dotest.c 78.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/*
 * dotest.c - actually generate mathlib test cases
 *
 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 * See https://llvm.org/LICENSE.txt for license information.
 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <limits.h>

#include "semi.h"
#include "intern.h"
#include "random.h"

#define MPFR_PREC 96 /* good enough for float or double + a few extra bits */

extern int lib_fo, lib_no_arith, ntests;

/*
 * Prototypes.
 */
static void cases_biased(uint32 *, uint32, uint32);
static void cases_biased_positive(uint32 *, uint32, uint32);
static void cases_biased_float(uint32 *, uint32, uint32);
static void cases_uniform(uint32 *, uint32, uint32);
static void cases_uniform_positive(uint32 *, uint32, uint32);
static void cases_uniform_float(uint32 *, uint32, uint32);
static void cases_uniform_float_positive(uint32 *, uint32, uint32);
static void log_cases(uint32 *, uint32, uint32);
static void log_cases_float(uint32 *, uint32, uint32);
static void log1p_cases(uint32 *, uint32, uint32);
static void log1p_cases_float(uint32 *, uint32, uint32);
static void minmax_cases(uint32 *, uint32, uint32);
static void minmax_cases_float(uint32 *, uint32, uint32);
static void atan2_cases(uint32 *, uint32, uint32);
static void atan2_cases_float(uint32 *, uint32, uint32);
static void pow_cases(uint32 *, uint32, uint32);
static void pow_cases_float(uint32 *, uint32, uint32);
static void rred_cases(uint32 *, uint32, uint32);
static void rred_cases_float(uint32 *, uint32, uint32);
static void cases_semi1(uint32 *, uint32, uint32);
static void cases_semi1_float(uint32 *, uint32, uint32);
static void cases_semi2(uint32 *, uint32, uint32);
static void cases_semi2_float(uint32 *, uint32, uint32);
static void cases_ldexp(uint32 *, uint32, uint32);
static void cases_ldexp_float(uint32 *, uint32, uint32);

static void complex_cases_uniform(uint32 *, uint32, uint32);
static void complex_cases_uniform_float(uint32 *, uint32, uint32);
static void complex_cases_biased(uint32 *, uint32, uint32);
static void complex_cases_biased_float(uint32 *, uint32, uint32);
static void complex_log_cases(uint32 *, uint32, uint32);
static void complex_log_cases_float(uint32 *, uint32, uint32);
static void complex_pow_cases(uint32 *, uint32, uint32);
static void complex_pow_cases_float(uint32 *, uint32, uint32);
static void complex_arithmetic_cases(uint32 *, uint32, uint32);
static void complex_arithmetic_cases_float(uint32 *, uint32, uint32);

static uint32 doubletop(int x, int scale);
static uint32 floatval(int x, int scale);

/*
 * Convert back and forth between IEEE bit patterns and the
 * mpfr_t/mpc_t types.
 */
static void set_mpfr_d(mpfr_t x, uint32 h, uint32 l)
{
    uint64_t hl = ((uint64_t)h << 32) | l;
    uint32 exp = (hl >> 52) & 0x7ff;
    int64_t mantissa = hl & (((uint64_t)1 << 52) - 1);
    int sign = (hl >> 63) ? -1 : +1;
    if (exp == 0x7ff) {
        if (mantissa == 0)
            mpfr_set_inf(x, sign);
        else
            mpfr_set_nan(x);
    } else if (exp == 0 && mantissa == 0) {
        mpfr_set_ui(x, 0, GMP_RNDN);
        mpfr_setsign(x, x, sign < 0, GMP_RNDN);
    } else {
        if (exp != 0)
            mantissa |= ((uint64_t)1 << 52);
        else
            exp++;
        mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x3ff - 52, GMP_RNDN);
    }
}
static void set_mpfr_f(mpfr_t x, uint32 f)
{
    uint32 exp = (f >> 23) & 0xff;
    int32 mantissa = f & ((1 << 23) - 1);
    int sign = (f >> 31) ? -1 : +1;
    if (exp == 0xff) {
        if (mantissa == 0)
            mpfr_set_inf(x, sign);
        else
            mpfr_set_nan(x);
    } else if (exp == 0 && mantissa == 0) {
        mpfr_set_ui(x, 0, GMP_RNDN);
        mpfr_setsign(x, x, sign < 0, GMP_RNDN);
    } else {
        if (exp != 0)
            mantissa |= (1 << 23);
        else
            exp++;
        mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x7f - 23, GMP_RNDN);
    }
}
static void set_mpc_d(mpc_t z, uint32 rh, uint32 rl, uint32 ih, uint32 il)
{
    mpfr_t x, y;
    mpfr_init2(x, MPFR_PREC);
    mpfr_init2(y, MPFR_PREC);
    set_mpfr_d(x, rh, rl);
    set_mpfr_d(y, ih, il);
    mpc_set_fr_fr(z, x, y, MPC_RNDNN);
    mpfr_clear(x);
    mpfr_clear(y);
}
static void set_mpc_f(mpc_t z, uint32 r, uint32 i)
{
    mpfr_t x, y;
    mpfr_init2(x, MPFR_PREC);
    mpfr_init2(y, MPFR_PREC);
    set_mpfr_f(x, r);
    set_mpfr_f(y, i);
    mpc_set_fr_fr(z, x, y, MPC_RNDNN);
    mpfr_clear(x);
    mpfr_clear(y);
}
static void get_mpfr_d(const mpfr_t x, uint32 *h, uint32 *l, uint32 *extra)
{
    uint32_t sign, expfield, mantfield;
    mpfr_t significand;
    int exp;

    if (mpfr_nan_p(x)) {
        *h = 0x7ff80000;
        *l = 0;
        *extra = 0;
        return;
    }

    sign = mpfr_signbit(x) ? 0x80000000U : 0;

    if (mpfr_inf_p(x)) {
        *h = 0x7ff00000 | sign;
        *l = 0;
        *extra = 0;
        return;
    }

    if (mpfr_zero_p(x)) {
        *h = 0x00000000 | sign;
        *l = 0;
        *extra = 0;
        return;
    }

    mpfr_init2(significand, MPFR_PREC);
    mpfr_set(significand, x, GMP_RNDN);
    exp = mpfr_get_exp(significand);
    mpfr_set_exp(significand, 0);

    /* Now significand is in [1/2,1), and significand * 2^exp == x.
     * So the IEEE exponent corresponding to exp==0 is 0x3fe. */
    if (exp > 0x400) {
        /* overflow to infinity anyway */
        *h = 0x7ff00000 | sign;
        *l = 0;
        *extra = 0;
        mpfr_clear(significand);
        return;
    }

    if (exp <= -0x3fe || mpfr_zero_p(x))
        exp = -0x3fd;       /* denormalise */
    expfield = exp + 0x3fd; /* offset to cancel leading mantissa bit */

    mpfr_div_2si(significand, x, exp - 21, GMP_RNDN);
    mpfr_abs(significand, significand, GMP_RNDN);
    mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    *h = sign + ((uint64_t)expfield << 20) + mantfield;
    mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
    mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
    mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    *l = mantfield;
    mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
    mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
    mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    *extra = mantfield;

    mpfr_clear(significand);
}
static void get_mpfr_f(const mpfr_t x, uint32 *f, uint32 *extra)
{
    uint32_t sign, expfield, mantfield;
    mpfr_t significand;
    int exp;

    if (mpfr_nan_p(x)) {
        *f = 0x7fc00000;
        *extra = 0;
        return;
    }

    sign = mpfr_signbit(x) ? 0x80000000U : 0;

    if (mpfr_inf_p(x)) {
        *f = 0x7f800000 | sign;
        *extra = 0;
        return;
    }

    if (mpfr_zero_p(x)) {
        *f = 0x00000000 | sign;
        *extra = 0;
        return;
    }

    mpfr_init2(significand, MPFR_PREC);
    mpfr_set(significand, x, GMP_RNDN);
    exp = mpfr_get_exp(significand);
    mpfr_set_exp(significand, 0);

    /* Now significand is in [1/2,1), and significand * 2^exp == x.
     * So the IEEE exponent corresponding to exp==0 is 0x7e. */
    if (exp > 0x80) {
        /* overflow to infinity anyway */
        *f = 0x7f800000 | sign;
        *extra = 0;
        mpfr_clear(significand);
        return;
    }

    if (exp <= -0x7e || mpfr_zero_p(x))
        exp = -0x7d;                   /* denormalise */
    expfield = exp + 0x7d; /* offset to cancel leading mantissa bit */

    mpfr_div_2si(significand, x, exp - 24, GMP_RNDN);
    mpfr_abs(significand, significand, GMP_RNDN);
    mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    *f = sign + ((uint64_t)expfield << 23) + mantfield;
    mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
    mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
    mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    *extra = mantfield;

    mpfr_clear(significand);
}
static void get_mpc_d(const mpc_t z,
                      uint32 *rh, uint32 *rl, uint32 *rextra,
                      uint32 *ih, uint32 *il, uint32 *iextra)
{
    mpfr_t x, y;
    mpfr_init2(x, MPFR_PREC);
    mpfr_init2(y, MPFR_PREC);
    mpc_real(x, z, GMP_RNDN);
    mpc_imag(y, z, GMP_RNDN);
    get_mpfr_d(x, rh, rl, rextra);
    get_mpfr_d(y, ih, il, iextra);
    mpfr_clear(x);
    mpfr_clear(y);
}
static void get_mpc_f(const mpc_t z,
                      uint32 *r, uint32 *rextra,
                      uint32 *i, uint32 *iextra)
{
    mpfr_t x, y;
    mpfr_init2(x, MPFR_PREC);
    mpfr_init2(y, MPFR_PREC);
    mpc_real(x, z, GMP_RNDN);
    mpc_imag(y, z, GMP_RNDN);
    get_mpfr_f(x, r, rextra);
    get_mpfr_f(y, i, iextra);
    mpfr_clear(x);
    mpfr_clear(y);
}

