DWARFExpression.cpp 98.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
//===-- DWARFExpression.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Expression/DWARFExpression.h"

#include <inttypes.h>

#include <vector>

#include "lldb/Core/Module.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Utility/DataEncoder.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/VMRange.h"

#include "lldb/Host/Host.h"
#include "lldb/Utility/Endian.h"

#include "lldb/Symbol/Function.h"

#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/StackID.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"

#include "Plugins/SymbolFile/DWARF/DWARFUnit.h"

using namespace lldb;
using namespace lldb_private;

static lldb::addr_t
ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
                                uint32_t index) {
  uint32_t index_size = dwarf_cu->GetAddressByteSize();
  dw_offset_t addr_base = dwarf_cu->GetAddrBase();
  lldb::offset_t offset = addr_base + index * index_size;
  const DWARFDataExtractor &data =
      dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
  if (data.ValidOffsetForDataOfSize(offset, index_size))
    return data.GetMaxU64_unchecked(&offset, index_size);
  return LLDB_INVALID_ADDRESS;
}

// DWARFExpression constructor
DWARFExpression::DWARFExpression()
    : m_module_wp(), m_data(), m_dwarf_cu(nullptr),
      m_reg_kind(eRegisterKindDWARF) {}

DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
                                 const DataExtractor &data,
                                 const DWARFUnit *dwarf_cu)
    : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
      m_reg_kind(eRegisterKindDWARF) {
  if (module_sp)
    m_module_wp = module_sp;
}

// Destructor
DWARFExpression::~DWARFExpression() {}

bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }

void DWARFExpression::UpdateValue(uint64_t const_value,
                                  lldb::offset_t const_value_byte_size,
                                  uint8_t addr_byte_size) {
  if (!const_value_byte_size)
    return;

  m_data.SetData(
      DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
  m_data.SetByteOrder(endian::InlHostByteOrder());
  m_data.SetAddressByteSize(addr_byte_size);
}

void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
                                   lldb::DescriptionLevel level,
                                   ABI *abi) const {
  llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
      .print(s->AsRawOstream(), abi ? &abi->GetMCRegisterInfo() : nullptr,
             nullptr);
}

void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
                                               addr_t func_file_addr) {
  m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
}

int DWARFExpression::GetRegisterKind() { return m_reg_kind; }

void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
  m_reg_kind = reg_kind;
}

bool DWARFExpression::IsLocationList() const {
  return bool(m_loclist_addresses);
}

namespace {
/// Implement enough of the DWARFObject interface in order to be able to call
/// DWARFLocationTable::dumpLocationList. We don't have access to a real
/// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
class DummyDWARFObject final: public llvm::DWARFObject {
public:
  DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}

  bool isLittleEndian() const override { return IsLittleEndian; }

  llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
                                            uint64_t Pos) const override {
    return llvm::None;
  }
private:
  bool IsLittleEndian;
};
}

void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
                                     addr_t location_list_base_addr,
                                     ABI *abi) const {
  if (IsLocationList()) {
    // We have a location list
    lldb::offset_t offset = 0;
    std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
        m_dwarf_cu->GetLocationTable(m_data);

    llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
    llvm::DIDumpOptions DumpOpts;
    DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
      s->AsRawOstream() << "error: " << toString(std::move(E));
    };
    loctable_up->dumpLocationList(
        &offset, s->AsRawOstream(),
        llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
        DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
        DumpOpts, s->GetIndentLevel() + 2);
  } else {
    // We have a normal location that contains DW_OP location opcodes
    DumpLocation(s, m_data, level, abi);
  }
}

static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
                                      lldb::RegisterKind reg_kind,
                                      uint32_t reg_num, Status *error_ptr,
                                      Value &value) {
  if (reg_ctx == nullptr) {
    if (error_ptr)
      error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
  } else {
    uint32_t native_reg =
        reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
    if (native_reg == LLDB_INVALID_REGNUM) {
      if (error_ptr)
        error_ptr->SetErrorStringWithFormat("Unable to convert register "
                                            "kind=%u reg_num=%u to a native "
                                            "register number.\n",
                                            reg_kind, reg_num);
    } else {
      const RegisterInfo *reg_info =
          reg_ctx->GetRegisterInfoAtIndex(native_reg);
      RegisterValue reg_value;
      if (reg_ctx->ReadRegister(reg_info, reg_value)) {
        if (reg_value.GetScalarValue(value.GetScalar())) {
          value.SetValueType(Value::eValueTypeScalar);
          value.SetContext(Value::eContextTypeRegisterInfo,
                           const_cast<RegisterInfo *>(reg_info));
          if (error_ptr)
            error_ptr->Clear();
          return true;
        } else {
          // If we get this error, then we need to implement a value buffer in
          // the dwarf expression evaluation function...
          if (error_ptr)
            error_ptr->SetErrorStringWithFormat(
                "register %s can't be converted to a scalar value",
                reg_info->name);
        }
      } else {
        if (error_ptr)
          error_ptr->SetErrorStringWithFormat("register %s is not available",
                                              reg_info->name);
      }
    }
  }
  return false;
}

/// Return the length in bytes of the set of operands for \p op. No guarantees
/// are made on the state of \p data after this call.
static offset_t GetOpcodeDataSize(const DataExtractor &data,
                                  const lldb::offset_t data_offset,
                                  const uint8_t op) {
  lldb::offset_t offset = data_offset;
  switch (op) {
  case DW_OP_addr:
  case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
    return data.GetAddressByteSize();

  // Opcodes with no arguments
  case DW_OP_deref:                // 0x06
  case DW_OP_dup:                  // 0x12
  case DW_OP_drop:                 // 0x13
  case DW_OP_over:                 // 0x14
  case DW_OP_swap:                 // 0x16
  case DW_OP_rot:                  // 0x17
  case DW_OP_xderef:               // 0x18
  case DW_OP_abs:                  // 0x19
  case DW_OP_and:                  // 0x1a
  case DW_OP_div:                  // 0x1b
  case DW_OP_minus:                // 0x1c
  case DW_OP_mod:                  // 0x1d
  case DW_OP_mul:                  // 0x1e
  case DW_OP_neg:                  // 0x1f
  case DW_OP_not:                  // 0x20
  case DW_OP_or:                   // 0x21
  case DW_OP_plus:                 // 0x22
  case DW_OP_shl:                  // 0x24
  case DW_OP_shr:                  // 0x25
  case DW_OP_shra:                 // 0x26
  case DW_OP_xor:                  // 0x27
  case DW_OP_eq:                   // 0x29
  case DW_OP_ge:                   // 0x2a
  case DW_OP_gt:                   // 0x2b
  case DW_OP_le:                   // 0x2c
  case DW_OP_lt:                   // 0x2d
  case DW_OP_ne:                   // 0x2e
  case DW_OP_lit0:                 // 0x30
  case DW_OP_lit1:                 // 0x31
  case DW_OP_lit2:                 // 0x32
  case DW_OP_lit3:                 // 0x33
  case DW_OP_lit4:                 // 0x34
  case DW_OP_lit5:                 // 0x35
  case DW_OP_lit6:                 // 0x36
  case DW_OP_lit7:                 // 0x37
  case DW_OP_lit8:                 // 0x38
  case DW_OP_lit9:                 // 0x39
  case DW_OP_lit10:                // 0x3A
  case DW_OP_lit11:                // 0x3B
  case DW_OP_lit12:                // 0x3C
  case DW_OP_lit13:                // 0x3D
  case DW_OP_lit14:                // 0x3E
  case DW_OP_lit15:                // 0x3F
  case DW_OP_lit16:                // 0x40
  case DW_OP_lit17:                // 0x41
  case DW_OP_lit18:                // 0x42
  case DW_OP_lit19:                // 0x43
  case DW_OP_lit20:                // 0x44
  case DW_OP_lit21:                // 0x45
  case DW_OP_lit22:                // 0x46
  case DW_OP_lit23:                // 0x47
  case DW_OP_lit24:                // 0x48
  case DW_OP_lit25:                // 0x49
  case DW_OP_lit26:                // 0x4A
  case DW_OP_lit27:                // 0x4B
  case DW_OP_lit28:                // 0x4C
  case DW_OP_lit29:                // 0x4D
  case DW_OP_lit30:                // 0x4E
  case DW_OP_lit31:                // 0x4f
  case DW_OP_reg0:                 // 0x50
  case DW_OP_reg1:                 // 0x51
  case DW_OP_reg2:                 // 0x52
  case DW_OP_reg3:                 // 0x53
  case DW_OP_reg4:                 // 0x54
  case DW_OP_reg5:                 // 0x55
  case DW_OP_reg6:                 // 0x56
  case DW_OP_reg7:                 // 0x57
  case DW_OP_reg8:                 // 0x58
  case DW_OP_reg9:                 // 0x59
  case DW_OP_reg10:                // 0x5A
  case DW_OP_reg11:                // 0x5B
  case DW_OP_reg12:                // 0x5C
  case DW_OP_reg13:                // 0x5D
  case DW_OP_reg14:                // 0x5E
  case DW_OP_reg15:                // 0x5F
  case DW_OP_reg16:                // 0x60
  case DW_OP_reg17:                // 0x61
  case DW_OP_reg18:                // 0x62
  case DW_OP_reg19:                // 0x63
  case DW_OP_reg20:                // 0x64
  case DW_OP_reg21:                // 0x65
  case DW_OP_reg22:                // 0x66
  case DW_OP_reg23:                // 0x67
  case DW_OP_reg24:                // 0x68
  case DW_OP_reg25:                // 0x69
  case DW_OP_reg26:                // 0x6A
  case DW_OP_reg27:                // 0x6B
  case DW_OP_reg28:                // 0x6C
  case DW_OP_reg29:                // 0x6D
  case DW_OP_reg30:                // 0x6E
  case DW_OP_reg31:                // 0x6F
  case DW_OP_nop:                  // 0x96
  case DW_OP_push_object_address:  // 0x97 DWARF3
  case DW_OP_form_tls_address:     // 0x9b DWARF3
  case DW_OP_call_frame_cfa:       // 0x9c DWARF3
  case DW_OP_stack_value:          // 0x9f DWARF4
  case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
    return 0;

