no-iv-rewrite.ll
19 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -indvars -S -indvars-predicate-loops=0 | FileCheck %s
;
; Make sure that indvars isn't inserting canonical IVs.
; This is kinda hard to do until linear function test replacement is removed.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
; We should only have 2 IVs.
; sext should be eliminated while preserving gep inboundsness.
define i32 @sum(i32* %arr, i32 %n) nounwind {
; CHECK-LABEL: @sum(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PRECOND:%.*]] = icmp slt i32 0, [[N:%.*]]
; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]]
; CHECK: ph:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[PH]] ]
; CHECK-NEXT: [[S_01:%.*]] = phi i32 [ 0, [[PH]] ], [ [[SINC:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[ARR:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4
; CHECK-NEXT: [[SINC]] = add nsw i32 [[S_01]], [[VAL]]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i32 [ [[SINC]], [[LOOP]] ]
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[S_0_LCSSA:%.*]] = phi i32 [ [[S_LCSSA]], [[EXIT]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: ret i32 [[S_0_LCSSA]]
;
entry:
%precond = icmp slt i32 0, %n
br i1 %precond, label %ph, label %return
ph:
br label %loop
loop:
%i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ]
%s.01 = phi i32 [ 0, %ph ], [ %sinc, %loop ]
%ofs = sext i32 %i.02 to i64
%adr = getelementptr inbounds i32, i32* %arr, i64 %ofs
%val = load i32, i32* %adr
%sinc = add nsw i32 %s.01, %val
%iinc = add nsw i32 %i.02, 1
%cond = icmp slt i32 %iinc, %n
br i1 %cond, label %loop, label %exit
exit:
%s.lcssa = phi i32 [ %sinc, %loop ]
br label %return
return:
%s.0.lcssa = phi i32 [ %s.lcssa, %exit ], [ 0, %entry ]
ret i32 %s.0.lcssa
}
; We should only have 2 IVs.
; %ofs sext should be eliminated while preserving gep inboundsness.
; %vall sext should obviously not be eliminated
define i64 @suml(i32* %arr, i32 %n) nounwind {
; CHECK-LABEL: @suml(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PRECOND:%.*]] = icmp slt i32 0, [[N:%.*]]
; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]]
; CHECK: ph:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[PH]] ]
; CHECK-NEXT: [[S_01:%.*]] = phi i64 [ 0, [[PH]] ], [ [[SINC:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[ARR:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4
; CHECK-NEXT: [[VALL:%.*]] = sext i32 [[VAL]] to i64
; CHECK-NEXT: [[SINC]] = add nsw i64 [[S_01]], [[VALL]]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i64 [ [[SINC]], [[LOOP]] ]
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[S_0_LCSSA:%.*]] = phi i64 [ [[S_LCSSA]], [[EXIT]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: ret i64 [[S_0_LCSSA]]
;
entry:
%precond = icmp slt i32 0, %n
br i1 %precond, label %ph, label %return
ph:
br label %loop
loop:
%i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ]
%s.01 = phi i64 [ 0, %ph ], [ %sinc, %loop ]
%ofs = sext i32 %i.02 to i64
%adr = getelementptr inbounds i32, i32* %arr, i64 %ofs
%val = load i32, i32* %adr
%vall = sext i32 %val to i64
%sinc = add nsw i64 %s.01, %vall
%iinc = add nsw i32 %i.02, 1
%cond = icmp slt i32 %iinc, %n
br i1 %cond, label %loop, label %exit
exit:
%s.lcssa = phi i64 [ %sinc, %loop ]
br label %return
return:
%s.0.lcssa = phi i64 [ %s.lcssa, %exit ], [ 0, %entry ]
ret i64 %s.0.lcssa
}
; It's not indvars' job to perform LICM on %ofs
; Preserve exactly one pointer type IV.
; Don't create any extra adds.