/*
 * Implementation of mathlib functions that aren't trivially
 * implementable using an existing mpfr or mpc function.
 */
int test_rred(mpfr_t ret, const mpfr_t x, int *quadrant)
{
    mpfr_t halfpi;
    long quo;
    int status;

    /*
     * In the worst case of range reduction, we get an input of size
     * around 2^1024, and must find its remainder mod pi, which means
     * we need 1024 bits of pi at least. Plus, the remainder might
     * happen to come out very very small if we're unlucky. How
     * unlucky can we be? Well, conveniently, I once went through and
     * actually worked that out using Paxson's modular minimisation
     * algorithm, and it turns out that the smallest exponent you can
     * get out of a nontrivial[1] double precision range reduction is
     * 0x3c2, i.e. of the order of 2^-61. So we need 1024 bits of pi
     * to get us down to the units digit, another 61 or so bits (say
     * 64) to get down to the highest set bit of the output, and then
     * some bits to make the actual mantissa big enough.
     *
     *   [1] of course the output of range reduction can have an
     *   arbitrarily small exponent in the trivial case, where the
     *   input is so small that it's the identity function. That
     *   doesn't count.
     */
    mpfr_init2(halfpi, MPFR_PREC + 1024 + 64);
    mpfr_const_pi(halfpi, GMP_RNDN);
    mpfr_div_ui(halfpi, halfpi, 2, GMP_RNDN);

    status = mpfr_remquo(ret, &quo, x, halfpi, GMP_RNDN);
    *quadrant = quo & 3;

    mpfr_clear(halfpi);

    return status;
}
int test_lgamma(mpfr_t ret, const mpfr_t x, mpfr_rnd_t rnd)
{
    /*
     * mpfr_lgamma takes an extra int * parameter to hold the output
     * sign. We don't bother testing that, so this wrapper throws away
     * the sign and hence fits into the same function prototype as all
     * the other real->real mpfr functions.
     *
     * There is also mpfr_lngamma which has no sign output and hence
     * has the right prototype already, but unfortunately it returns
     * NaN in cases where gamma(x) < 0, so it's no use to us.
     */
    int sign;
    return mpfr_lgamma(ret, &sign, x, rnd);
}
int test_cpow(mpc_t ret, const mpc_t x, const mpc_t y, mpc_rnd_t rnd)
{
    /*
     * For complex pow, we must bump up the precision by a huge amount
     * if we want it to get the really difficult cases right. (Not
     * that we expect the library under test to be getting those cases
     * right itself, but we'd at least like the test suite to report
     * them as wrong for the _right reason_.)
     *
     * This works around a bug in mpc_pow(), fixed by r1455 in the MPC
     * svn repository (2014-10-14) and expected to be in any MPC
     * release after 1.0.2 (which was the latest release already made
     * at the time of the fix). So as and when we update to an MPC
     * with the fix in it, we could remove this workaround.
     *
     * For the reasons for choosing this amount of extra precision,
     * see analysis in complex/cpownotes.txt for the rationale for the
     * amount.
     */
    mpc_t xbig, ybig, retbig;
    int status;

    mpc_init2(xbig, 1034 + 53 + 60 + MPFR_PREC);
    mpc_init2(ybig, 1034 + 53 + 60 + MPFR_PREC);
    mpc_init2(retbig, 1034 + 53 + 60 + MPFR_PREC);

    mpc_set(xbig, x, MPC_RNDNN);
    mpc_set(ybig, y, MPC_RNDNN);
    status = mpc_pow(retbig, xbig, ybig, rnd);
    mpc_set(ret, retbig, rnd);

    mpc_clear(xbig);
    mpc_clear(ybig);
    mpc_clear(retbig);

    return status;
}

/*
 * Identify 'hard' values (NaN, Inf, nonzero denormal) for deciding
 * whether microlib will decline to run a test.
 */
#define is_shard(in) ( \
    (((in)[0] & 0x7F800000) == 0x7F800000 || \
     (((in)[0] & 0x7F800000) == 0 && ((in)[0]&0x7FFFFFFF) != 0)))

#define is_dhard(in) ( \
    (((in)[0] & 0x7FF00000) == 0x7FF00000 || \
     (((in)[0] & 0x7FF00000) == 0 && (((in)[0] & 0xFFFFF) | (in)[1]) != 0)))

/*
 * Identify integers.
 */
int is_dinteger(uint32 *in)
{
    uint32 out[3];
    if ((0x7FF00000 & ~in[0]) == 0)
        return 0;                      /* not finite, hence not integer */
    test_ceil(in, out);
    return in[0] == out[0] && in[1] == out[1];
}
int is_sinteger(uint32 *in)
{
    uint32 out[3];
    if ((0x7F800000 & ~in[0]) == 0)
        return 0;                      /* not finite, hence not integer */
    test_ceilf(in, out);
    return in[0] == out[0];
}

/*
 * Identify signalling NaNs.
 */
int is_dsnan(const uint32 *in)
{
    if ((in[0] & 0x7FF00000) != 0x7FF00000)
        return 0;                      /* not the inf/nan exponent */
    if ((in[0] << 12) == 0 && in[1] == 0)
        return 0;                      /* inf */
    if (in[0] & 0x00080000)
        return 0;                      /* qnan */
    return 1;
}
int is_ssnan(const uint32 *in)
{
    if ((in[0] & 0x7F800000) != 0x7F800000)
        return 0;                      /* not the inf/nan exponent */
    if ((in[0] << 9) == 0)
        return 0;                      /* inf */
    if (in[0] & 0x00400000)
        return 0;                      /* qnan */
    return 1;
}
int is_snan(const uint32 *in, int size)
{
    return size == 2 ? is_dsnan(in) : is_ssnan(in);
}

/*
 * Wrapper functions called to fix up unusual results after the main
 * test function has run.
 */
void universal_wrapper(wrapperctx *ctx)
{
    /*
     * Any SNaN input gives rise to a QNaN output.
     */
    int op;
    for (op = 0; op < wrapper_get_nops(ctx); op++) {
        int size = wrapper_get_size(ctx, op);

        if (!wrapper_is_complex(ctx, op) &&
            is_snan(wrapper_get_ieee(ctx, op), size)) {
            wrapper_set_nan(ctx);
        }
    }
}

Testable functions[] = {
    /*
     * Trig functions: sin, cos, tan. We test the core function
     * between -16 and +16: we assume that range reduction exists
     * and will be used for larger arguments, and we'll test that
     * separately. Also we only go down to 2^-27 in magnitude,
     * because below that sin(x)=tan(x)=x and cos(x)=1 as far as
     * double precision can tell, which is boring.
     */
    {"sin", (funcptr)mpfr_sin, args1, {NULL},
        cases_uniform, 0x3e400000, 0x40300000},
    {"sinf", (funcptr)mpfr_sin, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x41800000},
    {"cos", (funcptr)mpfr_cos, args1, {NULL},
        cases_uniform, 0x3e400000, 0x40300000},
    {"cosf", (funcptr)mpfr_cos, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x41800000},
    {"tan", (funcptr)mpfr_tan, args1, {NULL},
        cases_uniform, 0x3e400000, 0x40300000},
    {"tanf", (funcptr)mpfr_tan, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x41800000},
    {"sincosf_sinf", (funcptr)mpfr_sin, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x41800000},
    {"sincosf_cosf", (funcptr)mpfr_cos, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x41800000},
    /*
     * Inverse trig: asin, acos. Between 1 and -1, of course. acos
     * goes down to 2^-54, asin to 2^-27.
     */
    {"asin", (funcptr)mpfr_asin, args1, {NULL},
        cases_uniform, 0x3e400000, 0x3fefffff},
    {"asinf", (funcptr)mpfr_asin, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x3f7fffff},
    {"acos", (funcptr)mpfr_acos, args1, {NULL},
        cases_uniform, 0x3c900000, 0x3fefffff},
    {"acosf", (funcptr)mpfr_acos, args1f, {NULL},
        cases_uniform_float, 0x33800000, 0x3f7fffff},
    /*
     * Inverse trig: atan. atan is stable (in double prec) with
     * argument magnitude past 2^53, so we'll test up to there.
     * atan(x) is boringly just x below 2^-27.
     */
    {"atan", (funcptr)mpfr_atan, args1, {NULL},
        cases_uniform, 0x3e400000, 0x43400000},
    {"atanf", (funcptr)mpfr_atan, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x4b800000},
    /*
     * atan2. Interesting cases arise when the exponents of the
     * arguments differ by at most about 50.
     */
    {"atan2", (funcptr)mpfr_atan2, args2, {NULL},
        atan2_cases, 0},
    {"atan2f", (funcptr)mpfr_atan2, args2f, {NULL},
        atan2_cases_float, 0},
    /*
     * The exponentials: exp, sinh, cosh. They overflow at around
     * 710. exp and sinh are boring below 2^-54, cosh below 2^-27.
     */
    {"exp", (funcptr)mpfr_exp, args1, {NULL},
        cases_uniform, 0x3c900000, 0x40878000},
    {"expf", (funcptr)mpfr_exp, args1f, {NULL},
        cases_uniform_float, 0x33800000, 0x42dc0000},
    {"sinh", (funcptr)mpfr_sinh, args1, {NULL},
        cases_uniform, 0x3c900000, 0x40878000},
    {"sinhf", (funcptr)mpfr_sinh, args1f, {NULL},
        cases_uniform_float, 0x33800000, 0x42dc0000},
    {"cosh", (funcptr)mpfr_cosh, args1, {NULL},
        cases_uniform, 0x3e400000, 0x40878000},
    {"coshf", (funcptr)mpfr_cosh, args1f, {NULL},
        cases_uniform_float, 0x39800000, 0x42dc0000},
    /*
     * tanh is stable past around 20. It's boring below 2^-27.
     */
    {"tanh", (funcptr)mpfr_tanh, args1, {NULL},
        cases_uniform, 0x3e400000, 0x40340000},
    {"tanhf", (funcptr)mpfr_tanh, args1f, {NULL},
        cases_uniform, 0x39800000, 0x41100000},
    /*
     * log must be tested only on positive numbers, but can cover
     * the whole range of positive nonzero finite numbers. It never
     * gets boring.
     */
    {"log", (funcptr)mpfr_log, args1, {NULL}, log_cases, 0},
    {"logf", (funcptr)mpfr_log, args1f, {NULL}, log_cases_float, 0},
    {"log10", (funcptr)mpfr_log10, args1, {NULL}, log_cases, 0},
    {"log10f", (funcptr)mpfr_log10, args1f, {NULL}, log_cases_float, 0},
    /*
     * pow.
     */
    {"pow", (funcptr)mpfr_pow, args2, {NULL}, pow_cases, 0},
    {"powf", (funcptr)mpfr_pow, args2f, {NULL}, pow_cases_float, 0},
    /*
     * Trig range reduction. We are able to test this for all
     * finite values, but will only bother for things between 2^-3
     * and 2^+52.
     */
    {"rred", (funcptr)test_rred, rred, {NULL}, rred_cases, 0},
    {"rredf", (funcptr)test_rred, rredf, {NULL}, rred_cases_float, 0},
    /*
     * Square and cube root.
     */
    {"sqrt", (funcptr)mpfr_sqrt, args1, {NULL}, log_cases, 0},
    {"sqrtf", (funcptr)mpfr_sqrt, args1f, {NULL}, log_cases_float, 0},
    {"cbrt", (funcptr)mpfr_cbrt, args1, {NULL}, log_cases, 0},
    {"cbrtf", (funcptr)mpfr_cbrt, args1f, {NULL}, log_cases_float, 0},
    {"hypot", (funcptr)mpfr_hypot, args2, {NULL}, atan2_cases, 0},
    {"hypotf", (funcptr)mpfr_hypot, args2f, {NULL}, atan2_cases_float, 0},
    /*
     * Seminumerical functions.
     */
    {"ceil", (funcptr)test_ceil, semi1, {NULL}, cases_semi1},
    {"ceilf", (funcptr)test_ceilf, semi1f, {NULL}, cases_semi1_float},
    {"floor", (funcptr)test_floor, semi1, {NULL}, cases_semi1},
    {"floorf", (funcptr)test_floorf, semi1f, {NULL}, cases_semi1_float},
    {"fmod", (funcptr)test_fmod, semi2, {NULL}, cases_semi2},
    {"fmodf", (funcptr)test_fmodf, semi2f, {NULL}, cases_semi2_float},
    {"ldexp", (funcptr)test_ldexp, t_ldexp, {NULL}, cases_ldexp},
    {"ldexpf", (funcptr)test_ldexpf, t_ldexpf, {NULL}, cases_ldexp_float},
    {"frexp", (funcptr)test_frexp, t_frexp, {NULL}, cases_semi1},
    {"frexpf", (funcptr)test_frexpf, t_frexpf, {NULL}, cases_semi1_float},
    {"modf", (funcptr)test_modf, t_modf, {NULL}, cases_semi1},
    {"modff", (funcptr)test_modff, t_modff, {NULL}, cases_semi1_float},

