern = has_child_properties(node);
if (has_pattern < 0 || !has_pattern)
return has_pattern;
node = isl_schedule_node_copy(node);
node = isl_schedule_node_parent(node);
has_pattern = has_parent_properties(node);
isl_schedule_node_free(node);
return has_pattern;
}
/* Does "node" satisfy the input patttern for hybrid tiling?
* That is, does "node" satisfy the properties of the outer node and
* does the child of "node" satisfy the properties of the inner node?
*/
isl_bool ppcg_ht_has_input_pattern(__isl_keep isl_schedule_node *node)
{
isl_bool has_pattern;
has_pattern = has_parent_properties(node);
if (has_pattern < 0 || !has_pattern)
return has_pattern;
node = isl_schedule_node_get_child(node, 0);
has_pattern = has_child_properties(node);
isl_schedule_node_free(node);
return has_pattern;
}
/* Check that "node" satisfies the input pattern for hybrid tiling.
* Error out if it does not.
*/
static isl_stat check_input_pattern(__isl_keep isl_schedule_node *node)
{
isl_bool has_pattern;
has_pattern = ppcg_ht_has_input_pattern(node);
if (has_pattern < 0)
return isl_stat_error;
if (!has_pattern)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"invalid input pattern for hybrid tiling",
return isl_stat_error);
return isl_stat_ok;
}
/* Extract the input schedule from "node", i.e., the product
* of the partial schedules of the parent and child nodes
* in the input pattern.
*/
static __isl_give isl_multi_union_pw_aff *extract_input_schedule(
__isl_keep isl_schedule_node *node)
{
isl_multi_union_pw_aff *partial, *partial2;
partial = isl_schedule_node_band_get_partial_schedule(node);
node = isl_schedule_node_get_child(node, 0);
partial2 = isl_schedule_node_band_get_partial_schedule(node);
isl_schedule_node_free(node);
return isl_multi_union_pw_aff_range_product(partial, partial2);
}
/* Collect all dependences from "scop" that are relevant for performing
* hybrid tiling on "node" and its child and map them to the schedule
* space of this pair of nodes.
*
* In case live range reordering is not used,
* the flow and the false dependences are collected.
* In case live range reordering is used,
* the flow and the forced dependences are collected, as well
* as the order dependences that are adjacent to non-local
* flow dependences.
*
* In all cases, only dependences that map to the same instance
* of the outer part of the schedule are considered.
*/
static __isl_give isl_map *collect_deps(struct ppcg_scop *scop,
__isl_keep isl_schedule_node *node)
{
isl_space *space;
isl_multi_union_pw_aff *prefix, *partial;
isl_union_map *flow, *other, *dep, *umap;
isl_map *map;
prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
partial = extract_input_schedule(node);
space = isl_multi_union_pw_aff_get_space(partial);
flow = isl_union_map_copy(scop->dep_flow);
flow = isl_union_map_eq_at_multi_union_pw_aff(flow,
isl_multi_union_pw_aff_copy(prefix));
if (!scop->options->live_range_reordering) {
other = isl_union_map_copy(scop->dep_false);
other = isl_union_map_eq_at_multi_union_pw_aff(other, prefix);
} else {
isl_union_map *local, *non_local, *order, *adj;
isl_union_set *domain, *range;
other = isl_union_map_copy(scop->dep_forced);
other = isl_union_map_eq_at_multi_union_pw_aff(other,
isl_multi_union_pw_aff_copy(prefix));
local = isl_union_map_copy(flow);
local = isl_union_map_eq_at_multi_union_pw_aff(local,
isl_multi_union_pw_aff_copy(partial));
non_local = isl_union_map_copy(flow);
non_local = isl_union_map_subtract(non_local, local);
order = isl_union_map_copy(scop->dep_order);
order = isl_union_map_eq_at_multi_union_pw_aff(order, prefix);
adj = isl_union_map_copy(order);
domain = isl_union_map_domain(isl_union_map_copy(non_local));
domain = isl_union_set_coalesce(domain);
adj = isl_union_map_intersect_range(adj, domain);
other = isl_union_map_union(other, adj);
adj = order;
range = isl_union_map_range(non_local);
range = isl_union_set_coalesce(range);
adj = isl_union_map_intersect_domain(adj, range);
other = isl_union_map_union(other, adj);
}
dep = isl_union_map_union(flow, other);
umap = isl_union_map_from_multi_union_pw_aff(partial);
dep = isl_union_map_apply_domain(dep, isl_union_map_copy(umap));
dep = isl_union_map_apply_range(dep, umap);
space = isl_space_map_from_set(space);
map = isl_union_map_extract_map(dep, space);
isl_union_map_free(dep);
map = isl_map_coalesce(map);
return map;
}
/* Given a constraint of the form
*
* a i_0 + b i_1 >= 0
* or
* a i_0 + b i_1 = 0
*
* use it to update one or both of the non-negative bounds
* in "list" = (min, max) such that
*
* i_1 >= -min i_0
* and
* i_1 <= max i_0
*
* If b = 0, then the constraint cannot be used.
