Host.cpp
51.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Host.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/X86TargetParser.h"
#include "llvm/Support/raw_ostream.h"
#include <assert.h>
#include <string.h>
// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#include <sched.h>
#endif
#ifdef _WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if defined(__APPLE__) && (!defined(__x86_64__))
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/machine.h>
#endif
#define DEBUG_TYPE "host-detection"
//===----------------------------------------------------------------------===//
//
// Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//
using namespace llvm;
static std::unique_ptr<llvm::MemoryBuffer>
LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
if (std::error_code EC = Text.getError()) {
llvm::errs() << "Can't read "
<< "/proc/cpuinfo: " << EC.message() << "\n";
return nullptr;
}
return std::move(*Text);
}
StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
// and so we must use an operating-system interface to determine the current
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
const char *generic = "generic";
// The cpu line is second (after the 'processor: 0' line), so if this
// buffer is too small then something has changed (or is wrong).
StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
StringRef::const_iterator CIP = CPUInfoStart;
StringRef::const_iterator CPUStart = 0;
size_t CPULen = 0;
// We need to find the first line which starts with cpu, spaces, and a colon.
// After the colon, there may be some additional spaces and then the cpu type.
while (CIP < CPUInfoEnd && CPUStart == 0) {
if (CIP < CPUInfoEnd && *CIP == '\n')
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'c') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'p') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'u') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd && *CIP == ':') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd) {
CPUStart = CIP;
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
*CIP != ',' && *CIP != '\n'))
++CIP;
CPULen = CIP - CPUStart;
}
}
}
}
}
if (CPUStart == 0)
while (CIP < CPUInfoEnd && *CIP != '\n')
++CIP;
}
if (CPUStart == 0)
return generic;
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
.Case("604e", "604e")
.Case("604", "604")
.Case("7400", "7400")
.Case("7410", "7400")
.Case("7447", "7400")
.Case("7455", "7450")
.Case("G4", "g4")
.Case("POWER4", "970")
.Case("PPC970FX", "970")
.Case("PPC970MP", "970")
.Case("G5", "g5")
.Case("POWER5", "g5")
.Case("A2", "a2")
.Case("POWER6", "pwr6")
.Case("POWER7", "pwr7")
.Case("POWER8", "pwr8")
.Case("POWER8E", "pwr8")
.Case("POWER8NVL", "pwr8")
.Case("POWER9", "pwr9")
.Case("POWER10", "pwr10")
// FIXME: If we get a simulator or machine with the capabilities of
// mcpu=future, we should revisit this and add the name reported by the
// simulator/machine.
.Default(generic);
}
StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
// The cpuid register on arm is not accessible from user space. On Linux,
// it is exposed through the /proc/cpuinfo file.
// Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
// in all cases.
SmallVector<StringRef, 32> Lines;
ProcCpuinfoContent.split(Lines, "\n");
// Look for the CPU implementer line.
StringRef Implementer;
StringRef Hardware;
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU implementer"))
Implementer = Lines[I].substr(15).ltrim("\t :");
if (Lines[I].startswith("Hardware"))
Hardware = Lines[I].substr(8).ltrim("\t :");
}
if (Implementer == "0x41") { // ARM Ltd.
// MSM8992/8994 may give cpu part for the core that the kernel is running on,
// which is undeterministic and wrong. Always return cortex-a53 for these SoC.
if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
return "cortex-a53";
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
// This corresponds to the Main ID Register in Technical Reference Manuals.
// and is used in programs like sys-utils
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x926", "arm926ej-s")
.Case("0xb02", "mpcore")
.Case("0xb36", "arm1136j-s")
.Case("0xb56", "arm1156t2-s")
.Case("0xb76", "arm1176jz-s")
.Case("0xc08", "cortex-a8")
.Case("0xc09", "cortex-a9")
.Case("0xc0f", "cortex-a15")
.Case("0xc20", "cortex-m0")
.Case("0xc23", "cortex-m3")
.Case("0xc24", "cortex-m4")
.Case("0xd22", "cortex-m55")
.Case("0xd02", "cortex-a34")
.Case("0xd04", "cortex-a35")
.Case("0xd03", "cortex-a53")
.Case("0xd07", "cortex-a57")
.Case("0xd08", "cortex-a72")
.Case("0xd09", "cortex-a73")
.Case("0xd0a", "cortex-a75")
.Case("0xd0b", "cortex-a76")
.Case("0xd0d", "cortex-a77")
.Case("0xd41", "cortex-a78")
.Case("0xd44", "cortex-x1")
.Case("0xd0c", "neoverse-n1")
.Default("generic");
}
if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU part")) {
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x516", "thunderx2t99")
.Case("0x0516", "thunderx2t99")
.Case("0xaf", "thunderx2t99")
.Case("0x0af", "thunderx2t99")
.Case("0xa1", "thunderxt88")
.Case("0x0a1", "thunderxt88")
.Default("generic");
}
}
}
if (Implementer == "0x46") { // Fujitsu Ltd.