; Preserve gep inboundsness, and don't factor it.
define void @outofbounds(i32* %first, i32* %last, i32 %idx) nounwind {
; CHECK-LABEL: @outofbounds(
; CHECK-NEXT: [[PRECOND:%.*]] = icmp ne i32* [[FIRST:%.*]], [[LAST:%.*]]
; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]]
; CHECK: ph:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[PTRIV:%.*]] = phi i32* [ [[FIRST]], [[PH]] ], [ [[PTRPOST:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[OFS:%.*]] = sext i32 [[IDX:%.*]] to i64
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[PTRIV]], i64 [[OFS]]
; CHECK-NEXT: store i32 3, i32* [[ADR]], align 4
; CHECK-NEXT: [[PTRPOST]] = getelementptr inbounds i32, i32* [[PTRIV]], i32 1
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32* [[PTRPOST]], [[LAST]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: ret void
;
%precond = icmp ne i32* %first, %last
br i1 %precond, label %ph, label %return
ph:
br label %loop
loop:
%ptriv = phi i32* [ %first, %ph ], [ %ptrpost, %loop ]
%ofs = sext i32 %idx to i64
%adr = getelementptr inbounds i32, i32* %ptriv, i64 %ofs
store i32 3, i32* %adr
%ptrpost = getelementptr inbounds i32, i32* %ptriv, i32 1
%cond = icmp ne i32* %ptrpost, %last
br i1 %cond, label %loop, label %exit
exit:
br label %return
return:
ret void
}
%structI = type { i32 }
; Preserve casts
define void @bitcastiv(i32 %start, i32 %limit, i32 %step, %structI* %base)
; CHECK-LABEL: @bitcastiv(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[START:%.*]], [[ENTRY:%.*]] ], [ [[NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[P:%.*]] = phi %structI* [ [[BASE:%.*]], [[ENTRY]] ], [ [[PINC:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr [[STRUCTI:%.*]], %structI* [[P]], i32 0, i32 0
; CHECK-NEXT: store i32 3, i32* [[ADR]], align 4
; CHECK-NEXT: [[PP:%.*]] = bitcast %structI* [[P]] to i32*
; CHECK-NEXT: store i32 4, i32* [[PP]], align 4
; CHECK-NEXT: [[PINC]] = getelementptr [[STRUCTI]], %structI* [[P]], i32 1
; CHECK-NEXT: [[NEXT]] = add i32 [[IV]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[NEXT]], [[LIMIT:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
nounwind
{
entry:
br label %loop
loop:
%iv = phi i32 [%start, %entry], [%next, %loop]
%p = phi %structI* [%base, %entry], [%pinc, %loop]
%adr = getelementptr %structI, %structI* %p, i32 0, i32 0
store i32 3, i32* %adr
%pp = bitcast %structI* %p to i32*
store i32 4, i32* %pp
%pinc = getelementptr %structI, %structI* %p, i32 1
%next = add i32 %iv, 1
%cond = icmp ne i32 %next, %limit
br i1 %cond, label %loop, label %exit
exit:
ret void
}
; Test inserting a truncate at a phi use.
define void @maxvisitor(i32 %limit, i32* %base) nounwind {
; CHECK-LABEL: @maxvisitor(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i32 [[LIMIT:%.*]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i32 [[LIMIT]], i32 1
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[SMAX]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP_INC:%.*]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[MAX:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[MAX_NEXT:%.*]], [[LOOP_INC]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[BASE:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4
; CHECK-NEXT: [[CMP19:%.*]] = icmp sgt i32 [[VAL]], [[MAX]]
; CHECK-NEXT: br i1 [[CMP19]], label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]]
; CHECK: if.then:
; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[INDVARS_IV]] to i32
; CHECK-NEXT: br label [[LOOP_INC]]
; CHECK: if.else:
; CHECK-NEXT: br label [[LOOP_INC]]
; CHECK: loop.inc:
; CHECK-NEXT: [[MAX_NEXT]] = phi i32 [ [[TMP1]], [[IF_THEN]] ], [ [[MAX]], [[IF_ELSE]] ]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %loop.inc ]
%max = phi i32 [ 0, %entry ], [ %max.next, %loop.inc ]
%idxprom = sext i32 %idx to i64
%adr = getelementptr inbounds i32, i32* %base, i64 %idxprom
%val = load i32, i32* %adr
%cmp19 = icmp sgt i32 %val, %max
br i1 %cmp19, label %if.then, label %if.else
if.then:
br label %loop.inc
if.else:
br label %loop.inc
loop.inc:
%max.next = phi i32 [ %idx, %if.then ], [ %max, %if.else ]
%idx.next = add nsw i32 %idx, 1
%cmp = icmp slt i32 %idx.next, %limit
br i1 %cmp, label %loop, label %exit
exit:
ret void
}
; Test an edge case of removing an identity phi that directly feeds
; back to the loop iv.