* Otherwise, the constraint is equivalent to
*
* sgn(b) i_1 >= - a/abs(b) i_0
* i.e.,
* i_1 >= - a/abs(b) i_0
* or
* i_1 <= a/abs(b) i_0
*
* Set the first or second element of "list" to max(0, a/abs(b)),
* according to the sign of "b". Or set both in case the constraint
* is an equality, taking into account the sign change.
*/
static __isl_give isl_val_list *list_set_min_max(__isl_take isl_val_list *list,
__isl_keep isl_constraint *c)
{
isl_val *a, *b;
int sign;
int pos;
isl_bool eq, is_zero, is_neg;
eq = isl_constraint_is_equality(c);
if (eq < 0)
return isl_val_list_free(list);
b = isl_constraint_get_coefficient_val(c, isl_dim_set, 1);
is_zero = isl_val_is_zero(b);
if (is_zero == isl_bool_true) {
isl_val_free(b);
return list;
}
a = isl_constraint_get_coefficient_val(c, isl_dim_set, 0);
sign = isl_val_sgn(b);
b = isl_val_abs(b);
a = isl_val_div(a, b);
if (eq)
b = isl_val_copy(a);
pos = sign > 0 ? 0 : 1;
is_neg = isl_val_is_neg(a);
if (is_neg == isl_bool_true)
a = isl_val_set_si(a, 0);
list = isl_val_list_set_val(list, pos, a);
if (!eq)
return is_neg < 0 ? isl_val_list_free(list) : list;
pos = 1 - pos;
a = isl_val_neg(b);
is_neg = isl_val_is_neg(a);
if (is_neg == isl_bool_true)
a = isl_val_set_si(a, 0);
list = isl_val_list_set_val(list, pos, a);
return is_neg < 0 ? isl_val_list_free(list) : list;
}
/* If constraint "c" passes through the origin, then try and use it
* to update the non-negative bounds in "list" = (min, max) such that
*
* i_1 >= -min i_0
* and
* i_1 <= max i_0
*/
static isl_stat set_min_max(__isl_take isl_constraint *c, void *user)
{
isl_val *v;
isl_val_list **list = user;
isl_bool is_zero;
v = isl_constraint_get_constant_val(c);
is_zero = isl_val_is_zero(v);
isl_val_free(v);
if (is_zero == isl_bool_true)
*list = list_set_min_max(*list, c);
isl_constraint_free(c);
return is_zero < 0 ? isl_stat_error : isl_stat_ok;
}
/* Given a set of dependence distance vectors "dist", compute
* pair of non-negative bounds min and max such that
*
* d_pos >= -min d_0
* and
* d_pos <= max d_0
*
* and return the pair (min, max).
* If no bound can be found in either direction, then the bound
* is replaced by NaN.
*
* The dependence distances are first projected onto the (d_0, d_pos).
* Then the zero dependence distance is added and the convex hull is computed.
* Finally, the bounds are extracted from the constraints of the convex hull
* that pass through the origin.
*/
static __isl_give isl_val_list *min_max_dist(__isl_keep isl_set *dist, int pos)
{
isl_space *space;
isl_basic_set *hull;
int dim;
isl_ctx *ctx;
isl_val *nan;
isl_val_list *list;
ctx = isl_set_get_ctx(dist);
nan = isl_val_nan(ctx);
list = isl_val_list_alloc(ctx, 2);
list = isl_val_list_add(list, isl_val_copy(nan));
list = isl_val_list_add(list, nan);
dist = isl_set_copy(dist);
dim = isl_set_dim(dist, isl_dim_set);
if (dist && pos >= dim)
isl_die(ctx, isl_error_internal, "position out of bounds",
dist = isl_set_free(dist));
dist = isl_set_project_out(dist, isl_dim_set, pos + 1, dim - (pos + 1));
dist = isl_set_project_out(dist, isl_dim_set, 1, pos - 1);
space = isl_set_get_space(dist);
dist = isl_set_union(dist, isl_set_from_point(isl_point_zero(space)));
dist = isl_set_remove_divs(dist);
hull = isl_set_convex_hull(dist);
if (isl_basic_set_foreach_constraint(hull, &set_min_max, &list) < 0)
list = isl_val_list_free(list);
isl_basic_set_free(hull);
return list;
}
/* Given a schedule node "node" that, together with its child,
* satisfies the input pattern for hybrid tiling, compute bounds
* on the relative dependence distances of the child node with
* respect to the parent node. These bounds are needed to
* construct a hybrid tiling.
*
* First all relevant dependences are collected and mapped
* to the schedule space of the pair of nodes. Then, the
* dependence distances are computed in this space.
*
* These dependence distances are then projected onto a two-dimensional
* space consisting of the single schedule dimension of the outer node
* and one of the schedule dimensions of the inner node.
* The maximal and minimal relative dependence distances are extracted
* from these projections.
* This process is repeated for each of the schedule dimensions
* of the inner node. For the first dimension, both minimal and
* maximal relative dependence distances are stored in the result.