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU part")) {
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x001", "a64fx")
.Default("generic");
}
}
}
if (Implementer == "0x4e") { // NVIDIA Corporation
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU part")) {
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x004", "carmel")
.Default("generic");
}
}
}
if (Implementer == "0x48") // HiSilicon Technologies, Inc.
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0xd01", "tsv110")
.Default("generic");
if (Implementer == "0x51") // Qualcomm Technologies, Inc.
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x06f", "krait") // APQ8064
.Case("0x201", "kryo")
.Case("0x205", "kryo")
.Case("0x211", "kryo")
.Case("0x800", "cortex-a73")
.Case("0x801", "cortex-a73")
.Case("0x802", "cortex-a73")
.Case("0x803", "cortex-a73")
.Case("0x804", "cortex-a73")
.Case("0x805", "cortex-a73")
.Case("0xc00", "falkor")
.Case("0xc01", "saphira")
.Default("generic");
if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
// The Exynos chips have a convoluted ID scheme that doesn't seem to follow
// any predictive pattern across variants and parts.
unsigned Variant = 0, Part = 0;
// Look for the CPU variant line, whose value is a 1 digit hexadecimal
// number, corresponding to the Variant bits in the CP15/C0 register.
for (auto I : Lines)
if (I.consume_front("CPU variant"))
I.ltrim("\t :").getAsInteger(0, Variant);
// Look for the CPU part line, whose value is a 3 digit hexadecimal
// number, corresponding to the PartNum bits in the CP15/C0 register.
for (auto I : Lines)
if (I.consume_front("CPU part"))
I.ltrim("\t :").getAsInteger(0, Part);
unsigned Exynos = (Variant << 12) | Part;
switch (Exynos) {
default:
// Default by falling through to Exynos M3.
LLVM_FALLTHROUGH;
case 0x1002:
return "exynos-m3";
case 0x1003:
return "exynos-m4";
}
}
return "generic";
}
StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
// The "processor 0:" line comes after a fair amount of other information,
// including a cache breakdown, but this should be plenty.
SmallVector<StringRef, 32> Lines;
ProcCpuinfoContent.split(Lines, "\n");
// Look for the CPU features.
SmallVector<StringRef, 32> CPUFeatures;
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("features")) {
size_t Pos = Lines[I].find(":");
if (Pos != StringRef::npos) {
Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
break;
}
}
// We need to check for the presence of vector support independently of
// the machine type, since we may only use the vector register set when
// supported by the kernel (and hypervisor).
bool HaveVectorSupport = false;
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
if (CPUFeatures[I] == "vx")
HaveVectorSupport = true;
}
// Now check the processor machine type.
