ConvertVectorToLLVM.cpp
50.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "../PassDetail.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::vector;
template <typename T>
static LLVM::LLVMType getPtrToElementType(T containerType,
LLVMTypeConverter &typeConverter) {
return typeConverter.convertType(containerType.getElementType())
.template cast<LLVM::LLVMType>()
.getPointerTo();
}
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
Value into, int64_t offset) {
auto vectorType = into.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<InsertOp>(loc, from, into, offset);
return rewriter.create<vector::InsertElementOp>(
loc, vectorType, from, into,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
int64_t offset) {
auto vectorType = vector.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<ExtractOp>(loc, vector, offset);
return rewriter.create<vector::ExtractElementOp>(
loc, vectorType.getElementType(), vector,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO: Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront = 0,
unsigned dropBack = 0) {
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
auto range = arrayAttr.getAsRange<IntegerAttr>();
SmallVector<int64_t, 4> res;
res.reserve(arrayAttr.size() - dropFront - dropBack);
for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
it != eit; ++it)
res.push_back((*it).getValue().getSExtValue());
return res;
}
template <typename TransferOp>
LogicalResult getVectorTransferAlignment(LLVMTypeConverter &typeConverter,
TransferOp xferOp, unsigned &align) {
Type elementTy =
typeConverter.convertType(xferOp.getMemRefType().getElementType());
if (!elementTy)
return failure();
auto dataLayout = typeConverter.getDialect()->getLLVMModule().getDataLayout();
align = dataLayout.getPrefTypeAlignment(
elementTy.cast<LLVM::LLVMType>().getUnderlyingType());
return success();
}
static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferReadOp xferOp,
ArrayRef<Value> operands, Value dataPtr) {
unsigned align;
if (failed(getVectorTransferAlignment(typeConverter, xferOp, align)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
return success();
}
static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferReadOp xferOp, ArrayRef<Value> operands,
Value dataPtr, Value mask) {
auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
VectorType fillType = xferOp.getVectorType();
Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill);
Type vecTy = typeConverter.convertType(xferOp.getVectorType());
if (!vecTy)
return failure();
unsigned align;
if (failed(getVectorTransferAlignment(typeConverter, xferOp, align)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
xferOp, vecTy, dataPtr, mask, ValueRange{fill},
rewriter.getI32IntegerAttr(align));
return success();
}
static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferWriteOp xferOp,
ArrayRef<Value> operands, Value dataPtr) {
unsigned align;
if (failed(getVectorTransferAlignment(typeConverter, xferOp, align)))
return failure();
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
align);
return success();
}
static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferWriteOp xferOp, ArrayRef<Value> operands,
Value dataPtr, Value mask) {
unsigned align;
if (failed(getVectorTransferAlignment(typeConverter, xferOp, align)))
return failure();
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
xferOp, adaptor.vector(), dataPtr, mask,
rewriter.getI32IntegerAttr(align));
return success();
}
static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
ArrayRef<Value> operands) {
return TransferReadOpAdaptor(operands);
}
static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
ArrayRef<Value> operands) {
return TransferWriteOpAdaptor(operands);
}
namespace {
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorMatmulOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto matmulOp = cast<vector::MatmulOp>(op);
auto adaptor = vector::MatmulOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(),
adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(),
matmulOp.rhs_columns());
return success();
}
};
/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorFlatTransposeOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto transOp = cast<vector::FlatTransposeOp>(op);
auto adaptor = vector::FlatTransposeOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
transOp, typeConverter.convertType(transOp.res().getType()),
adaptor.matrix(), transOp.rows(), transOp.columns());
return success();
}
};
class VectorReductionOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorReductionOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter,
bool reassociateFP)
: ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context,
typeConverter),
reassociateFPReductions(reassociateFP) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto reductionOp = cast<vector::ReductionOp>(op);
auto kind = reductionOp.kind();
Type eltType = reductionOp.dest().getType();
Type llvmType = typeConverter.convertType(eltType);
if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) {
// Integer reductions: add/mul/min/max/and/or/xor.