    /*
     * Classification and more semi-numericals
     */
    {"copysign", (funcptr)test_copysign, semi2, {NULL}, cases_semi2},
    {"copysignf", (funcptr)test_copysignf, semi2f, {NULL}, cases_semi2_float},
    {"isfinite", (funcptr)test_isfinite, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isfinitef", (funcptr)test_isfinitef, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"isinf", (funcptr)test_isinf, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isinff", (funcptr)test_isinff, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"isnan", (funcptr)test_isnan, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isnanf", (funcptr)test_isnanf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"isnormal", (funcptr)test_isnormal, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isnormalf", (funcptr)test_isnormalf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"signbit", (funcptr)test_signbit, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"signbitf", (funcptr)test_signbitf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"fpclassify", (funcptr)test_fpclassify, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"fpclassifyf", (funcptr)test_fpclassifyf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    /*
     * Comparisons
     */
    {"isgreater", (funcptr)test_isgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isgreaterequal", (funcptr)test_isgreaterequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isless", (funcptr)test_isless, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"islessequal", (funcptr)test_islessequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"islessgreater", (funcptr)test_islessgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    {"isunordered", (funcptr)test_isunordered, compare, {NULL}, cases_uniform, 0, 0x7fffffff},

    {"isgreaterf", (funcptr)test_isgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"isgreaterequalf", (funcptr)test_isgreaterequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"islessf", (funcptr)test_islessf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"islessequalf", (funcptr)test_islessequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"islessgreaterf", (funcptr)test_islessgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    {"isunorderedf", (funcptr)test_isunorderedf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},

    /*
     * Inverse Hyperbolic functions
     */
    {"atanh", (funcptr)mpfr_atanh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
    {"asinh", (funcptr)mpfr_asinh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
    {"acosh", (funcptr)mpfr_acosh, args1, {NULL}, cases_uniform_positive, 0x3ff00000, 0x7fefffff},

    {"atanhf", (funcptr)mpfr_atanh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
    {"asinhf", (funcptr)mpfr_asinh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
    {"acoshf", (funcptr)mpfr_acosh, args1f, {NULL}, cases_uniform_float_positive, 0x3f800000, 0x7f800000},

    /*
     * Everything else (sitting in a section down here at the bottom
     * because historically they were not tested because we didn't
     * have reference implementations for them)
     */
    {"csin", (funcptr)mpc_sin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"csinf", (funcptr)mpc_sin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"ccos", (funcptr)mpc_cos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"ccosf", (funcptr)mpc_cos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"ctan", (funcptr)mpc_tan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"ctanf", (funcptr)mpc_tan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},

    {"casin", (funcptr)mpc_asin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"casinf", (funcptr)mpc_asin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"cacos", (funcptr)mpc_acos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"cacosf", (funcptr)mpc_acos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"catan", (funcptr)mpc_atan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"catanf", (funcptr)mpc_atan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},

    {"csinh", (funcptr)mpc_sinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"csinhf", (funcptr)mpc_sinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"ccosh", (funcptr)mpc_cosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"ccoshf", (funcptr)mpc_cosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"ctanh", (funcptr)mpc_tanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"ctanhf", (funcptr)mpc_tanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},

    {"casinh", (funcptr)mpc_asinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"casinhf", (funcptr)mpc_asinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"cacosh", (funcptr)mpc_acosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"cacoshf", (funcptr)mpc_acosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    {"catanh", (funcptr)mpc_atanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    {"catanhf", (funcptr)mpc_atanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},

    {"cexp", (funcptr)mpc_exp, args1c, {NULL}, complex_cases_uniform, 0x3c900000, 0x40862000},
    {"cpow", (funcptr)test_cpow, args2c, {NULL}, complex_pow_cases, 0x3fc00000, 0x40000000},
    {"clog", (funcptr)mpc_log, args1c, {NULL}, complex_log_cases, 0, 0},
    {"csqrt", (funcptr)mpc_sqrt, args1c, {NULL}, complex_log_cases, 0, 0},

    {"cexpf", (funcptr)mpc_exp, args1fc, {NULL}, complex_cases_uniform_float, 0x24800000, 0x42b00000},
    {"cpowf", (funcptr)test_cpow, args2fc, {NULL}, complex_pow_cases_float, 0x3e000000, 0x41000000},
    {"clogf", (funcptr)mpc_log, args1fc, {NULL}, complex_log_cases_float, 0, 0},
    {"csqrtf", (funcptr)mpc_sqrt, args1fc, {NULL}, complex_log_cases_float, 0, 0},

    {"cdiv", (funcptr)mpc_div, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    {"cmul", (funcptr)mpc_mul, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    {"cadd", (funcptr)mpc_add, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    {"csub", (funcptr)mpc_sub, args2c, {NULL}, complex_arithmetic_cases, 0, 0},

    {"cdivf", (funcptr)mpc_div, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"cmulf", (funcptr)mpc_mul, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"caddf", (funcptr)mpc_add, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"csubf", (funcptr)mpc_sub, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},

    {"cabsf", (funcptr)mpc_abs, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"cabs", (funcptr)mpc_abs, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    {"cargf", (funcptr)mpc_arg, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"carg", (funcptr)mpc_arg, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    {"cimagf", (funcptr)mpc_imag, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"cimag", (funcptr)mpc_imag, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    {"conjf", (funcptr)mpc_conj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"conj", (funcptr)mpc_conj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
    {"cprojf", (funcptr)mpc_proj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"cproj", (funcptr)mpc_proj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
    {"crealf", (funcptr)mpc_real, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    {"creal", (funcptr)mpc_real, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    {"erfcf", (funcptr)mpfr_erfc, args1f, {NULL}, cases_biased_float, 0x1e800000, 0x41000000},
    {"erfc", (funcptr)mpfr_erfc, args1, {NULL}, cases_biased, 0x3bd00000, 0x403c0000},
    {"erff", (funcptr)mpfr_erf, args1f, {NULL}, cases_biased_float, 0x03800000, 0x40700000},
    {"erf", (funcptr)mpfr_erf, args1, {NULL}, cases_biased, 0x00800000, 0x40200000},
    {"exp2f", (funcptr)mpfr_exp2, args1f, {NULL}, cases_uniform_float, 0x33800000, 0x43c00000},
    {"exp2", (funcptr)mpfr_exp2, args1, {NULL}, cases_uniform, 0x3ca00000, 0x40a00000},
    {"expm1f", (funcptr)mpfr_expm1, args1f, {NULL}, cases_uniform_float, 0x33000000, 0x43800000},
    {"expm1", (funcptr)mpfr_expm1, args1, {NULL}, cases_uniform, 0x3c900000, 0x409c0000},
    {"fmaxf", (funcptr)mpfr_max, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
    {"fmax", (funcptr)mpfr_max, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
    {"fminf", (funcptr)mpfr_min, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
    {"fmin", (funcptr)mpfr_min, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
    {"lgammaf", (funcptr)test_lgamma, args1f, {NULL}, cases_uniform_float, 0x01800000, 0x7f800000},
    {"lgamma", (funcptr)test_lgamma, args1, {NULL}, cases_uniform, 0x00100000, 0x7ff00000},
    {"log1pf", (funcptr)mpfr_log1p, args1f, {NULL}, log1p_cases_float, 0, 0},
    {"log1p", (funcptr)mpfr_log1p, args1, {NULL}, log1p_cases, 0, 0},
    {"log2f", (funcptr)mpfr_log2, args1f, {NULL}, log_cases_float, 0, 0},
    {"log2", (funcptr)mpfr_log2, args1, {NULL}, log_cases, 0, 0},
    {"tgammaf", (funcptr)mpfr_gamma, args1f, {NULL}, cases_uniform_float, 0x2f800000, 0x43000000},
    {"tgamma", (funcptr)mpfr_gamma, args1, {NULL}, cases_uniform, 0x3c000000, 0x40800000},
};

const int nfunctions = ( sizeof(functions)/sizeof(*functions) );

