icmp-constant.ll 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instsimplify -S | FileCheck %s

; Fold icmp with a constant operand.

define i1 @tautological_ule(i8 %x) {
; CHECK-LABEL: @tautological_ule(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp ule i8 %x, 255
  ret i1 %cmp
}

define <2 x i1> @tautological_ule_vec(<2 x i8> %x) {
; CHECK-LABEL: @tautological_ule_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %cmp = icmp ule <2 x i8> %x, <i8 255, i8 255>
  ret <2 x i1> %cmp
}

define i1 @tautological_ugt(i8 %x) {
; CHECK-LABEL: @tautological_ugt(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp ugt i8 %x, 255
  ret i1 %cmp
}

define <2 x i1> @tautological_ugt_vec(<2 x i8> %x) {
; CHECK-LABEL: @tautological_ugt_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %cmp = icmp ugt <2 x i8> %x, <i8 255, i8 255>
  ret <2 x i1> %cmp
}

; 'urem x, C2' produces [0, C2)
define i1 @urem3(i32 %X) {
; CHECK-LABEL: @urem3(
; CHECK-NEXT:    ret i1 true
;
  %A = urem i32 %X, 10
  %B = icmp ult i32 %A, 15
  ret i1 %B
}

define <2 x i1> @urem3_vec(<2 x i32> %X) {
; CHECK-LABEL: @urem3_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %A = urem <2 x i32> %X, <i32 10, i32 10>
  %B = icmp ult <2 x i32> %A, <i32 15, i32 15>
  ret <2 x i1> %B
}

;'srem x, C2' produces (-|C2|, |C2|)
define i1 @srem1(i32 %X) {
; CHECK-LABEL: @srem1(
; CHECK-NEXT:    ret i1 false
;
  %A = srem i32 %X, -5
  %B = icmp sgt i32 %A, 5
  ret i1 %B
}

define <2 x i1> @srem1_vec(<2 x i32> %X) {
; CHECK-LABEL: @srem1_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %A = srem <2 x i32> %X, <i32 -5, i32 -5>
  %B = icmp sgt <2 x i32> %A, <i32 5, i32 5>
  ret <2 x i1> %B
}

;'udiv C2, x' produces [0, C2]
define i1 @udiv5(i32 %X) {
; CHECK-LABEL: @udiv5(
; CHECK-NEXT:    ret i1 false
;
  %A = udiv i32 123, %X
  %C = icmp ugt i32 %A, 124
  ret i1 %C
}

define <2 x i1> @udiv5_vec(<2 x i32> %X) {
; CHECK-LABEL: @udiv5_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %A = udiv <2 x i32> <i32 123, i32 123>, %X
  %C = icmp ugt <2 x i32> %A, <i32 124, i32 124>
  ret <2 x i1> %C
}

; 'udiv x, C2' produces [0, UINT_MAX / C2]
define i1 @udiv1(i32 %X) {
; CHECK-LABEL: @udiv1(
; CHECK-NEXT:    ret i1 true
;
  %A = udiv i32 %X, 1000000
  %B = icmp ult i32 %A, 5000
  ret i1 %B
}

define <2 x i1> @udiv1_vec(<2 x i32> %X) {
; CHECK-LABEL: @udiv1_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %A = udiv <2 x i32> %X, <i32 1000000, i32 1000000>
  %B = icmp ult <2 x i32> %A, <i32 5000, i32 5000>
  ret <2 x i1> %B
}

; 'sdiv C2, x' produces [-|C2|, |C2|]
define i1 @compare_dividend(i32 %a) {
; CHECK-LABEL: @compare_dividend(
; CHECK-NEXT:    ret i1 false
;
  %div = sdiv i32 2, %a
  %cmp = icmp eq i32 %div, 3
  ret i1 %cmp
}

define <2 x i1> @compare_dividend_vec(<2 x i32> %a) {
; CHECK-LABEL: @compare_dividend_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %div = sdiv <2 x i32> <i32 2, i32 2>, %a
  %cmp = icmp eq <2 x i32> %div, <i32 3, i32 3>
  ret <2 x i1> %cmp
}

; 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2]
;    where C2 != -1 and C2 != 0 and C2 != 1
define i1 @sdiv1(i32 %X) {
; CHECK-LABEL: @sdiv1(
; CHECK-NEXT:    ret i1 true
;
  %A = sdiv i32 %X, 1000000
  %B = icmp slt i32 %A, 3000
  ret i1 %B
}

define <2 x i1> @sdiv1_vec(<2 x i32> %X) {
; CHECK-LABEL: @sdiv1_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %A = sdiv <2 x i32> %X, <i32 1000000, i32 1000000>
  %B = icmp slt <2 x i32> %A, <i32 3000, i32 3000>
  ret <2 x i1> %B
}

