CodeEmitterGen.cpp
22.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// CodeEmitterGen uses the descriptions of instructions and their fields to
// construct an automated code emitter: a function that, given a MachineInstr,
// returns the (currently, 32-bit unsigned) value of the instruction.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "SubtargetFeatureInfo.h"
#include "Types.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class CodeEmitterGen {
RecordKeeper &Records;
public:
CodeEmitterGen(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &o);
private:
int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
std::string getInstructionCase(Record *R, CodeGenTarget &Target);
std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef,
CodeGenTarget &Target);
void AddCodeToMergeInOperand(Record *R, BitsInit *BI,
const std::string &VarName,
unsigned &NumberedOp,
std::set<unsigned> &NamedOpIndices,
std::string &Case, CodeGenTarget &Target);
void emitInstructionBaseValues(
raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
CodeGenTarget &Target, int HwMode = -1);
unsigned BitWidth;
bool UseAPInt;
};
// If the VarBitInit at position 'bit' matches the specified variable then
// return the variable bit position. Otherwise return -1.
int CodeEmitterGen::getVariableBit(const std::string &VarName,
BitsInit *BI, int bit) {
if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
if (VI->getName() == VarName)
return VBI->getBitNum();
} else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
if (VI->getName() == VarName)
return 0;
}
return -1;
}
void CodeEmitterGen::
AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName,
unsigned &NumberedOp,
std::set<unsigned> &NamedOpIndices,
std::string &Case, CodeGenTarget &Target) {
CodeGenInstruction &CGI = Target.getInstruction(R);
// Determine if VarName actually contributes to the Inst encoding.
int bit = BI->getNumBits()-1;
// Scan for a bit that this contributed to.
for (; bit >= 0; ) {
if (getVariableBit(VarName, BI, bit) != -1)
break;
--bit;
}
// If we found no bits, ignore this value, otherwise emit the call to get the
// operand encoding.
if (bit < 0) return;
// If the operand matches by name, reference according to that
// operand number. Non-matching operands are assumed to be in
// order.
unsigned OpIdx;
if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
// Get the machine operand number for the indicated operand.
OpIdx = CGI.Operands[OpIdx].MIOperandNo;
assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) &&
"Explicitly used operand also marked as not emitted!");
} else {
unsigned NumberOps = CGI.Operands.size();
/// If this operand is not supposed to be emitted by the
/// generated emitter, skip it.
while (NumberedOp < NumberOps &&
(CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
(!NamedOpIndices.empty() && NamedOpIndices.count(
CGI.Operands.getSubOperandNumber(NumberedOp).first)))) {
++NumberedOp;
if (NumberedOp >= CGI.Operands.back().MIOperandNo +
CGI.Operands.back().MINumOperands) {
errs() << "Too few operands in record " << R->getName() <<
" (no match for variable " << VarName << "):\n";
errs() << *R;
errs() << '\n';
return;
}
}
OpIdx = NumberedOp++;
}
std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName;
if (UseAPInt)
Case += " op.clearAllBits();\n";
// If the source operand has a custom encoder, use it. This will
// get the encoding for all of the suboperands.
if (!EncoderMethodName.empty()) {
// A custom encoder has all of the information for the
// sub-operands, if there are more than one, so only
// query the encoder once per source operand.
if (SO.second == 0) {
Case += " // op: " + VarName + "\n";
if (UseAPInt) {
Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx);
Case += ", op";
} else {
Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
}
Case += ", Fixups, STI);\n";
}
} else {
Case += " // op: " + VarName + "\n";
if (UseAPInt) {
Case += " getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
Case += ", op, Fixups, STI";
} else {
Case += " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
Case += ", Fixups, STI";
}
Case += ");\n";
}
// Precalculate the number of lits this variable contributes to in the
// operand. If there is a single lit (consecutive range of bits) we can use a
// destructive sequence on APInt that reduces memory allocations.
int numOperandLits = 0;
for (int tmpBit = bit; tmpBit >= 0;) {
int varBit = getVariableBit(VarName, BI, tmpBit);
// If this bit isn't from a variable, skip it.
if (varBit == -1) {
--tmpBit;
continue;
}
// Figure out the consecutive range of bits covered by this operand, in
// order to generate better encoding code.
int beginVarBit = varBit;
int N = 1;
for (--tmpBit; tmpBit >= 0;) {
varBit = getVariableBit(VarName, BI, tmpBit);
if (varBit == -1 || varBit != (beginVarBit - N))
break;
++N;
--tmpBit;
}
++numOperandLits;
}
for (; bit >= 0; ) {
int varBit = getVariableBit(VarName, BI, bit);
// If this bit isn't from a variable, skip it.