define void @identityphi(i32 %limit) nounwind {
; CHECK-LABEL: @identityphi(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: br i1 undef, label [[IF_THEN:%.*]], label [[CONTROL:%.*]]
; CHECK: if.then:
; CHECK-NEXT: br label [[CONTROL]]
; CHECK: control:
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 0, [[LIMIT:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [ %iv.next, %control ]
br i1 undef, label %if.then, label %control
if.then:
br label %control
control:
%iv.next = phi i32 [ %iv, %loop ], [ undef, %if.then ]
%cmp = icmp slt i32 %iv.next, %limit
br i1 %cmp, label %loop, label %exit
exit:
ret void
}
; Test cloning an or, which is not an OverflowBinaryOperator.
define i64 @cloneOr(i32 %limit, i64* %base) nounwind {
; CHECK-LABEL: @cloneOr(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[HALFLIM:%.*]] = ashr i32 [[LIMIT:%.*]], 2
; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[HALFLIM]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr i64, i64* [[BASE:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i64, i64* [[ADR]], align 8
; CHECK-NEXT: [[TMP1:%.*]] = or i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 2
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i64 [[INDVARS_IV_NEXT]], [[TMP0]]
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[VAL_LCSSA:%.*]] = phi i64 [ [[VAL]], [[LOOP]] ]
; CHECK-NEXT: [[T3_LCSSA:%.*]] = phi i64 [ [[TMP1]], [[LOOP]] ]
; CHECK-NEXT: [[RESULT:%.*]] = and i64 [[VAL_LCSSA]], [[T3_LCSSA]]
; CHECK-NEXT: ret i64 [[RESULT]]
;
entry:
; ensure that the loop can't overflow
%halfLim = ashr i32 %limit, 2
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [ %iv.next, %loop ]
%t1 = sext i32 %iv to i64
%adr = getelementptr i64, i64* %base, i64 %t1
%val = load i64, i64* %adr
%t2 = or i32 %iv, 1
%t3 = sext i32 %t2 to i64
%iv.next = add i32 %iv, 2
%cmp = icmp slt i32 %iv.next, %halfLim
br i1 %cmp, label %loop, label %exit
exit:
%result = and i64 %val, %t3
ret i64 %result
}
; The i induction variable looks like a wrap-around, but it really is just
; a simple affine IV. Make sure that indvars simplifies through.
; ReplaceLoopExitValue should fold the return value to constant 9.
define i32 @indirectRecurrence() nounwind {
; CHECK-LABEL: @indirectRecurrence(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ 1, [[ENTRY:%.*]] ], [ [[J_NEXT:%.*]], [[COND_TRUE:%.*]] ]
; CHECK-NEXT: [[TMP:%.*]] = icmp ne i32 [[J_0]], 10
; CHECK-NEXT: br i1 [[TMP]], label [[COND_TRUE]], label [[RETURN:%.*]]
; CHECK: cond_true:
; CHECK-NEXT: [[J_NEXT]] = add nuw nsw i32 [[J_0]], 1
; CHECK-NEXT: br label [[LOOP]]
; CHECK: return:
; CHECK-NEXT: ret i32 9
;
entry:
br label %loop
loop:
%j.0 = phi i32 [ 1, %entry ], [ %j.next, %cond_true ]
%i.0 = phi i32 [ 0, %entry ], [ %j.0, %cond_true ]
%tmp = icmp ne i32 %j.0, 10
br i1 %tmp, label %cond_true, label %return
cond_true:
%j.next = add i32 %j.0, 1
br label %loop
return:
ret i32 %i.0
}
; Eliminate the congruent phis j, k, and l.