if (kind == "add")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>(
op, llvmType, operands[0]);
else if (kind == "mul")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>(
op, llvmType, operands[0]);
else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>(
op, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>(
op, llvmType, operands[0]);
else if (kind == "and")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>(
op, llvmType, operands[0]);
else if (kind == "or")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>(
op, llvmType, operands[0]);
else if (kind == "xor")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>(
op, llvmType, operands[0]);
else
return failure();
return success();
} else if (eltType.isF32() || eltType.isF64()) {
// Floating-point reductions: add/mul/min/max
if (kind == "add") {
// Optional accumulator (or zero).
Value acc = operands.size() > 1 ? operands[1]
: rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmType,
rewriter.getZeroAttr(eltType));
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>(
op, llvmType, acc, operands[0],
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "mul") {
// Optional accumulator (or one).
Value acc = operands.size() > 1
? operands[1]
: rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmType,
rewriter.getFloatAttr(eltType, 1.0));
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>(
op, llvmType, acc, operands[0],
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>(
op, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>(
op, llvmType, operands[0]);
else
return failure();
return success();
}
return failure();
}
private:
const bool reassociateFPReductions;
};
class VectorShuffleOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorShuffleOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ShuffleOpAdaptor(operands);
auto shuffleOp = cast<vector::ShuffleOp>(op);
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = typeConverter.convertType(vectorType);
auto maskArrayAttr = shuffleOp.mask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
assert(v1Type.getRank() == rank);
assert(v2Type.getRank() == rank);
int64_t v1Dim = v1Type.getDimSize(0);
// For rank 1, where both operands have *exactly* the same vector type,
// there is direct shuffle support in LLVM. Use it!
if (rank == 1 && v1Type == v2Type) {
Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
rewriter.replaceOp(op, shuffle);
return success();
}
// For all other cases, insert the individual values individually.
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (auto en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.v1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.v2();
}
Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType,
rank, extPos);
insert = insertOne(rewriter, typeConverter, loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(op, insert);
return success();
}
};
class VectorExtractElementOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExtractElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::ExtractElementOpAdaptor(operands);
auto extractEltOp = cast<vector::ExtractElementOp>(op);
auto vectorType = extractEltOp.getVectorType();
auto llvmType = typeConverter.convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
op, llvmType, adaptor.vector(), adaptor.position());
return success();
}
};
class VectorExtractOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExtractOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ExtractOpAdaptor(operands);
auto extractOp = cast<vector::ExtractOp>(op);
auto vectorType = extractOp.getVectorType();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter.convertType(resultType);
auto positionArrayAttr = extractOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(op, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
auto oneDVectorType = reducedVectorTypeBack(vectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(op, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">)
/// -> !llvm<"<8 x float>">
/// ```
class VectorFMAOp1DConversion : public ConvertToLLVMPattern {
public:
explicit VectorFMAOp1DConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::FMAOpAdaptor(operands);
vector::FMAOp fmaOp = cast<vector::FMAOp>(op);
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() != 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(),
adaptor.rhs(), adaptor.acc());
return success();
}
};
class VectorInsertElementOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorInsertElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::InsertElementOpAdaptor(operands);
auto insertEltOp = cast<vector::InsertElementOp>(op);
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter.convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
return success();
}
};
class VectorInsertOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorInsertOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::InsertOpAdaptor(operands);
auto insertOp = cast<vector::InsertOp>(op);
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter.convertType(destVectorType);
auto positionArrayAttr = insertOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, llvmResultType, adaptor.dest(), adaptor.source(),
positionArrayAttr);
rewriter.replaceOp(op, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.dest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
adaptor.source(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
adaptor.dest(), inserted,
nMinusOnePositionAttrs);
}
rewriter.replaceOp(op, inserted);
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
// When ranks are different, InsertStridedSlice needs to extract a properly
// ranked vector from the destination vector into which to insert. This pattern
// only takes care of this part and forwards the rest of the conversion to
// another pattern that converts InsertStridedSlice for operands of the same
// rank.