  // Opcodes with a single 1 byte arguments
  case DW_OP_const1u:     // 0x08 1 1-byte constant
  case DW_OP_const1s:     // 0x09 1 1-byte constant
  case DW_OP_pick:        // 0x15 1 1-byte stack index
  case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
  case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
    return 1;

  // Opcodes with a single 2 byte arguments
  case DW_OP_const2u: // 0x0a 1 2-byte constant
  case DW_OP_const2s: // 0x0b 1 2-byte constant
  case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
  case DW_OP_bra:     // 0x28 1 signed 2-byte constant
  case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
    return 2;

  // Opcodes with a single 4 byte arguments
  case DW_OP_const4u: // 0x0c 1 4-byte constant
  case DW_OP_const4s: // 0x0d 1 4-byte constant
  case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
    return 4;

  // Opcodes with a single 8 byte arguments
  case DW_OP_const8u: // 0x0e 1 8-byte constant
  case DW_OP_const8s: // 0x0f 1 8-byte constant
    return 8;

  // All opcodes that have a single ULEB (signed or unsigned) argument
  case DW_OP_addrx:           // 0xa1 1 ULEB128 index
  case DW_OP_constu:          // 0x10 1 ULEB128 constant
  case DW_OP_consts:          // 0x11 1 SLEB128 constant
  case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
  case DW_OP_breg0:           // 0x70 1 ULEB128 register
  case DW_OP_breg1:           // 0x71 1 ULEB128 register
  case DW_OP_breg2:           // 0x72 1 ULEB128 register
  case DW_OP_breg3:           // 0x73 1 ULEB128 register
  case DW_OP_breg4:           // 0x74 1 ULEB128 register
  case DW_OP_breg5:           // 0x75 1 ULEB128 register
  case DW_OP_breg6:           // 0x76 1 ULEB128 register
  case DW_OP_breg7:           // 0x77 1 ULEB128 register
  case DW_OP_breg8:           // 0x78 1 ULEB128 register
  case DW_OP_breg9:           // 0x79 1 ULEB128 register
  case DW_OP_breg10:          // 0x7a 1 ULEB128 register
  case DW_OP_breg11:          // 0x7b 1 ULEB128 register
  case DW_OP_breg12:          // 0x7c 1 ULEB128 register
  case DW_OP_breg13:          // 0x7d 1 ULEB128 register
  case DW_OP_breg14:          // 0x7e 1 ULEB128 register
  case DW_OP_breg15:          // 0x7f 1 ULEB128 register
  case DW_OP_breg16:          // 0x80 1 ULEB128 register
  case DW_OP_breg17:          // 0x81 1 ULEB128 register
  case DW_OP_breg18:          // 0x82 1 ULEB128 register
  case DW_OP_breg19:          // 0x83 1 ULEB128 register
  case DW_OP_breg20:          // 0x84 1 ULEB128 register
  case DW_OP_breg21:          // 0x85 1 ULEB128 register
  case DW_OP_breg22:          // 0x86 1 ULEB128 register
  case DW_OP_breg23:          // 0x87 1 ULEB128 register
  case DW_OP_breg24:          // 0x88 1 ULEB128 register
  case DW_OP_breg25:          // 0x89 1 ULEB128 register
  case DW_OP_breg26:          // 0x8a 1 ULEB128 register
  case DW_OP_breg27:          // 0x8b 1 ULEB128 register
  case DW_OP_breg28:          // 0x8c 1 ULEB128 register
  case DW_OP_breg29:          // 0x8d 1 ULEB128 register
  case DW_OP_breg30:          // 0x8e 1 ULEB128 register
  case DW_OP_breg31:          // 0x8f 1 ULEB128 register
  case DW_OP_regx:            // 0x90 1 ULEB128 register
  case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
  case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
  case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
  case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
    data.Skip_LEB128(&offset);
    return offset - data_offset;

  // All opcodes that have a 2 ULEB (signed or unsigned) arguments
  case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
  case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
    data.Skip_LEB128(&offset);
    data.Skip_LEB128(&offset);
    return offset - data_offset;

  case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
                             // (DWARF4)
  {
    uint64_t block_len = data.Skip_LEB128(&offset);
    offset += block_len;
    return offset - data_offset;
  }

  case DW_OP_GNU_entry_value:
  case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
  {
    uint64_t subexpr_len = data.GetULEB128(&offset);
    return (offset - data_offset) + subexpr_len;
  }

  default:
    break;
  }
  return LLDB_INVALID_OFFSET;
}

lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
                                                     bool &error) const {
  error = false;
  if (IsLocationList())
    return LLDB_INVALID_ADDRESS;
  lldb::offset_t offset = 0;
  uint32_t curr_op_addr_idx = 0;
  while (m_data.ValidOffset(offset)) {
    const uint8_t op = m_data.GetU8(&offset);

    if (op == DW_OP_addr) {
      const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
      if (curr_op_addr_idx == op_addr_idx)
        return op_file_addr;
      else
        ++curr_op_addr_idx;
    } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
      uint64_t index = m_data.GetULEB128(&offset);
      if (curr_op_addr_idx == op_addr_idx) {
        if (!m_dwarf_cu) {
          error = true;
          break;
        }

        return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
      } else
        ++curr_op_addr_idx;
    } else {
      const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
      if (op_arg_size == LLDB_INVALID_OFFSET) {
        error = true;
        break;
      }
      offset += op_arg_size;
    }
  }
  return LLDB_INVALID_ADDRESS;
}

bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
  if (IsLocationList())
    return false;
  lldb::offset_t offset = 0;
  while (m_data.ValidOffset(offset)) {
    const uint8_t op = m_data.GetU8(&offset);

    if (op == DW_OP_addr) {
      const uint32_t addr_byte_size = m_data.GetAddressByteSize();
      // We have to make a copy of the data as we don't know if this data is
      // from a read only memory mapped buffer, so we duplicate all of the data
      // first, then modify it, and if all goes well, we then replace the data
      // for this expression

      // So first we copy the data into a heap buffer
      std::unique_ptr<DataBufferHeap> head_data_up(
          new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));

      // Make en encoder so we can write the address into the buffer using the
      // correct byte order (endianness)
      DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(),
                          m_data.GetByteOrder(), addr_byte_size);

      // Replace the address in the new buffer
      if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX)
        return false;

      // All went well, so now we can reset the data using a shared pointer to
      // the heap data so "m_data" will now correctly manage the heap data.
      m_data.SetData(DataBufferSP(head_data_up.release()));
      return true;
    } else {
      const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
      if (op_arg_size == LLDB_INVALID_OFFSET)
        break;
      offset += op_arg_size;
    }
  }
  return false;
}

bool DWARFExpression::ContainsThreadLocalStorage() const {
  // We are assuming for now that any thread local variable will not have a
  // location list. This has been true for all thread local variables we have
  // seen so far produced by any compiler.
  if (IsLocationList())
    return false;
  lldb::offset_t offset = 0;
  while (m_data.ValidOffset(offset)) {
    const uint8_t op = m_data.GetU8(&offset);

    if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
      return true;
    const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
    if (op_arg_size == LLDB_INVALID_OFFSET)
      return false;
    else
      offset += op_arg_size;
  }
  return false;
}
bool DWARFExpression::LinkThreadLocalStorage(
    lldb::ModuleSP new_module_sp,
    std::function<lldb::addr_t(lldb::addr_t file_addr)> const
        &link_address_callback) {
  // We are assuming for now that any thread local variable will not have a
  // location list. This has been true for all thread local variables we have
  // seen so far produced by any compiler.
  if (IsLocationList())
    return false;

  const uint32_t addr_byte_size = m_data.GetAddressByteSize();
  // We have to make a copy of the data as we don't know if this data is from a
  // read only memory mapped buffer, so we duplicate all of the data first,
  // then modify it, and if all goes well, we then replace the data for this
  // expression

  // So first we copy the data into a heap buffer
  std::shared_ptr<DataBufferHeap> heap_data_sp(
      new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));