* For the other dimensions, only the minimal relative dependence
* distance is stored.
*/
__isl_give ppcg_ht_bounds *ppcg_ht_compute_bounds(struct ppcg_scop *scop,
__isl_keep isl_schedule_node *node)
{
ppcg_ht_bounds *bnd;
isl_space *space;
isl_map *map;
isl_set *dist;
isl_val_list *pair;
isl_schedule_node *child;
int n;
int i, dim;
if (!scop || !node || check_input_pattern(node) < 0)
return NULL;
child = isl_schedule_node_get_child(node, 0);
space = isl_schedule_node_band_get_space(child);
dim = isl_schedule_node_band_n_member(child);
isl_schedule_node_free(child);
bnd = ppcg_ht_bounds_alloc(space);
if (!bnd)
return NULL;
map = collect_deps(scop, node);
dist = isl_map_deltas(map);
n = isl_set_dim(dist, isl_dim_param);
dist = isl_set_project_out(dist, isl_dim_param, 0, n);
pair = min_max_dist(dist, 1);
bnd = ppcg_ht_bounds_set_lower(bnd, 0, isl_val_list_get_val(pair, 0));
bnd = ppcg_ht_bounds_set_upper(bnd, isl_val_list_get_val(pair, 1));
isl_val_list_free(pair);
for (i = 1; i < dim; ++i) {
pair = min_max_dist(dist, 1 + i);
bnd = ppcg_ht_bounds_set_lower(bnd, i,
isl_val_list_get_val(pair, 0));
isl_val_list_free(pair);
}
isl_set_free(dist);
return bnd;
}
/* Check if all the fields of "phase" are valid, freeing "phase"
* if they are not.
*/
static __isl_give ppcg_ht_phase *check_phase(__isl_take ppcg_ht_phase *phase)
{
if (!phase)
return NULL;
if (!phase->tiling || !phase->local_time ||
!phase->shift_space || !phase->domain)
return ppcg_ht_phase_free(phase);
return phase;
}
/* Construct a ppcg_ht_phase object, that simply copies
* information from "tiling".
* That is, the result is defined over the "ts" space and
* corresponds to phase 1.
*/
static __isl_give ppcg_ht_phase *construct_phase(
__isl_keep ppcg_ht_tiling *tiling)
{
isl_ctx *ctx;
ppcg_ht_phase *phase;
if (!tiling)
return NULL;
ctx = ppcg_ht_tiling_get_ctx(tiling);
phase = isl_calloc_type(ctx, struct ppcg_ht_phase);
if (!phase)
return NULL;
phase->tiling = ppcg_ht_tiling_copy(tiling);
phase->time_tile = isl_aff_copy(tiling->time_tile);
phase->local_time = isl_aff_copy(tiling->local_time);
phase->shift_space = isl_aff_copy(tiling->shift_space);
phase->domain = isl_set_copy(tiling->hex);
return check_phase(phase);
}
/* Align the parameters of the elements of "phase" to those of "space".
*/
static __isl_give ppcg_ht_phase *phase_align_params(
__isl_take ppcg_ht_phase *phase, __isl_take isl_space *space)
{
if (!phase)
goto error;
phase->time_tile = isl_aff_align_params(phase->time_tile,
isl_space_copy(space));
phase->local_time = isl_aff_align_params(phase->local_time,
isl_space_copy(space));
phase->shift_space = isl_aff_align_params(phase->shift_space,
isl_space_copy(space));
phase->domain = isl_set_align_params(phase->domain, space);
return check_phase(phase);
error:
isl_space_free(space);
return NULL;
}
/* Pull back "phase" over "ma".
* That is, take a phase defined over the range of "ma" and
* turn it into a phase defined over the domain of "ma".
*/
static __isl_give ppcg_ht_phase *pullback_phase(__isl_take ppcg_ht_phase *phase,
__isl_take isl_multi_aff *ma)
{
phase = phase_align_params(phase, isl_multi_aff_get_space(ma));
if (!phase)
goto error;
phase->time_tile = isl_aff_pullback_multi_aff(phase->time_tile,
isl_multi_aff_copy(ma));
phase->local_time = isl_aff_pullback_multi_aff(phase->local_time,
isl_multi_aff_copy(ma));
phase->shift_space = isl_aff_pullback_multi_aff(phase->shift_space,
isl_multi_aff_copy(ma));
phase->domain = isl_set_preimage_multi_aff(phase->domain, ma);
return check_phase(phase);
error:
isl_multi_aff_free(ma);
return NULL;
}
/* Pullback "phase" over phase->tiling->shift_phase, which shifts
* phase 0 to phase 1. The pullback therefore takes a phase 1
* description and turns it into a phase 0 description.
*/
static __isl_give ppcg_ht_phase *shift_phase(__isl_take ppcg_ht_phase *phase)
{
ppcg_ht_tiling *tiling;
if (!phase)
return NULL;
tiling = phase->tiling;
return pullback_phase(phase, isl_multi_aff_copy(tiling->shift_phase));
}
/* Take a "phase" defined over the ts-space and plug in the projection
* from the input schedule space to the ts-space.