; 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)]
define i1 @shl5(i32 %X) {
; CHECK-LABEL: @shl5(
; CHECK-NEXT:    ret i1 true
;
  %sub = shl nuw i32 4, %X
  %cmp = icmp ugt i32 %sub, 3
  ret i1 %cmp
}

define <2 x i1> @shl5_vec(<2 x i32> %X) {
; CHECK-LABEL: @shl5_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %sub = shl nuw <2 x i32> <i32 4, i32 4>, %X
  %cmp = icmp ugt <2 x i32> %sub, <i32 3, i32 3>
  ret <2 x i1> %cmp
}

; 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2]
define i1 @shl2(i32 %X) {
; CHECK-LABEL: @shl2(
; CHECK-NEXT:    ret i1 false
;
  %sub = shl nsw i32 -1, %X
  %cmp = icmp eq i32 %sub, 31
  ret i1 %cmp
}

define <2 x i1> @shl2_vec(<2 x i32> %X) {
; CHECK-LABEL: @shl2_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %sub = shl nsw <2 x i32> <i32 -1, i32 -1>, %X
  %cmp = icmp eq <2 x i32> %sub, <i32 31, i32 31>
  ret <2 x i1> %cmp
}

; 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2]
define i1 @shl4(i32 %X) {
; CHECK-LABEL: @shl4(
; CHECK-NEXT:    ret i1 true
;
  %sub = shl nsw i32 -1, %X
  %cmp = icmp sle i32 %sub, -1
  ret i1 %cmp
}

define <2 x i1> @shl4_vec(<2 x i32> %X) {
; CHECK-LABEL: @shl4_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %sub = shl nsw <2 x i32> <i32 -1, i32 -1>, %X
  %cmp = icmp sle <2 x i32> %sub, <i32 -1, i32 -1>
  ret <2 x i1> %cmp
}

; 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1]
define i1 @icmp_shl_nsw_1(i64 %a) {
; CHECK-LABEL: @icmp_shl_nsw_1(
; CHECK-NEXT:    ret i1 true
;
  %shl = shl nsw i64 1, %a
  %cmp = icmp sge i64 %shl, 0
  ret i1 %cmp
}

define <2 x i1> @icmp_shl_nsw_1_vec(<2 x i64> %a) {
; CHECK-LABEL: @icmp_shl_nsw_1_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %shl = shl nsw <2 x i64> <i64 1, i64 1>, %a
  %cmp = icmp sge <2 x i64> %shl, zeroinitializer
  ret <2 x i1> %cmp
}

; 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2]
define i1 @icmp_shl_nsw_neg1(i64 %a) {
; CHECK-LABEL: @icmp_shl_nsw_neg1(
; CHECK-NEXT:    ret i1 false
;
  %shl = shl nsw i64 -1, %a
  %cmp = icmp sge i64 %shl, 3
  ret i1 %cmp
}

define <2 x i1> @icmp_shl_nsw_neg1_vec(<2 x i64> %a) {
; CHECK-LABEL: @icmp_shl_nsw_neg1_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %shl = shl nsw <2 x i64> <i64 -1, i64 -1>, %a
  %cmp = icmp sge <2 x i64> %shl, <i64 3, i64 3>
  ret <2 x i1> %cmp
}

; 'lshr x, C2' produces [0, UINT_MAX >> C2]
define i1 @lshr2(i32 %x) {
; CHECK-LABEL: @lshr2(
; CHECK-NEXT:    ret i1 false
;
  %s = lshr i32 %x, 30
  %c = icmp ugt i32 %s, 8
  ret i1 %c
}

define <2 x i1> @lshr2_vec(<2 x i32> %x) {
; CHECK-LABEL: @lshr2_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %s = lshr <2 x i32> %x, <i32 30, i32 30>
  %c = icmp ugt <2 x i32> %s, <i32 8, i32 8>
  ret <2 x i1> %c
}

