PatternMatchTest.cpp 12.2 KB
//===- PatternMatchTest.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "GISelMITest.h"
#include "llvm/CodeGen/GlobalISel/ConstantFoldingMIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MIRParser/MIRParser.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "gtest/gtest.h"

using namespace llvm;
using namespace MIPatternMatch;

namespace {

TEST_F(AArch64GISelMITest, MatchIntConstant) {
  setUp();
  if (!TM)
    return;
  auto MIBCst = B.buildConstant(LLT::scalar(64), 42);
  int64_t Cst;
  bool match = mi_match(MIBCst.getReg(0), *MRI, m_ICst(Cst));
  EXPECT_TRUE(match);
  EXPECT_EQ(Cst, 42);
}

TEST_F(AArch64GISelMITest, MatchBinaryOp) {
  setUp();
  if (!TM)
    return;
  LLT s32 = LLT::scalar(32);
  LLT s64 = LLT::scalar(64);
  auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
  // Test case for no bind.
  bool match =
      mi_match(MIBAdd.getReg(0), *MRI, m_GAdd(m_Reg(), m_Reg()));
  EXPECT_TRUE(match);
  Register Src0, Src1, Src2;
  match = mi_match(MIBAdd.getReg(0), *MRI,
                   m_GAdd(m_Reg(Src0), m_Reg(Src1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, Copies[1]);

  // Build MUL(ADD %0, %1), %2
  auto MIBMul = B.buildMul(s64, MIBAdd, Copies[2]);

  // Try to match MUL.
  match = mi_match(MIBMul.getReg(0), *MRI,
                   m_GMul(m_Reg(Src0), m_Reg(Src1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, MIBAdd.getReg(0));
  EXPECT_EQ(Src1, Copies[2]);

  // Try to match MUL(ADD)
  match = mi_match(MIBMul.getReg(0), *MRI,
                   m_GMul(m_GAdd(m_Reg(Src0), m_Reg(Src1)), m_Reg(Src2)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, Copies[1]);
  EXPECT_EQ(Src2, Copies[2]);

  // Test Commutativity.
  auto MIBMul2 = B.buildMul(s64, Copies[0], B.buildConstant(s64, 42));
  // Try to match MUL(Cst, Reg) on src of MUL(Reg, Cst) to validate
  // commutativity.
  int64_t Cst;
  match = mi_match(MIBMul2.getReg(0), *MRI,
                   m_GMul(m_ICst(Cst), m_Reg(Src0)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Cst, 42);
  EXPECT_EQ(Src0, Copies[0]);

  // Make sure commutative doesn't work with something like SUB.
  auto MIBSub = B.buildSub(s64, Copies[0], B.buildConstant(s64, 42));
  match = mi_match(MIBSub.getReg(0), *MRI,
                   m_GSub(m_ICst(Cst), m_Reg(Src0)));
  EXPECT_FALSE(match);

  auto MIBFMul = B.buildInstr(TargetOpcode::G_FMUL, {s64},
                              {Copies[0], B.buildConstant(s64, 42)});
  // Match and test commutativity for FMUL.
  match = mi_match(MIBFMul.getReg(0), *MRI,
                   m_GFMul(m_ICst(Cst), m_Reg(Src0)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Cst, 42);
  EXPECT_EQ(Src0, Copies[0]);

  // FSUB
  auto MIBFSub = B.buildInstr(TargetOpcode::G_FSUB, {s64},
                              {Copies[0], B.buildConstant(s64, 42)});
  match = mi_match(MIBFSub.getReg(0), *MRI,
                   m_GFSub(m_Reg(Src0), m_Reg()));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);

  // Build AND %0, %1
  auto MIBAnd = B.buildAnd(s64, Copies[0], Copies[1]);
  // Try to match AND.
  match = mi_match(MIBAnd.getReg(0), *MRI,
                   m_GAnd(m_Reg(Src0), m_Reg(Src1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, Copies[1]);

  // Build OR %0, %1
  auto MIBOr = B.buildOr(s64, Copies[0], Copies[1]);
  // Try to match OR.
  match = mi_match(MIBOr.getReg(0), *MRI,
                   m_GOr(m_Reg(Src0), m_Reg(Src1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, Copies[1]);

  // Match lshr, and make sure a different shift amount type works.
  auto TruncCopy1 = B.buildTrunc(s32, Copies[1]);
  auto LShr = B.buildLShr(s64, Copies[0], TruncCopy1);
  match = mi_match(LShr.getReg(0), *MRI,
                   m_GLShr(m_Reg(Src0), m_Reg(Src1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, TruncCopy1.getReg(0));

  // Match shl, and make sure a different shift amount type works.
  auto Shl = B.buildShl(s64, Copies[0], TruncCopy1);
  match = mi_match(Shl.getReg(0), *MRI,
                   m_GShl(m_Reg(Src0), m_Reg(Src1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, TruncCopy1.getReg(0));
}