* The result is then defined over this input schedule space.
*/
static __isl_give ppcg_ht_phase *lift_phase(__isl_take ppcg_ht_phase *phase)
{
ppcg_ht_tiling *tiling;
if (!phase)
return NULL;
tiling = phase->tiling;
return pullback_phase(phase, isl_multi_aff_copy(tiling->project_ts));
}
/* Compute the shift that should be added to the space band
* in order to be able to apply rectangular tiling to the space.
* Store the shift in phase->space_shift.
*
* In the first dimension, it is equal to shift_space - s.
* For phase 1, this results in
*
* (-(2 * shift_s)*T) % W
*
* In phase 0, the "s" in shift_space has been replaced by "s + shift_s",
* so the result is
*
* shift_s + (-(2 * shift_s)*T) % W
*
* In the other dimensions, the shift is equal to
*
* dl_i * local_time.
*/
static __isl_give ppcg_ht_phase *compute_space_shift(
__isl_take ppcg_ht_phase *phase)
{
int i, n;
isl_space *space;
isl_local_space *ls;
isl_aff *aff, *s;
isl_multi_aff *space_shift;
if (!phase)
return NULL;
space = ppcg_ht_phase_get_input_space(phase);
space = isl_space_unwrap(space);
space = isl_space_range_map(space);
space_shift = isl_multi_aff_zero(space);
aff = isl_aff_copy(phase->shift_space);
ls = isl_local_space_from_space(isl_aff_get_domain_space(aff));
s = isl_aff_var_on_domain(ls, isl_dim_set, 1);
aff = isl_aff_sub(aff, s);
space_shift = isl_multi_aff_set_aff(space_shift, 0, aff);
n = isl_multi_aff_dim(space_shift, isl_dim_out);
for (i = 1; i < n; ++i) {
isl_val *v;
isl_aff *time;
v = ppcg_ht_bounds_get_lower(phase->tiling->bounds, i);
time = isl_aff_copy(phase->local_time);
time = isl_aff_scale_val(time, v);
space_shift = isl_multi_aff_set_aff(space_shift, i, time);
}
if (!space_shift)
return ppcg_ht_phase_free(phase);
phase->space_shift = space_shift;
return phase;
}
/* Compute the space tiling and store the result in phase->space_tile.
* The space tiling is of the form
*
* [P[t] -> C[s]] -> C[floor((s + space_shift)/space_size]
*/
static __isl_give ppcg_ht_phase *compute_space_tile(
__isl_take ppcg_ht_phase *phase)
{
isl_space *space;
isl_multi_val *space_sizes;
isl_multi_aff *space_shift;
isl_multi_aff *tile;
if (!phase)
return NULL;
space = ppcg_ht_phase_get_input_space(phase);
space = isl_space_unwrap(space);
tile = isl_multi_aff_range_map(space);
space_shift = isl_multi_aff_copy(phase->space_shift);
tile = isl_multi_aff_add(space_shift, tile);
space_sizes = isl_multi_val_copy(phase->tiling->space_sizes);
tile = isl_multi_aff_scale_down_multi_val(tile, space_sizes);
tile = isl_multi_aff_floor(tile);
if (!tile)
return ppcg_ht_phase_free(phase);
phase->space_tile = tile;
return phase;
}
/* Construct a representation for one of the two phase for hybrid tiling
* "tiling". If "shift" is not set, then the phase is constructed
* directly from the hexagonal tile shape in "tiling", which represents
* the phase-1 tiles. If "shift" is set, then this tile shape is shifted
* back over tiling->shift_phase to obtain the phase-0 tiles.
*
* First copy data from "tiling", then optionally shift the phase and
* finally move the tiling from the "ts" space of "tiling" to
* the space of the input pattern.
*
* After the basic phase has been computed, also compute
* the corresponding space shift.
*/
static __isl_give ppcg_ht_phase *ppcg_ht_tiling_compute_phase(
__isl_keep ppcg_ht_tiling *tiling, int shift)
{
ppcg_ht_phase *phase;
phase = construct_phase(tiling);
if (shift)
phase = shift_phase(phase);
phase = lift_phase(phase);
phase = compute_space_shift(phase);
phase = compute_space_tile(phase);
return phase;
}
/* Consruct a function that is equal to the time tile of "phase0"
* on the domain of "phase0" and equal to the time tile of "phase1"
* on the domain of "phase1".
* The two domains are assumed to form a partition of the input
* schedule space.
*/
static __isl_give isl_pw_multi_aff *combine_time_tile(
__isl_keep ppcg_ht_phase *phase0, __isl_keep ppcg_ht_phase *phase1)
{
isl_aff *T;
isl_pw_aff *time, *time1;
if (!phase0 || !phase1)
return NULL;
T = isl_aff_copy(phase0->time_tile);
time = isl_pw_aff_alloc(ppcg_ht_phase_get_domain(phase0), T);
T = isl_aff_copy(phase1->time_tile);
time1 = isl_pw_aff_alloc(ppcg_ht_phase_get_domain(phase1), T);
time = isl_pw_aff_union_add(time, time1);
return isl_pw_multi_aff_from_pw_aff(time);
}
/* Name used in mark nodes that contain a pointer to a ppcg_ht_phase.