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("processor ")) {
size_t Pos = Lines[I].find("machine = ");
if (Pos != StringRef::npos) {
Pos += sizeof("machine = ") - 1;
unsigned int Id;
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
if (Id >= 8561 && HaveVectorSupport)
return "z15";
if (Id >= 3906 && HaveVectorSupport)
return "z14";
if (Id >= 2964 && HaveVectorSupport)
return "z13";
if (Id >= 2827)
return "zEC12";
if (Id >= 2817)
return "z196";
}
}
break;
}
}
return "generic";
}
StringRef sys::detail::getHostCPUNameForBPF() {
#if !defined(__linux__) || !defined(__x86_64__)
return "generic";
#else
uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
/* BPF_MOV64_IMM(BPF_REG_0, 0) */
{ 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_2, 1) */
0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_0, 1) */
0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_EXIT_INSN() */
0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
/* BPF_MOV64_IMM(BPF_REG_0, 0) */
{ 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_2, 1) */
0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_0, 1) */
0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_EXIT_INSN() */
0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
struct bpf_prog_load_attr {
uint32_t prog_type;
uint32_t insn_cnt;
uint64_t insns;
uint64_t license;
uint32_t log_level;
uint32_t log_size;
uint64_t log_buf;
uint32_t kern_version;
uint32_t prog_flags;
} attr = {};
attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
attr.insn_cnt = 5;
attr.insns = (uint64_t)v3_insns;
attr.license = (uint64_t)"DUMMY";
int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
sizeof(attr));
if (fd >= 0) {
close(fd);
return "v3";
}
/* Clear the whole attr in case its content changed by syscall. */
memset(&attr, 0, sizeof(attr));
attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
attr.insn_cnt = 5;
attr.insns = (uint64_t)v2_insns;
attr.license = (uint64_t)"DUMMY";
fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
if (fd >= 0) {
close(fd);
return "v2";
}
return "v1";
#endif
}
#if defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64__) || defined(_M_X64)
enum VendorSignatures {
SIG_INTEL = 0x756e6547 /* Genu */,
SIG_AMD = 0x68747541 /* Auth */
};
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
// Removal of cpuid.h header motivated by PR30384
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
// or test-suite, but are used in external projects e.g. libstdcxx
static bool isCpuIdSupported() {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
int __cpuid_supported;
__asm__(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r"(__cpuid_supported)
:
: "eax", "ecx");
if (!__cpuid_supported)
return false;
#endif
return true;
#endif
return true;
}
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments. If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
*rEAX = Result;
*rEDX = Result >> 32;
return false;
#else
return true;
#endif
}
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
unsigned *Model) {
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (*Family == 6 || *Family == 0xf) {
if (*Family == 0xf)
// Examine extended family ID if family ID is F.
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
static StringRef
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
auto testFeature = [&](unsigned F) {
return (Features[F / 32] & (1U << (F % 32))) != 0;
};
StringRef CPU;
switch (Family) {
case 3:
CPU = "i386";
break;
case 4:
CPU = "i486";
break;
case 5:
if (testFeature(X86::FEATURE_MMX)) {
CPU = "pentium-mmx";
break;
}
CPU = "pentium";
break;
case 6:
switch (Model) {
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 0x16: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
CPU = "core2";
*Type = X86::INTEL_CORE2;
break;
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
CPU = "penryn";
*Type = X86::INTEL_CORE2;
break;
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
case 0x2e: // Nehalem EX
CPU = "nehalem";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_NEHALEM;
break;
case 0x25: // Intel Core i7, laptop version.
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 0x2f: // Westmere EX
CPU = "westmere";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_WESTMERE;
break;
case 0x2a: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 0x2d:
CPU = "sandybridge";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
case 0x3e: // Ivy Bridge EP
CPU = "ivybridge";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_IVYBRIDGE;
break;
// Haswell:
case 0x3c:
case 0x3f:
case 0x45:
case 0x46:
CPU = "haswell";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_HASWELL;
break;
// Broadwell:
case 0x3d:
case 0x47:
case 0x4f:
case 0x56:
CPU = "broadwell";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_BROADWELL;
break;
// Skylake:
case 0x4e: // Skylake mobile
case 0x5e: // Skylake desktop
case 0x8e: // Kaby Lake mobile
case 0x9e: // Kaby Lake desktop
case 0xa5: // Comet Lake-H/S
case 0xa6: // Comet Lake-U
CPU = "skylake";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_SKYLAKE;
break;
// Skylake Xeon:
case 0x55:
*Type = X86::INTEL_COREI7;
if (testFeature(X86::FEATURE_AVX512BF16)) {
CPU = "cooperlake";
*Subtype = X86::INTEL_COREI7_COOPERLAKE;
} else if (testFeature(X86::FEATURE_AVX512VNNI)) {
CPU = "cascadelake";
*Subtype = X86::INTEL_COREI7_CASCADELAKE;
} else {
CPU = "skylake-avx512";
*Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
}
break;
// Cannonlake:
case 0x66:
CPU = "cannonlake";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_CANNONLAKE;
break;
// Icelake:
case 0x7d:
case 0x7e:
CPU = "icelake-client";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
break;
// Icelake Xeon:
case 0x6a:
case 0x6c:
CPU = "icelake-server";
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_ICELAKE_SERVER;
break;
case 0x1c: // Most 45 nm Intel Atom processors
case 0x26: // 45 nm Atom Lincroft
case 0x27: // 32 nm Atom Medfield
case 0x35: // 32 nm Atom Midview
case 0x36: // 32 nm Atom Midview
CPU = "bonnell";
*Type = X86::INTEL_BONNELL;
break;
// Atom Silvermont codes from the Intel software optimization guide.