TEST_F(AArch64GISelMITest, MatchICmp) {
  setUp();
  if (!TM)
    return;

  const LLT s1 = LLT::scalar(1);
  auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, s1, Copies[0], Copies[1]);

  // Check match any predicate.
  bool match =
      mi_match(CmpEq.getReg(0), *MRI, m_GICmp(m_Pred(), m_Reg(), m_Reg()));
  EXPECT_TRUE(match);

  // Check we get the predicate and registers.
  CmpInst::Predicate Pred;
  Register Reg0;
  Register Reg1;
  match = mi_match(CmpEq.getReg(0), *MRI,
                   m_GICmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(CmpInst::ICMP_EQ, Pred);
  EXPECT_EQ(Copies[0], Reg0);
  EXPECT_EQ(Copies[1], Reg1);
}

TEST_F(AArch64GISelMITest, MatchFCmp) {
  setUp();
  if (!TM)
    return;

  const LLT s1 = LLT::scalar(1);
  auto CmpEq = B.buildFCmp(CmpInst::FCMP_OEQ, s1, Copies[0], Copies[1]);

  // Check match any predicate.
  bool match =
      mi_match(CmpEq.getReg(0), *MRI, m_GFCmp(m_Pred(), m_Reg(), m_Reg()));
  EXPECT_TRUE(match);

  // Check we get the predicate and registers.
  CmpInst::Predicate Pred;
  Register Reg0;
  Register Reg1;
  match = mi_match(CmpEq.getReg(0), *MRI,
                   m_GFCmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1)));
  EXPECT_TRUE(match);
  EXPECT_EQ(CmpInst::FCMP_OEQ, Pred);
  EXPECT_EQ(Copies[0], Reg0);
  EXPECT_EQ(Copies[1], Reg1);
}

TEST_F(AArch64GISelMITest, MatchFPUnaryOp) {
  setUp();
  if (!TM)
    return;

  // Truncate s64 to s32.
  LLT s32 = LLT::scalar(32);
  auto Copy0s32 = B.buildFPTrunc(s32, Copies[0]);

  // Match G_FABS.
  auto MIBFabs = B.buildInstr(TargetOpcode::G_FABS, {s32}, {Copy0s32});
  bool match =
      mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg()));
  EXPECT_TRUE(match);

  Register Src;
  auto MIBFNeg = B.buildInstr(TargetOpcode::G_FNEG, {s32}, {Copy0s32});
  match = mi_match(MIBFNeg.getReg(0), *MRI, m_GFNeg(m_Reg(Src)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src, Copy0s32.getReg(0));

  match = mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg(Src)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src, Copy0s32.getReg(0));

  // Build and match FConstant.
  auto MIBFCst = B.buildFConstant(s32, .5);
  const ConstantFP *TmpFP{};
  match = mi_match(MIBFCst.getReg(0), *MRI, m_GFCst(TmpFP));
  EXPECT_TRUE(match);
  EXPECT_TRUE(TmpFP);
  APFloat APF((float).5);
  auto *CFP = ConstantFP::get(Context, APF);
  EXPECT_EQ(CFP, TmpFP);

  // Build double float.
  LLT s64 = LLT::scalar(64);
  auto MIBFCst64 = B.buildFConstant(s64, .5);
  const ConstantFP *TmpFP64{};
  match = mi_match(MIBFCst64.getReg(0), *MRI, m_GFCst(TmpFP64));
  EXPECT_TRUE(match);
  EXPECT_TRUE(TmpFP64);
  APFloat APF64(.5);
  auto CFP64 = ConstantFP::get(Context, APF64);
  EXPECT_EQ(CFP64, TmpFP64);
  EXPECT_NE(TmpFP64, TmpFP);

  // Build half float.
  LLT s16 = LLT::scalar(16);
  auto MIBFCst16 = B.buildFConstant(s16, .5);
  const ConstantFP *TmpFP16{};
  match = mi_match(MIBFCst16.getReg(0), *MRI, m_GFCst(TmpFP16));
  EXPECT_TRUE(match);
  EXPECT_TRUE(TmpFP16);
  bool Ignored;
  APFloat APF16(.5);
  APF16.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
  auto CFP16 = ConstantFP::get(Context, APF16);
  EXPECT_EQ(TmpFP16, CFP16);
  EXPECT_NE(TmpFP16, TmpFP);
}

TEST_F(AArch64GISelMITest, MatchExtendsTrunc) {
  setUp();
  if (!TM)
    return;