*/
static char *ppcg_phase_name = "phase";
/* Does "id" contain a pointer to a ppcg_ht_phase?
* That is, is it called "phase"?
*/
static isl_bool is_phase_id(__isl_keep isl_id *id)
{
const char *name;
name = isl_id_get_name(id);
if (!name)
return isl_bool_error;
return !strcmp(name, ppcg_phase_name);
}
/* Given a mark node with an identifier that points to a ppcg_ht_phase,
* extract this ppcg_ht_phase pointer.
*/
__isl_keep ppcg_ht_phase *ppcg_ht_phase_extract_from_mark(
__isl_keep isl_schedule_node *node)
{
isl_bool is_phase;
isl_id *id;
void *p;
if (!node)
return NULL;
if (isl_schedule_node_get_type(node) != isl_schedule_node_mark)
isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
"not a phase mark", return NULL);
id = isl_schedule_node_mark_get_id(node);
is_phase = is_phase_id(id);
p = isl_id_get_user(id);
isl_id_free(id);
if (is_phase < 0)
return NULL;
if (!is_phase)
isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
"not a phase mark", return NULL);
return p;
}
/* Insert a mark node at "node" holding a pointer to "phase".
*/
static __isl_give isl_schedule_node *insert_phase(
__isl_take isl_schedule_node *node, __isl_take ppcg_ht_phase *phase)
{
isl_ctx *ctx;
isl_id *id;
if (!node)
goto error;
ctx = isl_schedule_node_get_ctx(node);
id = isl_id_alloc(ctx, ppcg_phase_name, phase);
if (!id)
goto error;
id = isl_id_set_free_user(id, &ppcg_ht_phase_free_wrap);
node = isl_schedule_node_insert_mark(node, id);
return node;
error:
ppcg_ht_phase_free(phase);
isl_schedule_node_free(node);
return NULL;
}
/* Construct a mapping from the elements of the original pair of bands
* to which tiling was applied that belong to a tile of "phase"
* to that tile, preserving the values for the outer bands.
*
* The mapping is of the form
*
* [[outer] -> [P -> C]] -> [[outer] -> [tile]]
*
* where tile is defined by a concatenation of the time_tile and
* the space_tile.
*/
static __isl_give isl_map *construct_tile_map(__isl_keep ppcg_ht_phase *phase)
{
int depth;
isl_space *space;
isl_multi_aff *ma;
isl_multi_aff *tiling;
isl_map *el2tile;
depth = isl_schedule_node_get_schedule_depth(
phase->tiling->input_node);
space = isl_aff_get_space(phase->time_tile);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, depth);
space = isl_space_map_from_set(space);
ma = isl_multi_aff_identity(space);
tiling = isl_multi_aff_flat_range_product(
isl_multi_aff_from_aff(isl_aff_copy(phase->time_tile)),
isl_multi_aff_copy(phase->space_tile));
el2tile = isl_map_from_multi_aff(tiling);
el2tile = isl_map_intersect_domain(el2tile,
isl_set_copy(phase->domain));
el2tile = isl_map_product(isl_map_from_multi_aff(ma), el2tile);
return el2tile;
}
/* Return a description of the full tiles of "phase" at the point
* in the original schedule tree where the tiling was applied.
*
* First construct a mapping from the input schedule dimensions
* up to an including the original pair of bands to which hybrid tiling
* was applied to schedule dimensions in which this original pair
* has been replaced by the tiles.
* This mapping is of the form
*
* [[outer] -> [P -> C]] -> [[outer] -> [tile]]
*
* Apply this mapping to the set of all values for the input
* schedule dimensions and then apply its inverse.
* The result is the set of values for the input schedule dimensions
* that would map to any of the tiles. Subtracting from this set
* the set of values that are actually executed produces the set
* of values that belong to a tile but that are not executed.
* Mapping these back to the tiles produces a description of
* the partial tiles. Subtracting these from the set of all tiles
* produces a description of the full tiles in the form
*
* [[outer] -> [tile]]
*/
static __isl_give isl_set *compute_full_tile(__isl_keep ppcg_ht_phase *phase)
{
isl_schedule_node *node;
isl_union_set *domain;
isl_union_map *prefix, *schedule;
isl_set *all, *partial, *all_el;
isl_map *tile2el, *el2tile;
isl_multi_union_pw_aff *mupa;
el2tile = construct_tile_map(phase);
tile2el = isl_map_reverse(isl_map_copy(el2tile));
node = phase->tiling->input_node;
prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
domain = isl_schedule_node_get_domain(node);
mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
schedule = isl_union_map_from_multi_union_pw_aff(mupa);
schedule = isl_union_map_range_product(prefix, schedule);
all_el = isl_set_from_union_set(isl_union_set_apply(domain, schedule));
all_el = isl_set_coalesce(all_el);
all = isl_set_apply(isl_set_copy(all_el), isl_map_copy(el2tile));
partial = isl_set_copy(all);
partial = isl_set_apply(partial, tile2el);
partial = isl_set_subtract(partial, all_el);
partial = isl_set_apply(partial, el2tile);
return isl_set_subtract(all, partial);
}
/* Copy the AST loop types of the non-isolated part to those
* of the isolated part.