//
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have different ranks. In this case:
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpDifferentRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
auto loc = op.getLoc();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff == 0)
return failure();
int64_t rankRest = dstType.getRank() - rankDiff;
// Extract / insert the subvector of matching rank and InsertStridedSlice
// on it.
Value extracted =
rewriter.create<ExtractOp>(loc, op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
// A different pattern will kick in for InsertStridedSlice with matching
// ranks.
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
loc, op.source(), extracted,
getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
getI64SubArray(op.strides(), /*dropFront=*/0));
rewriter.replaceOpWithNewOp<InsertOp>(
op, stridedSliceInnerOp.getResult(), op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
return success();
}
};
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have the same rank. In this case, we reduce
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpSameRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff != 0)
return failure();
if (srcType == dstType) {
rewriter.replaceOp(op, op.source());
return success();
}
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = srcType.getShape().front();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
Value res = op.dest();
// For each slice of the source vector along the most major dimension.
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
// 1. extract the proper subvector (or element) from source
Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
if (extractedSource.getType().isa<VectorType>()) {
// 2. If we have a vector, extract the proper subvector from destination
// Otherwise we are at the element level and no need to recurse.
Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
// smaller rank.
extractedSource = rewriter.create<InsertStridedSliceOp>(
loc, extractedSource, extractedDest,
getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
}
// 4. Insert the extractedSource into the res vector.
res = insertOne(rewriter, loc, extractedSource, res, off);
}
rewriter.replaceOp(op, res);
return success();
}
/// This pattern creates recursive InsertStridedSliceOp, but the recursion is
/// bounded as the rank is strictly decreasing.
bool hasBoundedRewriteRecursion() const final { return true; }
};
class VectorTypeCastOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorTypeCastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType =
castOp.getResult().getType().cast<MemRefType>();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
operands[0].getType().dyn_cast<LLVM::LLVMType>();
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
return failure();
MemRefDescriptor sourceMemRef(operands[0]);
auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMType>();
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
return failure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(sourceMemRefType, strides, offset);
bool isContiguous = (strides.back() == 1);
if (isContiguous) {
auto sizes = sourceMemRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
isContiguous = false;
break;
}
}
}
// Only contiguous source tensors supported atm.
if (failed(successStrides) || !isContiguous)
return failure();
auto int64Ty = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(op, {desc});
return success();
}
};
/// Conversion pattern that converts a 1-D vector transfer read/write op in a
/// sequence of:
/// 1. Bitcast or addrspacecast to vector form.
/// 2. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
/// 3. Create a mask where offsetVector is compared against memref upper bound.
/// 4. Rewrite op as a masked read or write.
template <typename ConcreteOp>
class VectorTransferConversion : public ConvertToLLVMPattern {
public:
explicit VectorTransferConversion(MLIRContext *context,
LLVMTypeConverter &typeConv)
: ConvertToLLVMPattern(ConcreteOp::getOperationName(), context,
typeConv) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto xferOp = cast<ConcreteOp>(op);
auto adaptor = getTransferOpAdapter(xferOp, operands);
if (xferOp.getVectorType().getRank() > 1 ||
llvm::size(xferOp.indices()) == 0)
return failure();
if (xferOp.permutation_map() !=
AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
xferOp.getVectorType().getRank(),
op->getContext()))
return failure();
auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
Location loc = op->getLoc();
Type i64Type = rewriter.getIntegerType(64);
MemRefType memRefType = xferOp.getMemRefType();
// 1. Get the source/dst address as an LLVM vector pointer.
// The vector pointer would always be on address space 0, therefore
// addrspacecast shall be used when source/dst memrefs are not on
// address space 0.
// TODO: support alignment when possible.