#define random_sign ( random_upto(1) ? 0x80000000 : 0 )

static int iszero(uint32 *x) {
    return !((x[0] & 0x7FFFFFFF) || x[1]);
}


static void complex_log_cases(uint32 *out, uint32 param1,
                              uint32 param2) {
    cases_uniform(out,0x00100000,0x7fefffff);
    cases_uniform(out+2,0x00100000,0x7fefffff);
}


static void complex_log_cases_float(uint32 *out, uint32 param1,
                                    uint32 param2) {
    cases_uniform_float(out,0x00800000,0x7f7fffff);
    cases_uniform_float(out+2,0x00800000,0x7f7fffff);
}

static void complex_cases_biased(uint32 *out, uint32 lowbound,
                                 uint32 highbound) {
    cases_biased(out,lowbound,highbound);
    cases_biased(out+2,lowbound,highbound);
}

static void complex_cases_biased_float(uint32 *out, uint32 lowbound,
                                       uint32 highbound) {
    cases_biased_float(out,lowbound,highbound);
    cases_biased_float(out+2,lowbound,highbound);
}

static void complex_cases_uniform(uint32 *out, uint32 lowbound,
                                 uint32 highbound) {
    cases_uniform(out,lowbound,highbound);
    cases_uniform(out+2,lowbound,highbound);
}

static void complex_cases_uniform_float(uint32 *out, uint32 lowbound,
                                       uint32 highbound) {
    cases_uniform_float(out,lowbound,highbound);
    cases_uniform(out+2,lowbound,highbound);
}

static void complex_pow_cases(uint32 *out, uint32 lowbound,
                              uint32 highbound) {
    /*
     * Generating non-overflowing cases for complex pow:
     *
     * Our base has both parts within the range [1/2,2], and hence
     * its magnitude is within [1/2,2*sqrt(2)]. The magnitude of its
     * logarithm in base 2 is therefore at most the magnitude of
     * (log2(2*sqrt(2)) + i*pi/log(2)), or in other words
     * hypot(3/2,pi/log(2)) = 4.77. So the magnitude of the exponent
     * input must be at most our output magnitude limit (as a power
     * of two) divided by that.
     *
     * I also set the output magnitude limit a bit low, because we
     * don't guarantee (and neither does glibc) to prevent internal
     * overflow in cases where the output _magnitude_ overflows but
     * scaling it back down by cos and sin of the argument brings it
     * back in range.
     */
    cases_uniform(out,0x3fe00000, 0x40000000);
    cases_uniform(out+2,0x3fe00000, 0x40000000);
    cases_uniform(out+4,0x3f800000, 0x40600000);
    cases_uniform(out+6,0x3f800000, 0x40600000);
}

static void complex_pow_cases_float(uint32 *out, uint32 lowbound,
                                    uint32 highbound) {
    /*
     * Reasoning as above, though of course the detailed numbers are
     * all different.
     */
    cases_uniform_float(out,0x3f000000, 0x40000000);
    cases_uniform_float(out+2,0x3f000000, 0x40000000);
    cases_uniform_float(out+4,0x3d600000, 0x41900000);
    cases_uniform_float(out+6,0x3d600000, 0x41900000);
}

static void complex_arithmetic_cases(uint32 *out, uint32 lowbound,
                                     uint32 highbound) {
    cases_uniform(out,0,0x7fefffff);
    cases_uniform(out+2,0,0x7fefffff);
    cases_uniform(out+4,0,0x7fefffff);
    cases_uniform(out+6,0,0x7fefffff);
}

static void complex_arithmetic_cases_float(uint32 *out, uint32 lowbound,
                                           uint32 highbound) {
    cases_uniform_float(out,0,0x7f7fffff);
    cases_uniform_float(out+2,0,0x7f7fffff);
    cases_uniform_float(out+4,0,0x7f7fffff);
    cases_uniform_float(out+6,0,0x7f7fffff);
}

/*
 * Included from fplib test suite, in a compact self-contained
 * form.
 */

void float32_case(uint32 *ret) {
    int n, bits;
    uint32 f;
    static int premax, preptr;
    static uint32 *specifics = NULL;

    if (!ret) {
        if (specifics)
            free(specifics);
        specifics = NULL;
        premax = preptr = 0;
        return;
    }

    if (!specifics) {
        int exps[] = {
            -127, -126, -125, -24, -4, -3, -2, -1, 0, 1, 2, 3, 4,
                24, 29, 30, 31, 32, 61, 62, 63, 64, 126, 127, 128
        };
        int sign, eptr;
        uint32 se, j;
        /*
         * We want a cross product of:
         *  - each of two sign bits (2)
         *  - each of the above (unbiased) exponents (25)
         *  - the following list of fraction parts:
         *    * zero (1)
         *    * all bits (1)
         *    * one-bit-set (23)
         *    * one-bit-clear (23)
         *    * one-bit-and-above (20: 3 are duplicates)
         *    * one-bit-and-below (20: 3 are duplicates)
         *    (total 88)
         *  (total 4400)
         */
        specifics = malloc(4400 * sizeof(*specifics));
        preptr = 0;
        for (sign = 0; sign <= 1; sign++) {
            for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
                se = (sign ? 0x80000000 : 0) | ((exps[eptr]+127) << 23);
                /*
                 * Zero.
                 */
                specifics[preptr++] = se | 0;
                /*
                 * All bits.
                 */
                specifics[preptr++] = se | 0x7FFFFF;
                /*
                 * One-bit-set.
                 */
                for (j = 1; j && j <= 0x400000; j <<= 1)
                    specifics[preptr++] = se | j;
                /*
                 * One-bit-clear.
                 */
                for (j = 1; j && j <= 0x400000; j <<= 1)
                    specifics[preptr++] = se | (0x7FFFFF ^ j);
                /*
                 * One-bit-and-everything-below.
                 */
                for (j = 2; j && j <= 0x100000; j <<= 1)
                    specifics[preptr++] = se | (2*j-1);
                /*
                 * One-bit-and-everything-above.
                 */
                for (j = 4; j && j <= 0x200000; j <<= 1)
                    specifics[preptr++] = se | (0x7FFFFF ^ (j-1));
                /*
                 * Done.
                 */
            }
        }
        assert(preptr == 4400);
        premax = preptr;
    }

    /*
     * Decide whether to return a pre or a random case.
     */
    n = random32() % (premax+1);
    if (n < preptr) {
        /*
         * Return pre[n].
         */
        uint32 t;
        t = specifics[n];
        specifics[n] = specifics[preptr-1];
        specifics[preptr-1] = t;        /* (not really needed) */
        preptr--;
        *ret = t;
    } else {
        /*
         * Random case.
         * Sign and exponent:
         *  - FIXME
         * Significand:
         *  - with prob 1/5, a totally random bit pattern
         *  - with prob 1/5, all 1s down to some point and then random
         *  - with prob 1/5, all 1s up to some point and then random
         *  - with prob 1/5, all 0s down to some point and then random
         *  - with prob 1/5, all 0s up to some point and then random
         */
        n = random32() % 5;
        f = random32();                /* some random bits */
        bits = random32() % 22 + 1;    /* 1-22 */
        switch (n) {
          case 0:
            break;                     /* leave f alone */
          case 1:
            f |= (1<<bits)-1;
            break;
          case 2:
            f &= ~((1<<bits)-1);
            break;
          case 3:
            f |= ~((1<<bits)-1);
            break;
          case 4:
            f &= (1<<bits)-1;
            break;
        }
        f &= 0x7FFFFF;
        f |= (random32() & 0xFF800000);/* FIXME - do better */
        *ret = f;
    }
}
static void float64_case(uint32 *ret) {
    int n, bits;
    uint32 f, g;
    static int premax, preptr;
    static uint32 (*specifics)[2] = NULL;

    if (!ret) {
        if (specifics)
            free(specifics);
        specifics = NULL;
        premax = preptr = 0;
        return;
    }