if (varBit == -1) {
--bit;
continue;
}
// Figure out the consecutive range of bits covered by this operand, in
// order to generate better encoding code.
int beginInstBit = bit;
int beginVarBit = varBit;
int N = 1;
for (--bit; bit >= 0;) {
varBit = getVariableBit(VarName, BI, bit);
if (varBit == -1 || varBit != (beginVarBit - N)) break;
++N;
--bit;
}
std::string maskStr;
int opShift;
unsigned loBit = beginVarBit - N + 1;
unsigned hiBit = loBit + N;
unsigned loInstBit = beginInstBit - N + 1;
if (UseAPInt) {
std::string extractStr;
if (N >= 64) {
extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " +
itostr(loBit) + ")";
Case += " Value.insertBits(" + extractStr + ", " +
itostr(loInstBit) + ");\n";
} else {
extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) +
", " + itostr(loBit) + ")";
Case += " Value.insertBits(" + extractStr + ", " +
itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n";
}
} else {
uint64_t opMask = ~(uint64_t)0 >> (64 - N);
opShift = beginVarBit - N + 1;
opMask <<= opShift;
maskStr = "UINT64_C(" + utostr(opMask) + ")";
opShift = beginInstBit - beginVarBit;
if (numOperandLits == 1) {
Case += " op &= " + maskStr + ";\n";
if (opShift > 0) {
Case += " op <<= " + itostr(opShift) + ";\n";
} else if (opShift < 0) {
Case += " op >>= " + itostr(-opShift) + ";\n";
}
Case += " Value |= op;\n";
} else {
if (opShift > 0) {
Case += " Value |= (op & " + maskStr + ") << " +
itostr(opShift) + ";\n";
} else if (opShift < 0) {
Case += " Value |= (op & " + maskStr + ") >> " +
itostr(-opShift) + ";\n";
} else {
Case += " Value |= (op & " + maskStr + ");\n";
}
}
}
}
}
std::string CodeEmitterGen::getInstructionCase(Record *R,
CodeGenTarget &Target) {
std::string Case;
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
const CodeGenHwModes &HWM = Target.getHwModes();
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
Case += " switch (HwMode) {\n";
Case += " default: llvm_unreachable(\"Unhandled HwMode\");\n";
for (auto &KV : EBM.Map) {
Case += " case " + itostr(KV.first) + ": {\n";
Case += getInstructionCaseForEncoding(R, KV.second, Target);
Case += " break;\n";
Case += " }\n";
}
Case += " }\n";
return Case;
}
}
return getInstructionCaseForEncoding(R, R, Target);
}
std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef,
CodeGenTarget &Target) {
std::string Case;
BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
unsigned NumberedOp = 0;
std::set<unsigned> NamedOpIndices;
// Collect the set of operand indices that might correspond to named
// operand, and skip these when assigning operands based on position.
if (Target.getInstructionSet()->
getValueAsBit("noNamedPositionallyEncodedOperands")) {
CodeGenInstruction &CGI = Target.getInstruction(R);
for (const RecordVal &RV : R->getValues()) {
unsigned OpIdx;
if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx))
continue;
NamedOpIndices.insert(OpIdx);
}
}
// Loop over all of the fields in the instruction, determining which are the
// operands to the instruction.
for (const RecordVal &RV : EncodingDef->getValues()) {
// Ignore fixed fields in the record, we're looking for values like:
// bits<5> RST = { ?, ?, ?, ?, ? };
if (RV.getPrefix() || RV.getValue()->isComplete())
continue;
AddCodeToMergeInOperand(R, BI, std::string(RV.getName()), NumberedOp,
NamedOpIndices, Case, Target);
}
StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
if (!PostEmitter.empty()) {
Case += " Value = ";
Case += PostEmitter;
Case += "(MI, Value";
Case += ", STI";
Case += ");\n";
}
return Case;
}
static std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
std::string Name = "CEFBS";
for (const auto &Feature : FeatureBitset)
Name += ("_" + Feature->getName()).str();
return Name;
}
static void emitInstBits(raw_ostream &OS, const APInt &Bits) {
for (unsigned I = 0; I < Bits.getNumWords(); ++I)
OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I])
<< ")";
}
void CodeEmitterGen::emitInstructionBaseValues(
raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
CodeGenTarget &Target, int HwMode) {
const CodeGenHwModes &HWM = Target.getHwModes();
if (HwMode == -1)
o << " static const uint64_t InstBits[] = {\n";
else
o << " static const uint64_t InstBits_" << HWM.getMode(HwMode).Name
<< "[] = {\n";
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo")) {
o << " "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n";
continue;
}
Record *EncodingDef = R;
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
if (EBM.hasMode(HwMode))
EncodingDef = EBM.get(HwMode);
}
}
BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
// Start by filling in fixed values.