case 0x37:
case 0x4a:
case 0x4d:
case 0x5a:
case 0x5d:
case 0x4c: // really airmont
CPU = "silvermont";
*Type = X86::INTEL_SILVERMONT;
break;
// Goldmont:
case 0x5c: // Apollo Lake
case 0x5f: // Denverton
CPU = "goldmont";
*Type = X86::INTEL_GOLDMONT;
break;
case 0x7a:
CPU = "goldmont-plus";
*Type = X86::INTEL_GOLDMONT_PLUS;
break;
case 0x86:
CPU = "tremont";
*Type = X86::INTEL_TREMONT;
break;
// Xeon Phi (Knights Landing + Knights Mill):
case 0x57:
CPU = "knl";
*Type = X86::INTEL_KNL;
break;
case 0x85:
CPU = "knm";
*Type = X86::INTEL_KNM;
break;
default: // Unknown family 6 CPU, try to guess.
// Don't both with Type/Subtype here, they aren't used by the caller.
// They're used above to keep the code in sync with compiler-rt.
// TODO detect tigerlake host from model
if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) {
CPU = "tigerlake";
} else if (testFeature(X86::FEATURE_AVX512VBMI2)) {
CPU = "icelake-client";
} else if (testFeature(X86::FEATURE_AVX512VBMI)) {
CPU = "cannonlake";
} else if (testFeature(X86::FEATURE_AVX512BF16)) {
CPU = "cooperlake";
} else if (testFeature(X86::FEATURE_AVX512VNNI)) {
CPU = "cascadelake";
} else if (testFeature(X86::FEATURE_AVX512VL)) {
CPU = "skylake-avx512";
} else if (testFeature(X86::FEATURE_AVX512ER)) {
CPU = "knl";
} else if (testFeature(X86::FEATURE_CLFLUSHOPT)) {
if (testFeature(X86::FEATURE_SHA))
CPU = "goldmont";
else
CPU = "skylake";
} else if (testFeature(X86::FEATURE_ADX)) {
CPU = "broadwell";
} else if (testFeature(X86::FEATURE_AVX2)) {
CPU = "haswell";
} else if (testFeature(X86::FEATURE_AVX)) {
CPU = "sandybridge";
} else if (testFeature(X86::FEATURE_SSE4_2)) {
if (testFeature(X86::FEATURE_MOVBE))
CPU = "silvermont";
else
CPU = "nehalem";
} else if (testFeature(X86::FEATURE_SSE4_1)) {
CPU = "penryn";
} else if (testFeature(X86::FEATURE_SSSE3)) {
if (testFeature(X86::FEATURE_MOVBE))
CPU = "bonnell";
else
CPU = "core2";
} else if (testFeature(X86::FEATURE_64BIT)) {
CPU = "core2";
} else if (testFeature(X86::FEATURE_SSE3)) {
CPU = "yonah";
} else if (testFeature(X86::FEATURE_SSE2)) {
CPU = "pentium-m";
} else if (testFeature(X86::FEATURE_SSE)) {
CPU = "pentium3";
} else if (testFeature(X86::FEATURE_MMX)) {
CPU = "pentium2";
} else {
CPU = "pentiumpro";
}
break;
}
break;
case 15: {
if (testFeature(X86::FEATURE_64BIT)) {
CPU = "nocona";
break;
}
if (testFeature(X86::FEATURE_SSE3)) {
CPU = "prescott";
break;
}
CPU = "pentium4";
break;
}
default:
break; // Unknown.