    if (!specifics) {
        int exps[] = {
            -1023, -1022, -1021, -129, -128, -127, -126, -53, -4, -3, -2,
            -1, 0, 1, 2, 3, 4, 29, 30, 31, 32, 53, 61, 62, 63, 64, 127,
            128, 129, 1022, 1023, 1024
        };
        int sign, eptr;
        uint32 se, j;
        /*
         * We want a cross product of:
         *  - each of two sign bits (2)
         *  - each of the above (unbiased) exponents (32)
         *  - the following list of fraction parts:
         *    * zero (1)
         *    * all bits (1)
         *    * one-bit-set (52)
         *    * one-bit-clear (52)
         *    * one-bit-and-above (49: 3 are duplicates)
         *    * one-bit-and-below (49: 3 are duplicates)
         *    (total 204)
         *  (total 13056)
         */
        specifics = malloc(13056 * sizeof(*specifics));
        preptr = 0;
        for (sign = 0; sign <= 1; sign++) {
            for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
                se = (sign ? 0x80000000 : 0) | ((exps[eptr]+1023) << 20);
                /*
                 * Zero.
                 */
                specifics[preptr][0] = 0;
                specifics[preptr][1] = 0;
                specifics[preptr++][0] |= se;
                /*
                 * All bits.
                 */
                specifics[preptr][0] = 0xFFFFF;
                specifics[preptr][1] = ~0;
                specifics[preptr++][0] |= se;
                /*
                 * One-bit-set.
                 */
                for (j = 1; j && j <= 0x80000000; j <<= 1) {
                    specifics[preptr][0] = 0;
                    specifics[preptr][1] = j;
                    specifics[preptr++][0] |= se;
                    if (j & 0xFFFFF) {
                        specifics[preptr][0] = j;
                        specifics[preptr][1] = 0;
                        specifics[preptr++][0] |= se;
                    }
                }
                /*
                 * One-bit-clear.
                 */
                for (j = 1; j && j <= 0x80000000; j <<= 1) {
                    specifics[preptr][0] = 0xFFFFF;
                    specifics[preptr][1] = ~j;
                    specifics[preptr++][0] |= se;
                    if (j & 0xFFFFF) {
                        specifics[preptr][0] = 0xFFFFF ^ j;
                        specifics[preptr][1] = ~0;
                        specifics[preptr++][0] |= se;
                    }
                }
                /*
                 * One-bit-and-everything-below.
                 */
                for (j = 2; j && j <= 0x80000000; j <<= 1) {
                    specifics[preptr][0] = 0;
                    specifics[preptr][1] = 2*j-1;
                    specifics[preptr++][0] |= se;
                }
                for (j = 1; j && j <= 0x20000; j <<= 1) {
                    specifics[preptr][0] = 2*j-1;
                    specifics[preptr][1] = ~0;
                    specifics[preptr++][0] |= se;
                }
                /*
                 * One-bit-and-everything-above.
                 */
                for (j = 4; j && j <= 0x80000000; j <<= 1) {
                    specifics[preptr][0] = 0xFFFFF;
                    specifics[preptr][1] = ~(j-1);
                    specifics[preptr++][0] |= se;
                }
                for (j = 1; j && j <= 0x40000; j <<= 1) {
                    specifics[preptr][0] = 0xFFFFF ^ (j-1);
                    specifics[preptr][1] = 0;
                    specifics[preptr++][0] |= se;
                }
                /*
                 * Done.
                 */
            }
        }
        assert(preptr == 13056);
        premax = preptr;
    }

    /*
     * Decide whether to return a pre or a random case.
     */
    n = (uint32) random32() % (uint32) (premax+1);
    if (n < preptr) {
        /*
         * Return pre[n].
         */
        uint32 t;
        t = specifics[n][0];
        specifics[n][0] = specifics[preptr-1][0];
        specifics[preptr-1][0] = t;     /* (not really needed) */
        ret[0] = t;
        t = specifics[n][1];
        specifics[n][1] = specifics[preptr-1][1];
        specifics[preptr-1][1] = t;     /* (not really needed) */
        ret[1] = t;
        preptr--;
    } else {
        /*
         * Random case.
         * Sign and exponent:
         *  - FIXME
         * Significand:
         *  - with prob 1/5, a totally random bit pattern
         *  - with prob 1/5, all 1s down to some point and then random
         *  - with prob 1/5, all 1s up to some point and then random
         *  - with prob 1/5, all 0s down to some point and then random
         *  - with prob 1/5, all 0s up to some point and then random
         */
        n = random32() % 5;
        f = random32();                /* some random bits */
        g = random32();                /* some random bits */
        bits = random32() % 51 + 1;    /* 1-51 */
        switch (n) {
          case 0:
            break;                     /* leave f alone */
          case 1:
            if (bits <= 32)
                f |= (1<<bits)-1;
            else {
                bits -= 32;
                g |= (1<<bits)-1;
                f = ~0;
            }
            break;
          case 2:
            if (bits <= 32)
                f &= ~((1<<bits)-1);
            else {
                bits -= 32;
                g &= ~((1<<bits)-1);
                f = 0;
            }
            break;
          case 3:
            if (bits <= 32)
                g &= (1<<bits)-1;
            else {
                bits -= 32;
                f &= (1<<bits)-1;
                g = 0;
            }
            break;
          case 4:
            if (bits <= 32)
                g |= ~((1<<bits)-1);
            else {
                bits -= 32;
                f |= ~((1<<bits)-1);
                g = ~0;
            }
            break;
        }
        g &= 0xFFFFF;
        g |= (random32() & 0xFFF00000);/* FIXME - do better */
        ret[0] = g;
        ret[1] = f;
    }
}

static void cases_biased(uint32 *out, uint32 lowbound,
                          uint32 highbound) {
    do {
        out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
        out[1] = random_upto(0xFFFFFFFF);
        out[0] |= random_sign;
    } while (iszero(out));             /* rule out zero */
}

static void cases_biased_positive(uint32 *out, uint32 lowbound,
                                  uint32 highbound) {
    do {
        out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
        out[1] = random_upto(0xFFFFFFFF);
    } while (iszero(out));             /* rule out zero */
}

static void cases_biased_float(uint32 *out, uint32 lowbound,
                               uint32 highbound) {
    do {
        out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
        out[1] = 0;
        out[0] |= random_sign;
    } while (iszero(out));             /* rule out zero */
}

static void cases_semi1(uint32 *out, uint32 param1,
                        uint32 param2) {
    float64_case(out);
}

static void cases_semi1_float(uint32 *out, uint32 param1,
                              uint32 param2) {
    float32_case(out);
}

static void cases_semi2(uint32 *out, uint32 param1,
                        uint32 param2) {
    float64_case(out);
    float64_case(out+2);
}

static void cases_semi2_float(uint32 *out, uint32 param1,
                        uint32 param2) {
    float32_case(out);
    float32_case(out+2);
}

static void cases_ldexp(uint32 *out, uint32 param1,
                        uint32 param2) {
    float64_case(out);
    out[2] = random_upto(2048)-1024;
}

static void cases_ldexp_float(uint32 *out, uint32 param1,
                              uint32 param2) {
    float32_case(out);
    out[2] = random_upto(256)-128;
}

static void cases_uniform(uint32 *out, uint32 lowbound,
                          uint32 highbound) {
    do {
        out[0] = highbound - random_upto(highbound-lowbound);
        out[1] = random_upto(0xFFFFFFFF);
        out[0] |= random_sign;
    } while (iszero(out));             /* rule out zero */
}
static void cases_uniform_float(uint32 *out, uint32 lowbound,
                                uint32 highbound) {
    do {
        out[0] = highbound - random_upto(highbound-lowbound);
        out[1] = 0;
        out[0] |= random_sign;
    } while (iszero(out));             /* rule out zero */
}

static void cases_uniform_positive(uint32 *out, uint32 lowbound,
                                   uint32 highbound) {
    do {
        out[0] = highbound - random_upto(highbound-lowbound);
        out[1] = random_upto(0xFFFFFFFF);
    } while (iszero(out));             /* rule out zero */
}
static void cases_uniform_float_positive(uint32 *out, uint32 lowbound,
                                         uint32 highbound) {
    do {
        out[0] = highbound - random_upto(highbound-lowbound);
        out[1] = 0;
    } while (iszero(out));             /* rule out zero */
}


static void log_cases(uint32 *out, uint32 param1,
                      uint32 param2) {
    do {
        out[0] = random_upto(0x7FEFFFFF);
        out[1] = random_upto(0xFFFFFFFF);
    } while (iszero(out));             /* rule out zero */
}

static void log_cases_float(uint32 *out, uint32 param1,
                            uint32 param2) {
    do {
        out[0] = random_upto(0x7F7FFFFF);
        out[1] = 0;
    } while (iszero(out));             /* rule out zero */
}

static void log1p_cases(uint32 *out, uint32 param1, uint32 param2)
{
    uint32 sign = random_sign;
    if (sign == 0) {
        cases_uniform_positive(out, 0x3c700000, 0x43400000);
    } else {
        cases_uniform_positive(out, 0x3c000000, 0x3ff00000);
    }
    out[0] |= sign;
}

static void log1p_cases_float(uint32 *out, uint32 param1, uint32 param2)
{
    uint32 sign = random_sign;
    if (sign == 0) {
        cases_uniform_float_positive(out, 0x32000000, 0x4c000000);
    } else {
        cases_uniform_float_positive(out, 0x30000000, 0x3f800000);
    }
    out[0] |= sign;
}

static void minmax_cases(uint32 *out, uint32 param1, uint32 param2)
{
    do {
        out[0] = random_upto(0x7FEFFFFF);
        out[1] = random_upto(0xFFFFFFFF);
        out[0] |= random_sign;
        out[2] = random_upto(0x7FEFFFFF);
        out[3] = random_upto(0xFFFFFFFF);
        out[2] |= random_sign;
    } while (iszero(out));             /* rule out zero */
}

static void minmax_cases_float(uint32 *out, uint32 param1, uint32 param2)
{
    do {
        out[0] = random_upto(0x7F7FFFFF);
        out[1] = 0;
        out[0] |= random_sign;
        out[2] = random_upto(0x7F7FFFFF);
        out[3] = 0;
        out[2] |= random_sign;
    } while (iszero(out));             /* rule out zero */
}

