system.cpp
39.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
/*===--------------------------------------------------------------------------
* ATMI (Asynchronous Task and Memory Interface)
*
* This file is distributed under the MIT License. See LICENSE.txt for details.
*===------------------------------------------------------------------------*/
#include <gelf.h>
#include <libelf.h>
#include <cassert>
#include <cstdarg>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <set>
#include <string>
#include "internal.h"
#include "machine.h"
#include "rt.h"
#include "msgpack.h"
#define msgpackErrorCheck(msg, status) \
if (status != 0) { \
printf("[%s:%d] %s failed\n", __FILE__, __LINE__, #msg); \
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; \
} else { \
}
typedef unsigned char *address;
/*
* Note descriptors.
*/
typedef struct {
uint32_t n_namesz; /* Length of note's name. */
uint32_t n_descsz; /* Length of note's value. */
uint32_t n_type; /* Type of note. */
// then name
// then padding, optional
// then desc, at 4 byte alignment (not 8, despite being elf64)
} Elf_Note;
// The following include file and following structs/enums
// have been replicated on a per-use basis below. For example,
// llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
// but we may care only about kernargSegmentSize_ for now, so
// we just include that field in our KernelMD implementation. We
// chose this approach to replicate in order to avoid forcing
// a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
// #include "llvm/Support/AMDGPUMetadata.h"
// typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
// typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
// typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
// using llvm::AMDGPU::HSAMD::AccessQualifier;
// using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
// using llvm::AMDGPU::HSAMD::ValueKind;
// using llvm::AMDGPU::HSAMD::ValueType;
class KernelArgMD {
public:
enum class ValueKind {
HiddenGlobalOffsetX,
HiddenGlobalOffsetY,
HiddenGlobalOffsetZ,
HiddenNone,
HiddenPrintfBuffer,
HiddenDefaultQueue,
HiddenCompletionAction,
HiddenMultiGridSyncArg,
HiddenHostcallBuffer,
Unknown
};
KernelArgMD()
: name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
align_(0), valueKind_(ValueKind::Unknown) {}
// fields
std::string name_;
std::string typeName_;
uint32_t size_;
uint32_t offset_;
uint32_t align_;
ValueKind valueKind_;
};
class KernelMD {
public:
KernelMD() : kernargSegmentSize_(0ull) {}
// fields
uint64_t kernargSegmentSize_;
};
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
// Including only those fields that are relevant to the runtime.
// {"ByValue", KernelArgMD::ValueKind::ByValue},
// {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"DynamicSharedPointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"Sampler", KernelArgMD::ValueKind::Sampler},
// {"Image", KernelArgMD::ValueKind::Image},
// {"Pipe", KernelArgMD::ValueKind::Pipe},
// {"Queue", KernelArgMD::ValueKind::Queue},
{"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
{"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
{"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
// v3
// {"by_value", KernelArgMD::ValueKind::ByValue},
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"dynamic_shared_pointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"sampler", KernelArgMD::ValueKind::Sampler},
// {"image", KernelArgMD::ValueKind::Image},
// {"pipe", KernelArgMD::ValueKind::Pipe},
// {"queue", KernelArgMD::ValueKind::Queue},
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"hidden_completion_action",
KernelArgMD::ValueKind::HiddenCompletionAction},
{"hidden_multigrid_sync_arg",
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
};
// public variables -- TODO(ashwinma) move these to a runtime object?
atmi_machine_t g_atmi_machine;
ATLMachine g_atl_machine;
hsa_region_t atl_gpu_kernarg_region;
std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
hsa_region_t atl_cpu_kernarg_region;
static std::vector<hsa_executable_t> g_executables;
std::map<std::string, std::string> KernelNameMap;
std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
bool g_atmi_initialized = false;
bool g_atmi_hostcall_required = false;
struct timespec context_init_time;
int context_init_time_init = 0;
/*
atlc is all internal global values.
The structure atl_context_t is defined in atl_internal.h
Most references will use the global structure prefix atlc.
However the pointer value atlc_p-> is equivalent to atlc.