}
return CPU;
}
static StringRef
getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
auto testFeature = [&](unsigned F) {
return (Features[F / 32] & (1U << (F % 32))) != 0;
};
StringRef CPU;
switch (Family) {
case 4:
CPU = "i486";
break;
case 5:
CPU = "pentium";
switch (Model) {
case 6:
case 7:
CPU = "k6";
break;
case 8:
CPU = "k6-2";
break;
case 9:
case 13:
CPU = "k6-3";
break;
case 10:
CPU = "geode";
break;
}
break;
case 6:
if (testFeature(X86::FEATURE_SSE)) {
CPU = "athlon-xp";
break;
}
CPU = "athlon";
break;
case 15:
if (testFeature(X86::FEATURE_SSE3)) {
CPU = "k8-sse3";
break;
}
CPU = "k8";
break;
case 16:
CPU = "amdfam10";
*Type = X86::AMDFAM10H; // "amdfam10"
switch (Model) {
case 2:
*Subtype = X86::AMDFAM10H_BARCELONA;
break;
case 4:
*Subtype = X86::AMDFAM10H_SHANGHAI;
break;
case 8:
*Subtype = X86::AMDFAM10H_ISTANBUL;
break;
}
break;
case 20:
CPU = "btver1";
*Type = X86::AMD_BTVER1;
break;
case 21:
CPU = "bdver1";
*Type = X86::AMDFAM15H;
if (Model >= 0x60 && Model <= 0x7f) {
CPU = "bdver4";
*Subtype = X86::AMDFAM15H_BDVER4;
break; // 60h-7Fh: Excavator
}
if (Model >= 0x30 && Model <= 0x3f) {
CPU = "bdver3";
*Subtype = X86::AMDFAM15H_BDVER3;
break; // 30h-3Fh: Steamroller
}
if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
CPU = "bdver2";
*Subtype = X86::AMDFAM15H_BDVER2;
break; // 02h, 10h-1Fh: Piledriver
}
if (Model <= 0x0f) {
*Subtype = X86::AMDFAM15H_BDVER1;
break; // 00h-0Fh: Bulldozer
}
break;
case 22:
CPU = "btver2";
*Type = X86::AMD_BTVER2;
break;
case 23:
CPU = "znver1";
*Type = X86::AMDFAM17H;
if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
CPU = "znver2";
*Subtype = X86::AMDFAM17H_ZNVER2;
break; // 30h-3fh, 71h: Zen2
}
if (Model <= 0x0f) {
*Subtype = X86::AMDFAM17H_ZNVER1;
break; // 00h-0Fh: Zen1
}
break;
default:
break; // Unknown AMD CPU.
}
return CPU;
}
static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
unsigned *Features) {
unsigned EAX, EBX;
auto setFeature = [&](unsigned F) {
Features[F / 32] |= 1U << (F % 32);
};
if ((EDX >> 15) & 1)
setFeature(X86::FEATURE_CMOV);
if ((EDX >> 23) & 1)
setFeature(X86::FEATURE_MMX);
if ((EDX >> 25) & 1)
setFeature(X86::FEATURE_SSE);
if ((EDX >> 26) & 1)
setFeature(X86::FEATURE_SSE2);
if ((ECX >> 0) & 1)
setFeature(X86::FEATURE_SSE3);
if ((ECX >> 1) & 1)
setFeature(X86::FEATURE_PCLMUL);
if ((ECX >> 9) & 1)
setFeature(X86::FEATURE_SSSE3);
if ((ECX >> 12) & 1)
setFeature(X86::FEATURE_FMA);
if ((ECX >> 19) & 1)
setFeature(X86::FEATURE_SSE4_1);
if ((ECX >> 20) & 1)
setFeature(X86::FEATURE_SSE4_2);
if ((ECX >> 23) & 1)
setFeature(X86::FEATURE_POPCNT);
if ((ECX >> 25) & 1)
setFeature(X86::FEATURE_AES);
if ((ECX >> 22) & 1)
setFeature(X86::FEATURE_MOVBE);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
// save the AVX512 context if we use AVX512 instructions, even the bit is not
// set right now.
bool HasAVX512Save = true;
#else
// AVX512 requires additional context to be saved by the OS.