APInt Value(BitWidth, 0);
for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e - i - 1)))
Value |= APInt(BitWidth, (uint64_t)B->getValue()) << (e - i - 1);
}
o << " ";
emitInstBits(o, Value);
o << "," << '\t' << "// " << R->getName() << "\n";
}
o << " UINT64_C(0)\n };\n";
}
void CodeEmitterGen::run(raw_ostream &o) {
CodeGenTarget Target(Records);
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
// For little-endian instruction bit encodings, reverse the bit order
Target.reverseBitsForLittleEndianEncoding();
ArrayRef<const CodeGenInstruction*> NumberedInstructions =
Target.getInstructionsByEnumValue();
const CodeGenHwModes &HWM = Target.getHwModes();
// The set of HwModes used by instruction encodings.
std::set<unsigned> HwModes;
BitWidth = 0;
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
for (auto &KV : EBM.Map) {
BitsInit *BI = KV.second->getValueAsBitsInit("Inst");
BitWidth = std::max(BitWidth, BI->getNumBits());
HwModes.insert(KV.first);
}
continue;
}
}
BitsInit *BI = R->getValueAsBitsInit("Inst");
BitWidth = std::max(BitWidth, BI->getNumBits());
}
UseAPInt = BitWidth > 64;
// Emit function declaration
if (UseAPInt) {
o << "void " << Target.getName()
<< "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " APInt &Inst,\n"
<< " APInt &Scratch,\n"
<< " const MCSubtargetInfo &STI) const {\n";
} else {
o << "uint64_t " << Target.getName();
o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " const MCSubtargetInfo &STI) const {\n";
}
// Emit instruction base values
if (HwModes.empty()) {
emitInstructionBaseValues(o, NumberedInstructions, Target, -1);
} else {
for (unsigned HwMode : HwModes)
emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode);
}
if (!HwModes.empty()) {
o << " const uint64_t *InstBits;\n";
o << " unsigned HwMode = STI.getHwMode();\n";
o << " switch (HwMode) {\n";
o << " default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n";
for (unsigned I : HwModes) {
o << " case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name
<< "; break;\n";
}
o << " };\n";
}
// Map to accumulate all the cases.
std::map<std::string, std::vector<std::string>> CaseMap;
// Construct all cases statement for each opcode
for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end();
IC != EC; ++IC) {
Record *R = *IC;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
std::string InstName =
(R->getValueAsString("Namespace") + "::" + R->getName()).str();
std::string Case = getInstructionCase(R, Target);
CaseMap[Case].push_back(std::move(InstName));
}
// Emit initial function code
if (UseAPInt) {
int NumWords = APInt::getNumWords(BitWidth);
int NumBytes = (BitWidth + 7) / 8;
o << " const unsigned opcode = MI.getOpcode();\n"
<< " if (Inst.getBitWidth() != " << BitWidth << ")\n"
<< " Inst = Inst.zext(" << BitWidth << ");\n"
<< " if (Scratch.getBitWidth() != " << BitWidth << ")\n"
<< " Scratch = Scratch.zext(" << BitWidth << ");\n"
<< " LoadIntFromMemory(Inst, (uint8_t*)&InstBits[opcode * " << NumWords
<< "], " << NumBytes << ");\n"
<< " APInt &Value = Inst;\n"
<< " APInt &op = Scratch;\n"
<< " switch (opcode) {\n";
} else {
o << " const unsigned opcode = MI.getOpcode();\n"
<< " uint64_t Value = InstBits[opcode];\n"
<< " uint64_t op = 0;\n"
<< " (void)op; // suppress warning\n"
<< " switch (opcode) {\n";
}
// Emit each case statement
std::map<std::string, std::vector<std::string>>::iterator IE, EE;
for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
const std::string &Case = IE->first;
std::vector<std::string> &InstList = IE->second;
for (int i = 0, N = InstList.size(); i < N; i++) {
if (i) o << "\n";
o << " case " << InstList[i] << ":";
}
o << " {\n";
o << Case;
o << " break;\n"
<< " }\n";
}
// Default case: unhandled opcode
o << " default:\n"
<< " std::string msg;\n"
<< " raw_string_ostream Msg(msg);\n"
<< " Msg << \"Not supported instr: \" << MI;\n"
<< " report_fatal_error(Msg.str());\n"
<< " }\n";
if (UseAPInt)
o << " Inst = Value;\n";
else
o << " return Value;\n";
o << "}\n\n";
const auto &All = SubtargetFeatureInfo::getAll(Records);
std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
SubtargetFeatures.insert(All.begin(), All.end());
o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
<< "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
<< "#include <sstream>\n\n";
// Emit the subtarget feature enumeration.