*/
atl_context_t atlc = {.struct_initialized = false};
atl_context_t *atlc_p = NULL;
namespace core {
/* Machine Info */
atmi_machine_t *Runtime::GetMachineInfo() {
if (!atlc.g_hsa_initialized)
return NULL;
return &g_atmi_machine;
}
void atl_set_atmi_initialized() {
// FIXME: thread safe? locks?
g_atmi_initialized = true;
}
void atl_reset_atmi_initialized() {
// FIXME: thread safe? locks?
g_atmi_initialized = false;
}
bool atl_is_atmi_initialized() { return g_atmi_initialized; }
void allow_access_to_all_gpu_agents(void *ptr) {
hsa_status_t err;
std::vector<ATLGPUProcessor> &gpu_procs =
g_atl_machine.processors<ATLGPUProcessor>();
std::vector<hsa_agent_t> agents;
for (uint32_t i = 0; i < gpu_procs.size(); i++) {
agents.push_back(gpu_procs[i].agent());
}
err = hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
ErrorCheck(Allow agents ptr access, err);
}
atmi_status_t Runtime::Initialize() {
atmi_devtype_t devtype = ATMI_DEVTYPE_GPU;
if (atl_is_atmi_initialized())
return ATMI_STATUS_SUCCESS;
if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) {
ATMIErrorCheck(GPU context init, atl_init_gpu_context());
}
atl_set_atmi_initialized();
return ATMI_STATUS_SUCCESS;
}
atmi_status_t Runtime::Finalize() {
// TODO(ashwinma): Finalize all processors, queues, signals, kernarg memory
// regions
hsa_status_t err;
for (uint32_t i = 0; i < g_executables.size(); i++) {
err = hsa_executable_destroy(g_executables[i]);
ErrorCheck(Destroying executable, err);
}
for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) {
SymbolInfoTable[i].clear();
}
SymbolInfoTable.clear();
for (uint32_t i = 0; i < KernelInfoTable.size(); i++) {
KernelInfoTable[i].clear();
}
KernelInfoTable.clear();
atl_reset_atmi_initialized();
err = hsa_shut_down();
ErrorCheck(Shutting down HSA, err);
return ATMI_STATUS_SUCCESS;
}
void atmi_init_context_structs() {
atlc_p = &atlc;
atlc.struct_initialized = true; /* This only gets called one time */
atlc.g_hsa_initialized = false;
atlc.g_gpu_initialized = false;
atlc.g_tasks_initialized = false;
}
// Implement memory_pool iteration function
static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
void *data) {
ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
hsa_status_t err = HSA_STATUS_SUCCESS;
// Check if the memory_pool is allowed to allocate, i.e. do not return group
// memory
bool alloc_allowed = false;
err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
&alloc_allowed);
ErrorCheck(Alloc allowed in memory pool check, err);
if (alloc_allowed) {
uint32_t global_flag = 0;
err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
ErrorCheck(Get memory pool info, err);
if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
proc->addMemory(new_mem);
if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
atl_gpu_kernarg_pools.push_back(memory_pool);
}
} else {
ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
proc->addMemory(new_mem);
}
}
return err;
}
static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
hsa_status_t err = HSA_STATUS_SUCCESS;
hsa_device_type_t device_type;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
ErrorCheck(Get device type info, err);
switch (device_type) {
case HSA_DEVICE_TYPE_CPU: {
;
ATLCPUProcessor new_proc(agent);
err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
&new_proc);
ErrorCheck(Iterate all memory pools, err);
g_atl_machine.addProcessor(new_proc);
} break;
case HSA_DEVICE_TYPE_GPU: {
;
hsa_profile_t profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
ErrorCheck(Query the agent profile, err);
atmi_devtype_t gpu_type;
gpu_type =
(profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
ATLGPUProcessor new_proc(agent, gpu_type);
err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
&new_proc);
ErrorCheck(Iterate all memory pools, err);
g_atl_machine.addProcessor(new_proc);
} break;
case HSA_DEVICE_TYPE_DSP: {
err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
} break;
}
return err;
}
hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
hsa_region_segment_t segment;
hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
if (segment != HSA_REGION_SEGMENT_GLOBAL) {
return HSA_STATUS_SUCCESS;
}
hsa_region_global_flag_t flags;
hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
*ret = region;
return HSA_STATUS_INFO_BREAK;
}
return HSA_STATUS_SUCCESS;
}
/* Determines if a memory region can be used for kernarg allocations. */
static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