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
#endif
if (HasAVX)
setFeature(X86::FEATURE_AVX);
bool HasLeaf7 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7 && ((EBX >> 3) & 1))
setFeature(X86::FEATURE_BMI);
if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
setFeature(X86::FEATURE_AVX2);
if (HasLeaf7 && ((EBX >> 8) & 1))
setFeature(X86::FEATURE_BMI2);
if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512F);
if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512DQ);
if (HasLeaf7 && ((EBX >> 19) & 1))
setFeature(X86::FEATURE_ADX);
if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512IFMA);
if (HasLeaf7 && ((EBX >> 23) & 1))
setFeature(X86::FEATURE_CLFLUSHOPT);
if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512PF);
if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512ER);
if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512CD);
if (HasLeaf7 && ((EBX >> 29) & 1))
setFeature(X86::FEATURE_SHA);
if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512BW);
if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512VL);
if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512VBMI);
if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512VBMI2);
if (HasLeaf7 && ((ECX >> 8) & 1))
setFeature(X86::FEATURE_GFNI);
if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
setFeature(X86::FEATURE_VPCLMULQDQ);
if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512VNNI);
if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512BITALG);
if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX5124VNNIW);
if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX5124FMAPS);
if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512VP2INTERSECT);
bool HasLeaf7Subleaf1 =
MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512BF16);
unsigned MaxExtLevel;
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if (HasExtLeaf1 && ((ECX >> 6) & 1))
setFeature(X86::FEATURE_SSE4_A);
if (HasExtLeaf1 && ((ECX >> 11) & 1))
setFeature(X86::FEATURE_XOP);
if (HasExtLeaf1 && ((ECX >> 16) & 1))
setFeature(X86::FEATURE_FMA4);
if (HasExtLeaf1 && ((EDX >> 29) & 1))
setFeature(X86::FEATURE_64BIT);
}
StringRef sys::getHostCPUName() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLeaf, Vendor;
if (!isCpuIdSupported())
return "generic";
if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
return "generic";
getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
unsigned Family = 0, Model = 0;
unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0};
detectX86FamilyModel(EAX, &Family, &Model);
getAvailableFeatures(ECX, EDX, MaxLeaf, Features);
// These aren't consumed in this file, but we try to keep some source code the
// same or similar to compiler-rt.
unsigned Type = 0;
unsigned Subtype = 0;
StringRef CPU;
if (Vendor == SIG_INTEL) {
CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type,
&Subtype);
} else if (Vendor == SIG_AMD) {
CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type,
&Subtype);
}
if (!CPU.empty())
return CPU;
return "generic";
}
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
host_basic_info_data_t hostInfo;
mach_msg_type_number_t infoCount;
infoCount = HOST_BASIC_INFO_COUNT;
mach_port_t hostPort = mach_host_self();
host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
&infoCount);
mach_port_deallocate(mach_task_self(), hostPort);
if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
return "generic";
switch (hostInfo.cpu_subtype) {
case CPU_SUBTYPE_POWERPC_601:
return "601";
case CPU_SUBTYPE_POWERPC_602:
return "602";
case CPU_SUBTYPE_POWERPC_603:
return "603";
case CPU_SUBTYPE_POWERPC_603e:
return "603e";
case CPU_SUBTYPE_POWERPC_603ev:
return "603ev";
case CPU_SUBTYPE_POWERPC_604:
return "604";
case CPU_SUBTYPE_POWERPC_604e:
return "604e";
case CPU_SUBTYPE_POWERPC_620:
return "620";
case CPU_SUBTYPE_POWERPC_750:
return "750";
case CPU_SUBTYPE_POWERPC_7400:
return "7400";
case CPU_SUBTYPE_POWERPC_7450:
return "7450";
case CPU_SUBTYPE_POWERPC_970:
return "970";
default:;
}
return "generic";
}
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
StringRef Content = P ? P->getBuffer() : "";
return detail::getHostCPUNameForPowerPC(Content);
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
StringRef sys::getHostCPUName() {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
StringRef Content = P ? P->getBuffer() : "";
return detail::getHostCPUNameForARM(Content);
}
#elif defined(__linux__) && defined(__s390x__)
StringRef sys::getHostCPUName() {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
StringRef Content = P ? P->getBuffer() : "";
return detail::getHostCPUNameForS390x(Content);
}
#elif defined(__APPLE__) && defined(__aarch64__)
StringRef sys::getHostCPUName() {
return "cyclone";
}
#elif defined(__APPLE__) && defined(__arm__)
StringRef sys::getHostCPUName() {
host_basic_info_data_t hostInfo;
mach_msg_type_number_t infoCount;
infoCount = HOST_BASIC_INFO_COUNT;
mach_port_t hostPort = mach_host_self();
host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
&infoCount);
mach_port_deallocate(mach_task_self(), hostPort);
if (hostInfo.cpu_type != CPU_TYPE_ARM) {
assert(false && "CPUType not equal to ARM should not be possible on ARM");
return "generic";
}
switch (hostInfo.cpu_subtype) {
case CPU_SUBTYPE_ARM_V7S:
return "swift";
default:;
}
return "generic";
}
#else
StringRef sys::getHostCPUName() { return "generic"; }
#endif
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
// using the number of unique physical/core id pairs. The following
// implementation reads the /proc/cpuinfo format on an x86_64 system.