*/
static __isl_give isl_schedule_node *set_isolate_loop_type(
__isl_take isl_schedule_node *node)
{
int i, n;
n = isl_schedule_node_band_n_member(node);
for (i = 0; i < n; ++i) {
enum isl_ast_loop_type type;
type = isl_schedule_node_band_member_get_ast_loop_type(node, i);
node = isl_schedule_node_band_member_set_isolate_ast_loop_type(
node, i, type);
}
return node;
}
/* If options->isolate_full_tiles is set, then mark the full tiles
* in "node" for isolation. The full tiles are derived from "phase".
* "node" may point to a part of the tiling, e.g., the space tiling.
*
* The full tiles are originally computed in the form
*
* [[outer] -> [tile]]
*
* However, the band that "node" points to may only contain
* subset of the tile dimensions.
* The description above is therefore treated as
*
* [[outer] -> [before; this; after]]
*
* before is of size "pos"; this is of size "dim"; and
* after is of size "out - pos - dim".
* The after part is first project out. Then the range is split
* into a before and this part and finally the before part is moved
* to the domain, resulting in
*
* [[outer; before] -> [this]]
*
* This description is then used as the isolate option.
*
* The AST loop type for the isolated part is set to be the same
* as that of the non-isolated part.
*/
static __isl_give isl_schedule_node *ppcg_ht_phase_isolate_full_tile_node(
__isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node,
struct ppcg_options *options)
{
int in, out, pos, depth, dim;
isl_space *space;
isl_multi_aff *ma1, *ma2;
isl_set *tile;
isl_map *map;
isl_set *set;
isl_union_set *opt;
if (!options->isolate_full_tiles)
return node;
depth = isl_schedule_node_get_schedule_depth(node);
dim = isl_schedule_node_band_n_member(node);
tile = compute_full_tile(phase);
map = isl_set_unwrap(tile);
in = isl_map_dim(map, isl_dim_in);
out = isl_map_dim(map, isl_dim_out);
pos = depth - in;
map = isl_map_project_out(map, isl_dim_out, pos + dim,
out - (pos + dim));
space = isl_space_range(isl_map_get_space(map));
ma1 = isl_multi_aff_project_out_map(isl_space_copy(space),
isl_dim_set, pos, dim);
ma2 = isl_multi_aff_project_out_map(space, isl_dim_set, 0, pos);
ma1 = isl_multi_aff_range_product(ma1, ma2);
map = isl_map_apply_range(map, isl_map_from_multi_aff(ma1));
map = isl_map_uncurry(map);
map = isl_map_flatten_domain(map);
set = isl_map_wrap(map);
set = isl_set_set_tuple_name(set, "isolate");
opt = isl_schedule_node_band_get_ast_build_options(node);
opt = isl_union_set_add_set(opt, set);
node = isl_schedule_node_band_set_ast_build_options(node, opt);
node = set_isolate_loop_type(node);
return node;
}
/* Insert a band node for performing the space tiling for "phase" at "node".
* In particular, insert a band node with partial schedule
*
* [P[t] -> C[s]] -> C[floor((s + space_shift)/space_size)]
*
* pulled back over the input schedule.
* "options" determines whether full tiles should be separated
* from partial tiles.
*
* The first tile dimension iterates over the hexagons in the same
* phase, which are independent by construction. The first dimension
* is therefore marked coincident.
* All dimensions are also marked for being generated as atomic loops
* because separation is usually not desirable on tile loops.
*/
static __isl_give isl_schedule_node *insert_space_tiling(
__isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node,
struct ppcg_options *options)
{
isl_multi_aff *space_tile;
isl_multi_union_pw_aff *mupa;
if (!phase)
return isl_schedule_node_free(node);
space_tile = isl_multi_aff_copy(phase->space_tile);
mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, space_tile);
node = isl_schedule_node_insert_partial_schedule(node, mupa);
node = ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
node = ppcg_ht_phase_isolate_full_tile_node(phase, node, options);
node = isl_schedule_node_band_member_set_coincident(node, 0, 1);
return node;
}
/* Given a pointer "node" to (a copy of) the original child node
* in the input pattern, adjust its partial schedule such that
* it starts at zero within each tile.
*
* That is, replace "s" by (s + space_shift) % space_sizes.