hsa_region_segment_t segment;
hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
if (HSA_REGION_SEGMENT_GLOBAL != segment) {
return HSA_STATUS_SUCCESS;
}
hsa_region_global_flag_t flags;
hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
*ret = region;
return HSA_STATUS_INFO_BREAK;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t init_compute_and_memory() {
hsa_status_t err;
/* Iterate over the agents and pick the gpu agent */
err = hsa_iterate_agents(get_agent_info, NULL);
if (err == HSA_STATUS_INFO_BREAK) {
err = HSA_STATUS_SUCCESS;
}
ErrorCheck(Getting a gpu agent, err);
if (err != HSA_STATUS_SUCCESS)
return err;
/* Init all devices or individual device types? */
std::vector<ATLCPUProcessor> &cpu_procs =
g_atl_machine.processors<ATLCPUProcessor>();
std::vector<ATLGPUProcessor> &gpu_procs =
g_atl_machine.processors<ATLGPUProcessor>();
/* For CPU memory pools, add other devices that can access them directly
* or indirectly */
for (auto &cpu_proc : cpu_procs) {
for (auto &cpu_mem : cpu_proc.memories()) {
hsa_amd_memory_pool_t pool = cpu_mem.memory();
for (auto &gpu_proc : gpu_procs) {
hsa_agent_t agent = gpu_proc.agent();
hsa_amd_memory_pool_access_t access;
hsa_amd_agent_memory_pool_get_info(
agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
if (access != 0) {
// this means not NEVER, but could be YES or NO
// add this memory pool to the proc
gpu_proc.addMemory(cpu_mem);
}
}
}
}
/* FIXME: are the below combinations of procs and memory pools needed?
* all to all compare procs with their memory pools and add those memory
* pools that are accessible by the target procs */
for (auto &gpu_proc : gpu_procs) {
for (auto &gpu_mem : gpu_proc.memories()) {
hsa_amd_memory_pool_t pool = gpu_mem.memory();
for (auto &cpu_proc : cpu_procs) {
hsa_agent_t agent = cpu_proc.agent();
hsa_amd_memory_pool_access_t access;
hsa_amd_agent_memory_pool_get_info(
agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
if (access != 0) {
// this means not NEVER, but could be YES or NO
// add this memory pool to the proc
cpu_proc.addMemory(gpu_mem);
}
}
}
}
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size();
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size();
size_t num_procs = cpu_procs.size() + gpu_procs.size();
// g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs *
// sizeof(atmi_device_t));
atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
malloc(num_procs * sizeof(atmi_device_t)));
int num_iGPUs = 0;
int num_dGPUs = 0;
for (uint32_t i = 0; i < gpu_procs.size(); i++) {
if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
num_iGPUs++;
else
num_dGPUs++;
}
assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
"Number of dGPUs and iGPUs do not add up");
DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs;
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs;
int cpus_begin = 0;
int cpus_end = cpu_procs.size();
int gpus_begin = cpu_procs.size();
int gpus_end = cpu_procs.size() + gpu_procs.size();
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin];
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin];
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin];
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin];
int proc_index = 0;
for (int i = cpus_begin; i < cpus_end; i++) {
all_devices[i].type = cpu_procs[proc_index].type();
std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
int fine_memories_size = 0;
int coarse_memories_size = 0;
DEBUG_PRINT("CPU memory types:\t");
for (auto &memory : memories) {
atmi_memtype_t type = memory.type();
if (type == ATMI_MEMTYPE_FINE_GRAINED) {
fine_memories_size++;
DEBUG_PRINT("Fine\t");
} else {
coarse_memories_size++;
DEBUG_PRINT("Coarse\t");
}
}
DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
proc_index++;
}
proc_index = 0;
for (int i = gpus_begin; i < gpus_end; i++) {
all_devices[i].type = gpu_procs[proc_index].type();
std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
int fine_memories_size = 0;
int coarse_memories_size = 0;
DEBUG_PRINT("GPU memory types:\t");
for (auto &memory : memories) {
atmi_memtype_t type = memory.type();
if (type == ATMI_MEMTYPE_FINE_GRAINED) {
fine_memories_size++;
DEBUG_PRINT("Fine\t");
} else {
coarse_memories_size++;
DEBUG_PRINT("Coarse\t");
}
}
DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
proc_index++;
}
proc_index = 0;
atl_cpu_kernarg_region.handle = (uint64_t)-1;
if (cpu_procs.size() > 0) {
err = hsa_agent_iterate_regions(
cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
if (err == HSA_STATUS_INFO_BREAK) {
err = HSA_STATUS_SUCCESS;
}
err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
: HSA_STATUS_SUCCESS;
ErrorCheck(Finding a CPU kernarg memory region handle, err);
}
/* Find a memory region that supports kernel arguments. */
atl_gpu_kernarg_region.handle = (uint64_t)-1;
if (gpu_procs.size() > 0) {
hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
&atl_gpu_kernarg_region);
err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
: HSA_STATUS_SUCCESS;
ErrorCheck(Finding a kernarg memory region, err);
}
if (num_procs > 0)
return HSA_STATUS_SUCCESS;
else
return HSA_STATUS_ERROR_NOT_INITIALIZED;
}
hsa_status_t init_hsa() {
if (atlc.g_hsa_initialized == false) {
DEBUG_PRINT("Initializing HSA...");
hsa_status_t err = hsa_init();
ErrorCheck(Initializing the hsa runtime, err);
if (err != HSA_STATUS_SUCCESS)
return err;
err = init_compute_and_memory();
if (err != HSA_STATUS_SUCCESS)
return err;
ErrorCheck(After initializing compute and memory, err);
int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
KernelInfoTable.resize(gpu_count);
SymbolInfoTable.resize(gpu_count);
for (uint32_t i = 0; i < SymbolInfoTable.size(); i++)
SymbolInfoTable[i].clear();
for (uint32_t i = 0; i < KernelInfoTable.size(); i++)
KernelInfoTable[i].clear();
atlc.g_hsa_initialized = true;
DEBUG_PRINT("done\n");
}
return HSA_STATUS_SUCCESS;
}
void init_tasks() {
if (atlc.g_tasks_initialized != false)
return;
std::vector<hsa_agent_t> gpu_agents;
int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
for (int gpu = 0; gpu < gpu_count; gpu++) {
atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
gpu_agents.push_back(proc.agent());
}
atlc.g_tasks_initialized = true;
}
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
#if (ROCM_VERSION_MAJOR >= 3) || \
(ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
#else
if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
#endif
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
// memory_fault.agent
// memory_fault.virtual_address
// memory_fault.fault_reason_mask
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
std::stringstream stream;
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
std::string addr("0x" + stream.str());
std::string err_string = "[GPU Memory Error] Addr: " + addr;
err_string += " Reason: ";
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
err_string += "No Idea! ";
} else {
if (memory_fault.fault_reason_mask & 0x00000001)
err_string += "Page not present or supervisor privilege. ";
if (memory_fault.fault_reason_mask & 0x00000010)
err_string += "Write access to a read-only page. ";
if (memory_fault.fault_reason_mask & 0x00000100)
err_string += "Execute access to a page marked NX. ";
if (memory_fault.fault_reason_mask & 0x00001000)
err_string += "Host access only. ";
if (memory_fault.fault_reason_mask & 0x00010000)
err_string += "ECC failure (if supported by HW). ";
if (memory_fault.fault_reason_mask & 0x00100000)
err_string += "Can't determine the exact fault address. ";
}
fprintf(stderr, "%s\n", err_string.c_str());
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
atmi_status_t atl_init_gpu_context() {
if (atlc.struct_initialized == false)
atmi_init_context_structs();
if (atlc.g_gpu_initialized != false)
return ATMI_STATUS_SUCCESS;
hsa_status_t err;
err = init_hsa();
if (err != HSA_STATUS_SUCCESS)
return ATMI_STATUS_ERROR;
if (context_init_time_init == 0) {
clock_gettime(CLOCK_MONOTONIC_RAW, &context_init_time);
context_init_time_init = 1;
}
err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
ErrorCheck(Registering the system for memory faults, err);
init_tasks();
atlc.g_gpu_initialized = true;
return ATMI_STATUS_SUCCESS;
}
bool isImplicit(KernelArgMD::ValueKind value_kind) {
switch (value_kind) {
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
case KernelArgMD::ValueKind::HiddenNone:
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
case KernelArgMD::ValueKind::HiddenDefaultQueue:
case KernelArgMD::ValueKind::HiddenCompletionAction:
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
return true;
default:
return false;
}
}
static std::pair<unsigned char *, unsigned char *>
find_metadata(void *binary, size_t binSize) {
std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
Elf *e = elf_memory(static_cast<char *>(binary), binSize);
if (elf_kind(e) != ELF_K_ELF) {
return failure;
}
size_t numpHdrs;