  // Make en encoder so we can write the address into the buffer using the
  // correct byte order (endianness)
  DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
                      m_data.GetByteOrder(), addr_byte_size);

  lldb::offset_t offset = 0;
  lldb::offset_t const_offset = 0;
  lldb::addr_t const_value = 0;
  size_t const_byte_size = 0;
  while (m_data.ValidOffset(offset)) {
    const uint8_t op = m_data.GetU8(&offset);

    bool decoded_data = false;
    switch (op) {
    case DW_OP_const4u:
      // Remember the const offset in case we later have a
      // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
      const_offset = offset;
      const_value = m_data.GetU32(&offset);
      decoded_data = true;
      const_byte_size = 4;
      break;

    case DW_OP_const8u:
      // Remember the const offset in case we later have a
      // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
      const_offset = offset;
      const_value = m_data.GetU64(&offset);
      decoded_data = true;
      const_byte_size = 8;
      break;

    case DW_OP_form_tls_address:
    case DW_OP_GNU_push_tls_address:
      // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
      // by a file address on the stack. We assume that DW_OP_const4u or
      // DW_OP_const8u is used for these values, and we check that the last
      // opcode we got before either of these was DW_OP_const4u or
      // DW_OP_const8u. If so, then we can link the value accodingly. For
      // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
      // address of a structure that contains a function pointer, the pthread
      // key and the offset into the data pointed to by the pthread key. So we
      // must link this address and also set the module of this expression to
      // the new_module_sp so we can resolve the file address correctly
      if (const_byte_size > 0) {
        lldb::addr_t linked_file_addr = link_address_callback(const_value);
        if (linked_file_addr == LLDB_INVALID_ADDRESS)
          return false;
        // Replace the address in the new buffer
        if (encoder.PutUnsigned(const_offset, const_byte_size,
                                linked_file_addr) == UINT32_MAX)
          return false;
      }
      break;

    default:
      const_offset = 0;
      const_value = 0;
      const_byte_size = 0;
      break;
    }

    if (!decoded_data) {
      const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
      if (op_arg_size == LLDB_INVALID_OFFSET)
        return false;
      else
        offset += op_arg_size;
    }
  }

  // If we linked the TLS address correctly, update the module so that when the
  // expression is evaluated it can resolve the file address to a load address
  // and read the
  // TLS data
  m_module_wp = new_module_sp;
  m_data.SetData(heap_data_sp);
  return true;
}

bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
                                                  lldb::addr_t addr) const {
  if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
    return false;

  if (!IsLocationList())
    return false;

  return GetLocationExpression(func_load_addr, addr) != llvm::None;
}

bool DWARFExpression::DumpLocationForAddress(Stream *s,
                                             lldb::DescriptionLevel level,
                                             addr_t func_load_addr,
                                             addr_t address, ABI *abi) {
  if (!IsLocationList()) {
    DumpLocation(s, m_data, level, abi);
    return true;
  }
  if (llvm::Optional<DataExtractor> expr =
          GetLocationExpression(func_load_addr, address)) {
    DumpLocation(s, *expr, level, abi);
    return true;
  }
  return false;
}

static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
                                       ExecutionContext *exe_ctx,
                                       RegisterContext *reg_ctx,
                                       const DataExtractor &opcodes,
                                       lldb::offset_t &opcode_offset,
                                       Status *error_ptr, Log *log) {
  // DW_OP_entry_value(sub-expr) describes the location a variable had upon
  // function entry: this variable location is presumed to be optimized out at
  // the current PC value.  The caller of the function may have call site
  // information that describes an alternate location for the variable (e.g. a
  // constant literal, or a spilled stack value) in the parent frame.
  //
  // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
  //
  //     void child(int &sink, int x) {
  //       ...
  //       /* "x" gets optimized out. */
  //
  //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
  //       ++sink;
  //     }
  //
  //     void parent() {
  //       int sink;
  //
  //       /*
  //        * The callsite information emitted here is:
  //        *
  //        * DW_TAG_call_site
  //        *   DW_AT_return_pc ... (for "child(sink, 123);")
  //        *   DW_TAG_call_site_parameter (for "sink")
  //        *     DW_AT_location   ($reg1)
  //        *     DW_AT_call_value ($SP - 8)
  //        *   DW_TAG_call_site_parameter (for "x")
  //        *     DW_AT_location   ($reg2)
  //        *     DW_AT_call_value ($literal 123)
  //        *
  //        * DW_TAG_call_site
  //        *   DW_AT_return_pc ... (for "child(sink, 456);")
  //        *   ...
  //        */
  //       child(sink, 123);
  //       child(sink, 456);
  //     }
  //
  // When the program stops at "++sink" within `child`, the debugger determines
  // the call site by analyzing the return address. Once the call site is found,
  // the debugger determines which parameter is referenced by DW_OP_entry_value
  // and evaluates the corresponding location for that parameter in `parent`.

  // 1. Find the function which pushed the current frame onto the stack.
  if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
    return false;
  }

  StackFrame *current_frame = exe_ctx->GetFramePtr();
  Thread *thread = exe_ctx->GetThreadPtr();
  if (!current_frame || !thread) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
    return false;
  }

  Target &target = exe_ctx->GetTargetRef();
  StackFrameSP parent_frame = nullptr;
  addr_t return_pc = LLDB_INVALID_ADDRESS;
  uint32_t current_frame_idx = current_frame->GetFrameIndex();
  uint32_t num_frames = thread->GetStackFrameCount();
  for (uint32_t parent_frame_idx = current_frame_idx + 1;
       parent_frame_idx < num_frames; ++parent_frame_idx) {
    parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
    // Require a valid sequence of frames.
    if (!parent_frame)
      break;

    // Record the first valid return address, even if this is an inlined frame,
    // in order to look up the associated call edge in the first non-inlined
    // parent frame.
    if (return_pc == LLDB_INVALID_ADDRESS) {
      return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
      LLDB_LOG(log,
               "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
               return_pc);
    }

    // If we've found an inlined frame, skip it (these have no call site
    // parameters).
    if (parent_frame->IsInlined())
      continue;

    // We've found the first non-inlined parent frame.
    break;
  }
  if (!parent_frame || !parent_frame->GetRegisterContext()) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
    return false;
  }

  Function *parent_func =
      parent_frame->GetSymbolContext(eSymbolContextFunction).function;
  if (!parent_func) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
    return false;
  }

  // 2. Find the call edge in the parent function responsible for creating the
  //    current activation.
  Function *current_func =
      current_frame->GetSymbolContext(eSymbolContextFunction).function;
  if (!current_func) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
    return false;
  }

  CallEdge *call_edge = nullptr;
  ModuleList &modlist = target.GetImages();
  ExecutionContext parent_exe_ctx = *exe_ctx;
  parent_exe_ctx.SetFrameSP(parent_frame);
  if (!parent_frame->IsArtificial()) {
    // If the parent frame is not artificial, the current activation may be
    // produced by an ambiguous tail call. In this case, refuse to proceed.
    call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
    if (!call_edge) {
      LLDB_LOG(log,
               "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
               "in parent frame {1}",
               return_pc, parent_func->GetName());
      return false;
    }
    Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
    if (callee_func != current_func) {
      LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
                    "can't find real parent frame");
      return false;
    }
  } else {
    // The StackFrameList solver machinery has deduced that an unambiguous tail
    // call sequence that produced the current activation.  The first edge in
    // the parent that points to the current function must be valid.
    for (auto &edge : parent_func->GetTailCallingEdges()) {
      if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
        call_edge = edge.get();
        break;
      }
    }
  }
  if (!call_edge) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
                  "to current function");
    return false;
  }

  // 3. Attempt to locate the DW_OP_entry_value expression in the set of
  //    available call site parameters. If found, evaluate the corresponding
  //    parameter in the context of the parent frame.
  const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
  const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
  if (!subexpr_data) {
    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
    return false;
  }

  const CallSiteParameter *matched_param = nullptr;
  for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
    DataExtractor param_subexpr_extractor;
    if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
      continue;
    lldb::offset_t param_subexpr_offset = 0;
    const void *param_subexpr_data =
        param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
    if (!param_subexpr_data ||
        param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
      continue;

    // At this point, the DW_OP_entry_value sub-expression and the callee-side
    // expression in the call site parameter are known to have the same length.
    // Check whether they are equal.
    //
    // Note that an equality check is sufficient: the contents of the
    // DW_OP_entry_value subexpression are only used to identify the right call
    // site parameter in the parent, and do not require any special handling.
    if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
      matched_param = &param;
      break;
    }
  }
  if (!matched_param) {
    LLDB_LOG(log,
             "Evaluate_DW_OP_entry_value: no matching call site param found");
    return false;
  }

  // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
  // subexpresion whenever llvm does.
  Value result;
  const DWARFExpression &param_expr = matched_param->LocationInCaller;
  if (!param_expr.Evaluate(&parent_exe_ctx,
                           parent_frame->GetRegisterContext().get(),
                           /*loclist_base_addr=*/LLDB_INVALID_ADDRESS,
                           /*initial_value_ptr=*/nullptr,
                           /*object_address_ptr=*/nullptr, result, error_ptr)) {
    LLDB_LOG(log,
             "Evaluate_DW_OP_entry_value: call site param evaluation failed");
    return false;
  }

  stack.push_back(result);
  return true;
}

bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
                               lldb::addr_t loclist_base_load_addr,
                               const Value *initial_value_ptr,
                               const Value *object_address_ptr, Value &result,
                               Status *error_ptr) const {
  ExecutionContext exe_ctx(exe_scope);
  return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
                  object_address_ptr, result, error_ptr);
}

bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
                               RegisterContext *reg_ctx,
                               lldb::addr_t func_load_addr,
                               const Value *initial_value_ptr,
                               const Value *object_address_ptr, Value &result,
                               Status *error_ptr) const {
  ModuleSP module_sp = m_module_wp.lock();

  if (IsLocationList()) {
    addr_t pc;
    StackFrame *frame = nullptr;
    if (reg_ctx)
      pc = reg_ctx->GetPC();
    else {
      frame = exe_ctx->GetFramePtr();
      if (!frame)
        return false;
      RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
      if (!reg_ctx_sp)
        return false;
      pc = reg_ctx_sp->GetPC();
    }

    if (func_load_addr != LLDB_INVALID_ADDRESS) {
      if (pc == LLDB_INVALID_ADDRESS) {
        if (error_ptr)
          error_ptr->SetErrorString("Invalid PC in frame.");
        return false;
      }

      if (llvm::Optional<DataExtractor> expr =
              GetLocationExpression(func_load_addr, pc)) {
        return DWARFExpression::Evaluate(
            exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
            initial_value_ptr, object_address_ptr, result, error_ptr);
      }
    }
    if (error_ptr)
      error_ptr->SetErrorString("variable not available");
    return false;
  }