*/
__isl_give isl_schedule_node *ppcg_ht_phase_shift_space_point(
__isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node)
{
isl_multi_val *space_sizes;
isl_multi_aff *space_shift;
isl_multi_union_pw_aff *mupa;
space_shift = isl_multi_aff_copy(phase->space_shift);
mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, space_shift);
node = isl_schedule_node_band_shift(node, mupa);
space_sizes = isl_multi_val_copy(phase->tiling->space_sizes);
node = isl_schedule_node_band_mod(node, space_sizes);
return node;
}
/* Does
*
* s0 > delta + 2 * {delta * h} - 1
*
* hold?
*/
static isl_bool wide_enough(__isl_keep isl_val *s0, __isl_keep isl_val *delta,
__isl_keep isl_val *h)
{
isl_val *v, *v2;
isl_bool ok;
v = isl_val_mul(isl_val_copy(delta), isl_val_copy(h));
v2 = isl_val_floor(isl_val_copy(v));
v = isl_val_sub(v, v2);
v = isl_val_mul_ui(v, 2);
v = isl_val_add(v, isl_val_copy(delta));
v = isl_val_sub_ui(v, 1);
ok = isl_val_gt(s0, v);
isl_val_free(v);
return ok;
}
/* Is the tile size specified by "sizes" wide enough in the first space
* dimension, i.e., the base of the hexagon? This ensures that,
* after hybrid tiling using "bounds" and these sizes,
* neighboring hexagons in the same phase are far enough apart
* that they do not depend on each other.
* The test is only meaningful if the bounds are valid.
*
* Let st be (half) the size in the time dimension and s0 the base
* size in the first space dimension. Let delta be the dependence
* distance in either positive or negative direction. In principle,
* it should be enough to have s0 + 1 > delta, i.e., s0 >= delta.
* However, in case of fractional delta, the tile is not extended
* with delta * (st - 1), but instead with floor(delta * (st - 1)).
* The condition therefore needs to be adjusted to
*
* s0 + 1 > delta + 2 {delta * (st - 1)}
*
* (with {} the fractional part) to account for the two slanted sides.
* The condition in the paper "Hybrid Hexagonal/Classical Tiling for GPUs"
* translates to
*
* s0 >= delta + {delta * (st - 1)}
*
* Since 1 > frac(delta * (st - 1)), this condition implies
* the condition above.
*
* The condition is checked for both directions.
*/
isl_bool ppcg_ht_bounds_supports_sizes(__isl_keep ppcg_ht_bounds *bounds,
__isl_keep isl_multi_val *sizes)
{
isl_val *s0, *h;
isl_val *delta;
isl_bool ok;
ok = ppcg_ht_bounds_is_valid(bounds);
if (ok < 0 || !ok)
return ok;
h = isl_val_sub_ui(isl_multi_val_get_val(sizes, 0), 1);
s0 = isl_multi_val_get_val(sizes, 1);
delta = ppcg_ht_bounds_get_lower(bounds, 0);
ok = wide_enough(s0, delta, h);
isl_val_free(delta);
delta = ppcg_ht_bounds_get_upper(bounds);
if (ok == isl_bool_true)
ok = wide_enough(s0, delta, h);
isl_val_free(delta);
isl_val_free(s0);
isl_val_free(h);
return ok;
}
/* Check that the tile will be wide enough in the first space
* dimension, i.e., the base of the hexagon. This ensures that
* neighboring hexagons in the same phase are far enough apart
* that they do not depend on each other.
*
* Error out if the condition fails to hold.
*/
static isl_stat check_width(__isl_keep ppcg_ht_bounds *bounds,
__isl_keep isl_multi_val *sizes)
{
isl_bool ok;
ok = ppcg_ht_bounds_supports_sizes(bounds, sizes);
if (ok < 0)
return isl_stat_error;
if (!ok)
isl_die(isl_multi_val_get_ctx(sizes), isl_error_invalid,
"base of hybrid tiling hexagon not sufficiently wide",
return isl_stat_error);
return isl_stat_ok;
}
/* Given valid bounds on the relative dependence distances for
* the pair of nested nodes that "node" point to, as well as sufficiently
* wide tile sizes "sizes", insert the corresponding time and space tiling
* at "node", along with a pair of phase nodes that can be used
* to make further changes.
* The space of "sizes" should be the product of the spaces
* of the schedules of the pair of parent and child nodes.
* "options" determines whether full tiles should be separated
* from partial tiles.
*
* In particular, given an input of the form
*
* P - C - ...
*
* the output has the form
*
* /- F0 - M0 - CT0 - P - C - ...
* PT - seq
* \- F1 - M1 - CT1 - P - C - ...
*
* PT is the global time tiling. Within each of these tiles,
* two phases are executed in order. Within each phase, the schedule
* space is further subdivided into tiles through CT0 and CT1.
* The first dimension of each of these iterates over the hexagons
* within a phase and these are independent by construction.
* The F0 and F1 filters filter the statement instances that belong
* to the corresponding phase. The M0 and M1 marks contain a pointer
* to a ppcg_ht_phase object that can be used to perform further changes.