if (elf_getphdrnum(e, &numpHdrs) != 0) {
return failure;
}
for (size_t i = 0; i < numpHdrs; ++i) {
GElf_Phdr pHdr;
if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
continue;
}
// Look for the runtime metadata note
if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
// Iterate over the notes in this segment
address ptr = (address)binary + pHdr.p_offset;
address segmentEnd = ptr + pHdr.p_filesz;
while (ptr < segmentEnd) {
Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
address name = (address)¬e[1];
if (note->n_type == 7 || note->n_type == 8) {
return failure;
} else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
note->n_namesz == sizeof "AMD" &&
!memcmp(name, "AMD", note->n_namesz)) {
// code object v2 uses yaml metadata, no longer supported
return failure;
} else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
note->n_namesz == sizeof "AMDGPU" &&
!memcmp(name, "AMDGPU", note->n_namesz)) {
// n_descsz = 485
// value is padded to 4 byte alignment, may want to move end up to
// match
size_t offset = sizeof(uint32_t) * 3 /* fields */
+ sizeof("AMDGPU") /* name */
+ 1 /* padding to 4 byte alignment */;
// Including the trailing padding means both pointers are 4 bytes
// aligned, which may be useful later.
unsigned char *metadata_start = (unsigned char *)ptr + offset;
unsigned char *metadata_end =
metadata_start + core::alignUp(note->n_descsz, 4);
return {metadata_start, metadata_end};
}
ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
core::alignUp(note->n_descsz, sizeof(int));
}
}
}
return failure;
}
namespace {
int map_lookup_array(msgpack::byte_range message, const char *needle,
msgpack::byte_range *res, uint64_t *size) {
unsigned count = 0;
struct s : msgpack::functors_defaults<s> {
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
unsigned &count;
uint64_t *size;
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
count++;
*size = N;
return bytes.end;
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
// If the message is an array, record number of
// elements in *size
msgpack::handle_msgpack<s>(value, {count, size});
// return the whole array
*res = value;
}
});
// Only claim success if exactly one key/array pair matched
return count != 1;
}
int map_lookup_string(msgpack::byte_range message, const char *needle,
std::string *res) {
unsigned count = 0;
struct s : public msgpack::functors_defaults<s> {
s(unsigned &count, std::string *res) : count(count), res(res) {}
unsigned &count;
std::string *res;
void handle_string(size_t N, const unsigned char *str) {
count++;
*res = std::string(str, str + N);
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::handle_msgpack<s>(value, {count, res});
}
});
return count != 1;
}
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
uint64_t *res) {
unsigned count = 0;
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::foronly_unsigned(value, [&](uint64_t x) {
count++;
*res = x;
});
}
});
return count != 1;
}
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
msgpack::byte_range *res) {
int rc = 1;
uint64_t i = 0;
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
if (i == elt) {
*res = value;
rc = 0;
}
i++;
});
return rc;
}
int populate_kernelArgMD(msgpack::byte_range args_element,
KernelArgMD *kernelarg) {
using namespace msgpack;
int error = 0;
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
if (message_is_string(key, ".name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->name_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".type_name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->typeName_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".size")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
} else if (message_is_string(key, ".offset")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
} else if (message_is_string(key, ".value_kind")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
std::string s = std::string(str, str + N);
auto itValueKind = ArgValueKind.find(s);
if (itValueKind != ArgValueKind.end()) {
kernelarg->valueKind_ = itValueKind->second;
}
});
}
});
return error;
}
} // namespace
static hsa_status_t get_code_object_custom_metadata(void *binary,
size_t binSize, int gpu) {
// parse code object with different keys from v2
// also, the kernel name is not the same as the symbol name -- so a
// symbol->name map is needed
std::pair<unsigned char *, unsigned char *> metadata =
find_metadata(binary, binSize);
if (!metadata.first) {