  // Not a location list, just a single expression.
  return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
                                   m_dwarf_cu, m_reg_kind, initial_value_ptr,
                                   object_address_ptr, result, error_ptr);
}

bool DWARFExpression::Evaluate(
    ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
    lldb::ModuleSP module_sp, const DataExtractor &opcodes,
    const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
    const Value *initial_value_ptr, const Value *object_address_ptr,
    Value &result, Status *error_ptr) {

  if (opcodes.GetByteSize() == 0) {
    if (error_ptr)
      error_ptr->SetErrorString(
          "no location, value may have been optimized out");
    return false;
  }
  std::vector<Value> stack;

  Process *process = nullptr;
  StackFrame *frame = nullptr;

  if (exe_ctx) {
    process = exe_ctx->GetProcessPtr();
    frame = exe_ctx->GetFramePtr();
  }
  if (reg_ctx == nullptr && frame)
    reg_ctx = frame->GetRegisterContext().get();

  if (initial_value_ptr)
    stack.push_back(*initial_value_ptr);

  lldb::offset_t offset = 0;
  Value tmp;
  uint32_t reg_num;

  /// Insertion point for evaluating multi-piece expression.
  uint64_t op_piece_offset = 0;
  Value pieces; // Used for DW_OP_piece

  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));

  while (opcodes.ValidOffset(offset)) {
    const lldb::offset_t op_offset = offset;
    const uint8_t op = opcodes.GetU8(&offset);

    if (log && log->GetVerbose()) {
      size_t count = stack.size();
      LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
                (uint64_t)count);
      for (size_t i = 0; i < count; ++i) {
        StreamString new_value;
        new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
        stack[i].Dump(&new_value);
        LLDB_LOGF(log, "  %s", new_value.GetData());
      }
      LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
                DW_OP_value_to_name(op));
    }

    switch (op) {
    // The DW_OP_addr operation has a single operand that encodes a machine
    // address and whose size is the size of an address on the target machine.
    case DW_OP_addr:
      stack.push_back(Scalar(opcodes.GetAddress(&offset)));
      stack.back().SetValueType(Value::eValueTypeFileAddress);
      // Convert the file address to a load address, so subsequent
      // DWARF operators can operate on it.
      if (frame)
        stack.back().ConvertToLoadAddress(module_sp.get(),
                                          frame->CalculateTarget().get());
      break;

    // The DW_OP_addr_sect_offset4 is used for any location expressions in
    // shared libraries that have a location like:
    //  DW_OP_addr(0x1000)
    // If this address resides in a shared library, then this virtual address
    // won't make sense when it is evaluated in the context of a running
    // process where shared libraries have been slid. To account for this, this
    // new address type where we can store the section pointer and a 4 byte
    // offset.
    //      case DW_OP_addr_sect_offset4:
    //          {
    //              result_type = eResultTypeFileAddress;
    //              lldb::Section *sect = (lldb::Section
    //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
    //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
    //
    //              Address so_addr (sect, sect_offset);
    //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
    //              if (load_addr != LLDB_INVALID_ADDRESS)
    //              {
    //                  // We successfully resolve a file address to a load
    //                  // address.
    //                  stack.push_back(load_addr);
    //                  break;
    //              }
    //              else
    //              {
    //                  // We were able
    //                  if (error_ptr)
    //                      error_ptr->SetErrorStringWithFormat ("Section %s in
    //                      %s is not currently loaded.\n",
    //                      sect->GetName().AsCString(),
    //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
    //                  return false;
    //              }
    //          }
    //          break;

    // OPCODE: DW_OP_deref
    // OPERANDS: none
    // DESCRIPTION: Pops the top stack entry and treats it as an address.
    // The value retrieved from that address is pushed. The size of the data
    // retrieved from the dereferenced address is the size of an address on the
    // target machine.
    case DW_OP_deref: {
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
        return false;
      }
      Value::ValueType value_type = stack.back().GetValueType();
      switch (value_type) {
      case Value::eValueTypeHostAddress: {
        void *src = (void *)stack.back().GetScalar().ULongLong();
        intptr_t ptr;
        ::memcpy(&ptr, src, sizeof(void *));
        stack.back().GetScalar() = ptr;
        stack.back().ClearContext();
      } break;
      case Value::eValueTypeFileAddress: {
        auto file_addr = stack.back().GetScalar().ULongLong(
            LLDB_INVALID_ADDRESS);
        if (!module_sp) {
          if (error_ptr)
            error_ptr->SetErrorStringWithFormat(
                "need module to resolve file address for DW_OP_deref");
          return false;
        }
        Address so_addr;
        if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
          if (error_ptr)
            error_ptr->SetErrorStringWithFormat(
                "failed to resolve file address in module");
          return false;
        }
        addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
        if (load_Addr == LLDB_INVALID_ADDRESS) {
          if (error_ptr)
            error_ptr->SetErrorStringWithFormat(
                "failed to resolve load address");
          return false;
        }
        stack.back().GetScalar() = load_Addr;
        stack.back().SetValueType(Value::eValueTypeLoadAddress);
        // Fall through to load address code below...
      } LLVM_FALLTHROUGH;
      case Value::eValueTypeLoadAddress:
        if (exe_ctx) {
          if (process) {
            lldb::addr_t pointer_addr =
                stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
            Status error;
            lldb::addr_t pointer_value =
                process->ReadPointerFromMemory(pointer_addr, error);
            if (pointer_value != LLDB_INVALID_ADDRESS) {
              stack.back().GetScalar() = pointer_value;
              stack.back().ClearContext();
            } else {
              if (error_ptr)
                error_ptr->SetErrorStringWithFormat(
                    "Failed to dereference pointer from 0x%" PRIx64
                    " for DW_OP_deref: %s\n",
                    pointer_addr, error.AsCString());
              return false;
            }
          } else {
            if (error_ptr)
              error_ptr->SetErrorStringWithFormat(
                  "NULL process for DW_OP_deref.\n");
            return false;
          }
        } else {
          if (error_ptr)
            error_ptr->SetErrorStringWithFormat(
                "NULL execution context for DW_OP_deref.\n");
          return false;
        }
        break;

      default:
        break;
      }

    } break;

    // OPCODE: DW_OP_deref_size
    // OPERANDS: 1
    //  1 - uint8_t that specifies the size of the data to dereference.
    // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
    // stack entry and treats it as an address. The value retrieved from that
    // address is pushed. In the DW_OP_deref_size operation, however, the size
    // in bytes of the data retrieved from the dereferenced address is
    // specified by the single operand. This operand is a 1-byte unsigned
    // integral constant whose value may not be larger than the size of an
    // address on the target machine. The data retrieved is zero extended to
    // the size of an address on the target machine before being pushed on the
    // expression stack.
    case DW_OP_deref_size: {
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack empty for DW_OP_deref_size.");
        return false;
      }
      uint8_t size = opcodes.GetU8(&offset);
      Value::ValueType value_type = stack.back().GetValueType();
      switch (value_type) {
      case Value::eValueTypeHostAddress: {
        void *src = (void *)stack.back().GetScalar().ULongLong();
        intptr_t ptr;
        ::memcpy(&ptr, src, sizeof(void *));
        // I can't decide whether the size operand should apply to the bytes in
        // their
        // lldb-host endianness or the target endianness.. I doubt this'll ever
        // come up but I'll opt for assuming big endian regardless.
        switch (size) {
        case 1:
          ptr = ptr & 0xff;
          break;
        case 2:
          ptr = ptr & 0xffff;
          break;
        case 3:
          ptr = ptr & 0xffffff;
          break;
        case 4:
          ptr = ptr & 0xffffffff;
          break;
        // the casts are added to work around the case where intptr_t is a 32
        // bit quantity;
        // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
        // program.
        case 5:
          ptr = (intptr_t)ptr & 0xffffffffffULL;
          break;
        case 6:
          ptr = (intptr_t)ptr & 0xffffffffffffULL;
          break;
        case 7:
          ptr = (intptr_t)ptr & 0xffffffffffffffULL;
          break;
        default:
          break;
        }
        stack.back().GetScalar() = ptr;
        stack.back().ClearContext();
      } break;
      case Value::eValueTypeLoadAddress:
        if (exe_ctx) {
          if (process) {
            lldb::addr_t pointer_addr =
                stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
            uint8_t addr_bytes[sizeof(lldb::addr_t)];
            Status error;
            if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
                size) {
              DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
                                      process->GetByteOrder(), size);
              lldb::offset_t addr_data_offset = 0;
              switch (size) {
              case 1:
                stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
                break;
              case 2:
                stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
                break;
              case 4:
                stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
                break;
              case 8:
                stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
                break;
              default:
                stack.back().GetScalar() =
                    addr_data.GetAddress(&addr_data_offset);
              }
              stack.back().ClearContext();
            } else {
              if (error_ptr)
                error_ptr->SetErrorStringWithFormat(
                    "Failed to dereference pointer from 0x%" PRIx64
                    " for DW_OP_deref: %s\n",
                    pointer_addr, error.AsCString());
              return false;
            }
          } else {
            if (error_ptr)
              error_ptr->SetErrorStringWithFormat(
                  "NULL process for DW_OP_deref.\n");
            return false;
          }
        } else {
          if (error_ptr)
            error_ptr->SetErrorStringWithFormat(
                "NULL execution context for DW_OP_deref.\n");
          return false;
        }
        break;

      default:
        break;
      }

    } break;