static void rred_cases(uint32 *out, uint32 param1,
                       uint32 param2) {
    do {
        out[0] = ((0x3fc00000 + random_upto(0x036fffff)) |
                  (random_upto(1) << 31));
        out[1] = random_upto(0xFFFFFFFF);
    } while (iszero(out));             /* rule out zero */
}

static void rred_cases_float(uint32 *out, uint32 param1,
                             uint32 param2) {
    do {
        out[0] = ((0x3e000000 + random_upto(0x0cffffff)) |
                  (random_upto(1) << 31));
        out[1] = 0;                    /* for iszero */
    } while (iszero(out));             /* rule out zero */
}

static void atan2_cases(uint32 *out, uint32 param1,
                        uint32 param2) {
    do {
        int expdiff = random_upto(101)-51;
        int swap;
        if (expdiff < 0) {
            expdiff = -expdiff;
            swap = 2;
        } else
            swap = 0;
        out[swap ^ 0] = random_upto(0x7FEFFFFF-((expdiff+1)<<20));
        out[swap ^ 2] = random_upto(((expdiff+1)<<20)-1) + out[swap ^ 0];
        out[1] = random_upto(0xFFFFFFFF);
        out[3] = random_upto(0xFFFFFFFF);
        out[0] |= random_sign;
        out[2] |= random_sign;
    } while (iszero(out) || iszero(out+2));/* rule out zero */
}

static void atan2_cases_float(uint32 *out, uint32 param1,
                              uint32 param2) {
    do {
        int expdiff = random_upto(44)-22;
        int swap;
        if (expdiff < 0) {
            expdiff = -expdiff;
            swap = 2;
        } else
            swap = 0;
        out[swap ^ 0] = random_upto(0x7F7FFFFF-((expdiff+1)<<23));
        out[swap ^ 2] = random_upto(((expdiff+1)<<23)-1) + out[swap ^ 0];
        out[0] |= random_sign;
        out[2] |= random_sign;
        out[1] = out[3] = 0;           /* for iszero */
    } while (iszero(out) || iszero(out+2));/* rule out zero */
}

static void pow_cases(uint32 *out, uint32 param1,
                      uint32 param2) {
    /*
     * Pick an exponent e (-0x33 to +0x7FE) for x, and here's the
     * range of numbers we can use as y:
     *
     * For e < 0x3FE, the range is [-0x400/(0x3FE-e),+0x432/(0x3FE-e)]
     * For e > 0x3FF, the range is [-0x432/(e-0x3FF),+0x400/(e-0x3FF)]
     *
     * For e == 0x3FE or e == 0x3FF, the range gets infinite at one
     * end or the other, so we have to be cleverer: pick a number n
     * of useful bits in the mantissa (1 thru 52, so 1 must imply
     * 0x3ff00000.00000001 whereas 52 is anything at least as big
     * as 0x3ff80000.00000000; for e == 0x3fe, 1 necessarily means
     * 0x3fefffff.ffffffff and 52 is anything at most as big as
     * 0x3fe80000.00000000). Then, as it happens, a sensible
     * maximum power is 2^(63-n) for e == 0x3fe, and 2^(62-n) for
     * e == 0x3ff.
     *
     * We inevitably get some overflows in approximating the log
     * curves by these nasty step functions, but that's all right -
     * we do want _some_ overflows to be tested.
     *
     * Having got that, then, it's just a matter of inventing a
     * probability distribution for all of this.
     */
    int e, n;
    uint32 dmin, dmax;
    const uint32 pmin = 0x3e100000;

    /*
     * Generate exponents in a slightly biased fashion.
     */
    e = (random_upto(1) ?              /* is exponent small or big? */
         0x3FE - random_upto_biased(0x431,2) :   /* small */
         0x3FF + random_upto_biased(0x3FF,2));   /* big */

    /*
     * Now split into cases.
     */
    if (e < 0x3FE || e > 0x3FF) {
        uint32 imin, imax;
        if (e < 0x3FE)
            imin = 0x40000 / (0x3FE - e), imax = 0x43200 / (0x3FE - e);
        else
            imin = 0x43200 / (e - 0x3FF), imax = 0x40000 / (e - 0x3FF);
        /* Power range runs from -imin to imax. Now convert to doubles */
        dmin = doubletop(imin, -8);
        dmax = doubletop(imax, -8);
        /* Compute the number of mantissa bits. */
        n = (e > 0 ? 53 : 52+e);
    } else {
        /* Critical exponents. Generate a top bit index. */
        n = 52 - random_upto_biased(51, 4);
        if (e == 0x3FE)
            dmax = 63 - n;
        else
            dmax = 62 - n;
        dmax = (dmax << 20) + 0x3FF00000;
        dmin = dmax;
    }
    /* Generate a mantissa. */
    if (n <= 32) {
        out[0] = 0;
        out[1] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
    } else if (n == 33) {
        out[0] = 1;
        out[1] = random_upto(0xFFFFFFFF);
    } else if (n > 33) {
        out[0] = random_upto((1 << (n-33)) - 1) + (1 << (n-33));
        out[1] = random_upto(0xFFFFFFFF);
    }
    /* Negate the mantissa if e == 0x3FE. */
    if (e == 0x3FE) {
        out[1] = -out[1];
        out[0] = -out[0];
        if (out[1]) out[0]--;
    }
    /* Put the exponent on. */
    out[0] &= 0xFFFFF;
    out[0] |= ((e > 0 ? e : 0) << 20);
    /* Generate a power. Powers don't go below 2^-30. */
    if (random_upto(1)) {
        /* Positive power */
        out[2] = dmax - random_upto_biased(dmax-pmin, 10);
    } else {
        /* Negative power */
        out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
    }
    out[3] = random_upto(0xFFFFFFFF);
}
static void pow_cases_float(uint32 *out, uint32 param1,
                            uint32 param2) {
    /*
     * Pick an exponent e (-0x16 to +0xFE) for x, and here's the
     * range of numbers we can use as y:
     *
     * For e < 0x7E, the range is [-0x80/(0x7E-e),+0x95/(0x7E-e)]
     * For e > 0x7F, the range is [-0x95/(e-0x7F),+0x80/(e-0x7F)]
     *
     * For e == 0x7E or e == 0x7F, the range gets infinite at one
     * end or the other, so we have to be cleverer: pick a number n
     * of useful bits in the mantissa (1 thru 23, so 1 must imply
     * 0x3f800001 whereas 23 is anything at least as big as
     * 0x3fc00000; for e == 0x7e, 1 necessarily means 0x3f7fffff
     * and 23 is anything at most as big as 0x3f400000). Then, as
     * it happens, a sensible maximum power is 2^(31-n) for e ==
     * 0x7e, and 2^(30-n) for e == 0x7f.
     *
     * We inevitably get some overflows in approximating the log
     * curves by these nasty step functions, but that's all right -
     * we do want _some_ overflows to be tested.
     *
     * Having got that, then, it's just a matter of inventing a
     * probability distribution for all of this.
     */
    int e, n;
    uint32 dmin, dmax;
    const uint32 pmin = 0x38000000;

    /*
     * Generate exponents in a slightly biased fashion.
     */
    e = (random_upto(1) ?              /* is exponent small or big? */
         0x7E - random_upto_biased(0x94,2) :   /* small */
         0x7F + random_upto_biased(0x7f,2));   /* big */

    /*
     * Now split into cases.
     */
    if (e < 0x7E || e > 0x7F) {
        uint32 imin, imax;
        if (e < 0x7E)
            imin = 0x8000 / (0x7e - e), imax = 0x9500 / (0x7e - e);
        else
            imin = 0x9500 / (e - 0x7f), imax = 0x8000 / (e - 0x7f);
        /* Power range runs from -imin to imax. Now convert to doubles */
        dmin = floatval(imin, -8);
        dmax = floatval(imax, -8);
        /* Compute the number of mantissa bits. */
        n = (e > 0 ? 24 : 23+e);
    } else {
        /* Critical exponents. Generate a top bit index. */
        n = 23 - random_upto_biased(22, 4);
        if (e == 0x7E)
            dmax = 31 - n;
        else
            dmax = 30 - n;
        dmax = (dmax << 23) + 0x3F800000;
        dmin = dmax;
    }
    /* Generate a mantissa. */
    out[0] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
    out[1] = 0;
    /* Negate the mantissa if e == 0x7E. */
    if (e == 0x7E) {
        out[0] = -out[0];
    }
    /* Put the exponent on. */
    out[0] &= 0x7FFFFF;
    out[0] |= ((e > 0 ? e : 0) << 23);
    /* Generate a power. Powers don't go below 2^-15. */
    if (random_upto(1)) {
        /* Positive power */
        out[2] = dmax - random_upto_biased(dmax-pmin, 10);
    } else {
        /* Negative power */
        out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
    }
    out[3] = 0;
}

void vet_for_decline(Testable *fn, uint32 *args, uint32 *result, int got_errno_in) {
    int declined = 0;

    switch (fn->type) {
      case args1:
      case rred:
      case semi1:
      case t_frexp:
      case t_modf:
      case classify:
      case t_ldexp:
        declined |= lib_fo && is_dhard(args+0);
        break;
      case args1f:
      case rredf:
      case semi1f:
      case t_frexpf:
      case t_modff:
      case classifyf:
        declined |= lib_fo && is_shard(args+0);
        break;
      case args2:
      case semi2:
      case args1c:
      case args1cr:
      case compare:
        declined |= lib_fo && is_dhard(args+0);
        declined |= lib_fo && is_dhard(args+2);
        break;
      case args2f:
      case semi2f:
      case t_ldexpf:
      case comparef:
      case args1fc:
      case args1fcr:
        declined |= lib_fo && is_shard(args+0);
        declined |= lib_fo && is_shard(args+2);
        break;
      case args2c:
        declined |= lib_fo && is_dhard(args+0);
        declined |= lib_fo && is_dhard(args+2);
        declined |= lib_fo && is_dhard(args+4);
        declined |= lib_fo && is_dhard(args+6);
        break;
      case args2fc:
        declined |= lib_fo && is_shard(args+0);
        declined |= lib_fo && is_shard(args+2);
        declined |= lib_fo && is_shard(args+4);
        declined |= lib_fo && is_shard(args+6);
        break;
    }