int computeHostNumPhysicalCores() {
// Enabled represents the number of physical id/core id pairs with at least
// one processor id enabled by the CPU affinity mask.
cpu_set_t Affinity, Enabled;
if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0)
return -1;
CPU_ZERO(&Enabled);
// Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
// mmapped because it appears to have 0 size.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
if (std::error_code EC = Text.getError()) {
llvm::errs() << "Can't read "
<< "/proc/cpuinfo: " << EC.message() << "\n";
return -1;
}
SmallVector<StringRef, 8> strs;
(*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
/*KeepEmpty=*/false);
int CurProcessor = -1;
int CurPhysicalId = -1;
int CurSiblings = -1;
int CurCoreId = -1;
for (StringRef Line : strs) {
std::pair<StringRef, StringRef> Data = Line.split(':');
auto Name = Data.first.trim();
auto Val = Data.second.trim();
// These fields are available if the kernel is configured with CONFIG_SMP.
if (Name == "processor")
Val.getAsInteger(10, CurProcessor);
else if (Name == "physical id")
Val.getAsInteger(10, CurPhysicalId);
else if (Name == "siblings")
Val.getAsInteger(10, CurSiblings);
else if (Name == "core id") {
Val.getAsInteger(10, CurCoreId);
// The processor id corresponds to an index into cpu_set_t.
if (CPU_ISSET(CurProcessor, &Affinity))
CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled);
}
}
return CPU_COUNT(&Enabled);
}
#elif defined(__APPLE__) && defined(__x86_64__)
#include <sys/param.h>
#include <sys/sysctl.h>
// Gets the number of *physical cores* on the machine.
int computeHostNumPhysicalCores() {
uint32_t count;
size_t len = sizeof(count);
sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
if (count < 1) {
int nm[2];
nm[0] = CTL_HW;
nm[1] = HW_AVAILCPU;
sysctl(nm, 2, &count, &len, NULL, 0);
if (count < 1)
return -1;
}
return count;
}
#elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0
// Defined in llvm/lib/Support/Windows/Threading.inc
int computeHostNumPhysicalCores();
#else
// On other systems, return -1 to indicate unknown.
static int computeHostNumPhysicalCores() { return -1; }
#endif
int sys::getHostNumPhysicalCores() {
static int NumCores = computeHostNumPhysicalCores();
return NumCores;
}
#if defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64__) || defined(_M_X64)
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLevel;
if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1)
return false;
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
Features["cx8"] = (EDX >> 8) & 1;
Features["cmov"] = (EDX >> 15) & 1;
Features["mmx"] = (EDX >> 23) & 1;
Features["fxsr"] = (EDX >> 24) & 1;
Features["sse"] = (EDX >> 25) & 1;
Features["sse2"] = (EDX >> 26) & 1;
Features["sse3"] = (ECX >> 0) & 1;
Features["pclmul"] = (ECX >> 1) & 1;
Features["ssse3"] = (ECX >> 9) & 1;
Features["cx16"] = (ECX >> 13) & 1;
Features["sse4.1"] = (ECX >> 19) & 1;
Features["sse4.2"] = (ECX >> 20) & 1;
Features["movbe"] = (ECX >> 22) & 1;
Features["popcnt"] = (ECX >> 23) & 1;
Features["aes"] = (ECX >> 25) & 1;
Features["rdrnd"] = (ECX >> 30) & 1;
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX);
bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
// save the AVX512 context if we use AVX512 instructions, even the bit is not
// set right now.