; Eliminate the redundant IV increments k.next and l.next.
; Two phis should remain, one starting at %init, and one at %init1.
; Two increments should remain, one by %step and one by %step1.
; Five live-outs should remain.
define i32 @isomorphic(i32 %init, i32 %step, i32 %lim) nounwind {
; CHECK-LABEL: @isomorphic(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[STEP1:%.*]] = add i32 [[STEP:%.*]], 1
; CHECK-NEXT: [[INIT1:%.*]] = add i32 [[INIT:%.*]], [[STEP1]]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[II:%.*]] = phi i32 [ [[INIT1]], [[ENTRY:%.*]] ], [ [[II_NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[J:%.*]] = phi i32 [ [[INIT]], [[ENTRY]] ], [ [[J_NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[II_NEXT]] = add i32 [[II]], [[STEP1]]
; CHECK-NEXT: [[J_NEXT]] = add i32 [[J]], [[STEP1]]
; CHECK-NEXT: [[L_STEP:%.*]] = add i32 [[J]], [[STEP]]
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[II_NEXT]], [[LIM:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[RETURN:%.*]]
; CHECK: return:
; CHECK-NEXT: [[I_LCSSA:%.*]] = phi i32 [ [[J]], [[LOOP]] ]
; CHECK-NEXT: [[J_NEXT_LCSSA:%.*]] = phi i32 [ [[J_NEXT]], [[LOOP]] ]
; CHECK-NEXT: [[K_NEXT_LCSSA:%.*]] = phi i32 [ [[II_NEXT]], [[LOOP]] ]
; CHECK-NEXT: [[L_STEP_LCSSA:%.*]] = phi i32 [ [[L_STEP]], [[LOOP]] ]
; CHECK-NEXT: [[L_NEXT_LCSSA:%.*]] = phi i32 [ [[J_NEXT]], [[LOOP]] ]
; CHECK-NEXT: [[SUM1:%.*]] = add i32 [[I_LCSSA]], [[J_NEXT_LCSSA]]
; CHECK-NEXT: [[SUM2:%.*]] = add i32 [[SUM1]], [[K_NEXT_LCSSA]]
; CHECK-NEXT: [[SUM3:%.*]] = add i32 [[SUM1]], [[L_STEP_LCSSA]]
; CHECK-NEXT: [[SUM4:%.*]] = add i32 [[SUM1]], [[L_NEXT_LCSSA]]
; CHECK-NEXT: ret i32 [[SUM4]]
;
entry:
%step1 = add i32 %step, 1
%init1 = add i32 %init, %step1
%l.0 = sub i32 %init1, %step1
br label %loop
loop:
%ii = phi i32 [ %init1, %entry ], [ %ii.next, %loop ]
%i = phi i32 [ %init, %entry ], [ %ii, %loop ]
%j = phi i32 [ %init, %entry ], [ %j.next, %loop ]
%k = phi i32 [ %init1, %entry ], [ %k.next, %loop ]
%l = phi i32 [ %l.0, %entry ], [ %l.next, %loop ]
%ii.next = add i32 %ii, %step1
%j.next = add i32 %j, %step1
%k.next = add i32 %k, %step1
%l.step = add i32 %l, %step
%l.next = add i32 %l.step, 1
%cmp = icmp ne i32 %ii.next, %lim
br i1 %cmp, label %loop, label %return
return:
%sum1 = add i32 %i, %j.next
%sum2 = add i32 %sum1, %k.next
%sum3 = add i32 %sum1, %l.step
%sum4 = add i32 %sum1, %l.next
ret i32 %sum4
}
; Test a GEP IV that is derived from another GEP IV by a nop gep that
; lowers the type without changing the expression.