    switch (fn->type) {
      case args1:              /* return an extra-precise result */
      case args2:
      case rred:
      case semi1:              /* return a double result */
      case semi2:
      case t_ldexp:
      case t_frexp:            /* return double * int */
      case args1cr:
        declined |= lib_fo && is_dhard(result);
        break;
      case args1f:
      case args2f:
      case rredf:
      case semi1f:
      case semi2f:
      case t_ldexpf:
      case args1fcr:
        declined |= lib_fo && is_shard(result);
        break;
      case t_modf:             /* return double * double */
        declined |= lib_fo && is_dhard(result+0);
        declined |= lib_fo && is_dhard(result+2);
        break;
      case t_modff:                    /* return float * float */
        declined |= lib_fo && is_shard(result+2);
        /* fall through */
      case t_frexpf:                   /* return float * int */
        declined |= lib_fo && is_shard(result+0);
        break;
      case args1c:
      case args2c:
        declined |= lib_fo && is_dhard(result+0);
        declined |= lib_fo && is_dhard(result+4);
        break;
      case args1fc:
      case args2fc:
        declined |= lib_fo && is_shard(result+0);
        declined |= lib_fo && is_shard(result+4);
        break;
    }

    /* Expect basic arithmetic tests to be declined if the command
     * line said that would happen */
    declined |= (lib_no_arith && (fn->func == (funcptr)mpc_add ||
                                  fn->func == (funcptr)mpc_sub ||
                                  fn->func == (funcptr)mpc_mul ||
                                  fn->func == (funcptr)mpc_div));

    if (!declined) {
        if (got_errno_in)
            ntests++;
        else
            ntests += 3;
    }
}

void docase(Testable *fn, uint32 *args) {
    uint32 result[8];  /* real part in first 4, imaginary part in last 4 */
    char *errstr = NULL;
    mpfr_t a, b, r;
    mpc_t ac, bc, rc;
    int rejected, printextra;
    wrapperctx ctx;

    mpfr_init2(a, MPFR_PREC);
    mpfr_init2(b, MPFR_PREC);
    mpfr_init2(r, MPFR_PREC);
    mpc_init2(ac, MPFR_PREC);
    mpc_init2(bc, MPFR_PREC);
    mpc_init2(rc, MPFR_PREC);

    printf("func=%s", fn->name);

    rejected = 0; /* FIXME */

    switch (fn->type) {
      case args1:
      case rred:
      case semi1:
      case t_frexp:
      case t_modf:
      case classify:
        printf(" op1=%08x.%08x", args[0], args[1]);
        break;
      case args1f:
      case rredf:
      case semi1f:
      case t_frexpf:
      case t_modff:
      case classifyf:
        printf(" op1=%08x", args[0]);
        break;
      case args2:
      case semi2:
      case compare:
        printf(" op1=%08x.%08x", args[0], args[1]);
        printf(" op2=%08x.%08x", args[2], args[3]);
        break;
      case args2f:
      case semi2f:
      case t_ldexpf:
      case comparef:
        printf(" op1=%08x", args[0]);
        printf(" op2=%08x", args[2]);
        break;
      case t_ldexp:
        printf(" op1=%08x.%08x", args[0], args[1]);
        printf(" op2=%08x", args[2]);
        break;
      case args1c:
      case args1cr:
        printf(" op1r=%08x.%08x", args[0], args[1]);
        printf(" op1i=%08x.%08x", args[2], args[3]);
        break;
      case args2c:
        printf(" op1r=%08x.%08x", args[0], args[1]);
        printf(" op1i=%08x.%08x", args[2], args[3]);
        printf(" op2r=%08x.%08x", args[4], args[5]);
        printf(" op2i=%08x.%08x", args[6], args[7]);
        break;
      case args1fc:
      case args1fcr:
        printf(" op1r=%08x", args[0]);
        printf(" op1i=%08x", args[2]);
        break;
      case args2fc:
        printf(" op1r=%08x", args[0]);
        printf(" op1i=%08x", args[2]);
        printf(" op2r=%08x", args[4]);
        printf(" op2i=%08x", args[6]);
        break;
      default:
        fprintf(stderr, "internal inconsistency?!\n");
        abort();
    }

    if (rejected == 2) {
        printf(" - test case rejected\n");
        goto cleanup;
    }

    wrapper_init(&ctx);

    if (rejected == 0) {
        switch (fn->type) {
          case args1:
            set_mpfr_d(a, args[0], args[1]);
            wrapper_op_real(&ctx, a, 2, args);
            ((testfunc1)(fn->func))(r, a, GMP_RNDN);
            get_mpfr_d(r, &result[0], &result[1], &result[2]);
            wrapper_result_real(&ctx, r, 2, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_d(r, &result[0], &result[1], &result[2]);
            break;
          case args1cr:
            set_mpc_d(ac, args[0], args[1], args[2], args[3]);
            wrapper_op_complex(&ctx, ac, 2, args);
            ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
            get_mpfr_d(r, &result[0], &result[1], &result[2]);
            wrapper_result_real(&ctx, r, 2, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_d(r, &result[0], &result[1], &result[2]);
            break;
          case args1f:
            set_mpfr_f(a, args[0]);
            wrapper_op_real(&ctx, a, 1, args);
            ((testfunc1)(fn->func))(r, a, GMP_RNDN);
            get_mpfr_f(r, &result[0], &result[1]);
            wrapper_result_real(&ctx, r, 1, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_f(r, &result[0], &result[1]);
            break;
          case args1fcr:
            set_mpc_f(ac, args[0], args[2]);
            wrapper_op_complex(&ctx, ac, 1, args);
            ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
            get_mpfr_f(r, &result[0], &result[1]);
            wrapper_result_real(&ctx, r, 1, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_f(r, &result[0], &result[1]);
            break;
          case args2:
            set_mpfr_d(a, args[0], args[1]);
            wrapper_op_real(&ctx, a, 2, args);
            set_mpfr_d(b, args[2], args[3]);
            wrapper_op_real(&ctx, b, 2, args+2);
            ((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
            get_mpfr_d(r, &result[0], &result[1], &result[2]);
            wrapper_result_real(&ctx, r, 2, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_d(r, &result[0], &result[1], &result[2]);
            break;
          case args2f:
            set_mpfr_f(a, args[0]);
            wrapper_op_real(&ctx, a, 1, args);
            set_mpfr_f(b, args[2]);
            wrapper_op_real(&ctx, b, 1, args+2);
            ((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
            get_mpfr_f(r, &result[0], &result[1]);
            wrapper_result_real(&ctx, r, 1, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_f(r, &result[0], &result[1]);
            break;
          case rred:
            set_mpfr_d(a, args[0], args[1]);
            wrapper_op_real(&ctx, a, 2, args);
            ((testrred)(fn->func))(r, a, (int *)&result[3]);
            get_mpfr_d(r, &result[0], &result[1], &result[2]);
            wrapper_result_real(&ctx, r, 2, result);
            /* We never need to mess about with the integer auxiliary
             * output. */
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_d(r, &result[0], &result[1], &result[2]);
            break;
          case rredf:
            set_mpfr_f(a, args[0]);
            wrapper_op_real(&ctx, a, 1, args);
            ((testrred)(fn->func))(r, a, (int *)&result[3]);
            get_mpfr_f(r, &result[0], &result[1]);
            wrapper_result_real(&ctx, r, 1, result);
            /* We never need to mess about with the integer auxiliary
             * output. */
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpfr_f(r, &result[0], &result[1]);
            break;
          case semi1:
          case semi1f:
            errstr = ((testsemi1)(fn->func))(args, result);
            break;
          case semi2:
          case compare:
            errstr = ((testsemi2)(fn->func))(args, args+2, result);
            break;
          case semi2f:
          case comparef:
          case t_ldexpf:
            errstr = ((testsemi2f)(fn->func))(args, args+2, result);
            break;
          case t_ldexp:
            errstr = ((testldexp)(fn->func))(args, args+2, result);
            break;
          case t_frexp:
            errstr = ((testfrexp)(fn->func))(args, result, result+2);
            break;
          case t_frexpf:
            errstr = ((testfrexp)(fn->func))(args, result, result+2);
            break;
          case t_modf:
            errstr = ((testmodf)(fn->func))(args, result, result+2);
            break;
          case t_modff:
            errstr = ((testmodf)(fn->func))(args, result, result+2);
            break;
          case classify:
            errstr = ((testclassify)(fn->func))(args, &result[0]);
            break;
          case classifyf:
            errstr = ((testclassifyf)(fn->func))(args, &result[0]);
            break;
          case args1c:
            set_mpc_d(ac, args[0], args[1], args[2], args[3]);
            wrapper_op_complex(&ctx, ac, 2, args);
            ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
            get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
            wrapper_result_complex(&ctx, rc, 2, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
            break;
          case args2c:
            set_mpc_d(ac, args[0], args[1], args[2], args[3]);
            wrapper_op_complex(&ctx, ac, 2, args);
            set_mpc_d(bc, args[4], args[5], args[6], args[7]);
            wrapper_op_complex(&ctx, bc, 2, args+4);
            ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
            get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
            wrapper_result_complex(&ctx, rc, 2, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
            break;
          case args1fc:
            set_mpc_f(ac, args[0], args[2]);
            wrapper_op_complex(&ctx, ac, 1, args);
            ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
            get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
            wrapper_result_complex(&ctx, rc, 1, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
            break;
          case args2fc:
            set_mpc_f(ac, args[0], args[2]);
            wrapper_op_complex(&ctx, ac, 1, args);
            set_mpc_f(bc, args[4], args[6]);
            wrapper_op_complex(&ctx, bc, 1, args+4);
            ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
            get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
            wrapper_result_complex(&ctx, rc, 1, result);
            if (wrapper_run(&ctx, fn->wrappers))
                get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
            break;
          default:
            fprintf(stderr, "internal inconsistency?!\n");
            abort();
        }
    }