Value dataPtr = getDataPtr(loc, memRefType, adaptor.memref(),
adaptor.indices(), rewriter, getModule());
auto vecTy =
toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>();
Value vectorDataPtr;
if (memRefType.getMemorySpace() == 0)
vectorDataPtr =
rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr);
else
vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc, vecTy.getPointerTo(), dataPtr);
if (!xferOp.isMaskedDim(0))
return replaceTransferOpWithLoadOrStore(rewriter, typeConverter, loc,
xferOp, operands, vectorDataPtr);
// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
unsigned vecWidth = vecTy.getVectorNumElements();
VectorType vectorCmpType = VectorType::get(vecWidth, i64Type);
SmallVector<int64_t, 8> indices;
indices.reserve(vecWidth);
for (unsigned i = 0; i < vecWidth; ++i)
indices.push_back(i);
Value linearIndices = rewriter.create<ConstantOp>(
loc, vectorCmpType,
DenseElementsAttr::get(vectorCmpType, ArrayRef<int64_t>(indices)));
linearIndices = rewriter.create<LLVM::DialectCastOp>(
loc, toLLVMTy(vectorCmpType), linearIndices);
// 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
// TODO: when the leaf transfer rank is k > 1 we need the last
// `k` dimensions here.
unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
Value offsetIndex = *(xferOp.indices().begin() + lastIndex);
offsetIndex = rewriter.create<IndexCastOp>(loc, i64Type, offsetIndex);
Value base = rewriter.create<SplatOp>(loc, vectorCmpType, offsetIndex);
Value offsetVector = rewriter.create<AddIOp>(loc, base, linearIndices);
// 4. Let dim the memref dimension, compute the vector comparison mask:
// [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex);
dim = rewriter.create<IndexCastOp>(loc, i64Type, dim);
dim = rewriter.create<SplatOp>(loc, vectorCmpType, dim);
Value mask =
rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, offsetVector, dim);
mask = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(mask.getType()),
mask);
// 5. Rewrite as a masked read / write.
return replaceTransferOpWithMasked(rewriter, typeConverter, loc, xferOp,
operands, vectorDataPtr, mask);
}
};
class VectorPrintOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorPrintOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context,
typeConverter) {}
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto printOp = cast<vector::PrintOp>(op);
auto adaptor = vector::PrintOpAdaptor(operands);
Type printType = printOp.getPrintType();
if (typeConverter.convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support (currently just Float/Double).
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
int64_t rank = vectorType ? vectorType.getRank() : 0;
Operation *printer;
if (eltType.isSignlessInteger(1) || eltType.isSignlessInteger(32))
printer = getPrintI32(op);
else if (eltType.isSignlessInteger(64))
printer = getPrintI64(op);
else if (eltType.isF32())
printer = getPrintFloat(op);
else if (eltType.isF64())
printer = getPrintDouble(op);
else
return failure();
// Unroll vector into elementary print calls.
emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
emitCall(rewriter, op->getLoc(), getPrintNewline(op));
rewriter.eraseOp(op);
return success();
}
private:
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, VectorType vectorType, Operation *printer,
int64_t rank) const {
Location loc = op->getLoc();
if (rank == 0) {
if (value.getType() ==
LLVM::LLVMType::getInt1Ty(typeConverter.getDialect())) {
// Convert i1 (bool) to i32 so we can use the print_i32 method.
// This avoids the need for a print_i1 method with an unclear ABI.
auto i32Type = LLVM::LLVMType::getInt32Ty(typeConverter.getDialect());
auto trueVal = rewriter.create<ConstantOp>(
loc, i32Type, rewriter.getI32IntegerAttr(1));
auto falseVal = rewriter.create<ConstantOp>(
loc, i32Type, rewriter.getI32IntegerAttr(0));
value = rewriter.create<SelectOp>(loc, value, trueVal, falseVal);
}
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc, getPrintOpen(op));
Operation *printComma = getPrintComma(op);
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType =
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
auto llvmType = typeConverter.convertType(
rank > 1 ? reducedType : vectorType.getElementType());
Value nestedVal =
extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, getPrintClose(op));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
rewriter.getSymbolRefAttr(ref), params);
}
// Helper for printer method declaration (first hit) and lookup.
static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
StringRef name, ArrayRef<LLVM::LLVMType> params) {
auto module = op->getParentOfType<ModuleOp>();
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
if (func)
return func;
OpBuilder moduleBuilder(module.getBodyRegion());
return moduleBuilder.create<LLVM::LLVMFuncOp>(
op->getLoc(), name,
LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
params, /*isVarArg=*/false));
}
// Helpers for method names.