    // OPCODE: DW_OP_xderef_size
    // OPERANDS: 1
    //  1 - uint8_t that specifies the size of the data to dereference.
    // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
    // the top of the stack is treated as an address. The second stack entry is
    // treated as an "address space identifier" for those architectures that
    // support multiple address spaces. The top two stack elements are popped,
    // a data item is retrieved through an implementation-defined address
    // calculation and pushed as the new stack top. In the DW_OP_xderef_size
    // operation, however, the size in bytes of the data retrieved from the
    // dereferenced address is specified by the single operand. This operand is
    // a 1-byte unsigned integral constant whose value may not be larger than
    // the size of an address on the target machine. The data retrieved is zero
    // extended to the size of an address on the target machine before being
    // pushed on the expression stack.
    case DW_OP_xderef_size:
      if (error_ptr)
        error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
      return false;
    // OPCODE: DW_OP_xderef
    // OPERANDS: none
    // DESCRIPTION: Provides an extended dereference mechanism. The entry at
    // the top of the stack is treated as an address. The second stack entry is
    // treated as an "address space identifier" for those architectures that
    // support multiple address spaces. The top two stack elements are popped,
    // a data item is retrieved through an implementation-defined address
    // calculation and pushed as the new stack top. The size of the data
    // retrieved from the dereferenced address is the size of an address on the
    // target machine.
    case DW_OP_xderef:
      if (error_ptr)
        error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
      return false;

    // All DW_OP_constXXX opcodes have a single operand as noted below:
    //
    // Opcode           Operand 1
    // DW_OP_const1u    1-byte unsigned integer constant DW_OP_const1s
    // 1-byte signed integer constant DW_OP_const2u    2-byte unsigned integer
    // constant DW_OP_const2s    2-byte signed integer constant DW_OP_const4u
    // 4-byte unsigned integer constant DW_OP_const4s    4-byte signed integer
    // constant DW_OP_const8u    8-byte unsigned integer constant DW_OP_const8s
    // 8-byte signed integer constant DW_OP_constu     unsigned LEB128 integer
    // constant DW_OP_consts     signed LEB128 integer constant
    case DW_OP_const1u:
      stack.push_back(Scalar((uint8_t)opcodes.GetU8(&offset)));
      break;
    case DW_OP_const1s:
      stack.push_back(Scalar((int8_t)opcodes.GetU8(&offset)));
      break;
    case DW_OP_const2u:
      stack.push_back(Scalar((uint16_t)opcodes.GetU16(&offset)));
      break;
    case DW_OP_const2s:
      stack.push_back(Scalar((int16_t)opcodes.GetU16(&offset)));
      break;
    case DW_OP_const4u:
      stack.push_back(Scalar((uint32_t)opcodes.GetU32(&offset)));
      break;
    case DW_OP_const4s:
      stack.push_back(Scalar((int32_t)opcodes.GetU32(&offset)));
      break;
    case DW_OP_const8u:
      stack.push_back(Scalar((uint64_t)opcodes.GetU64(&offset)));
      break;
    case DW_OP_const8s:
      stack.push_back(Scalar((int64_t)opcodes.GetU64(&offset)));
      break;
    case DW_OP_constu:
      stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
      break;
    case DW_OP_consts:
      stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
      break;

    // OPCODE: DW_OP_dup
    // OPERANDS: none
    // DESCRIPTION: duplicates the value at the top of the stack
    case DW_OP_dup:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
        return false;
      } else
        stack.push_back(stack.back());
      break;

    // OPCODE: DW_OP_drop
    // OPERANDS: none
    // DESCRIPTION: pops the value at the top of the stack
    case DW_OP_drop:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
        return false;
      } else
        stack.pop_back();
      break;

    // OPCODE: DW_OP_over
    // OPERANDS: none
    // DESCRIPTION: Duplicates the entry currently second in the stack at
    // the top of the stack.
    case DW_OP_over:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_over.");
        return false;
      } else
        stack.push_back(stack[stack.size() - 2]);
      break;

    // OPCODE: DW_OP_pick
    // OPERANDS: uint8_t index into the current stack
    // DESCRIPTION: The stack entry with the specified index (0 through 255,
    // inclusive) is pushed on the stack
    case DW_OP_pick: {
      uint8_t pick_idx = opcodes.GetU8(&offset);
      if (pick_idx < stack.size())
        stack.push_back(stack[stack.size() - 1 - pick_idx]);
      else {
        if (error_ptr)
          error_ptr->SetErrorStringWithFormat(
              "Index %u out of range for DW_OP_pick.\n", pick_idx);
        return false;
      }
    } break;

    // OPCODE: DW_OP_swap
    // OPERANDS: none
    // DESCRIPTION: swaps the top two stack entries. The entry at the top
    // of the stack becomes the second stack entry, and the second entry
    // becomes the top of the stack
    case DW_OP_swap:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_swap.");
        return false;
      } else {
        tmp = stack.back();
        stack.back() = stack[stack.size() - 2];
        stack[stack.size() - 2] = tmp;
      }
      break;

    // OPCODE: DW_OP_rot
    // OPERANDS: none
    // DESCRIPTION: Rotates the first three stack entries. The entry at
    // the top of the stack becomes the third stack entry, the second entry
    // becomes the top of the stack, and the third entry becomes the second
    // entry.
    case DW_OP_rot:
      if (stack.size() < 3) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 3 items for DW_OP_rot.");
        return false;
      } else {
        size_t last_idx = stack.size() - 1;
        Value old_top = stack[last_idx];
        stack[last_idx] = stack[last_idx - 1];
        stack[last_idx - 1] = stack[last_idx - 2];
        stack[last_idx - 2] = old_top;
      }
      break;

    // OPCODE: DW_OP_abs
    // OPERANDS: none
    // DESCRIPTION: pops the top stack entry, interprets it as a signed
    // value and pushes its absolute value. If the absolute value can not be
    // represented, the result is undefined.
    case DW_OP_abs:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_abs.");
        return false;
      } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Failed to take the absolute value of the first stack item.");
        return false;
      }
      break;

    // OPCODE: DW_OP_and
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, performs a bitwise and
    // operation on the two, and pushes the result.
    case DW_OP_and:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_and.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_div
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, divides the former second
    // entry by the former top of the stack using signed division, and pushes
    // the result.
    case DW_OP_div:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_div.");
        return false;
      } else {
        tmp = stack.back();
        if (tmp.ResolveValue(exe_ctx).IsZero()) {
          if (error_ptr)
            error_ptr->SetErrorString("Divide by zero.");
          return false;
        } else {
          stack.pop_back();
          stack.back() =
              stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
          if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
            if (error_ptr)
              error_ptr->SetErrorString("Divide failed.");
            return false;
          }
        }
      }
      break;

    // OPCODE: DW_OP_minus
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, subtracts the former top
    // of the stack from the former second entry, and pushes the result.
    case DW_OP_minus:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_minus.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_mod
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values and pushes the result of
    // the calculation: former second stack entry modulo the former top of the
    // stack.
    case DW_OP_mod:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_mod.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_mul
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack entries, multiplies them
    // together, and pushes the result.
    case DW_OP_mul:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_mul.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_neg
    // OPERANDS: none
    // DESCRIPTION: pops the top stack entry, and pushes its negation.
    case DW_OP_neg:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_neg.");
        return false;
      } else {
        if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
          if (error_ptr)
            error_ptr->SetErrorString("Unary negate failed.");
          return false;
        }
      }
      break;

    // OPCODE: DW_OP_not
    // OPERANDS: none
    // DESCRIPTION: pops the top stack entry, and pushes its bitwise
    // complement
    case DW_OP_not:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_not.");
        return false;
      } else {
        if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
          if (error_ptr)
            error_ptr->SetErrorString("Logical NOT failed.");
          return false;
        }
      }
      break;

    // OPCODE: DW_OP_or
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack entries, performs a bitwise or
    // operation on the two, and pushes the result.
    case DW_OP_or:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_or.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_plus
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack entries, adds them together, and
    // pushes the result.
    case DW_OP_plus:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_plus.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().GetScalar() += tmp.GetScalar();
      }
      break;

    // OPCODE: DW_OP_plus_uconst
    // OPERANDS: none
    // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
    // constant operand and pushes the result.
    case DW_OP_plus_uconst:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
        return false;
      } else {
        const uint64_t uconst_value = opcodes.GetULEB128(&offset);
        // Implicit conversion from a UINT to a Scalar...
        stack.back().GetScalar() += uconst_value;
        if (!stack.back().GetScalar().IsValid()) {
          if (error_ptr)
            error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
          return false;
        }
      }
      break;