; 'lshr C2, x' produces [C2 >> (Width-1), C2]
define i1 @exact_lshr_ugt_false(i32 %a) {
; CHECK-LABEL: @exact_lshr_ugt_false(
; CHECK-NEXT:    ret i1 false
;
  %shr = lshr exact i32 30, %a
  %cmp = icmp ult i32 %shr, 15
  ret i1 %cmp
}

define <2 x i1> @exact_lshr_ugt_false_vec(<2 x i32> %a) {
; CHECK-LABEL: @exact_lshr_ugt_false_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %shr = lshr exact <2 x i32> <i32 30, i32 30>, %a
  %cmp = icmp ult <2 x i32> %shr, <i32 15, i32 15>
  ret <2 x i1> %cmp
}

; 'lshr C2, x' produces [C2 >> (Width-1), C2]
define i1 @lshr_sgt_false(i32 %a) {
; CHECK-LABEL: @lshr_sgt_false(
; CHECK-NEXT:    ret i1 false
;
  %shr = lshr i32 1, %a
  %cmp = icmp sgt i32 %shr, 1
  ret i1 %cmp
}

define <2 x i1> @lshr_sgt_false_vec(<2 x i32> %a) {
; CHECK-LABEL: @lshr_sgt_false_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %shr = lshr <2 x i32> <i32 1, i32 1>, %a
  %cmp = icmp sgt <2 x i32> %shr, <i32 1, i32 1>
  ret <2 x i1> %cmp
}

; 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2]
define i1 @ashr2(i32 %x) {
; CHECK-LABEL: @ashr2(
; CHECK-NEXT:    ret i1 false
;
  %s = ashr i32 %x, 30
  %c = icmp slt i32 %s, -5
  ret i1 %c
}

define <2 x i1> @ashr2_vec(<2 x i32> %x) {
; CHECK-LABEL: @ashr2_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %s = ashr <2 x i32> %x, <i32 30, i32 30>
  %c = icmp slt <2 x i32> %s, <i32 -5, i32 -5>
  ret <2 x i1> %c
}

; 'ashr C2, x' produces [C2, C2 >> (Width-1)]
define i1 @ashr_sgt_false(i32 %a) {
; CHECK-LABEL: @ashr_sgt_false(
; CHECK-NEXT:    ret i1 false
;
  %shr = ashr i32 -30, %a
  %cmp = icmp sgt i32 %shr, -1
  ret i1 %cmp
}

define <2 x i1> @ashr_sgt_false_vec(<2 x i32> %a) {
; CHECK-LABEL: @ashr_sgt_false_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %shr = ashr <2 x i32> <i32 -30, i32 -30>, %a
  %cmp = icmp sgt <2 x i32> %shr, <i32 -1, i32 -1>
  ret <2 x i1> %cmp
}

; 'ashr C2, x' produces [C2, C2 >> (Width-1)]
define i1 @exact_ashr_sgt_false(i32 %a) {
; CHECK-LABEL: @exact_ashr_sgt_false(
; CHECK-NEXT:    ret i1 false
;
  %shr = ashr exact i32 -30, %a
  %cmp = icmp sgt i32 %shr, -15
  ret i1 %cmp
}

define <2 x i1> @exact_ashr_sgt_false_vec(<2 x i32> %a) {
; CHECK-LABEL: @exact_ashr_sgt_false_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %shr = ashr exact <2 x i32> <i32 -30, i32 -30>, %a
  %cmp = icmp sgt <2 x i32> %shr, <i32 -15, i32 -15>
  ret <2 x i1> %cmp
}

; 'or x, C2' produces [C2, UINT_MAX]
define i1 @or1(i32 %X) {
; CHECK-LABEL: @or1(
; CHECK-NEXT:    ret i1 false
;
  %A = or i32 %X, 62
  %B = icmp ult i32 %A, 50
  ret i1 %B
}

define <2 x i1> @or1_vec(<2 x i32> %X) {
; CHECK-LABEL: @or1_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %A = or <2 x i32> %X, <i32 62, i32 62>
  %B = icmp ult <2 x i32> %A, <i32 50, i32 50>
  ret <2 x i1> %B
}

; Single bit OR.
define i1 @or2_true(i8 %x) {
; CHECK-LABEL: @or2_true(
; CHECK-NEXT:    [[Y:%.*]] = or i8 [[X:%.*]], 64
; CHECK-NEXT:    [[Z:%.*]] = icmp sge i8 [[Y]], -64
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = or i8 %x, 64
  %z = icmp sge i8 %y, -64
  ret i1 %z
}

define i1 @or2_unknown(i8 %x) {
; CHECK-LABEL: @or2_unknown(
; CHECK-NEXT:    [[Y:%.*]] = or i8 [[X:%.*]], 64
; CHECK-NEXT:    [[Z:%.*]] = icmp sgt i8 [[Y]], -64
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = or i8 %x, 64
  %z = icmp sgt i8 %y, -64
  ret i1 %z
}