bool HasAVX512Save = true;
#else
// AVX512 requires additional context to be saved by the OS.
bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
#endif
// AMX requires additional context to be saved by the OS.
const unsigned AMXBits = (1 << 17) | (1 << 18);
bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits);
Features["avx"] = HasAVXSave;
Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave;
// Only enable XSAVE if OS has enabled support for saving YMM state.
Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave;
unsigned MaxExtLevel;
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1);
Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1);
// Miscellaneous memory related features, detected by
// using the 0x80000008 leaf of the CPUID instruction
bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
!getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
bool HasLeaf7 =
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
// AVX2 is only supported if we have the OS save support from AVX.
Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave;
Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
// AVX512 is only supported if the OS supports the context save for it.
Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1);
Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1);
Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save;
Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1);
Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1);
Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave;
Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1);
Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1);
Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1);
Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1);
Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1);
Features["avx512vp2intersect"] =
HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
Features["serialize"] = HasLeaf7 && ((EDX >> 14) & 1);
Features["tsxldtrk"] = HasLeaf7 && ((EDX >> 16) & 1);
// There are two CPUID leafs which information associated with the pconfig
// instruction:
// EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
// bit of EDX), while the EAX=0x1b leaf returns information on the
// availability of specific pconfig leafs.
// The target feature here only refers to the the first of these two.
// Users might need to check for the availability of specific pconfig
// leaves using cpuid, since that information is ignored while
// detecting features using the "-march=native" flag.
// For more info, see X86 ISA docs.
Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
Features["amx-bf16"] = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave;
Features["amx-tile"] = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave;
Features["amx-int8"] = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave;
bool HasLeaf7Subleaf1 =
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
bool HasLeafD = MaxLevel >= 0xd &&
!getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
// Only enable XSAVE if OS has enabled support for saving YMM state.
Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
bool HasLeaf14 = MaxLevel >= 0x14 &&
!getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
return true;
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
if (!P)
return false;
SmallVector<StringRef, 32> Lines;
P->getBuffer().split(Lines, "\n");
SmallVector<StringRef, 32> CPUFeatures;
// Look for the CPU features.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("Features")) {
Lines[I].split(CPUFeatures, ' ');
break;
}
#if defined(__aarch64__)
// Keep track of which crypto features we have seen
enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
uint32_t crypto = 0;
#endif
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
#if defined(__aarch64__)
.Case("asimd", "neon")
.Case("fp", "fp-armv8")
.Case("crc32", "crc")
#else
.Case("half", "fp16")
.Case("neon", "neon")
.Case("vfpv3", "vfp3")
.Case("vfpv3d16", "d16")
.Case("vfpv4", "vfp4")
.Case("idiva", "hwdiv-arm")
.Case("idivt", "hwdiv")
#endif
.Default("");
#if defined(__aarch64__)
// We need to check crypto separately since we need all of the crypto
// extensions to enable the subtarget feature
if (CPUFeatures[I] == "aes")
crypto |= CAP_AES;
else if (CPUFeatures[I] == "pmull")
crypto |= CAP_PMULL;
else if (CPUFeatures[I] == "sha1")
crypto |= CAP_SHA1;
else if (CPUFeatures[I] == "sha2")
crypto |= CAP_SHA2;
#endif
if (LLVMFeatureStr != "")
Features[LLVMFeatureStr] = true;
}
#if defined(__aarch64__)
// If we have all crypto bits we can add the feature
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
Features["crypto"] = true;
#endif
return true;
}
#elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
Features["neon"] = true;
if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
Features["crc"] = true;
if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
Features["crypto"] = true;
return true;
}
#else
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
#endif
std::string sys::getProcessTriple() {
std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
Triple PT(Triple::normalize(TargetTripleString));
if (sizeof(void *) == 8 && PT.isArch32Bit())
PT = PT.get64BitArchVariant();
if (sizeof(void *) == 4 && PT.isArch64Bit())
PT = PT.get32BitArchVariant();
return PT.str();
}