    // OPCODE: DW_OP_shl
    // OPERANDS: none
    // DESCRIPTION:  pops the top two stack entries, shifts the former
    // second entry left by the number of bits specified by the former top of
    // the stack, and pushes the result.
    case DW_OP_shl:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_shl.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_shr
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack entries, shifts the former second
    // entry right logically (filling with zero bits) by the number of bits
    // specified by the former top of the stack, and pushes the result.
    case DW_OP_shr:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_shr.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
                tmp.ResolveValue(exe_ctx))) {
          if (error_ptr)
            error_ptr->SetErrorString("DW_OP_shr failed.");
          return false;
        }
      }
      break;

    // OPCODE: DW_OP_shra
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack entries, shifts the former second
    // entry right arithmetically (divide the magnitude by 2, keep the same
    // sign for the result) by the number of bits specified by the former top
    // of the stack, and pushes the result.
    case DW_OP_shra:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_shra.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_xor
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack entries, performs the bitwise
    // exclusive-or operation on the two, and pushes the result.
    case DW_OP_xor:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_xor.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_skip
    // OPERANDS: int16_t
    // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
    // signed integer constant. The 2-byte constant is the number of bytes of
    // the DWARF expression to skip forward or backward from the current
    // operation, beginning after the 2-byte constant.
    case DW_OP_skip: {
      int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
      lldb::offset_t new_offset = offset + skip_offset;
      if (opcodes.ValidOffset(new_offset))
        offset = new_offset;
      else {
        if (error_ptr)
          error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
        return false;
      }
    } break;

    // OPCODE: DW_OP_bra
    // OPERANDS: int16_t
    // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
    // signed integer constant. This operation pops the top of stack. If the
    // value popped is not the constant 0, the 2-byte constant operand is the
    // number of bytes of the DWARF expression to skip forward or backward from
    // the current operation, beginning after the 2-byte constant.
    case DW_OP_bra:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_bra.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
        Scalar zero(0);
        if (tmp.ResolveValue(exe_ctx) != zero) {
          lldb::offset_t new_offset = offset + bra_offset;
          if (opcodes.ValidOffset(new_offset))
            offset = new_offset;
          else {
            if (error_ptr)
              error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
            return false;
          }
        }
      }
      break;

    // OPCODE: DW_OP_eq
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, compares using the
    // equals (==) operator.
    // STACK RESULT: push the constant value 1 onto the stack if the result
    // of the operation is true or the constant value 0 if the result of the
    // operation is false.
    case DW_OP_eq:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_eq.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_ge
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, compares using the
    // greater than or equal to (>=) operator.
    // STACK RESULT: push the constant value 1 onto the stack if the result
    // of the operation is true or the constant value 0 if the result of the
    // operation is false.
    case DW_OP_ge:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_ge.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_gt
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, compares using the
    // greater than (>) operator.
    // STACK RESULT: push the constant value 1 onto the stack if the result
    // of the operation is true or the constant value 0 if the result of the
    // operation is false.
    case DW_OP_gt:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_gt.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_le
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, compares using the
    // less than or equal to (<=) operator.
    // STACK RESULT: push the constant value 1 onto the stack if the result
    // of the operation is true or the constant value 0 if the result of the
    // operation is false.
    case DW_OP_le:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_le.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_lt
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, compares using the
    // less than (<) operator.
    // STACK RESULT: push the constant value 1 onto the stack if the result
    // of the operation is true or the constant value 0 if the result of the
    // operation is false.
    case DW_OP_lt:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_lt.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_ne
    // OPERANDS: none
    // DESCRIPTION: pops the top two stack values, compares using the
    // not equal (!=) operator.
    // STACK RESULT: push the constant value 1 onto the stack if the result
    // of the operation is true or the constant value 0 if the result of the
    // operation is false.
    case DW_OP_ne:
      if (stack.size() < 2) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 2 items for DW_OP_ne.");
        return false;
      } else {
        tmp = stack.back();
        stack.pop_back();
        stack.back().ResolveValue(exe_ctx) =
            stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
      }
      break;

    // OPCODE: DW_OP_litn
    // OPERANDS: none
    // DESCRIPTION: encode the unsigned literal values from 0 through 31.
    // STACK RESULT: push the unsigned literal constant value onto the top
    // of the stack.
    case DW_OP_lit0:
    case DW_OP_lit1:
    case DW_OP_lit2:
    case DW_OP_lit3:
    case DW_OP_lit4:
    case DW_OP_lit5:
    case DW_OP_lit6:
    case DW_OP_lit7:
    case DW_OP_lit8:
    case DW_OP_lit9:
    case DW_OP_lit10:
    case DW_OP_lit11:
    case DW_OP_lit12:
    case DW_OP_lit13:
    case DW_OP_lit14:
    case DW_OP_lit15:
    case DW_OP_lit16:
    case DW_OP_lit17:
    case DW_OP_lit18:
    case DW_OP_lit19:
    case DW_OP_lit20:
    case DW_OP_lit21:
    case DW_OP_lit22:
    case DW_OP_lit23:
    case DW_OP_lit24:
    case DW_OP_lit25:
    case DW_OP_lit26:
    case DW_OP_lit27:
    case DW_OP_lit28:
    case DW_OP_lit29:
    case DW_OP_lit30:
    case DW_OP_lit31:
      stack.push_back(Scalar((uint64_t)(op - DW_OP_lit0)));
      break;

    // OPCODE: DW_OP_regN
    // OPERANDS: none
    // DESCRIPTION: Push the value in register n on the top of the stack.
    case DW_OP_reg0:
    case DW_OP_reg1:
    case DW_OP_reg2:
    case DW_OP_reg3:
    case DW_OP_reg4:
    case DW_OP_reg5:
    case DW_OP_reg6:
    case DW_OP_reg7:
    case DW_OP_reg8:
    case DW_OP_reg9:
    case DW_OP_reg10:
    case DW_OP_reg11:
    case DW_OP_reg12:
    case DW_OP_reg13:
    case DW_OP_reg14:
    case DW_OP_reg15:
    case DW_OP_reg16:
    case DW_OP_reg17:
    case DW_OP_reg18:
    case DW_OP_reg19:
    case DW_OP_reg20:
    case DW_OP_reg21:
    case DW_OP_reg22:
    case DW_OP_reg23:
    case DW_OP_reg24:
    case DW_OP_reg25:
    case DW_OP_reg26:
    case DW_OP_reg27:
    case DW_OP_reg28:
    case DW_OP_reg29:
    case DW_OP_reg30:
    case DW_OP_reg31: {
      reg_num = op - DW_OP_reg0;

      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
        stack.push_back(tmp);
      else
        return false;
    } break;
    // OPCODE: DW_OP_regx
    // OPERANDS:
    //      ULEB128 literal operand that encodes the register.
    // DESCRIPTION: Push the value in register on the top of the stack.
    case DW_OP_regx: {
      reg_num = opcodes.GetULEB128(&offset);
      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
        stack.push_back(tmp);
      else
        return false;
    } break;

    // OPCODE: DW_OP_bregN
    // OPERANDS:
    //      SLEB128 offset from register N
    // DESCRIPTION: Value is in memory at the address specified by register
    // N plus an offset.
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31: {
      reg_num = op - DW_OP_breg0;

      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
                                    tmp)) {
        int64_t breg_offset = opcodes.GetSLEB128(&offset);
        tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
        tmp.ClearContext();
        stack.push_back(tmp);
        stack.back().SetValueType(Value::eValueTypeLoadAddress);
      } else
        return false;
    } break;
    // OPCODE: DW_OP_bregx
    // OPERANDS: 2
    //      ULEB128 literal operand that encodes the register.
    //      SLEB128 offset from register N
    // DESCRIPTION: Value is in memory at the address specified by register
    // N plus an offset.
    case DW_OP_bregx: {
      reg_num = opcodes.GetULEB128(&offset);

      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
                                    tmp)) {
        int64_t breg_offset = opcodes.GetSLEB128(&offset);
        tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
        tmp.ClearContext();
        stack.push_back(tmp);
        stack.back().SetValueType(Value::eValueTypeLoadAddress);
      } else
        return false;
    } break;

    case DW_OP_fbreg:
      if (exe_ctx) {
        if (frame) {
          Scalar value;
          if (frame->GetFrameBaseValue(value, error_ptr)) {
            int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
            value += fbreg_offset;
            stack.push_back(value);
            stack.back().SetValueType(Value::eValueTypeLoadAddress);
          } else
            return false;
        } else {
          if (error_ptr)
            error_ptr->SetErrorString(
                "Invalid stack frame in context for DW_OP_fbreg opcode.");
          return false;
        }
      } else {
        if (error_ptr)
          error_ptr->SetErrorStringWithFormat(
              "NULL execution context for DW_OP_fbreg.\n");
        return false;
      }

      break;

    // OPCODE: DW_OP_nop
    // OPERANDS: none
    // DESCRIPTION: A place holder. It has no effect on the location stack
    // or any of its values.
    case DW_OP_nop:
      break;