; Multi bit OR.
; 78 = 0b01001110; -50 = 0b11001110
define i1 @or3_true(i8 %x) {
; CHECK-LABEL: @or3_true(
; CHECK-NEXT:    [[Y:%.*]] = or i8 [[X:%.*]], 78
; CHECK-NEXT:    [[Z:%.*]] = icmp sge i8 [[Y]], -50
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = or i8 %x, 78
  %z = icmp sge i8 %y, -50
  ret i1 %z
}

define i1 @or3_unknown(i8 %x) {
; CHECK-LABEL: @or3_unknown(
; CHECK-NEXT:    [[Y:%.*]] = or i8 [[X:%.*]], 78
; CHECK-NEXT:    [[Z:%.*]] = icmp sgt i8 [[Y]], -50
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = or i8 %x, 78
  %z = icmp sgt i8 %y, -50
  ret i1 %z
}

; OR with sign bit.
define i1 @or4_true(i8 %x) {
; CHECK-LABEL: @or4_true(
; CHECK-NEXT:    ret i1 true
;
  %y = or i8 %x, -64
  %z = icmp sge i8 %y, -64
  ret i1 %z
}

define i1 @or4_unknown(i8 %x) {
; CHECK-LABEL: @or4_unknown(
; CHECK-NEXT:    [[Y:%.*]] = or i8 [[X:%.*]], -64
; CHECK-NEXT:    [[Z:%.*]] = icmp sgt i8 [[Y]], -64
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = or i8 %x, -64
  %z = icmp sgt i8 %y, -64
  ret i1 %z
}

; If sign bit is set, signed & unsigned ranges are the same.
define i1 @or5_true(i8 %x) {
; CHECK-LABEL: @or5_true(
; CHECK-NEXT:    ret i1 true
;
  %y = or i8 %x, -64
  %z = icmp uge i8 %y, -64
  ret i1 %z
}

define i1 @or5_unknown(i8 %x) {
; CHECK-LABEL: @or5_unknown(
; CHECK-NEXT:    [[Y:%.*]] = or i8 [[X:%.*]], -64
; CHECK-NEXT:    [[Z:%.*]] = icmp ugt i8 [[Y]], -64
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = or i8 %x, -64
  %z = icmp ugt i8 %y, -64
  ret i1 %z
}

; 'and x, C2' produces [0, C2]
define i1 @and1(i32 %X) {
; CHECK-LABEL: @and1(
; CHECK-NEXT:    ret i1 false
;
  %A = and i32 %X, 62
  %B = icmp ugt i32 %A, 70
  ret i1 %B
}

define <2 x i1> @and1_vec(<2 x i32> %X) {
; CHECK-LABEL: @and1_vec(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %A = and <2 x i32> %X, <i32 62, i32 62>
  %B = icmp ugt <2 x i32> %A, <i32 70, i32 70>
  ret <2 x i1> %B
}

; If the sign bit is not set, signed and unsigned ranges are the same.
define i1 @and2(i32 %X) {
; CHECK-LABEL: @and2(
; CHECK-NEXT:    ret i1 false
;
  %A = and i32 %X, 62
  %B = icmp sgt i32 %A, 70
  ret i1 %B
}

; -75 = 0b10110101, 53 = 0b00110101
define i1 @and3_true1(i8 %x) {
; CHECK-LABEL: @and3_true1(
; CHECK-NEXT:    [[Y:%.*]] = and i8 [[X:%.*]], -75
; CHECK-NEXT:    [[Z:%.*]] = icmp sge i8 [[Y]], -75
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = and i8 %x, -75
  %z = icmp sge i8 %y, -75
  ret i1 %z
}

define i1 @and3_unknown1(i8 %x) {
; CHECK-LABEL: @and3_unknown1(
; CHECK-NEXT:    [[Y:%.*]] = and i8 [[X:%.*]], -75
; CHECK-NEXT:    [[Z:%.*]] = icmp sgt i8 [[Y]], -75
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = and i8 %x, -75
  %z = icmp sgt i8 %y, -75
  ret i1 %z
}

define i1 @and3_true2(i8 %x) {
; CHECK-LABEL: @and3_true2(
; CHECK-NEXT:    [[Y:%.*]] = and i8 [[X:%.*]], -75
; CHECK-NEXT:    [[Z:%.*]] = icmp sle i8 [[Y]], 53
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = and i8 %x, -75
  %z = icmp sle i8 %y, 53
  ret i1 %z
}

define i1 @and3_unknown2(i8 %x) {
; CHECK-LABEL: @and3_unknown2(
; CHECK-NEXT:    [[Y:%.*]] = and i8 [[X:%.*]], -75
; CHECK-NEXT:    [[Z:%.*]] = icmp slt i8 [[Y]], 53
; CHECK-NEXT:    ret i1 [[Z]]
;
  %y = and i8 %x, -75
  %z = icmp slt i8 %y, 53
  ret i1 %z
}