Operation *getPrintI32(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_i32",
LLVM::LLVMType::getInt32Ty(dialect));
}
Operation *getPrintI64(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_i64",
LLVM::LLVMType::getInt64Ty(dialect));
}
Operation *getPrintFloat(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_f32",
LLVM::LLVMType::getFloatTy(dialect));
}
Operation *getPrintDouble(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_f64",
LLVM::LLVMType::getDoubleTy(dialect));
}
Operation *getPrintOpen(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_open", {});
}
Operation *getPrintClose(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_close", {});
}
Operation *getPrintComma(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_comma", {});
}
Operation *getPrintNewline(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_newline", {});
}
};
/// Progressive lowering of ExtractStridedSliceOp to either:
/// 1. extractelement + insertelement for the 1-D case
/// 2. extract + optional strided_slice + insert for the n-D case.
class VectorStridedSliceOpConversion
: public OpRewritePattern<ExtractStridedSliceOp> {
public:
using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getResult().getType().cast<VectorType>();
assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
auto elemType = dstType.getElementType();
assert(elemType.isSignlessIntOrIndexOrFloat());
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
Value extracted = extractOne(rewriter, loc, op.vector(), off);
if (op.offsets().getValue().size() > 1) {
extracted = rewriter.create<ExtractStridedSliceOp>(
loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.sizes(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
}
res = insertOne(rewriter, loc, extracted, res, idx);
}
rewriter.replaceOp(op, {res});
return success();
}
/// This pattern creates recursive ExtractStridedSliceOp, but the recursion is
/// bounded as the rank is strictly decreasing.
bool hasBoundedRewriteRecursion() const final { return true; }
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
bool reassociateFPReductions) {
MLIRContext *ctx = converter.getDialect()->getContext();
// clang-format off
patterns.insert<VectorFMAOpNDRewritePattern,
VectorInsertStridedSliceOpDifferentRankRewritePattern,
VectorInsertStridedSliceOpSameRankRewritePattern,
VectorStridedSliceOpConversion>(ctx);
patterns.insert<VectorReductionOpConversion>(
ctx, converter, reassociateFPReductions);
patterns
.insert<VectorShuffleOpConversion,
VectorExtractElementOpConversion,
VectorExtractOpConversion,
VectorFMAOp1DConversion,
VectorInsertElementOpConversion,
VectorInsertOpConversion,
VectorPrintOpConversion,
VectorTransferConversion<TransferReadOp>,
VectorTransferConversion<TransferWriteOp>,
VectorTypeCastOpConversion>(ctx, converter);
// clang-format on
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.insert<VectorMatmulOpConversion>(ctx, converter);
patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter);
}
namespace {
struct LowerVectorToLLVMPass
: public ConvertVectorToLLVMBase<LowerVectorToLLVMPass> {
LowerVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
this->reassociateFPReductions = options.reassociateFPReductions;
}
void runOnOperation() override;
};
} // namespace
void LowerVectorToLLVMPass::runOnOperation() {
// Perform progressive lowering of operations on slices and
// all contraction operations. Also applies folding and DCE.
{
OwningRewritePatternList patterns;
populateVectorToVectorCanonicalizationPatterns(patterns, &getContext());
populateVectorSlicesLoweringPatterns(patterns, &getContext());
populateVectorContractLoweringPatterns(patterns, &getContext());
applyPatternsAndFoldGreedily(getOperation(), patterns);
}
// Convert to the LLVM IR dialect.
LLVMTypeConverter converter(&getContext());
OwningRewritePatternList patterns;
populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns,
reassociateFPReductions);
populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(getOperation(), target, patterns))) {
signalPassFailure();
}
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
return std::make_unique<LowerVectorToLLVMPass>(options);
}