    // OPCODE: DW_OP_piece
    // OPERANDS: 1
    //      ULEB128: byte size of the piece
    // DESCRIPTION: The operand describes the size in bytes of the piece of
    // the object referenced by the DWARF expression whose result is at the top
    // of the stack. If the piece is located in a register, but does not occupy
    // the entire register, the placement of the piece within that register is
    // defined by the ABI.
    //
    // Many compilers store a single variable in sets of registers, or store a
    // variable partially in memory and partially in registers. DW_OP_piece
    // provides a way of describing how large a part of a variable a particular
    // DWARF expression refers to.
    case DW_OP_piece: {
      const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);

      if (piece_byte_size > 0) {
        Value curr_piece;

        if (stack.empty()) {
          // In a multi-piece expression, this means that the current piece is
          // not available. Fill with zeros for now by resizing the data and
          // appending it
          curr_piece.ResizeData(piece_byte_size);
          // Note that "0" is not a correct value for the unknown bits.
          // It would be better to also return a mask of valid bits together
          // with the expression result, so the debugger can print missing
          // members as "<optimized out>" or something.
          ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
          pieces.AppendDataToHostBuffer(curr_piece);
        } else {
          Status error;
          // Extract the current piece into "curr_piece"
          Value curr_piece_source_value(stack.back());
          stack.pop_back();

          const Value::ValueType curr_piece_source_value_type =
              curr_piece_source_value.GetValueType();
          switch (curr_piece_source_value_type) {
          case Value::eValueTypeLoadAddress:
            if (process) {
              if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
                lldb::addr_t load_addr =
                    curr_piece_source_value.GetScalar().ULongLong(
                        LLDB_INVALID_ADDRESS);
                if (process->ReadMemory(
                        load_addr, curr_piece.GetBuffer().GetBytes(),
                        piece_byte_size, error) != piece_byte_size) {
                  if (error_ptr)
                    error_ptr->SetErrorStringWithFormat(
                        "failed to read memory DW_OP_piece(%" PRIu64
                        ") from 0x%" PRIx64,
                        piece_byte_size, load_addr);
                  return false;
                }
              } else {
                if (error_ptr)
                  error_ptr->SetErrorStringWithFormat(
                      "failed to resize the piece memory buffer for "
                      "DW_OP_piece(%" PRIu64 ")",
                      piece_byte_size);
                return false;
              }
            }
            break;

          case Value::eValueTypeFileAddress:
          case Value::eValueTypeHostAddress:
            if (error_ptr) {
              lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
                  LLDB_INVALID_ADDRESS);
              error_ptr->SetErrorStringWithFormat(
                  "failed to read memory DW_OP_piece(%" PRIu64
                  ") from %s address 0x%" PRIx64,
                  piece_byte_size, curr_piece_source_value.GetValueType() ==
                                           Value::eValueTypeFileAddress
                                       ? "file"
                                       : "host",
                  addr);
            }
            return false;

          case Value::eValueTypeScalar: {
            uint32_t bit_size = piece_byte_size * 8;
            uint32_t bit_offset = 0;
            Scalar &scalar = curr_piece_source_value.GetScalar();
            if (!scalar.ExtractBitfield(
                    bit_size, bit_offset)) {
              if (error_ptr)
                error_ptr->SetErrorStringWithFormat(
                    "unable to extract %" PRIu64 " bytes from a %" PRIu64
                    " byte scalar value.",
                    piece_byte_size,
                    (uint64_t)curr_piece_source_value.GetScalar()
                        .GetByteSize());
              return false;
            }
            // Create curr_piece with bit_size. By default Scalar
            // grows to the nearest host integer type.
            llvm::APInt fail_value(1, 0, false);
            llvm::APInt ap_int = scalar.UInt128(fail_value);
            assert(ap_int.getBitWidth() >= bit_size);
            llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
                                         ap_int.getNumWords()};
            curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
          } break;

          case Value::eValueTypeVector: {
            if (curr_piece_source_value.GetVector().length >= piece_byte_size)
              curr_piece_source_value.GetVector().length = piece_byte_size;
            else {
              if (error_ptr)
                error_ptr->SetErrorStringWithFormat(
                    "unable to extract %" PRIu64 " bytes from a %" PRIu64
                    " byte vector value.",
                    piece_byte_size,
                    (uint64_t)curr_piece_source_value.GetVector().length);
              return false;
            }
          } break;
          }

          // Check if this is the first piece?
          if (op_piece_offset == 0) {
            // This is the first piece, we should push it back onto the stack
            // so subsequent pieces will be able to access this piece and add
            // to it.
            if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
              if (error_ptr)
                error_ptr->SetErrorString("failed to append piece data");
              return false;
            }
          } else {
            // If this is the second or later piece there should be a value on
            // the stack.
            if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
              if (error_ptr)
                error_ptr->SetErrorStringWithFormat(
                    "DW_OP_piece for offset %" PRIu64
                    " but top of stack is of size %" PRIu64,
                    op_piece_offset, pieces.GetBuffer().GetByteSize());
              return false;
            }

            if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
              if (error_ptr)
                error_ptr->SetErrorString("failed to append piece data");
              return false;
            }
          }
        }
        op_piece_offset += piece_byte_size;
      }
    } break;

    case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
      if (stack.size() < 1) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_bit_piece.");
        return false;
      } else {
        const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
        const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
        switch (stack.back().GetValueType()) {
        case Value::eValueTypeScalar: {
          if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
                                                        piece_bit_offset)) {
            if (error_ptr)
              error_ptr->SetErrorStringWithFormat(
                  "unable to extract %" PRIu64 " bit value with %" PRIu64
                  " bit offset from a %" PRIu64 " bit scalar value.",
                  piece_bit_size, piece_bit_offset,
                  (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
            return false;
          }
        } break;

        case Value::eValueTypeFileAddress:
        case Value::eValueTypeLoadAddress:
        case Value::eValueTypeHostAddress:
          if (error_ptr) {
            error_ptr->SetErrorStringWithFormat(
                "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
                ", bit_offset = %" PRIu64 ") from an address value.",
                piece_bit_size, piece_bit_offset);
          }
          return false;

        case Value::eValueTypeVector:
          if (error_ptr) {
            error_ptr->SetErrorStringWithFormat(
                "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
                ", bit_offset = %" PRIu64 ") from a vector value.",
                piece_bit_size, piece_bit_offset);
          }
          return false;
        }
      }
      break;

    // OPCODE: DW_OP_push_object_address
    // OPERANDS: none
    // DESCRIPTION: Pushes the address of the object currently being
    // evaluated as part of evaluation of a user presented expression. This
    // object may correspond to an independent variable described by its own
    // DIE or it may be a component of an array, structure, or class whose
    // address has been dynamically determined by an earlier step during user
    // expression evaluation.
    case DW_OP_push_object_address:
      if (object_address_ptr)
        stack.push_back(*object_address_ptr);
      else {
        if (error_ptr)
          error_ptr->SetErrorString("DW_OP_push_object_address used without "
                                    "specifying an object address");
        return false;
      }
      break;

    // OPCODE: DW_OP_call2
    // OPERANDS:
    //      uint16_t compile unit relative offset of a DIE
    // DESCRIPTION: Performs subroutine calls during evaluation
    // of a DWARF expression. The operand is the 2-byte unsigned offset of a
    // debugging information entry in the current compilation unit.
    //
    // Operand interpretation is exactly like that for DW_FORM_ref2.
    //
    // This operation transfers control of DWARF expression evaluation to the
    // DW_AT_location attribute of the referenced DIE. If there is no such
    // attribute, then there is no effect. Execution of the DWARF expression of
    // a DW_AT_location attribute may add to and/or remove from values on the
    // stack. Execution returns to the point following the call when the end of
    // the attribute is reached. Values on the stack at the time of the call
    // may be used as parameters by the called expression and values left on
    // the stack by the called expression may be used as return values by prior
    // agreement between the calling and called expressions.
    case DW_OP_call2:
      if (error_ptr)
        error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
      return false;
    // OPCODE: DW_OP_call4
    // OPERANDS: 1
    //      uint32_t compile unit relative offset of a DIE
    // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
    // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
    // a debugging information entry in  the current compilation unit.
    //
    // Operand interpretation DW_OP_call4 is exactly like that for
    // DW_FORM_ref4.
    //
    // This operation transfers control of DWARF expression evaluation to the
    // DW_AT_location attribute of the referenced DIE. If there is no such
    // attribute, then there is no effect. Execution of the DWARF expression of
    // a DW_AT_location attribute may add to and/or remove from values on the
    // stack. Execution returns to the point following the call when the end of
    // the attribute is reached. Values on the stack at the time of the call
    // may be used as parameters by the called expression and values left on
    // the stack by the called expression may be used as return values by prior
    // agreement between the calling and called expressions.
    case DW_OP_call4:
      if (error_ptr)
        error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
      return false;

    // OPCODE: DW_OP_stack_value
    // OPERANDS: None
    // DESCRIPTION: Specifies that the object does not exist in memory but
    // rather is a constant value.  The value from the top of the stack is the
    // value to be used.  This is the actual object value and not the location.
    case DW_OP_stack_value:
      if (stack.empty()) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_stack_value.");
        return false;
      }
      stack.back().SetValueType(Value::eValueTypeScalar);
      break;