    switch (fn->type) {
      case args1:              /* return an extra-precise result */
      case args2:
      case args1cr:
      case rred:
        printextra = 1;
        if (rejected == 0) {
            errstr = NULL;
            if (!mpfr_zero_p(a)) {
                if ((result[0] & 0x7FFFFFFF) == 0 && result[1] == 0) {
                    /*
                     * If the output is +0 or -0 apart from the extra
                     * precision in result[2], then there's a tricky
                     * judgment call about what we require in the
                     * output. If we output the extra bits and set
                     * errstr="?underflow" then mathtest will tolerate
                     * the function under test rounding down to zero
                     * _or_ up to the minimum denormal; whereas if we
                     * suppress the extra bits and set
                     * errstr="underflow", then mathtest will enforce
                     * that the function really does underflow to zero.
                     *
                     * But where to draw the line? It seems clear to
                     * me that numbers along the lines of
                     * 00000000.00000000.7ff should be treated
                     * similarly to 00000000.00000000.801, but on the
                     * other hand, we must surely be prepared to
                     * enforce a genuine underflow-to-zero in _some_
                     * case where the true mathematical output is
                     * nonzero but absurdly tiny.
                     *
                     * I think a reasonable place to draw the
                     * distinction is at 00000000.00000000.400, i.e.
                     * one quarter of the minimum positive denormal.
                     * If a value less than that rounds up to the
                     * minimum denormal, that must mean the function
                     * under test has managed to make an error of an
                     * entire factor of two, and that's something we
                     * should fix. Above that, you can misround within
                     * the limits of your accuracy bound if you have
                     * to.
                     */
                    if (result[2] < 0x40000000) {
                        /* Total underflow (ERANGE + UFL) is required,
                         * and we suppress the extra bits to make
                         * mathtest enforce that the output is really
                         * zero. */
                        errstr = "underflow";
                        printextra = 0;
                    } else {
                        /* Total underflow is not required, but if the
                         * function rounds down to zero anyway, then
                         * we should be prepared to tolerate it. */
                        errstr = "?underflow";
                    }
                } else if (!(result[0] & 0x7ff00000)) {
                    /*
                     * If the output is denormal, we usually expect a
                     * UFL exception, warning the user of partial
                     * underflow. The exception is if the denormal
                     * being returned is just one of the input values,
                     * unchanged even in principle. I bodgily handle
                     * this by just special-casing the functions in
                     * question below.
                     */
                    if (!strcmp(fn->name, "fmax") ||
                        !strcmp(fn->name, "fmin") ||
                        !strcmp(fn->name, "creal") ||
                        !strcmp(fn->name, "cimag")) {
                        /* no error expected */
                    } else {
                        errstr = "u";
                    }
                } else if ((result[0] & 0x7FFFFFFF) > 0x7FEFFFFF) {
                    /*
                     * Infinite results are usually due to overflow,
                     * but one exception is lgamma of a negative
                     * integer.
                     */
                    if (!strcmp(fn->name, "lgamma") &&
                        (args[0] & 0x80000000) != 0 && /* negative */
                        is_dinteger(args)) {
                        errstr = "ERANGE status=z";
                    } else {
                        errstr = "overflow";
                    }
                    printextra = 0;
                }
            } else {
                /* lgamma(0) is also a pole. */
                if (!strcmp(fn->name, "lgamma")) {
                    errstr = "ERANGE status=z";
                    printextra = 0;
                }
            }
        }

        if (!printextra || (rejected && !(rejected==1 && result[2]!=0))) {
            printf(" result=%08x.%08x",
                   result[0], result[1]);
        } else {
            printf(" result=%08x.%08x.%03x",
                   result[0], result[1], (result[2] >> 20) & 0xFFF);
        }
        if (fn->type == rred) {
            printf(" res2=%08x", result[3]);
        }
        break;
      case args1f:
      case args2f:
      case args1fcr:
      case rredf:
        printextra = 1;
        if (rejected == 0) {
            errstr = NULL;
            if (!mpfr_zero_p(a)) {
                if ((result[0] & 0x7FFFFFFF) == 0) {
                    /*
                     * Decide whether to print the extra bits based on
                     * just how close to zero the number is. See the
                     * big comment in the double-precision case for
                     * discussion.
                     */
                    if (result[1] < 0x40000000) {
                        errstr = "underflow";
                        printextra = 0;
                    } else {
                        errstr = "?underflow";
                    }
                } else if (!(result[0] & 0x7f800000)) {
                    /*
                     * Functions which do not report partial overflow
                     * are listed here as special cases. (See the
                     * corresponding double case above for a fuller
                     * comment.)
                     */
                    if (!strcmp(fn->name, "fmaxf") ||
                        !strcmp(fn->name, "fminf") ||
                        !strcmp(fn->name, "crealf") ||
                        !strcmp(fn->name, "cimagf")) {
                        /* no error expected */
                    } else {
                        errstr = "u";
                    }
                } else if ((result[0] & 0x7FFFFFFF) > 0x7F7FFFFF) {
                    /*
                     * Infinite results are usually due to overflow,
                     * but one exception is lgamma of a negative
                     * integer.
                     */
                    if (!strcmp(fn->name, "lgammaf") &&
                        (args[0] & 0x80000000) != 0 && /* negative */
                        is_sinteger(args)) {
                        errstr = "ERANGE status=z";
                    } else {
                        errstr = "overflow";
                    }
                    printextra = 0;
                }
            } else {
                /* lgamma(0) is also a pole. */
                if (!strcmp(fn->name, "lgammaf")) {
                    errstr = "ERANGE status=z";
                    printextra = 0;
                }
            }
        }

        if (!printextra || (rejected && !(rejected==1 && result[1]!=0))) {
            printf(" result=%08x",
                   result[0]);
        } else {
            printf(" result=%08x.%03x",
                   result[0], (result[1] >> 20) & 0xFFF);
        }
        if (fn->type == rredf) {
            printf(" res2=%08x", result[3]);
        }
        break;
      case semi1:              /* return a double result */
      case semi2:
      case t_ldexp:
        printf(" result=%08x.%08x", result[0], result[1]);
        break;
      case semi1f:
      case semi2f:
      case t_ldexpf:
        printf(" result=%08x", result[0]);
        break;
      case t_frexp:            /* return double * int */
        printf(" result=%08x.%08x res2=%08x", result[0], result[1],
               result[2]);
        break;
      case t_modf:             /* return double * double */
        printf(" result=%08x.%08x res2=%08x.%08x",
               result[0], result[1], result[2], result[3]);
        break;
      case t_modff:                    /* return float * float */
        /* fall through */
      case t_frexpf:                   /* return float * int */
        printf(" result=%08x res2=%08x", result[0], result[2]);
        break;
      case classify:
      case classifyf:
      case compare:
      case comparef:
        printf(" result=%x", result[0]);
        break;
      case args1c:
      case args2c:
        if (0/* errstr */) {
            printf(" resultr=%08x.%08x", result[0], result[1]);
            printf(" resulti=%08x.%08x", result[4], result[5]);
        } else {
            printf(" resultr=%08x.%08x.%03x",
                   result[0], result[1], (result[2] >> 20) & 0xFFF);
            printf(" resulti=%08x.%08x.%03x",
                   result[4], result[5], (result[6] >> 20) & 0xFFF);
        }
        /* Underflow behaviour doesn't seem to be specified for complex arithmetic */
        errstr = "?underflow";
        break;
      case args1fc:
      case args2fc:
        if (0/* errstr */) {
            printf(" resultr=%08x", result[0]);
            printf(" resulti=%08x", result[4]);
        } else {
            printf(" resultr=%08x.%03x",
                   result[0], (result[1] >> 20) & 0xFFF);
            printf(" resulti=%08x.%03x",
                   result[4], (result[5] >> 20) & 0xFFF);
        }
        /* Underflow behaviour doesn't seem to be specified for complex arithmetic */
        errstr = "?underflow";
        break;
    }

    if (errstr && *(errstr+1) == '\0') {
        printf(" errno=0 status=%c",*errstr);
    } else if (errstr && *errstr == '?') {
        printf(" maybeerror=%s", errstr+1);
    } else if (errstr && errstr[0] == 'E') {
        printf(" errno=%s", errstr);
    } else {
        printf(" error=%s", errstr && *errstr ? errstr : "0");
    }

    printf("\n");

    vet_for_decline(fn, args, result, 0);

  cleanup:
    mpfr_clear(a);
    mpfr_clear(b);
    mpfr_clear(r);
    mpc_clear(ac);
    mpc_clear(bc);
    mpc_clear(rc);
}

void gencases(Testable *fn, int number) {
    int i;
    uint32 args[8];

    float32_case(NULL);
    float64_case(NULL);

    printf("random=on\n"); /* signal to runtests.pl that the following tests are randomly generated */
    for (i = 0; i < number; i++) {
        /* generate test point */
        fn->cases(args, fn->caseparam1, fn->caseparam2);
        docase(fn, args);
    }
    printf("random=off\n");
}

static uint32 doubletop(int x, int scale) {
    int e = 0x412 + scale;
    while (!(x & 0x100000))
        x <<= 1, e--;
    return (e << 20) + x;
}

static uint32 floatval(int x, int scale) {
    int e = 0x95 + scale;
    while (!(x & 0x800000))
        x <<= 1, e--;
    return (e << 23) + x;
}