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
uint64_t kernelsSize = 0;
int msgpack_errors = 0;
msgpack::byte_range kernel_array;
msgpack_errors =
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
&kernel_array, &kernelsSize);
msgpackErrorCheck(kernels lookup in program metadata, msgpack_errors);
for (size_t i = 0; i < kernelsSize; i++) {
assert(msgpack_errors == 0);
std::string kernelName;
std::string languageName;
std::string symbolName;
msgpack::byte_range element;
msgpack_errors += array_lookup_element(kernel_array, i, &element);
msgpackErrorCheck(element lookup in kernel metadata, msgpack_errors);
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
msgpack_errors += map_lookup_string(element, ".language", &languageName);
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
msgpackErrorCheck(strings lookup in kernel metadata, msgpack_errors);
atl_kernel_info_t info = {0, 0, 0, 0, 0, {}, {}, {}};
size_t kernel_explicit_args_size = 0;
uint64_t kernel_segment_size;
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
&kernel_segment_size);
msgpackErrorCheck(kernarg segment size metadata lookup in kernel metadata,
msgpack_errors);
// create a map from symbol to name
DEBUG_PRINT("Kernel symbol %s; Name: %s; Size: %lu\n", symbolName.c_str(),
kernelName.c_str(), kernel_segment_size);
KernelNameMap[symbolName] = kernelName;
bool hasHiddenArgs = false;
if (kernel_segment_size > 0) {
uint64_t argsSize;
size_t offset = 0;
msgpack::byte_range args_array;
msgpack_errors +=
map_lookup_array(element, ".args", &args_array, &argsSize);
msgpackErrorCheck(kernel args metadata lookup in kernel metadata,
msgpack_errors);
info.num_args = argsSize;
for (size_t i = 0; i < argsSize; ++i) {
KernelArgMD lcArg;
msgpack::byte_range args_element;
msgpack_errors += array_lookup_element(args_array, i, &args_element);
msgpackErrorCheck(iterate args map in kernel args metadata,
msgpack_errors);
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
msgpackErrorCheck(iterate args map in kernel args metadata,
msgpack_errors);
// TODO(ashwinma): should the below population actions be done only for
// non-implicit args?
// populate info with sizes and offsets
info.arg_sizes.push_back(lcArg.size_);
// v3 has offset field and not align field
size_t new_offset = lcArg.offset_;
size_t padding = new_offset - offset;
offset = new_offset;
info.arg_offsets.push_back(lcArg.offset_);
DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
lcArg.size_, lcArg.offset_);
offset += lcArg.size_;
// check if the arg is a hidden/implicit arg
// this logic assumes that all hidden args are 8-byte aligned
if (!isImplicit(lcArg.valueKind_)) {
kernel_explicit_args_size += lcArg.size_;
} else {
hasHiddenArgs = true;
}
kernel_explicit_args_size += padding;
}
}
// add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
// in ATMI, do not count the compiler set implicit args, but set your own
// implicit args by discounting the compiler set implicit args
info.kernel_segment_size =
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
sizeof(atmi_implicit_args_t);
DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
kernel_segment_size, info.kernel_segment_size);
// kernel received, now add it to the kernel info table
KernelInfoTable[gpu][kernelName] = info;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t populate_InfoTables(hsa_executable_t executable,
hsa_executable_symbol_t symbol,
void *data) {
int gpu = *static_cast<int *>(data);
hsa_symbol_kind_t type;
uint32_t name_length;
hsa_status_t err;
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
&type);
ErrorCheck(Symbol info extraction, err);
DEBUG_PRINT("Exec Symbol type: %d\n", type);
if (type == HSA_SYMBOL_KIND_KERNEL) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
ErrorCheck(Symbol info extraction, err);
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
ErrorCheck(Symbol info extraction, err);
name[name_length] = 0;
if (KernelNameMap.find(std::string(name)) == KernelNameMap.end()) {
// did not find kernel name in the kernel map; this can happen only
// if the ROCr API for getting symbol info (name) is different from
// the comgr method of getting symbol info
ErrorCheck(Invalid kernel name, HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
}
atl_kernel_info_t info;
std::string kernelName = KernelNameMap[std::string(name)];
// by now, the kernel info table should already have an entry
// because the non-ROCr custom code object parsing is called before
