vect-phiscev-sext-trunc.ll
6.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
; RUN: opt -S -loop-vectorize -force-vector-width=8 -force-vector-interleave=1 < %s | FileCheck %s -check-prefix=VF8
; RUN: opt -S -loop-vectorize -force-vector-width=1 -force-vector-interleave=4 < %s | FileCheck %s -check-prefix=VF1
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
; Given a loop with an induction variable which is being
; truncated/extended using casts that had been proven to
; be redundant under a runtime test, we want to make sure
; that these casts, do not get vectorized/scalarized/widened.
; This is the case for inductions whose SCEV expression is
; of the form "ExtTrunc(%phi) + %step", where "ExtTrunc"
; can be a result of the IR sequences we check below.
;
; See also pr30654.
;
; Case1: Check the following induction pattern:
;
; %p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
; %sext = shl i32 %p.09, 24
; %conv = ashr exact i32 %sext, 24
; %add = add nsw i32 %conv, %step
;
; This is the case in the following code:
;
; void doit1(int n, int step) {
; int i;
; char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; }
; }
;
; The "ExtTrunc" IR sequence here is:
; "%sext = shl i32 %p.09, 24"
; "%conv = ashr exact i32 %sext, 24"
; We check that it does not appear in the vector loop body, whether
; we vectorize or scalarize the induction.
; In the case of widened induction, this means that the induction phi
; is directly used, without shl/ashr on the way.
; VF8-LABEL: @doit1
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:
; VF1-LABEL: @doit1
; VF1: vector.body:
; VF1-NOT: %{{.*}} = shl i32
; VF1: middle.block:
@a = common local_unnamed_addr global [250 x i32] zeroinitializer, align 16
define void @doit1(i32 %n, i32 %step) {
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
%sext = shl i32 %p.09, 24
%conv = ashr exact i32 %sext, 24
%arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %conv, i32* %arrayidx, align 4
%add = add nsw i32 %conv, %step
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
; Case2: Another variant of the above pattern is where the induction variable
; is used only for address compuation (i.e. it is a GEP index) and therefore
; the induction is not vectorized but rather only the step is widened.
;
; This is the case in the following code, where the induction variable 'w_ix'
; is only used to access the array 'in':
;
; void doit2(int *in, int *out, size_t size, size_t step)
; {
; int w_ix = 0;
; for (size_t offset = 0; offset < size; ++offset)
; {
; int w = in[w_ix];
; out[offset] = w;
; w_ix += step;
; }
; }
;
; The "ExtTrunc" IR sequence here is similar to the previous case:
; "%sext = shl i64 %w_ix.012, 32
; %idxprom = ashr exact i64 %sext, 32"
; We check that it does not appear in the vector loop body, whether
; we widen or scalarize the induction.
; In the case of widened induction, this means that the induction phi
; is directly used, without shl/ashr on the way.
; VF8-LABEL: @doit2
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i64>
; VF8: %{{.*}} = extractelement <8 x i64> %vec.ind
; VF8: middle.block:
; VF1-LABEL: @doit2
; VF1: vector.body:
; VF1-NOT: %{{.*}} = shl i64
; VF1: middle.block:
;
define void @doit2(i32* nocapture readonly %in, i32* nocapture %out, i64 %size, i64 %step) {
entry:
%cmp9 = icmp eq i64 %size, 0
br i1 %cmp9, label %for.cond.cleanup, label %for.body.lr.ph
for.body.lr.ph:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%w_ix.011 = phi i64 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
%offset.010 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%sext = shl i64 %w_ix.011, 32
%idxprom = ashr exact i64 %sext, 32
%arrayidx = getelementptr inbounds i32, i32* %in, i64 %idxprom
%0 = load i32, i32* %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i32, i32* %out, i64 %offset.010
store i32 %0, i32* %arrayidx1, align 4
%add = add i64 %idxprom, %step
%inc = add nuw i64 %offset.010, 1
%exitcond = icmp eq i64 %inc, %size
br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body
}
; Case3: Lastly, check also the following induction pattern:
;
; %p.09 = phi i32 [ %val0, %scalar.ph ], [ %add, %for.body ]
; %conv = and i32 %p.09, 255
; %add = add nsw i32 %conv, %step
;
; This is the case in the following code:
;
; int a[N];
; void doit3(int n, int step) {
; int i;
; unsigned char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; }
; }
;
; The "ExtTrunc" IR sequence here is:
; "%conv = and i32 %p.09, 255".
; We check that it does not appear in the vector loop body, whether
; we vectorize or scalarize the induction.
; VF8-LABEL: @doit3
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:
; VF1-LABEL: @doit3
; VF1: vector.body:
; VF1-NOT: %{{.*}} = and i32
; VF1: middle.block:
define void @doit3(i32 %n, i32 %step) {
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
%conv = and i32 %p.09, 255
%arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %conv, i32* %arrayidx, align 4
%add = add nsw i32 %conv, %step
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}