arguments-hard-float.ll
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s
; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s
; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
; Test the floating point arguments for all ABI's and byte orders as specified
; by section 5 of MD00305 (MIPS ABIs Described).
;
; N32/N64 are identical in this area so their checks have been combined into
; the 'NEW' prefix (the N stands for New).
@bytes = global [11 x i8] zeroinitializer
@dwords = global [11 x i64] zeroinitializer
@floats = global [11 x float] zeroinitializer
@doubles = global [11 x double] zeroinitializer
define void @double_args(double %a, double %b, double %c, double %d, double %e,
double %f, double %g, double %h, double %i) nounwind {
entry:
%0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
store volatile double %a, double* %0
%1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
store volatile double %b, double* %1
%2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3
store volatile double %c, double* %2
%3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4
store volatile double %d, double* %3
%4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5
store volatile double %e, double* %4
%5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6
store volatile double %f, double* %5
%6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7
store volatile double %g, double* %6
%7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8
store volatile double %h, double* %7
%8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9
store volatile double %i, double* %8
ret void
}
; ALL-LABEL: double_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: sdc1 $f12, 8([[R2]])
; O32-DAG: sdc1 $f14, 16([[R2]])
; NEW-DAG: sdc1 $f13, 16([[R2]])
; O32 has run out of argument registers and starts using the stack
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: sdc1 [[F1]], 24([[R2]])
; NEW-DAG: sdc1 $f14, 24([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: sdc1 [[F1]], 32([[R2]])
; NEW-DAG: sdc1 $f15, 32([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: sdc1 [[F1]], 40([[R2]])
; NEW-DAG: sdc1 $f16, 40([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 40($sp)
; O32-DAG: sdc1 [[F1]], 48([[R2]])
; NEW-DAG: sdc1 $f17, 48([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 48($sp)
; O32-DAG: sdc1 [[F1]], 56([[R2]])
; NEW-DAG: sdc1 $f18, 56([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 56($sp)
; O32-DAG: sdc1 [[F1]], 64([[R2]])
; NEW-DAG: sdc1 $f19, 64([[R2]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 64($sp)
; O32-DAG: sdc1 [[F1]], 72([[R2]])
; NEW-DAG: ldc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: sdc1 [[F1]], 72([[R2]])
define void @float_args(float %a, float %b, float %c, float %d, float %e,
float %f, float %g, float %h, float %i) nounwind {
entry:
%0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
store volatile float %a, float* %0
%1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
store volatile float %b, float* %1
%2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3
store volatile float %c, float* %2
%3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4
store volatile float %d, float* %3
%4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5
store volatile float %e, float* %4
%5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6
store volatile float %f, float* %5
%6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7
store volatile float %g, float* %6
%7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8
store volatile float %h, float* %7
%8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9
store volatile float %i, float* %8
ret void
}
; ALL-LABEL: float_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(floats)
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: swc1 $f12, 4([[R1]])
; O32-DAG: swc1 $f14, 8([[R1]])
; NEW-DAG: swc1 $f13, 8([[R1]])
; O32 has run out of argument registers and (in theory) starts using the stack
; I've yet to find a reference in the documentation about this but GCC uses up
; the remaining two argument slots in the GPR's first. We'll do the same for
; compatibility.
; O32-DAG: mtc1 $6, $f0
; O32-DAG: swc1 $f0, 12([[R1]])
; NEW-DAG: swc1 $f14, 12([[R1]])
; O32-DAG: mtc1 $7, $f0
; O32-DAG: swc1 $f0, 16([[R1]])
; NEW-DAG: swc1 $f15, 16([[R1]])
; O32 is definitely out of registers now and switches to the stack.
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: swc1 [[F1]], 20([[R1]])
; NEW-DAG: swc1 $f16, 20([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 20($sp)
; O32-DAG: swc1 [[F1]], 24([[R1]])
; NEW-DAG: swc1 $f17, 24([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: swc1 [[F1]], 28([[R1]])
; NEW-DAG: swc1 $f18, 28([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 28($sp)
; O32-DAG: swc1 [[F1]], 32([[R1]])
; NEW-DAG: swc1 $f19, 32([[R1]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: swc1 [[F1]], 36([[R1]])
; NEW-DAG: lwc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: swc1 [[F1]], 36([[R1]])
define void @double_arg2(i8 %a, double %b) nounwind {
entry:
%0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
store volatile i8 %a, i8* %0
%1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
store volatile double %b, double* %1
ret void
}
; ALL-LABEL: double_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; The second slot is insufficiently aligned for double on O32 so it is skipped.
; Also, double occupies two slots on O32 and only one for N32/N64.
; O32LE-DAG: mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
; O32LE-DAG: mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
; O32-DAG: sdc1 [[F1]], 8([[R2]])
; NEW-DAG: sdc1 $f13, 8([[R2]])
define void @float_arg2(i8 %a, float %b) nounwind {
entry:
%0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
store volatile i8 %a, i8* %0
%1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
store volatile float %b, float* %1
ret void
}
; ALL-LABEL: float_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(floats)
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
; aligned and occupying one slot. We'll use GCC's definition.
; O32-DAG: mtc1 $5, $f0
; O32-DAG: swc1 $f0, 4([[R2]])
; NEW-DAG: swc1 $f13, 4([[R2]])