; 'add nuw x, C2' produces [C2, UINT_MAX]
define i1 @tautological9(i32 %x) {
; CHECK-LABEL: @tautological9(
; CHECK-NEXT:    ret i1 true
;
  %add = add nuw i32 %x, 13
  %cmp = icmp ne i32 %add, 12
  ret i1 %cmp
}

define <2 x i1> @tautological9_vec(<2 x i32> %x) {
; CHECK-LABEL: @tautological9_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %add = add nuw <2 x i32> %x, <i32 13, i32 13>
  %cmp = icmp ne <2 x i32> %add, <i32 12, i32 12>
  ret <2 x i1> %cmp
}

; The upper bound of the 'add' is 0.

define i1 @add_nsw_neg_const1(i32 %x) {
; CHECK-LABEL: @add_nsw_neg_const1(
; CHECK-NEXT:    ret i1 false
;
  %add = add nsw i32 %x, -2147483647
  %cmp = icmp sgt i32 %add, 0
  ret i1 %cmp
}

; InstCombine can fold this, but not InstSimplify.

define i1 @add_nsw_neg_const2(i32 %x) {
; CHECK-LABEL: @add_nsw_neg_const2(
; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[X:%.*]], -2147483647
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[ADD]], -1
; CHECK-NEXT:    ret i1 [[CMP]]
;
  %add = add nsw i32 %x, -2147483647
  %cmp = icmp sgt i32 %add, -1
  ret i1 %cmp
}

; The upper bound of the 'add' is 1 (move the constants to prove we're doing range-based analysis).

define i1 @add_nsw_neg_const3(i32 %x) {
; CHECK-LABEL: @add_nsw_neg_const3(
; CHECK-NEXT:    ret i1 false
;
  %add = add nsw i32 %x, -2147483646
  %cmp = icmp sgt i32 %add, 1
  ret i1 %cmp
}

; InstCombine can fold this, but not InstSimplify.

define i1 @add_nsw_neg_const4(i32 %x) {
; CHECK-LABEL: @add_nsw_neg_const4(
; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[X:%.*]], -2147483646
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[ADD]], 0
; CHECK-NEXT:    ret i1 [[CMP]]
;
  %add = add nsw i32 %x, -2147483646
  %cmp = icmp sgt i32 %add, 0
  ret i1 %cmp
}

; The upper bound of the 'add' is 2147483647 - 42 = 2147483605 (move the constants again and try a different cmp predicate).

define i1 @add_nsw_neg_const5(i32 %x) {
; CHECK-LABEL: @add_nsw_neg_const5(
; CHECK-NEXT:    ret i1 true
;
  %add = add nsw i32 %x, -42
  %cmp = icmp ne i32 %add, 2147483606
  ret i1 %cmp
}

; InstCombine can fold this, but not InstSimplify.

define i1 @add_nsw_neg_const6(i32 %x) {
; CHECK-LABEL: @add_nsw_neg_const6(
; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[X:%.*]], -42
; CHECK-NEXT:    [[CMP:%.*]] = icmp ne i32 [[ADD]], 2147483605
; CHECK-NEXT:    ret i1 [[CMP]]
;
  %add = add nsw i32 %x, -42
  %cmp = icmp ne i32 %add, 2147483605
  ret i1 %cmp
}

; The lower bound of the 'add' is -1.

define i1 @add_nsw_pos_const1(i32 %x) {
; CHECK-LABEL: @add_nsw_pos_const1(
; CHECK-NEXT:    ret i1 false
;
  %add = add nsw i32 %x, 2147483647
  %cmp = icmp slt i32 %add, -1
  ret i1 %cmp
}

; InstCombine can fold this, but not InstSimplify.

define i1 @add_nsw_pos_const2(i32 %x) {
; CHECK-LABEL: @add_nsw_pos_const2(
; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[X:%.*]], 2147483647
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[ADD]], 0
; CHECK-NEXT:    ret i1 [[CMP]]
;
  %add = add nsw i32 %x, 2147483647
  %cmp = icmp slt i32 %add, 0
  ret i1 %cmp
}