  LLT s64 = LLT::scalar(64);
  LLT s32 = LLT::scalar(32);

  auto MIBTrunc = B.buildTrunc(s32, Copies[0]);
  auto MIBAExt = B.buildAnyExt(s64, MIBTrunc);
  auto MIBZExt = B.buildZExt(s64, MIBTrunc);
  auto MIBSExt = B.buildSExt(s64, MIBTrunc);
  Register Src0;
  bool match =
      mi_match(MIBTrunc.getReg(0), *MRI, m_GTrunc(m_Reg(Src0)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  match =
      mi_match(MIBAExt.getReg(0), *MRI, m_GAnyExt(m_Reg(Src0)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, MIBTrunc.getReg(0));

  match = mi_match(MIBSExt.getReg(0), *MRI, m_GSExt(m_Reg(Src0)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, MIBTrunc.getReg(0));

  match = mi_match(MIBZExt.getReg(0), *MRI, m_GZExt(m_Reg(Src0)));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, MIBTrunc.getReg(0));

  // Match ext(trunc src)
  match = mi_match(MIBAExt.getReg(0), *MRI,
                   m_GAnyExt(m_GTrunc(m_Reg(Src0))));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);

  match = mi_match(MIBSExt.getReg(0), *MRI,
                   m_GSExt(m_GTrunc(m_Reg(Src0))));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);

  match = mi_match(MIBZExt.getReg(0), *MRI,
                   m_GZExt(m_GTrunc(m_Reg(Src0))));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
}

TEST_F(AArch64GISelMITest, MatchSpecificType) {
  setUp();
  if (!TM)
    return;

  // Try to match a 64bit add.
  LLT s64 = LLT::scalar(64);
  LLT s32 = LLT::scalar(32);
  auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
  EXPECT_FALSE(mi_match(MIBAdd.getReg(0), *MRI,
                        m_GAdd(m_SpecificType(s32), m_Reg())));
  EXPECT_TRUE(mi_match(MIBAdd.getReg(0), *MRI,
                       m_GAdd(m_SpecificType(s64), m_Reg())));

  // Try to match the destination type of a bitcast.
  LLT v2s32 = LLT::vector(2, 32);
  auto MIBCast = B.buildCast(v2s32, Copies[0]);
  EXPECT_TRUE(
      mi_match(MIBCast.getReg(0), *MRI, m_GBitcast(m_Reg())));
  EXPECT_TRUE(
      mi_match(MIBCast.getReg(0), *MRI, m_SpecificType(v2s32)));
  EXPECT_TRUE(
      mi_match(MIBCast.getReg(1), *MRI, m_SpecificType(s64)));

  // Build a PTRToInt and INTTOPTR and match and test them.
  LLT PtrTy = LLT::pointer(0, 64);
  auto MIBIntToPtr = B.buildCast(PtrTy, Copies[0]);
  auto MIBPtrToInt = B.buildCast(s64, MIBIntToPtr);
  Register Src0;

  // match the ptrtoint(inttoptr reg)
  bool match = mi_match(MIBPtrToInt.getReg(0), *MRI,
                        m_GPtrToInt(m_GIntToPtr(m_Reg(Src0))));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
}

TEST_F(AArch64GISelMITest, MatchCombinators) {
  setUp();
  if (!TM)
    return;

  LLT s64 = LLT::scalar(64);
  LLT s32 = LLT::scalar(32);
  auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
  Register Src0, Src1;
  bool match =
      mi_match(MIBAdd.getReg(0), *MRI,
               m_all_of(m_SpecificType(s64), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, Copies[1]);
  // Check for s32 (which should fail).
  match =
      mi_match(MIBAdd.getReg(0), *MRI,
               m_all_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
  EXPECT_FALSE(match);
  match =
      mi_match(MIBAdd.getReg(0), *MRI,
               m_any_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
  EXPECT_TRUE(match);
  EXPECT_EQ(Src0, Copies[0]);
  EXPECT_EQ(Src1, Copies[1]);

  // Match a case where none of the predicates hold true.
  match = mi_match(
      MIBAdd.getReg(0), *MRI,
      m_any_of(m_SpecificType(LLT::scalar(16)), m_GSub(m_Reg(), m_Reg())));
  EXPECT_FALSE(match);
}

TEST_F(AArch64GISelMITest, MatchMiscellaneous) {
  setUp();
  if (!TM)
    return;

  LLT s64 = LLT::scalar(64);
  auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
  // Make multiple uses of this add.
  B.buildCast(LLT::pointer(0, 32), MIBAdd);
  B.buildCast(LLT::pointer(1, 32), MIBAdd);
  bool match = mi_match(MIBAdd.getReg(0), *MRI, m_GAdd(m_Reg(), m_Reg()));
  EXPECT_TRUE(match);
  match = mi_match(MIBAdd.getReg(0), *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg())));
  EXPECT_FALSE(match);
}
} // namespace

int main(int argc, char **argv) {
  ::testing::InitGoogleTest(&argc, argv);
  initLLVM();
  return RUN_ALL_TESTS();
}