// iterating over the code object symbols using ROCr
if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) {
ErrorCheck(Finding the entry kernel info table,
HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
}
// found, so assign and update
info = KernelInfoTable[gpu][kernelName];
/* Extract dispatch information from the symbol */
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
&(info.kernel_object));
ErrorCheck(Extracting the symbol from the executable, err);
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
&(info.group_segment_size));
ErrorCheck(Extracting the group segment size from the executable, err);
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
&(info.private_segment_size));
ErrorCheck(Extracting the private segment from the executable, err);
DEBUG_PRINT(
"Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
"kernarg\n",
kernelName.c_str(), info.kernel_object, info.group_segment_size,
info.private_segment_size, info.kernel_segment_size);
// assign it back to the kernel info table
KernelInfoTable[gpu][kernelName] = info;
free(name);
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
ErrorCheck(Symbol info extraction, err);
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
ErrorCheck(Symbol info extraction, err);
name[name_length] = 0;
atl_symbol_info_t info;
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
ErrorCheck(Symbol info address extraction, err);
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
ErrorCheck(Symbol info size extraction, err);
atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0);
DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
info.size);
register_allocation(reinterpret_cast<void *>(info.addr), (size_t)info.size,
place);
SymbolInfoTable[gpu][std::string(name)] = info;
if (strcmp(name, "needs_hostcall_buffer") == 0)
g_atmi_hostcall_required = true;
free(name);
} else {
DEBUG_PRINT("Symbol is an indirect function\n");
}
return HSA_STATUS_SUCCESS;
}
atmi_status_t Runtime::RegisterModuleFromMemory(
void *module_bytes, size_t module_size, atmi_place_t place,
atmi_status_t (*on_deserialized_data)(void *data, size_t size,
void *cb_state),
void *cb_state) {
hsa_status_t err;
int gpu = place.device_id;
assert(gpu >= 0);
DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
hsa_agent_t agent = proc.agent();
hsa_executable_t executable = {0};
hsa_profile_t agent_profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
ErrorCheck(Query the agent profile, err);
// FIXME: Assume that every profile is FULL until we understand how to build
// GCN with base profile
agent_profile = HSA_PROFILE_FULL;
/* Create the empty executable. */
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
&executable);
ErrorCheck(Create the executable, err);
bool module_load_success = false;
do // Existing control flow used continue, preserve that for this patch
{
{
// Some metadata info is not available through ROCr API, so use custom
// code object metadata parsing to collect such metadata info
err = get_code_object_custom_metadata(module_bytes, module_size, gpu);
ErrorCheckAndContinue(Getting custom code object metadata, err);
// Deserialize code object.
hsa_code_object_t code_object = {0};
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
&code_object);
ErrorCheckAndContinue(Code Object Deserialization, err);
assert(0 != code_object.handle);
// Mutating the device image here avoids another allocation & memcpy
void *code_object_alloc_data =
reinterpret_cast<void *>(code_object.handle);
atmi_status_t atmi_err =
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
ATMIErrorCheck(Error in deserialized_data callback, atmi_err);
/* Load the code object. */
err =
hsa_executable_load_code_object(executable, agent, code_object, NULL);
ErrorCheckAndContinue(Loading the code object, err);
// cannot iterate over symbols until executable is frozen
}
module_load_success = true;
} while (0);
DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
if (module_load_success) {
/* Freeze the executable; it can now be queried for symbols. */
err = hsa_executable_freeze(executable, "");
ErrorCheck(Freeze the executable, err);
err = hsa_executable_iterate_symbols(executable, populate_InfoTables,
static_cast<void *>(&gpu));
ErrorCheck(Iterating over symbols for execuatable, err);
// save the executable and destroy during finalize
g_executables.push_back(executable);
return ATMI_STATUS_SUCCESS;
} else {
return ATMI_STATUS_ERROR;
}
}
} // namespace core