; The lower bound of the 'add' is -2 (move the constants to prove we're doing range-based analysis).

define i1 @add_nsw_pos_const3(i32 %x) {
; CHECK-LABEL: @add_nsw_pos_const3(
; CHECK-NEXT:    ret i1 false
;
  %add = add nsw i32 %x, 2147483646
  %cmp = icmp slt i32 %add, -2
  ret i1 %cmp
}

; InstCombine can fold this, but not InstSimplify.

define i1 @add_nsw_pos_const4(i32 %x) {
; CHECK-LABEL: @add_nsw_pos_const4(
; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[X:%.*]], 2147483646
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[ADD]], -1
; CHECK-NEXT:    ret i1 [[CMP]]
;
  %add = add nsw i32 %x, 2147483646
  %cmp = icmp slt i32 %add, -1
  ret i1 %cmp
}

; The lower bound of the 'add' is -2147483648 + 42 = -2147483606 (move the constants again and change the cmp predicate).

define i1 @add_nsw_pos_const5(i32 %x) {
; CHECK-LABEL: @add_nsw_pos_const5(
; CHECK-NEXT:    ret i1 false
;
  %add = add nsw i32 %x, 42
  %cmp = icmp eq i32 %add, -2147483607
  ret i1 %cmp
}

; InstCombine can fold this, but not InstSimplify.

define i1 @add_nsw_pos_const6(i32 %x) {
; CHECK-LABEL: @add_nsw_pos_const6(
; CHECK-NEXT:    [[ADD:%.*]] = add nsw i32 [[X:%.*]], 42
; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[ADD]], -2147483606
; CHECK-NEXT:    ret i1 [[CMP]]
;
  %add = add nsw i32 %x, 42
  %cmp = icmp eq i32 %add, -2147483606
  ret i1 %cmp
}

; Verify that vectors work too.

define <2 x i1> @add_nsw_pos_const5_splat_vec(<2 x i32> %x) {
; CHECK-LABEL: @add_nsw_pos_const5_splat_vec(
; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
;
  %add = add nsw <2 x i32> %x, <i32 42, i32 42>
  %cmp = icmp ne <2 x i32> %add, <i32 -2147483607, i32 -2147483607>
  ret <2 x i1> %cmp
}

; PR34838 - https://bugs.llvm.org/show_bug.cgi?id=34838
; The shift is known to create poison, so we can simplify the cmp.

define i1 @ne_shl_by_constant_produces_poison(i8 %x) {
; CHECK-LABEL: @ne_shl_by_constant_produces_poison(
; CHECK-NEXT:    ret i1 true
;
  %zx = zext i8 %x to i16      ; zx  = 0x00xx
  %xor = xor i16 %zx, 32767    ; xor = 0x7fyy
  %sub = sub nsw i16 %zx, %xor ; sub = 0x80zz  (the top bit is known one)
  %poison = shl nsw i16 %sub, 2    ; oops! this shl can't be nsw; that's POISON
  %cmp = icmp ne i16 %poison, 1
  ret i1 %cmp
}

define i1 @eq_shl_by_constant_produces_poison(i8 %x) {
; CHECK-LABEL: @eq_shl_by_constant_produces_poison(
; CHECK-NEXT:    ret i1 false
;
  %clear_high_bit = and i8 %x, 127                 ; 0x7f
  %set_next_high_bits = or i8 %clear_high_bit, 112 ; 0x70
  %poison = shl nsw i8 %set_next_high_bits, 3
  %cmp = icmp eq i8 %poison, 15
  ret i1 %cmp
}

; Shift-by-variable that produces poison is more complicated but still possible.
; We guarantee that the shift will change the sign of the shifted value (and
; therefore produce poison) by limiting its range from 1 to 3.

define i1 @eq_shl_by_variable_produces_poison(i8 %x) {
; CHECK-LABEL: @eq_shl_by_variable_produces_poison(
; CHECK-NEXT:    ret i1 false
;
  %clear_high_bit = and i8 %x, 127                 ; 0x7f
  %set_next_high_bits = or i8 %clear_high_bit, 112 ; 0x70
  %notundef_shiftamt = and i8 %x, 3
  %nonzero_shiftamt = or i8 %notundef_shiftamt, 1
  %poison = shl nsw i8 %set_next_high_bits, %nonzero_shiftamt
  %cmp = icmp eq i8 %poison, 15
  ret i1 %cmp
}