    // OPCODE: DW_OP_convert
    // OPERANDS: 1
    //      A ULEB128 that is either a DIE offset of a
    //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
    //
    // DESCRIPTION: Pop the top stack element, convert it to a
    // different type, and push the result.
    case DW_OP_convert: {
      if (stack.size() < 1) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "Expression stack needs at least 1 item for DW_OP_convert.");
        return false;
      }
      const uint64_t die_offset = opcodes.GetULEB128(&offset);
      uint64_t bit_size;
      bool sign;
      if (die_offset == 0) {
        // The generic type has the size of an address on the target
        // machine and an unspecified signedness. Scalar has no
        // "unspecified signedness", so we use unsigned types.
        if (!module_sp) {
          if (error_ptr)
            error_ptr->SetErrorString("No module");
          return false;
        }
        sign = false;
        bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
        if (!bit_size) {
          if (error_ptr)
            error_ptr->SetErrorString("unspecified architecture");
          return false;
        }
      } else {
        // Retrieve the type DIE that the value is being converted to.
        // FIXME: the constness has annoying ripple effects.
        DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
        if (!die) {
          if (error_ptr)
            error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
          return false;
        }
        uint64_t encoding =
            die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
        bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
        if (!bit_size)
          bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
        if (!bit_size) {
          if (error_ptr)
            error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
          return false;
        }
        switch (encoding) {
        case DW_ATE_signed:
        case DW_ATE_signed_char:
          sign = true;
          break;
        case DW_ATE_unsigned:
        case DW_ATE_unsigned_char:
          sign = false;
          break;
        default:
          if (error_ptr)
            error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
          return false;
        }
      }
      Scalar &top = stack.back().ResolveValue(exe_ctx);
      top.TruncOrExtendTo(bit_size, sign);
      break;
    }

    // OPCODE: DW_OP_call_frame_cfa
    // OPERANDS: None
    // DESCRIPTION: Specifies a DWARF expression that pushes the value of
    // the canonical frame address consistent with the call frame information
    // located in .debug_frame (or in the FDEs of the eh_frame section).
    case DW_OP_call_frame_cfa:
      if (frame) {
        // Note that we don't have to parse FDEs because this DWARF expression
        // is commonly evaluated with a valid stack frame.
        StackID id = frame->GetStackID();
        addr_t cfa = id.GetCallFrameAddress();
        if (cfa != LLDB_INVALID_ADDRESS) {
          stack.push_back(Scalar(cfa));
          stack.back().SetValueType(Value::eValueTypeLoadAddress);
        } else if (error_ptr)
          error_ptr->SetErrorString("Stack frame does not include a canonical "
                                    "frame address for DW_OP_call_frame_cfa "
                                    "opcode.");
      } else {
        if (error_ptr)
          error_ptr->SetErrorString("Invalid stack frame in context for "
                                    "DW_OP_call_frame_cfa opcode.");
        return false;
      }
      break;

    // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
    // opcode, DW_OP_GNU_push_tls_address)
    // OPERANDS: none
    // DESCRIPTION: Pops a TLS offset from the stack, converts it to
    // an address in the current thread's thread-local storage block, and
    // pushes it on the stack.
    case DW_OP_form_tls_address:
    case DW_OP_GNU_push_tls_address: {
      if (stack.size() < 1) {
        if (error_ptr) {
          if (op == DW_OP_form_tls_address)
            error_ptr->SetErrorString(
                "DW_OP_form_tls_address needs an argument.");
          else
            error_ptr->SetErrorString(
                "DW_OP_GNU_push_tls_address needs an argument.");
        }
        return false;
      }

      if (!exe_ctx || !module_sp) {
        if (error_ptr)
          error_ptr->SetErrorString("No context to evaluate TLS within.");
        return false;
      }

      Thread *thread = exe_ctx->GetThreadPtr();
      if (!thread) {
        if (error_ptr)
          error_ptr->SetErrorString("No thread to evaluate TLS within.");
        return false;
      }

      // Lookup the TLS block address for this thread and module.
      const addr_t tls_file_addr =
          stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
      const addr_t tls_load_addr =
          thread->GetThreadLocalData(module_sp, tls_file_addr);

      if (tls_load_addr == LLDB_INVALID_ADDRESS) {
        if (error_ptr)
          error_ptr->SetErrorString(
              "No TLS data currently exists for this thread.");
        return false;
      }

      stack.back().GetScalar() = tls_load_addr;
      stack.back().SetValueType(Value::eValueTypeLoadAddress);
    } break;

    // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
    // OPERANDS: 1
    //      ULEB128: index to the .debug_addr section
    // DESCRIPTION: Pushes an address to the stack from the .debug_addr
    // section with the base address specified by the DW_AT_addr_base attribute
    // and the 0 based index is the ULEB128 encoded index.
    case DW_OP_addrx:
    case DW_OP_GNU_addr_index: {
      if (!dwarf_cu) {
        if (error_ptr)
          error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
                                    "compile unit being specified");
        return false;
      }
      uint64_t index = opcodes.GetULEB128(&offset);
      lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
      stack.push_back(Scalar(value));
      stack.back().SetValueType(Value::eValueTypeFileAddress);
    } break;

    // OPCODE: DW_OP_GNU_const_index
    // OPERANDS: 1
    //      ULEB128: index to the .debug_addr section
    // DESCRIPTION: Pushes an constant with the size of a machine address to
    // the stack from the .debug_addr section with the base address specified
    // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
    // encoded index.
    case DW_OP_GNU_const_index: {
      if (!dwarf_cu) {
        if (error_ptr)
          error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
                                    "compile unit being specified");
        return false;
      }
      uint64_t index = opcodes.GetULEB128(&offset);
      lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
      stack.push_back(Scalar(value));
    } break;

    case DW_OP_GNU_entry_value:
    case DW_OP_entry_value: {
      if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
                                      error_ptr, log)) {
        LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
                    DW_OP_value_to_name(op));
        return false;
      }
      break;
    }

    default:
      if (error_ptr)
        error_ptr->SetErrorStringWithFormatv(
            "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
      return false;
    }
  }

  if (stack.empty()) {
    // Nothing on the stack, check if we created a piece value from DW_OP_piece
    // or DW_OP_bit_piece opcodes
    if (pieces.GetBuffer().GetByteSize()) {
      result = pieces;
    } else {
      if (error_ptr)
        error_ptr->SetErrorString("Stack empty after evaluation.");
      return false;
    }
  } else {
    if (log && log->GetVerbose()) {
      size_t count = stack.size();
      LLDB_LOGF(log, "Stack after operation has %" PRIu64 " values:",
                (uint64_t)count);
      for (size_t i = 0; i < count; ++i) {
        StreamString new_value;
        new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
        stack[i].Dump(&new_value);
        LLDB_LOGF(log, "  %s", new_value.GetData());
      }
    }
    result = stack.back();
  }
  return true; // Return true on success
}

static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
                                     ByteOrder byte_order, uint32_t addr_size) {
  auto buffer_sp =
      std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
  return DataExtractor(buffer_sp, byte_order, addr_size);
}

llvm::Optional<DataExtractor>
DWARFExpression::GetLocationExpression(addr_t load_function_start,
                                       addr_t addr) const {
  Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);

  std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
      m_dwarf_cu->GetLocationTable(m_data);
  llvm::Optional<DataExtractor> result;
  uint64_t offset = 0;
  auto lookup_addr =
      [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
    addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
    if (address == LLDB_INVALID_ADDRESS)
      return llvm::None;
    return llvm::object::SectionedAddress{address};
  };
  auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
    if (!loc) {
      LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
      return true;
    }
    if (loc->Range) {
      // This relocates low_pc and high_pc by adding the difference between the
      // function file address, and the actual address it is loaded in memory.
      addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
      loc->Range->LowPC += slide;
      loc->Range->HighPC += slide;

      if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
        result = ToDataExtractor(*loc, m_data.GetByteOrder(),
                                 m_data.GetAddressByteSize());
    }
    return !result;
  };
  llvm::Error E = loctable_up->visitAbsoluteLocationList(
      offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
      lookup_addr, process_list);
  if (E)
    LLDB_LOG_ERROR(log, std::move(E), "{0}");
  return result;
}

bool DWARFExpression::MatchesOperand(StackFrame &frame,
                                     const Instruction::Operand &operand) {
  using namespace OperandMatchers;

  RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
  if (!reg_ctx_sp) {
    return false;
  }

  DataExtractor opcodes;
  if (IsLocationList()) {
    SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
    if (!sc.function)
      return false;

    addr_t load_function_start =
        sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
    if (load_function_start == LLDB_INVALID_ADDRESS)
      return false;

    addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
        frame.CalculateTarget().get());

    if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
      opcodes = std::move(*expr);
    else
      return false;
  } else
    opcodes = m_data;


  lldb::offset_t op_offset = 0;
  uint8_t opcode = opcodes.GetU8(&op_offset);

  if (opcode == DW_OP_fbreg) {
    int64_t offset = opcodes.GetSLEB128(&op_offset);

    DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
    if (!fb_expr) {
      return false;
    }

    auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
      return fb_expr->MatchesOperand(frame, child);
    };

    if (!offset &&
        MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
                     recurse)(operand)) {
      return true;
    }

    return MatchUnaryOp(
        MatchOpType(Instruction::Operand::Type::Dereference),
        MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
                      MatchImmOp(offset), recurse))(operand);
  }

  bool dereference = false;
  const RegisterInfo *reg = nullptr;
  int64_t offset = 0;

  if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
  } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
    offset = opcodes.GetSLEB128(&op_offset);
    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
  } else if (opcode == DW_OP_regx) {
    uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
  } else if (opcode == DW_OP_bregx) {
    uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
    offset = opcodes.GetSLEB128(&op_offset);
    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
  } else {
    return false;
  }

  if (!reg) {
    return false;
  }

  if (dereference) {
    if (!offset &&
        MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
                     MatchRegOp(*reg))(operand)) {
      return true;
    }

    return MatchUnaryOp(
        MatchOpType(Instruction::Operand::Type::Dereference),
        MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
                      MatchRegOp(*reg),
                      MatchImmOp(offset)))(operand);
  } else {
    return MatchRegOp(*reg)(operand);
  }
}