%structIF = type { i32, float }
define void @congruentgepiv(%structIF* %base) nounwind uwtable ssp {
; CHECK-LABEL: @congruentgepiv(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[PTR_IV:%.*]] = phi %structIF* [ [[PTR_INC:%.*]], [[LATCH:%.*]] ], [ [[BASE:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[INDVARS1:%.*]] = bitcast %structIF* [[PTR_IV]] to i32*
; CHECK-NEXT: store i32 4, i32* [[INDVARS1]], align 4
; CHECK-NEXT: br i1 false, label [[LATCH]], label [[EXIT:%.*]]
; CHECK: latch:
; CHECK-NEXT: [[PTR_INC]] = getelementptr inbounds [[STRUCTIF:%.*]], %structIF* [[PTR_IV]], i64 1
; CHECK-NEXT: br label [[LOOP]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
%first = getelementptr inbounds %structIF, %structIF* %base, i64 0, i32 0
br label %loop
loop:
%ptr.iv = phi %structIF* [ %ptr.inc, %latch ], [ %base, %entry ]
%next = phi i32* [ %next.inc, %latch ], [ %first, %entry ]
store i32 4, i32* %next
br i1 undef, label %latch, label %exit
latch: ; preds = %for.inc50.i
%ptr.inc = getelementptr inbounds %structIF, %structIF* %ptr.iv, i64 1
%next.inc = getelementptr inbounds %structIF, %structIF* %ptr.inc, i64 0, i32 0
br label %loop
exit:
ret void
}
declare void @use32(i32 %x)
declare void @use64(i64 %x)
; Test a widened IV that is used by a phi on different paths within the loop.
define void @phiUsesTrunc() nounwind {
; CHECK-LABEL: @phiUsesTrunc(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 undef, label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_END:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ 1, [[FOR_BODY_PREHEADER]] ], [ [[INDVARS_IV_NEXT:%.*]], [[FOR_INC:%.*]] ]
; CHECK-NEXT: [[TMP0:%.*]] = trunc i64 [[INDVARS_IV]] to i32
; CHECK-NEXT: br i1 undef, label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]]
; CHECK: if.then:
; CHECK-NEXT: br i1 undef, label [[IF_THEN33:%.*]], label [[FOR_INC]]
; CHECK: if.then33:
; CHECK-NEXT: br label [[FOR_INC]]
; CHECK: if.else:
; CHECK-NEXT: br i1 undef, label [[IF_THEN97:%.*]], label [[FOR_INC]]
; CHECK: if.then97:
; CHECK-NEXT: call void @use64(i64 [[INDVARS_IV]])
; CHECK-NEXT: br label [[FOR_INC]]
; CHECK: for.inc:
; CHECK-NEXT: [[KMIN_1:%.*]] = phi i32 [ [[TMP0]], [[IF_THEN33]] ], [ 0, [[IF_THEN]] ], [ [[TMP0]], [[IF_THEN97]] ], [ 0, [[IF_ELSE]] ]
; CHECK-NEXT: call void @use32(i32 [[KMIN_1]])
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: br i1 false, label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
entry:
br i1 undef, label %for.body, label %for.end
for.body:
%iv = phi i32 [ %inc, %for.inc ], [ 1, %entry ]
br i1 undef, label %if.then, label %if.else
if.then:
br i1 undef, label %if.then33, label %for.inc
if.then33:
br label %for.inc
if.else:
br i1 undef, label %if.then97, label %for.inc
if.then97:
%idxprom100 = sext i32 %iv to i64
call void @use64(i64 %idxprom100)
br label %for.inc
for.inc:
%kmin.1 = phi i32 [ %iv, %if.then33 ], [ 0, %if.then ], [ %iv, %if.then97 ], [ 0, %if.else ]
call void @use32(i32 %kmin.1)
%inc = add nsw i32 %iv, 1
br i1 undef, label %for.body, label %for.end
for.end:
ret void
}