*
* After checking that input satisfies the requirements,
* a data structure is constructed that represents the tiling and
* two additional data structures are constructed for the two phases
* of the tiling. These are then used to define the filters F0 and F1 and
* combined to construct the time tiling PT.
* Then the time tiling node PT is inserted, followed by
* the sequence with the two filters, the CT space tiling nodes and
* the phase markers M.
*/
__isl_give isl_schedule_node *ppcg_ht_bounds_insert_tiling(
__isl_take ppcg_ht_bounds *bounds, __isl_take isl_multi_val *sizes,
__isl_take isl_schedule_node *node, struct ppcg_options *options)
{
isl_ctx *ctx;
isl_union_set *phase0;
isl_union_set *phase1;
isl_multi_union_pw_aff *input, *dom_time;
isl_union_pw_multi_aff *upma;
isl_pw_multi_aff *time;
isl_union_set_list *phases;
ppcg_ht_tiling *tiling;
ppcg_ht_phase *phase_0;
ppcg_ht_phase *phase_1;
if (!node || !sizes || !bounds)
goto error;
if (check_input_pattern(node) < 0 || check_width(bounds, sizes) < 0)
goto error;
ctx = isl_schedule_node_get_ctx(node);
input = extract_input_schedule(node);
tiling = ppcg_ht_bounds_construct_tiling(bounds, node, input, sizes);
phase_0 = ppcg_ht_tiling_compute_phase(tiling, 1);
phase_1 = ppcg_ht_tiling_compute_phase(tiling, 0);
time = combine_time_tile(phase_0, phase_1);
ppcg_ht_tiling_free(tiling);
upma = isl_union_pw_multi_aff_from_multi_union_pw_aff(
isl_multi_union_pw_aff_copy(input));
phase0 = isl_union_set_from_set(ppcg_ht_phase_get_domain(phase_0));
phase0 = isl_union_set_preimage_union_pw_multi_aff(phase0,
isl_union_pw_multi_aff_copy(upma));
phase1 = isl_union_set_from_set(ppcg_ht_phase_get_domain(phase_1));
phase1 = isl_union_set_preimage_union_pw_multi_aff(phase1, upma);
phases = isl_union_set_list_alloc(ctx, 2);
phases = isl_union_set_list_add(phases, phase0);
phases = isl_union_set_list_add(phases, phase1);
dom_time = isl_multi_union_pw_aff_apply_pw_multi_aff(input, time);
node = isl_schedule_node_insert_partial_schedule(node, dom_time);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_insert_sequence(node, phases);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
node = insert_space_tiling(phase_0, node, options);
node = insert_phase(node, phase_0);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_next_sibling(node);
node = isl_schedule_node_child(node, 0);
node = insert_space_tiling(phase_1, node, options);
node = insert_phase(node, phase_1);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
isl_multi_val_free(sizes);
return node;
error:
isl_multi_val_free(sizes);
isl_schedule_node_free(node);
ppcg_ht_bounds_free(bounds);
return NULL;
}
/* Given a branch "node" that contains a sequence node with two phases
* of hybrid tiling as input, call "fn" on each of the two phase marker
* nodes.
*
* That is, the input is as follows
*
* /- F0 - M0 - ...
* ... - seq
* \- F1 - M1 - ...
*
* and "fn" is called on M0 and on M1.
*/
__isl_give isl_schedule_node *hybrid_tile_foreach_phase(
__isl_take isl_schedule_node *node,
__isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
void *user), void *user)
{
int depth0, depth;
depth0 = isl_schedule_node_get_tree_depth(node);
while (node &&
isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
if (!node)
return NULL;
node = fn(node, user);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_next_sibling(node);
node = isl_schedule_node_child(node, 0);
if (!node)
return NULL;
node = fn(node, user);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
depth = isl_schedule_node_get_tree_depth(node);
node = isl_schedule_node_ancestor(node, depth - depth0);
return node;
}
/* This function is called on each of the two phase marks
* in a hybrid tiling tree.
* Drop the phase mark at "node".
*/
static __isl_give isl_schedule_node *drop_phase_mark(
__isl_take isl_schedule_node *node, void *user)
{
isl_id *id;
isl_bool is_phase;
if (isl_schedule_node_get_type(node) != isl_schedule_node_mark)
return node;
id = isl_schedule_node_mark_get_id(node);
is_phase = is_phase_id(id);
isl_id_free(id);
if (is_phase < 0)
return isl_schedule_node_free(node);
if (is_phase)
node = isl_schedule_node_delete(node);
return node;
}
/* Given a branch "node" that contains a sequence node with two phases
* of hybrid tiling as input, remove the two phase marker nodes.
*
* That is, the input is as follows
*
* /- F0 - M0 - ...
* ... - seq
* \- F1 - M1 - ...
*
* and the output is
*
* /- F0 - ...
* ... - seq
* \- F1 - ...
*/
__isl_give isl_schedule_node *hybrid_tile_drop_phase_marks(
__isl_take isl_schedule_node *node)
{
return hybrid_tile_foreach_phase(node, &drop_phase_mark, NULL);
}