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
o);
// Emit the name table for error messages.
o << "#ifndef NDEBUG\n";
SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o);
o << "#endif // NDEBUG\n";
// Emit the available features compute function.
SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
Target.getName(), "MCCodeEmitter", "computeAvailableFeatures",
SubtargetFeatures, o);
std::vector<std::vector<Record *>> FeatureBitsets;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
FeatureBitsets.emplace_back();
for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
const auto &I = SubtargetFeatures.find(Predicate);
if (I != SubtargetFeatures.end())
FeatureBitsets.back().push_back(I->second.TheDef);
}
}
llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
const std::vector<Record *> &B) {
if (A.size() < B.size())
return true;
if (A.size() > B.size())
return false;
for (auto Pair : zip(A, B)) {
if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
return true;
if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
return false;
}
return false;
});
FeatureBitsets.erase(
std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
FeatureBitsets.end());
o << "#ifndef NDEBUG\n"
<< "// Feature bitsets.\n"
<< "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
<< " CEFBS_None,\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
o << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
}
o << "};\n\n"
<< "static constexpr FeatureBitset FeatureBitsets[] = {\n"
<< " {}, // CEFBS_None\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
o << " {";
for (const auto &Feature : FeatureBitset) {
const auto &I = SubtargetFeatures.find(Feature);
assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
o << I->second.getEnumBitName() << ", ";
}
o << "},\n";
}
o << "};\n"
<< "#endif // NDEBUG\n\n";
// Emit the predicate verifier.
o << "void " << Target.getName()
<< "MCCodeEmitter::verifyInstructionPredicates(\n"
<< " const MCInst &Inst, const FeatureBitset &AvailableFeatures) const {\n"
<< "#ifndef NDEBUG\n"
<< " static " << getMinimalTypeForRange(FeatureBitsets.size())
<< " RequiredFeaturesRefs[] = {\n";
unsigned InstIdx = 0;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
o << " CEFBS";
unsigned NumPredicates = 0;
for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
const auto &I = SubtargetFeatures.find(Predicate);
if (I != SubtargetFeatures.end()) {
o << '_' << I->second.TheDef->getName();
NumPredicates++;
}
}
if (!NumPredicates)
o << "_None";
o << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
InstIdx++;
}
o << " };\n\n";
o << " assert(Inst.getOpcode() < " << InstIdx << ");\n";
o << " const FeatureBitset &RequiredFeatures = "
"FeatureBitsets[RequiredFeaturesRefs[Inst.getOpcode()]];\n";
o << " FeatureBitset MissingFeatures =\n"
<< " (AvailableFeatures & RequiredFeatures) ^\n"
<< " RequiredFeatures;\n"
<< " if (MissingFeatures.any()) {\n"
<< " std::ostringstream Msg;\n"
<< " Msg << \"Attempting to emit \" << "
"MCII.getName(Inst.getOpcode()).str()\n"
<< " << \" instruction but the \";\n"
<< " for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n"
<< " if (MissingFeatures.test(i))\n"
<< " Msg << SubtargetFeatureNames[i] << \" \";\n"
<< " Msg << \"predicate(s) are not met\";\n"
<< " report_fatal_error(Msg.str());\n"
<< " }\n"
<< "#else\n"
<< "// Silence unused variable warning on targets that don't use MCII for "
"other purposes (e.g. BPF).\n"
<< "(void)MCII;\n"
<< "#endif // NDEBUG\n";
o << "}\n";
o << "#endif\n";
}
} // end anonymous namespace
namespace llvm {
void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) {
emitSourceFileHeader("Machine Code Emitter", OS);
CodeEmitterGen(RK).run(OS);
}
} // end namespace llvm